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Abstract In this paper an eigenvalue complementarity problem (EiCP) is studied,
which finds its origins in the solution of a contact problem in mechanics. The EiCP
is shown to be equivalent to a Nonlinear Complementarity Problem, a Mathematical
Programming Problem with Complementarity Constraints and a Global Optimization
Problem. A finite Reformulation–Linearization Technique (RLT)-based tree search
algorithm is introduced for processing the EiCP via the lattermost of these formu-
lations. Computational experience is included to highlight the efficacy of the above
formulations and corresponding techniques for the solution of the EiCP.
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1 Introduction

Given the matrix A ∈ R
n×n and the positive definite matrix B ∈ R

n×n, the Eigenvalue
Complementarity Problem (EiCP) consists of finding a scalar λ > 0 and a vector
x ∈ R

n \ {0} such that

w = (λB − A)x,

w ≥ 0, x ≥ 0,

xT w = 0.

This problem is a special case of the Generalized Eigenvalue Complementarity
Problem (GEiCPJ ), where J ⊆ {1, . . . , n}, which originally appeared in the study
[4] of the states of static equilibrium of a finite dimensional mechanical system with
unilateral friction contact. The problem GEiCPJ consists of finding a scalar λ > 0
and a vector x ∈ R

n \ {0} such that

w = (λB − A)x,

wJ ≥ 0, xJ ≥ 0, xT
J wJ = 0

wJ̄ = 0,

(1)

where xJ ≡ (xj , j ∈ J ), wJ ≡ (wj , j ∈ J ), and J̄ = {1, . . . , n} \ J . Note that the
EiCP is obtained from (1) when J = {1, . . . , n}. This problem arises in several im-
portant practical applications in engineering and physics, as for example in studying
the resonance frequency of structures and the stability of dynamic systems [4].

Note that the GEiCPJ with J = ∅ (w = 0) leads to the so-called Generalized
Eigenvalue Problem [8]. For any solution (λ, x) of GEiCPJ , the value of λ is called
a Complementary Eigenvalue of (A,B) and x is a corresponding Complementary
Eigenvector. Since the set of complementary eigenvectors associated with a given
complementary eigenvalue is a cone, there is no loss of generality to consider only
the solutions satisfying ‖x‖2 = p, with p > 0. These constraints ensure that x �= 0.
In the case of EiCP, the constraint ‖x‖2 = p can be replaced by the linear constraint
‖x‖1 = eT x = p, since x ≥ 0, where e is a vector of ones.

It is easy to see that any solution of EiCP with w = 0 is a positive eigenvalue
of (A,B) with a corresponding eigenvector satisfying a sign constraint. In general,
we can prove [16] that for any solution (λ, x) to GEiCPJ , there is a set I satisfying
J̄ ⊆ I ⊆ {1,2, . . . , n}, such that λ is a positive eigenvalue of (AII,BII) and xI is
a corresponding eigenvector satisfying xJ∩I ≥ 0, where AII and BII are respective
submatrices of A and B with rows and columns indexed by I . For the EiCP, this
result means that given a solution (λ, x), λ is an eigenvalue of (AII,BII) and xI is a
corresponding nonnegative eigenvector. As a corollary of this result, the number of
solutions of the EiCP and of the GEiCP is finite. Moreover, in [16], it is proved that
GEiCPJ has at most (n − |J | + 2)2|J | − |J | − 2 solutions. As EiCP is a particular
case of GEiCPJ with J = {1, . . . , n}, we see that the number of solutions for EiCP is
at most 2n+1 − n − 2.

The set of solutions of GEiCPJ can be obtained through a complete enumeration.
Although this method is not practical, it provides a necessary and sufficient condition
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for the feasibility of the GEiCPJ . However, it has been shown in [16] that determin-
ing the feasibility of GEiCPJ is an NP-complete decision problem, since any solution
(λ,x) of GEiCPJ must verify xJ ≥ 0 and xT Ax > 0, which is an NP-complete prob-
lem [3]. Therefore, the GEiCPJ is in general an NP-hard problem. However, the class
of the matrix A plays a very important role in the solution of GEiCPJ . Indeed, for
some classes of matrices, the feasibility of GEiCPJ can be easily established [16].

The case where A and B are symmetric matrices was studied in [16], where it was
shown that EiCP can be reduced to the problem of finding a stationary point of the
Rayleigh function on the simplex.

In this paper, the more general case where at least one matrix is asymmetric is
considered. A Nonlinear Complementarity Problem (NCP) and a Mathematical Pro-
gramming with Complementarity Constraints (MPEC) are established as alternative
formulations of EiCP. The solution of EiCP by exploiting these formulations is also
studied. It is shown that a Complementarity Active-Set algorithm [12] for finding a
Stationary Point of an MPEC can in many cases process the EiCP. On the other hand,
a robust technique for NCP such as PATH, is not in general able to solve the EiCP by
exploiting the NCP formulation. The EiCP can additionally be shown to be equivalent
to a global optimization problem. A branch-and-bound method for the solution of this
optimization problem is introduced, that is based on the Reformulation–Linearization
Technique (RLT) of Sherali and Tuncbilek [18]. Numerical results are included show-
ing that this algorithm is able to solve the EiCP when the order of the matrices A and
B is small.

The remainder of this paper is organized as follows. In Sect. 2 the symmetric
problem is briefly discussed. The formulations for the asymmetric case are pre-
sented in Sect. 3. The Reformulation–Linearization Technique based branch-and-
bound method for the EiCP is introduced in Sect. 4. The importance of scaling the
EiCP is treated in Sect. 5. Finally, some computational experience and some conclu-
sions are presented in the last section.

2 The symmetric eigenvalue complementarity problem

In this section, the symmetric EiCP is considered, where the matrices A and B are
both symmetric. In this case, the EiCP is closely related to the classical Eigenvalue
Problem. The complementarity condition xT w = 0 can be rewritten as xT (λBx −
Ax) = 0. Because x �= 0, and B is positive definite, then

λ(x) = xT Ax

xT Bx

where λ(x) is the generalized Rayleigh quotient function [8]. Since the gradient of
this function is

∇λ(x) = 2

xT Bx
[A − λ(x)B]x,

and ∇λ(x) = 0 if and only if [A − λ(x)B]x = 0, then it is to be expected that any
stationary point (x,λ(x)) of the generalized Rayleigh quotient in the nonnegative
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orthant with λ(x) > 0 provides a solution of EiCP. Indeed, if we consider the opti-
mization problem

OEiCP:

{Maximize λ(x)

subject to x ≥ 0,
eT x = p

where e = (1, . . . ,1)T and p > 0, then the following result holds [16].

Theorem 1

• x is a stationary point of OEiCP with λ(x) > 0 if and only if (λ = λ(x), x) is a
solution of EiCP.

• The EiCP has a solution if and only if there exists 0 �= x ≥ 0 such that xT Ax > 0.
• The symmetric EiCP is NP-hard.
• The EiCP has at most 2n − 1 eigenvalues.

Taking into account this theorem, the following process for solving the symmetric
EiCP can be designed:

1. Find a vector x̄ such that 0 �= x̄ ≥ 0, x̄T Ax̄ > 0, and eT x̄ = p.
2. Find a stationary point of

Maximize λ(x)

subject to x ≥ 0,

eT x = p

using x̄ as an initial solution by any suitable nonlinear optimization procedure.

It is important to point out that the first step of this process is not usually easy, since
the underlying problem is in general NP-complete [3]. However, Table 1 presents
some classes of matrices for which an initial solution for the OEiCP can be easily ob-
tained [16] (ei represents the ith canonical basis vector). Hence, the symmetric EiCP
has a solution when the matrix A belongs to any of these classes. In particular, the
symmetric EiCP has a solution if A is a symmetric PD matrix, a nonzero symmetric
PSD matrix or a symmetric strictly copositive matrix [5].

Table 1 Initial solution for
OEiCP CLASS OF A INITIAL SOLUTION

∃i: aii > 0 x = ei

A ≥ 0, A �= 0 x = e

∃i, j : aii = 0, ajj ≤ 0

and aij > 0 xl =

⎧⎪⎪⎨
⎪⎪⎩

1, l = j,
1−ajj

2aij
, l = i,

0, l �= i, j

∃x ≥ 0: Ax > 0 x is solution of LP:

max y

s.t. Ax − ye ≥ 0, eT x = p

x ≥ 0, y ∈ R.
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3 The asymmetric eigenvalue complementarity problem

The expression of the gradient of the generalized Rayleigh quotient presented in the
previous section is only valid when A is symmetric. If A �= AT and B is symmetric
PD, the expression of this gradient is:

∇λ(x) = 1

xT Bx

[
A + AT − 2λ(x)B

]
x,

and the relation between the stationary points of OEiCP and the solutions of the EiCP
is no longer valid. Thus, other methodologies for the solution of the asymmetric EiCP
need to be investigated. The best approach is to reformulate the EiCP as a known
optimization problem. Three of these suitable reformulations of EiCP are discussed
below.

3.1 Nonlinear complementarity problem

The EiCP can be re-stated in the following way (henceforth referred to as EiCP itself):

EiCP: w = Bx − xn+1Ax,

eT x = p,

xn+1 > 0,

x ≥ 0, w ≥ 0, xT w = 0

(2)

where xn+1 = 1
λ

. If a new nonnegative variable wn+1 is introduced such that

wn+1 = −p + eT x and wn+1xn+1 = 0,

then the following Nonlinear Complementarity Problem is obtained

NCP: w = Bx − xn+1Ax,

wn+1 = −p + eT x,

x ≥ 0, w ≥ 0, xn+1 ≥ 0, wn+1 ≥ 0,

xT w = xn+1wn+1 = 0.

(3)

To check that the EiCP and the NCP are equivalent, if xn+1 = 0 in a given solution
of NCP, then

w = Bx, x ≥ 0, w ≥ 0,

xT w = 0, eT x ≥ p.

This is impossible for B ∈ PD, since xT w = xT Bx = 0 implies x = 0, which
contradicts that eT x ≥ p > 0. On the other hand, if xn+1 > 0 and wn+1 = 0 in any
solution of NCP, then

eT x = p ⇒ x �= 0

and

w = Bx − xn+1Ax, w ≥ 0, x ≥ 0,

xT w = 0.



144 J.J. Júdice et al.

So, (λ = 1
xn+1

, x) is a solution of EiCP. The converse implication is obvious. As the
NCP (3) is not monotone, complementarity algorithms [7] may have a great difficulty
to process it. The algorithm PATH [2], which is included in the GAMS collection, is
considered to be the most widely used in practice. In the last section of this paper,
some computational experience is reported showing that PATH is, in many cases,
unable to solve the NCP and thus to process the EiCP.

3.2 Mathematical programming problem with complementarity constraints

In order to reformulate the EiCP as a Mathematical Programming Problem with Com-
plementarity Constraints (MPEC), a new nonnegative auxiliary vector y is introduced
in the reformulation (2) of EiCP such that y = xn+1x. Considering this equality and
multiplying the condition eT x = p by xn+1, it is obvious that any solution of the
EiCP must verify

w = Bx − Ay,

eT x = p,

eT y − pxn+1 = 0,

x ≥ 0, w ≥ 0, y ≥ 0, xn+1 ≥ 0,

xT w = 0,

‖y − xn+1x‖2 = 0.

We note that this new constraint eT y − pxn+1 = 0 is an RLT restriction [18] that
has been introduced for the purpose of ensuring the convergence of our algorithm
proposed below (see Theorem 4).

Accordingly, consider the following optimization problem with complementarity
constraints.

MPEC: Minimize (y − xn+1x)T (y − xn+1x)

subject to

GLCP

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w = Bx − Ay,

eT x = p,

eT y − pxn+1 = 0,

x ≥ 0, w ≥ 0, y ≥ 0, xn+1 ≥ 0,

xT w = 0.

(4)

Hence, (λ, x) is a solution of EiCP if and only if (xn+1 = 1
λ
, x, y = xn+1x) is

a solution of MPEC with zero objective value. The following process for finding a
solution for the EiCP can therefore be designed:

1. Solve the GLCP (defined by (4)).
2. Find a stationary point or a global minimum for the MPEC.

In order to find a solution for the GLCP the following result is useful.

Theorem 2 If the EiCP has a solution, then there exists 0 �= ȳ ≥ 0 such that
(Aȳ)i > 0, for some i.
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Proof If A ≤ 0, then the EiCP

w = Bx − A(xn+1x), x ≥ 0, w ≥ 0,

xT w = 0,

xn+1 > 0, x �= 0

has no solution. To see this, if 0 �= x ≥ 0 and xn+1 > 0 then

A(xn+1x) = xn+1Ax ≤ 0.

Therefore,

w ≥ Bx ⇒ wT x ≥ xT Bx > 0

and so the EiCP has no solution. Hence, A has at least one element ars > 0, and
letting ȳ = es , the sth unit vector, we have

(Aȳ)r =
n∑

j=1

arj e
s
j = ars > 0.

�

Accordingly, let ȳ be such that 0 �= ȳ ≥ 0, (Aȳ)i > 0 for some i and let us consider
LCP(−Aȳ,B):

LCP:

⎧⎪⎨
⎪⎩

w = −Aȳ + Bx,

x ≥ 0, w ≥ 0,

xT w = 0.

As B ∈ PD, then the LCP has an unique solution (w̄, x̄) [5]. Moreover 0 �= x̄ ≥ 0,
since if x̄ = 0, we have

w̄i = (−Aȳ)i < 0.

If we now consider the vectors w̃, x̃, ỹ, and x̃n+1 such that

w̃ = pw̄

eT x̄
, x̃ = px̄

eT x̄
, ỹ = pȳ

eT x̄
, x̃n+1 = eT ỹ

p

then (x̃, ỹ, w̃, x̃n+1) is solution of the GLCP.
It is important to add that if B is the identity matrix, then the LCP can be easily

solved as {
(Aȳ)i > 0 ⇒ x̄i = (Aȳ)i

(Aȳ)i ≤ 0 ⇒ x̄i = 0
for all i = 1, . . . , n.

On the other hand, if B �= I , the LCP can be efficiently solved by one of the
algorithms discussed in [11], and the solution to GLCP can then be recovered as
above.

After a solution of the GLCP is at hand, the Complementarity Active Set Algo-
rithm (CASET) [12] can be used for finding a stationary point (x̄, ȳ, x̄n+1) of the
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MPEC associated with the EiCP. This procedure is based on the active-set strategy
[15], which begins with the solution of GLCP and tries to reduce the objective value
while maintaining complementarity during the entire procedure. It is possible to show
that under reasonable hypotheses the algorithm is able to find a stationary point for
the MPEC. If this stationary point satisfies ‖ȳ − x̄n+1x̄‖2 = 0, then (λ̄ = 1

x̄n+1
, x̄) is a

solution of the EiCP. Note that x̄n+1 > 0 in such a solution. In fact, if x̄n+1 = 0 then
ȳ = 0, and w̄ = Bx̄, x̄ �= 0 implies that w̄T x̄ = x̄T Bx̄ > 0, which is a contradiction.

If such a stationary point (x̄, ȳ, x̄n+1) does not satisfy ‖ȳ − x̄n+1x̄‖2 = 0, then a
global optimization algorithm is necessary to find a global minimum for the MPEC.
There are some algorithms to perform this task when the objective function is convex
[1, 9, 10, 13]. However, the function of the MPEC (4) is not convex, which precludes
the use of such techniques. Therefore, we have only tested the performance of the
Complementarity Active-Set method for processing the EiCP by finding a stationary
point of the associated MPEC. The design of a global optimization algorithm for
dealing with this MPEC is proposed as a topic of future research. Instead, in this
paper, we have used another methodology to treat the EiCP as a global optimization
problem. This topic is discussed next.

3.3 Global optimization problem

Let us consider the following formulation of the EiCP.

GOP: Minimize
n∑

i=1

wixi

subject to w = −xn+1Ax + Bx, (5)

eT x = p, (6)

xn+1 ≥ 0, x ≥ 0, w ≥ 0. (7)

As described in the previous section, (λ̄ = 1
x̄n+1

, x̄) is a solution of EiCP if and
only if (x̄, w̄, x̄n+1) solves GOP with

min
(x,w,xn+1)∈S

wT x = 0

where S is the set satisfying the constraints of GOP. To facilitate the design of a global
optimization algorithm, it is useful to restrict xn+1 to belong to a closed interval
while searching for an optimal solution to GOP. Hence, the following problem can be
considered

GOP: Minimize
n∑

i=1

wixi

subject to w = −xn+1Ax + Bx, (8)

eT x = p, (9)

ε ≤ xn+1 ≤ �, (10)

x ≥ 0, w ≥ 0 (11)
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where � > 0 is sufficiently large and ε > 0 is very small. A branch-and-bound algo-
rithm for solving this global optimization problem is described in the next section.

4 An RLT-based branch-and-bound method (BBRLT)

In this section, the solution of the EiCP using the Reformulation–Linearization Tech-
nique (RLT) [18] is studied. This technique involves two steps, namely the reformu-
lation and the linearization phases. In the reformulation phase, a set of suitable non-
negative variable factors are defined and products with these factors and the original
constraints are constructed to generate some nonlinear constraints. In the linearization
phase, an appropriate technique of replacing nonlinear product terms by variables is
used to linearize the reformulated nonlinear problem.

The RLT process yields a lower bounding problem that can be embedded in a
branch-and-bound algorithm to solve the GOP problem presented in the previous
section. As a feasible solution of GOP is a solution of EiCP if and only if the value
of its objective function is zero, then a node is fathomed whenever the corresponding
lower bound is positive. Moreover, whenever a feasible solution of the GOP with an
objective value of zero is detected, the algorithm terminates with a solution for the
EiCP at hand. For each node k of the binary branch-and-bound tree, two types of
branching mechanisms can be considered, as depicted in Fig. 1.

Thus, for any given node subproblem, the added restrictions imposed on the
branches on the chain from this node to the root node must be considered. Let us
assume that these restrictions are given by

l ≤ xn+1 ≤ u,

wi = 0, ∀i ∈ I0,

xi = 0, ∀i ∈ J0

where ε ≤ l < u ≤ � and I0 and J0 are the sets of indices of the fixed variables at the
current node (I0 ∩ J0 = ∅). Let us consider the set

K0 = I0 ∪ J0

and let

Ī0 = {1, . . . , n} \ I0, J̄0 = {1, . . . , n} \ J0, K̄0 = {1, . . . , n} \ K0.

Fig. 1 Branching scheme of the algorithm
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The subproblem at node k is then given by

GOP(k): Minimize
∑
i∈K̄0

wixi

subject to w = −xn+1Ax + Bx, (12)

eT x = p, (13)

l ≤ xn+1 ≤ u, (14)

(x,w) ≥ 0, (15)

wi = 0, ∀i ∈ I0, xi = 0, ∀i ∈ J0. (16)

The RLT technique is now used for finding a lower bound for this node subprob-
lem. To do this, some transformations on the problem are performed in such a way
that a lower bounding problem is obtained in a higher dimensional space. These trans-
formations are presented below:

• In the Reformulation Phase, the following products are constructed, where (12)i is
the ith row of (12):
(12)i is multiplied by xi , ∀i ∈ J̄0.

(13) is multiplied by:

{xn+1
xi, ∀i ∈ J̄0,
xn+1xi, ∀i ∈ J̄0.

(14) is multiplied by xi , ∀i ∈ J̄0.
• In the Linearization Phase, the following variables are substituted in place of the

stated polynomial terms:
zi = wixi , ∀i ∈ K̄0 (zi = 0, ∀i ∈ K0).
yi = xn+1xi , ∀i ∈ J̄0 (yi = 0, ∀i ∈ J0).
vij = xn+1xixj , ∀i, j ∈ J̄0, i ≤ j (vij = 0 for all (i, j) with i ∈ J0 or j ∈ J0).
sij = xixj , ∀i, j ∈ J̄0, i ≤ j (sij = 0 for all (i, j) with i ∈ J0 or j ∈ J0).

The application of the RLT technique yields the following linear program, where
v(ij) ≡ vij if i ≤ j and v(ij) ≡ vji if j < i (similarly for s(ij)).

LP(k): Minimize
∑
i∈K̄0

zi

subject to

w = −Ay + Bx, (17)

zi = −
n∑

j=1

aij v(ij) +
n∑

j=1

bij s(ij), ∀i ∈ J̄0, (18)

eT x = p, (19)

eT y = pxn+1, (20)
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n∑
j=1

s(ij) = pxi, ∀i ∈ J̄0 (21)

n∑
j=1

v(ij) = pyi, ∀i ∈ J̄0 (22)

lxi ≤ yi ≤ uxi, ∀i ∈ J̄0 (23)

zi = 0, ∀i ∈ K0, xi = 0, ∀i ∈ J0, wi = 0, ∀i ∈ I0,

yi = 0, ∀i ∈ J0, v(ij) = 0 if i ∈ J0 or j ∈ J0,

s(ij) = 0 if i ∈ J0 or j ∈ J0,

(24)

γ = (z,w,x, xn+1, y, v, s) ≥ 0 (25)

where z = (zi) ∈ R
n, y = (yi) ∈ R

n, v = (vij ) ∈ R
n(n+1)/2, and s = (sij ) ∈ R

n(n+1)/2.
Let γ̄ = (z̄, w̄, x̄, x̄n+1, ȳ, v̄, s̄) be a solution of LP(k) with τ̄ being the objective

value. If τ̄ > 0 then this node k can be fathomed. On the other hand, let

θ1 = max
i∈K̄0

{w̄i x̄i}, θ2 = max
i∈J̄0

|ȳi − x̄n+1x̄i |.

The next result is an immediate consequence of the definition of the GOP and
provides a stopping criterion for the algorithm.

Theorem 3 If θ1 = θ2 = 0, then (λ = 1
x̄n+1

, x̄) is a solution of EiCP.

On the other hand, if θ = max{θ1, θ2} �= 0 then branching is conducted in the
following way:

• If θ1 > θ2, then branch on the dichotomy {wi = 0} ∨ {xi = 0} for i such that θ1 =
w̄i x̄i .

• Otherwise, θ2 ≥ θ1 with θ2 > 0, and we branch in the following way:

{l ≤ xn+1 ≤ x̃n+1} ∨ {x̃n+1 ≤ xn+1 ≤ u} (26)

where

x̃n+1 =
⎧⎨
⎩

x̄n+1, if min{(x̄n+1 − l), (u − x̄n+1)} ≥ η(u − l),

(u + l)

2
, otherwise,

with 0 < η < 0.5 (we recommend η = 0.1).

The convergence of this algorithm to a solution of the EiCP is proved in the next
theorem.

Theorem 4 Consider the above branch-and-bound algorithm with the stated parti-
tioning rule. Then either the procedure terminates finitely with a solution to EiCP,
including possibly an indication that no solution exists, or else, an infinite branch-
and-bound tree is generated such that along any infinite branch of this tree, any ac-
cumulation point of the LP(k)-solutions generated solves EiCP.
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Proof The case of finite convergence is obvious. Else, suppose that an infinite tree
is generated and consider any infinite branch. Let an accumulation point of LP(k)-
solutions along this branch for an index set K yield limits

{γ k}K → γ ∗, {[lk, uk]}K → [l∗, u∗]
where lk ≤ xk

n+1 ≤ uk , ∀k, represents the node k bounds on xn+1. Note that we can
have θ1 > θ2 only finitely often for k ∈ K , because this results in fixing either some
wi = 0 or xi = 0. Hence, there exists k1 ∈ N such that for k ≥ k1, k ∈ K , we have
θ2 ≥ θ1 and we branch on xn+1 according to (26).

Owing to the branching process, following the argument in [18], we get

{x∗
n+1 = l∗} ∨ {x∗

n+1 = u∗} (27)

where we could have l∗ = u∗.
Consider the case x∗

n+1 = l∗ in (27) (the case of x∗
n+1 = u∗ is similar).

From (23) we have in the limit that

y∗
i ≥ l∗x∗

i , ∀i. (28)

Furthermore, (20) yields
n∑

i=1

y∗
i = pl∗. (29)

Note that if any inequality in (28) is strict, then using (28) and (19), we would
have

n∑
i=1

y∗
i > l∗

n∑
i=1

x∗
i = pl∗,

which would contradict (29). Hence,

y∗
i = l∗x∗

i = x∗
n+1x

∗
i , ∀i.

Consequently, from (17), we have,

w∗ = −Ay∗ + Bx∗ = −x∗
n+1Ax∗ + Bx∗. (30)

Furthermore, since θ2 ≥ θ1 ≥ 0 for k ≥ k1, and θ2 → 0, we have that θ1 → 0, i.e.,

w∗
i x

∗
i = 0, ∀i = 1, . . . , n. (31)

Moreover, since all active nodes have a lower bound of zero, we have zk = 0,
∀k ∈ K , and the LP(k) objective value τ k is also zero for all k ∈ K . Thus

{τ k} → τ ∗ = 0 and z∗
i = 0, ∀i = 1, . . . , n.

In addition, x∗
n+1 = l∗ along with the branching process implies that

0 < ε ≤ x∗
n+1 ≤ �. (32)
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Thus by (19), (25), (30), and (32), (w∗, x∗, x∗
n+1) is feasible for the GOP with

x∗
n+1 > 0. But by (31), the objective value associated with this feasible solution is

zero, and therefore, (λ∗ = 1
x∗
n+1

, x∗) is a solution of EiCP. �

This proof shows that the variables vij and sij and the restrictions (18), (21), and
(22) can be omitted in the LP(k) problem without impairing the theoretical conver-
gence of the branch-and-bound algorithm. The advantage of using these new vari-
ables and constraints has to do with the possibility of obtaining stronger lower bounds
that may reduce the search process. On the other hand, this has the obvious disadvan-
tage of drastically increasing the number of constraints and variables of the LP(k)
programs that are required to be solved at each node k.

5 Scaling in the eigenvalue complementarity problem

In this section, we show that the EiCP can be scaled so that all elements of the matri-
ces A and B have absolute values less than or equal to one. Let

EiCP: w = Bx − xn+1Ax, x ≥ 0, w ≥ 0,

xT w = 0,

eT x = p,

xn+1 ≥ 0

with p > 0, B ∈ PD (symmetric or asymmetric) of order n×n, A ∈ R
n×n, x,w ∈ R

n,
and where e ∈ R

n is a vector of ones.
Let ⎧⎨

⎩
β = max

(i,j)
|bi,j | > 0,

α = max
(i,j)

|ai,j | > 0.

Then,

w = Bx − xn+1Ax ⇔ w =
(

1

β
B

)
(βx) −

(
xn+1α

β

)(
1

α
A

)
(βx).

Moreover,

xn+1 > 0 ⇔ xn+1α

β
> 0 ⇔ βxn+1

α
> 0,

βx ≥ 0 ⇔ x ≥ 0,

wT x = 0 ⇔ (βx)T w = β(xT w) = 0,

eT x = p ⇔ eT (βx) = β(eT x) = βp,

and ∣∣∣∣ 1

β
bij

∣∣∣∣ = 1

β
|bij | ≤ 1,

∣∣∣∣ 1

α
aij

∣∣∣∣ = 1

α
|aij | ≤ 1, ∀(i, j),

1

β
B ∈ PD (PSD) ⇔ B ∈ PD (PSD).
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Note also that

A ∈ PD (PSD) ⇔ 1

α
A ∈ PD (PSD).

Therefore, the EiCP is equivalent to

EiCPesc: w =
(

1

β
B

)
x − xn+1

(
1

α
A

)
x, x ≥ 0, w ≥ 0,

xT w = 0, eT x = βp

and we have

{
x̄ = (x̄i) ∈ R

n

x̄n+1 > 0
is a solution of EiCPesc ⇔

{
x̃ = (

x̄i

β

) ∈ R
n,

x̃n+1 = βx̄n+1
α

> 0
is a solution of EiCP.

6 Computational experience

In this section, some computational experience is presented to illustrate the efficiency
of the algorithms described in this paper for the solution of symmetric and asymmet-
ric EiCPs. All computations have been performed on a Pentium IV 2.4 GHz machine
having 256 MB of RAM.

6.1 Symmetric EiCPs

In this subsection, computational experience with the following algorithms is re-
ported:

1. MINOS [14] for solving the Nonlinear Program OEiCP.
2. PATH [6] for solving the NCP defined by (3).
3. CASET [12] for finding a stationary point for MPEC defined by (4).

For our test problems, B = In, and A ∈ R
n×n was randomly generated such that its

elements are uniformly distributed in the interval [0,1] or [−50,50]. These two types
of test problems are referred to by the sets S1 and S2, respectively. The parameter p in
the restriction eT x = p was taken to be one, except for the problem s200, where p =
10 was used. To identify the test problems, the letters “s” and “a” are used according
to whether the matrix A is symmetric or asymmetric. The number presented after
these letters represents the order of the matrices A and B .

The behavior of the algorithms MINOS and CASET for solving symmetric EiCPs
is presented in Table 2. In this table, as well as in the sequel, xn+1 is the inverse of the
eigenvalue of the EiCP, NI is the total number of pivot steps, T is the total CPU time
in seconds for solving the problem, OBJ is the obtained objective function value, and
RES is the residual norm defined by

‖w − Bx + xn+1Ax‖2

where (x,w,xn+1) is the solution found by CASET algorithm.
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Table 2 Solution of the symmetric EiCP with algorithms MINOS and CASET

Prob MINOS CASET

xn+1 NI T xn+1 NI T OBJ RES

S1 s200(∗) 0.0100 1537 20.92 0.0100 397 0.31 2.38E-15 8.31E-08

s100 0.0197 286 1.01 0.0197 197 0.03 1.73E-13 1.58E-06

s50 0.0396 154 0.15 0.0396 98 0.02 1.79E-16 3.64E-08

s40 0.0495 125 0.09 0.0495 78 0.00 7.06E-15 2.10E-07

s30 0.0665 97 0.12 0.0665 59 0.00 4.76E-19 1.21E-09

s20 0.0987 69 0.04 0.0987 39 0.02 2.51E-16 1.96E-08

s10 0.2065 32 0.03 0.2065 20 0.00 3.01E-18 1.79E-09

s6 0.3447 19 0.03 0.3447 11 0.00 6.88E-14 1.58E-07

s3 0.7878 8 0.03 0.7878 6 0.00 2.63E-14 5.12E-08

S2 s200 0.0018 317 3.90 0.0019 2508 1.53 3.51E-08 2.35E-03

s100 0.0024 163 0.05 0.0029 1023 0.19 4.57E-07 5.89E-03

s50 0.0037 78 0.09 0.0037 195 0.02 8.34E-16 1.48E-07

s40 0.0041 66 0.06 0.0045 219 0.03 2.03E-06 8.79E-03

s30 0.0057 49 0.03 0.0068 117 0.02 5.07E-05 2.73E-02

s20 0.0053 43 0.02 0.0053 57 0.02 3.73E-16 6.17E-08

s10 0.0139 10 0.04 0.0157 27 0.03 9.05E-15 2.23E-07

s6 0.0235 3 0.04 0.0235 2 0.03 6.65E-17 8.78E-09

s3 0.0210 7 0.03 0.0210 6 0.02 9.99E-17 1.22E-08

The notation (*) is used whenever the algorithm MINOS has been unable to find a
solution for the EiCP with p = 1.

In the computational experience performed with algorithm MINOS, the vector
x = ei was used as an initial solution. This vector is the column i of the identity
matrix associated with a positive diagonal element aii of the matrix A.

In the computational experience with the CASET algorithm, the test problems S2
were scaled according to the described procedure in Sect. 5. Moreover, as B = I ,
the solution of the GLCP associated with MPEC is given by the procedure described
after Theorem 2. In this process, ȳ was chosen as the vector ei corresponding to a
positive diagonal element aii of A.

The results presented in Table 2 show that the CASET algorithm has been able
to process all the symmetric EiCP problems of the set S1 with a significantly lower
computational effort than the commercial program MINOS. However, for the prob-
lems of the set S2, in some cases, the CASET algorithm finds a stationary point for
the MPEC that is not a solution for the EiCP. Nevertheless, it is interesting to note
that the resulting residual is always very small in these cases.

The efficiency and robustness of the PATH method was tested by solving Problem
EiCP via the Nonlinear Complementary Problem given by (3). The numerical results
are not displayed, since the algorithm behaves quite badly for these examples. In fact
the PATH method was unable to process about 63% of the test problems, and when
it found a solution for the EiCP, the required computational effort was substantially
greater than that for the CASET algorithm [17].
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Despite the fact that the CASET algorithm does not guarantee a solution of the
EiCP, its behavior appears to be, in general, efficient and robust when compared with
methodologies based on other approaches.

6.2 Asymmetric EiCPs

In this subsection, the algorithms PATH and CASET for solving asymmetric EiCPs
are compared. It is important to recall that PATH tries to solve the NCP (3) associated
with the EiCP, while Algorithm CASET finds a stationary point of the MPEC (4) that
is equivalent to the EiCP.

The matrix A was randomly generated in a similar manner to the case of the sym-
metric EiCP, resulting in two types of test problems designated by N1 and N2, re-
spectively. Moreover, B was once again taken to be the identity matrix.

The results of the performance of these two algorithms are presented in Table 3.
In this table, (****) is used whenever the PATH algorithm, with the default optional
parameters, was unable to solve the EiCP. This occurred in 67% of the test problems
in Table 3.

The results show that the CASET algorithm was able to solve all the test problems
in the set N1 in a more efficient and robust way than the PATH algorithm, where the
latter was able to process only 75% of these problems.

This situation with PATH was drastically worsened for the N2 problems, where it
was unable to process all the problems. The behavior of the CASET algorithm turned

Table 3 Solution of the asymmetric EiCP with the algorithms PATH and CASET

Prob PATH CASET

xn+1 NI T Res xn+1 NI T Obj Res

N1 a200 **** 521 4.63 1.00E+00 0.0010 397 0.33 1.70E-16 6.74E-08

a100 0.0199 202 1.01 8.15E-07 0.0199 197 0.05 3.71E-14 6.46E-07

a50 **** 202 1.06 1.00E+00 0.0399 97 0.00 8.52E-13 2.07E-06

a40 0.0493 133 0.75 1.62E-10 0.0493 78 0.00 1.75E-15 9.49E-08

a30 0.0662 123 0.77 1.07E-08 0.0662 58 0.00 3.73E-17 9.18E-09

a20 0.1006 114 0.78 5.18E-12 0.1006 40 0.00 2.91E-14 1.62E-07

a10 0.1881 90 0.79 1.58E-07 0.1881 19 0.00 3.47E-14 1.86E-07

a6 0.3268 90 0.79 3.04E-07 0.3268 11 0.00 1.13E-13 2.64E-07

a3 **** 122 1.12 1.00E+00 0.6182 7 0.00 1.38E-23 2.20E-12

N2 a200 **** 690 4.67 1.00E+00 0.0038 3173 2.05 7.84E-09 9.14E-04

a100 **** 234 1.39 1.00E+00 0.0047 974 0.19 9.34E-14 7.20E-06

a50 **** 130 1.12 1.00E+00 0.0077 303 0.03 2.56E-06 7.49E-03

a40 **** 383 1.08 1.00E+00 0.0064 231 0.00 1.32E-15 1.28E-07

a30 **** 141 1.09 1.00E+00 0.0125 178 0.02 9.04E-06 1.08E-02

a20 **** 130 1.10 1.00E+00 0.0112 66 0.02 2.13E-13 1.47E-06

a10 **** 130 1.12 1.00E+00 0.0110 21 0.02 1.78E-02 2.23E-07

a6 **** 517 1.98 1.00E+00 0.2233 5 0.03 1.78E-19 5.97E-10

a3 **** 119 1.13 1.00E+00 0.0258 3 0.05 6.91E-05 7.06E-03
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out to be similar to that observed for the S2 test problems, being able to process
65% of the cases. It is also important to add that the computational effort required
by Algorithm CASET to obtain a solution for EiCP is significantly smaller than that
required by PATH, and that the residual values of the resulting solutions are always
very small. The class of problems for which the CASET algorithm is guaranteed to
process the EiCP is a subject of future research.

6.3 Solution of the symmetric and asymmetric EiCPs with the RLT technique

In this subsection, we report numerical results obtained by the branch-and-bound
algorithm, for solving some of the test problems S2 and N2. The experience with the
test problems S1 and N1 is not reported since the CASET algorithm had a sufficiently
efficient and robust behavior in these cases. The two types of test problems S2 and
N2 were scaled according to the procedure described in Sect. 5.

The results are reported in Table 4 where, besides the previously used parameters,
[ε,�] indicates the interval for xn+1 on which the search of the solution of EiCP
was restricted (we have used ε = 0 in practice, because the algorithm performed
better with this value than with a small positive number), p is the value used in the
constraints of the LP(k) problem (we used p = 1 for the runs in Tables 2 and 3), ND

is the number of enumerated nodes, NR is the number of performed branches, and
NSD is the number of performed interval splits for xn+1.

The numerical results clearly indicate that BBRLT was able to efficiently process
problems of moderate dimension. However, the computational effort of the algorithm
tends to increase drastically when the dimension of the EiCP increases. These re-
sults are in a way expected, noting the characteristics of the methodology and the
high number of constraints in each node subproblem for computing the lower bounds
required by the algorithm. We believe that removing some of these constraints and
combining this method with the CASET algorithm will lead to a more efficient process
for processing the EiCP. This topic is proposed for future research.

Table 4 Solution of the symmetric and asymmetric EiCPs with the BBRLT algorithm

Prob [ε,�] p xn+1 NI ND NR NSD T

S2 s30 [0,3] 3 0.0054 31217 387 175 42 5.48

s20 [0,0.5] 3 0.0053 5483 162 77 11 0.80

s10 [0,1] 1 0.0135 335 39 13 16 0.14

s6 [0,2] 1 0.0290 396 87 20 27 0.17

s3 [0,1] 3 0.0210 38 43 3 19 0.11

N2 a30 [0,3] 3 0.0461 58673 4791 2142 289 123.61

a20 [0,1] 3 0.0112 32502 767 443 78 5.53

a10 [0,3] 1 0.0423 6286 539 217 74 1.36

a6 [0,3] 1 0.2233 302 93 22 31 0.61

a3 [0,3] 3 0.0311 23 3 2 0 0.39
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