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Abstract A different approach is given to recent results due mainly to R. C. Johnson
and A. Leal Duarte on the multiplicities of eigenvalues of a Hermitian matrix whose
graph is a tree. The techniques developed are based on some results of matching
polynomials and used a work by O. L. Heilmann and E. H. Lieb on an apparently
unrelated topic.
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1 Introduction

In recent years, the interest of study on the multiplicities of eigenvalues of Hermitian
matrices whose graph is a given tree has grown substantially and it has been led by
Johnson, Leal Duarte and others (cf. [12–17]), inspired by the work of Genin and
Maybee [5] and Parter [20]. For 01-adjacency matrices several results are known, but
for more general ones few results are known.

In 1999, Johnson and Leal Duarte [12] studied the maximum multiplicity of an
eigenvalue of matrix whose graph is a given tree. They considered some inequalities
between different parameters associated with the tree and then expressed the result
in terms of them. Later they obtained an inequality between the minimum number of
distinct eigenvalues of a Hermitian matrix whose graph is a tree T and the number of
vertices in the longest path in T (cf. [13]).

One of the concepts explored by Johnson, Leal Duarte and Saiago [12,16] is the
minimum number of vertex disjoint paths, occurring as induced subgraphs of a tree
T, which cover all the vertices of T. This concept had already been studied by Ore
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[19], Boesch et al. [1] and by Slater [21]. Using essentially some constructions due to
Slater, in the next section, we can give a shorter proof of Johnson and Leal Duarte’s
result.

In a work elaborated apparently in a distinct context, motivated by problems in
quantum chemistry, Heilmann and Lieb [10] established crucial results which are in
the base of some recent developments on the matching polynomial (cf. [6–8,18]).
In fact, there are close relations between the theory of matchings in graphs and the
characteristic polynomial of adjacency matrix of a graph. Recall that a k-matching in a
graph is a set of k disjoint edges, no two of which have a vertex in common. Denoting
p(G, k) as the number of k-matchings in a graph G, we define

µ(G, x) :=
∑

k

(−1)kp(G, k)xn−2k

the matching polynomial of G. Though the matching polynomial of a graph has many
interesting properties, the task of computing this polynomial for a given graph is
complex. In general, there is no easy way of computing µ(G, x). Thus, the matching
polynomial is in this regard a more intractable object than the characteristic polyno-
mial. Nonetheless, it is known that G is a forest if and only if both polynomials coincide
and there are also simple recurrences that enable us to compute the matching poly-
nomials of small graphs with some facility. For example, the matching polynomials
of bipartite graphs are essentially the same as “rook polynomials” (cf. [8]). An unex-
pected property of the matching polynomials is that all zeros are real. In the paper
[10], we can find three distinct proofs of this fact. Therefore, if G is a tree, then all the
eigenvalues of the (ordinary) adjacency matrix of G are real (cf. [3,10]).

As our approach is based solely on Heilmann and Lieb’s result, we explore some
properties of the characteristic polynomials of a general matrix whose graph is a given
tree, which facilitates simpler proofs of the main results of [12,13]. We also establish
some results on the multiplicities of the eigenvalues of a tree.

2 Path coverings

A graph G is a pair (V, E), with vertex set V = V(G) = {1, . . . , n}, and where
E = E(G), the edge set, is a subset of the direct product V × V. We say that the
vertices i and j are adjacent, and write i ∼ j, if (i, j) is an edge of G, with i �= j. The
symbol � means adjacent or equal.

If S is a subset of V(G), then G\S is the subgraph of G induced by the vertices not
in S. In particular, if u ∈ V(G), then G \ u is the graph obtained by removing u and all
its attendant edges.

A tree is a connect graph without cycles and a forest is a graph in each component
is a tree. In this paper, we consider finite graphs possibly with loops [i.e., (i, i) may
be an edge]. If an each edge (i, j) is assigned a complex number, we have a weighted
graph. We shall focus our attention on trees.

Given a tree T, we define the path-covering number, denoted by ζ(T), as the
smallest number of vertex disjoint paths of T that cover all the vertices of T.

Historically, Ore [19] first introduced the graphical invariant ζ followed by others
(e.g. [1,21]). Ore defined the vertex disjoint path coverings of the vertices of a graph
in such way the paths contain a maximum number of edges, which is equivalent to
the definition of ζ . Later, Farrell [4] established an algorithm for finding the number
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of ways of doing it. In [21], Slater gave a procedure for forming the smallest referred
collection of disjoint paths.

Let us recall some definitions for a tree T. If v is a vertex of T, a branch of T at v is
the subgraph induced by v and one of the components of T \ v. If deg(v) ≥ 3, we call
branch path at v to a branch of T at v which is a path. In this conditions, the vertex v
is the stem of the branch path at v, and the subgraph of T consisting of v and all its
branch paths will be called a leaf with stem v. Note that distinct leaves of T must be
disjoint. An end leaf is a leaf whose stem has deg(v) or deg(v) − 1 branch paths.

Denote D(T) as the number of vertices in T of degree at least three.

Lemma 2.1 Suppose that the tree T is not a path. If D(T) = 1, then there is exactly
one (end) leaf. Otherwise, there are at least two end leaves whose stems, v1 and v2, have
deg(v1) − 1 and deg(v2) − 1 branch paths, respectively.

The next lemma provides an algorithm for determining ζ(T).

Lemma 2.2 ([21]) Let T be a tree. If D(T) = 0, then ζ(T) = 1. If D = 1, let v be the
vertex of degree at least three, then ζ(T) = deg(v) − 1. Otherwise, let L be an end leaf
with stem v. Then ζ(T) = ζ(T \ L) + deg(v) − 2.

One of the parameters defined in [12] is

�(T) = max{p−q | there exist q vertices of T whose deletions leaves p paths} (2.1)

Considering the stems of Lemma 2.2, we may state

Corollary 2.3 ([12])

ζ(T) = �(T).

According to Lemma 2.2, note that the value of �(T) = ζ(T) depends on some of
the vertices of T of degree greater or equal to 3. Johnson and Saiago [16] gave tight
bounds for �(T) in terms of all vertices whose degrees are greater than 2. This result
also comes out as an immediate corollary of the Lemma 2.2.

Corollary 2.4 ([16]) Denote by ε the number of edges adjacent to two vertices of degree
greater than 3, v1, . . . , vk. Then

1 +
k∑

j=1

(deg(vj) − 2) − ε ≤ �(T) ≤ 1 +
k∑

j=1

(deg(vj) − 2).

3 The characteristic polynomial of weighted trees

If A = (aij) is a Hermitian matrix, the (weighted) graph of A, G = G(A), is determined
entirely by the off-diagonal entries of A: the vertex set of G(A) is {1, . . . , n} and i and
j are adjacent if and only if aij �= 0. If A is a 01-matrix, with main diagonal equal to
zero, then A is the adjacency matrix of G(A). On the other hand, given a graph G, we
define

H(G) = {A | A = A∗, G(A) = G},
the set of all Hermitian matrices that share a common graph G.
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If e = (i, j) is an edge of G, then G\e is obtained by deleting e but not the vertices i
or j. In this case the matrix of G\e is equal to the one of G, except the (i, j)-entry and,
by symmetry, the (j, i)-entry, which are zero. Finally, ϕ(G, λ), or simply ϕ(G), is the
characteristic polynomial of A(G), i.e., ϕ(G, λ) = det(λI − A(G)), sometimes referred
as the characteristic polynomial of G.

Lemma 3.1 Let F be a forest with components T1, . . . , T�, then ϕ(F) = ϕ(T1) . . . ϕ(T�).

Let us define wij(A) = |aij|2 if i �= j and, otherwise, wii(A) = aii. Sometimes we
abbreviate to wij. The next result provides a general recurrence relation between
different characteristic polynomials.

Lemma 3.2 If e = (i, j) is an edge in a (weighted) tree T, then

ϕ(T, λ) = ϕ(T\e, λ) − wijϕ(T\ij, λ). (3.1)

Proof Let Eij be the matrix with ij-entry equal to 1, and all other entries equal to
zero. Denote by E the sum aijEij + āijEji. Notice that

A(T) = A(T\e) + E.

Since the determinant is a multilinear function on the columns and T is a tree, we get
(3.1). �	
Theorem 3.3 Let i be a vertex of a weighted tree T. Then

ϕ(T, λ) = (λ − wii)ϕ(T\i, λ) −
∑

k∼i

wkiϕ(T\ki, λ). (3.2)

Proof The equality (3.2) can be derived by iterating formula (3.1). �	
A routine induction argument, based on (3.2), gives us an expression for the deriv-

ative of characteristic polynomial.

Corollary 3.4 If T is a (weighted) tree, then

ϕ′(T, λ) =
∑

i∈V(T)

ϕ(T\i, λ).

From Theorem 3.3 we can get the expression for the determinant of a tree.

Corollary 3.5 If T is a weighted tree and i ∈ V(T), then

det(T) =
∑

j�i

(−1)δi, j wij det(T\ij), (3.3)

where δi, j is the Kronecker symbol.

We can also establish an analogous result for the permanent.

Corollary 3.6 If T is a weighted tree and i ∈ V(T), then

per(T) =
∑

j�i

wijper(T\ij).
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We now state a result which we will keep in mind throughout. The general inter-
lacing theorem between the eigenvalues of a Hermitian matrix and one principal
submatrix is well known in the literature (see e.g. [11]).

Theorem 3.7 Let T be a tree on n vertices and A ∈ H(T). Then all eigenvalues of A(T)

are real, say

λ1 ≤ λ2 ≤ · · · ≤ λn.

Furthermore, if i is a vertex in T and µ1 ≤ µ2 ≤ · · · ≤ µn−1 are the eigenvalues of
A(T \ i), then

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µn−1 ≤ λn,

i.e., the eigenvalues of A(T) interlace those of A(T \ i).

This theorem has a well-known corollary for tridiagonal matrices already proved
elsewhere.

Corollary 3.8 Let P be a path on n vertices and A ∈ H(P). Then A(P) has n distinct
real eigenvalues.

4 Christoffel–Darboux identity

As we pointed out before, the work of Heilmann and Lieb [10] has had some important
implications on the theory of matching polynomials. Here we derive some important
identities for matrices of the set H(T).

One of the most important tools in the study of orthogonal polynomials is the spec-
tral theorem for orthogonal polynomials, which states that any (monic) orthogonal
polynomial sequence {pn}n≥0 is characterized by a three-term recurrence relation

pn+1(x) = (x − βn)pn(x) + γnpn−1(x), n = 0, 1, 2, . . . (4.1)

with initial conditions p−1(x) = 0 and p0(x) = 1, where {βn}n≥0 and {γn}n≥0 are
sequences of complex numbers such that γn+1 > 0 for all n = 0, 1, 2, . . . (for more
details see e.g. [2]). We can explore the existing similarities between the recurrence
relations (3.2) and (4.1) and get some Christoffel–Darboux type formula for special
polynomials.

Let Pij denote the (unique) path in a tree joining vertex i to j and. Given a path P
in T with more than one vertex, let us define W(P) = ∏

(i,j) wij(P), where the product
is taken over the edges (i, j) of P, with i < j.

Theorem 4.1 (Christoffel–Darboux Identity) Let T be a weighted tree on n vertices.
For every vertex i ∈ V(T),

ϕ(T, λ)ϕ(T\i, µ)−ϕ(T, µ)ϕ(T\i, λ) = (λ−µ)

n∑

j=1

W(Pij)ϕ(T\Pij, λ)ϕ(T\Pij, µ). (4.2)

Proof For trees with one or two vertices the result is trivial. From (3.2), we have the
equations

λϕ(T\i, λ)ϕ(T\i, µ) = ϕ(T, λ)ϕ(T\i, µ) +
∑

k�i

wkiϕ(T\ki, λ)ϕ(T\i, µ)
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and

µϕ(T\i, µ)ϕ(T\i, λ) = ϕ(T, µ)ϕ(T\i, λ) +
∑

k�i

wkiϕ(T\ki, µ)ϕ(T\i, λ).

Subtracting the second equation from the first we get

(λ − µ)ϕ(T\i, µ)ϕ(T\i, λ) = ϕ(T, λ)ϕ(T\i, µ) − ϕ(T, µ)ϕ(T\i, λ)

−
∑

k∼i

wki
[
ϕ(T\i, λ)ϕ(T\ki, µ) − ϕ(T\i, µ)ϕ(T\ki, λ)

]
.

Applying the hypothesis on ϕ(T\i, λ)ϕ(T\ki, µ) − ϕ(T\i, µ)ϕ(T\ki, λ), with the
convention ϕ(∅, λ) = 1, we get the result. �	
Corollary 4.2 Let T be a weighted tree on n vertices. For every vertex i ∈ V(T),

ϕ′(T, λ)ϕ(T\i, λ) − ϕ(T, λ)ϕ′(T\i, λ) =
n∑

j=1

W(Pij)ϕ(T\Pij, λ)2 . (4.3)

Proof Letting µ → λ in (4.2), we get (4.3) since we may write

ϕ(T, λ)ϕ(T\i, µ) − ϕ(T, µ)ϕ(T\i, λ)

= [ϕ(T, λ) − ϕ(T, µ)] ϕ(T\i, µ) − [ϕ(T\i, λ) − ϕ(T\i, µ)] ϕ(T, λ).

�	
If we consider the sum over all vertices of T in (4.3), from the Corollary 3.4 we get:

Corollary 4.3

ϕ′(T, λ)2 − ϕ′′(T, λ)ϕ(T, λ) =
n∑

i, j=1

W(Pij)ϕ(T\Pij, λ)2. (4.4)

Theorem 4.4 Let T be a weighted tree on n vertices. For every distinct vertices i, j ∈
V(T),

ϕ(T\i, λ)ϕ(T\j, λ) − ϕ(T\ij, λ)ϕ(T, λ) = W(Pij)ϕ(T\Pij, λ)2. (4.5)

Proof Once again the cases n = 1 and n = 2 are trivial. We use induction on n in an
analogous way of the propositions before. For that we only have to consider (3.2) and

ϕ(T\j, λ) = (λ − wii)ϕ(T\ij, λ) −
∑

k∼i

wkiϕ(T\kij, λ).

�	

5 Multiplicities of eigenvalues

For any square matrix A, mA(θ) denotes the (algebraic) multiplicity of θ as an eigen-
value of A; if θ is not an eigenvalue of A, then we will write mA(θ) = 0. The
Theorem 3.7 has a straightforward consequence for A ∈ H(T), where T is a tree:

∣∣mA(T\i)(θ) − mA(T)(θ)
∣∣ ≤ 1.
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Suppose mA(T)(θ) > 0, a vertex i of T is θ -essential, θ -neutral and θ -positive if
mA(T\i)(θ) = mA(T)(θ) − 1, mA(T\i)(θ) = mA(T)(θ) and mA(T\i)(θ) = mA(T)(θ) + 1,
respectively. If θ is understood, we shall omit the mention of θ .

Note that each A ∈ H(T) has at least one essential vertex. Indeed, the multiplicity
of θ as zero of ϕ′(T, λ) is mA(T)(θ) − 1. If mA(T\i)(θ) ≥ mA(T)(θ), for all vertices i in
T, then by Corollary 3.4 the multiplicity of θ as zero of ϕ′(T, λ) is at least mA(T)(θ).

Theorem 5.1 Let P be a path in the tree T and A ∈ H(T). If θ is an eigenvalue of A(T),
then

mA(T\P)(θ) ≥ mA(T)(θ) − 1. (5.1)

Proof Suppose that θ is an eigenvalue of A(T) with mA(θ) > 1. Then θ is a zero of
ϕ′(T, λ)2 −ϕ′′(T, λ)ϕ(T, λ) with multiplicity at least 2mA(θ)−2. From (4.4), θ is a zero
of non-negative summation

∑n
i,j=1 W(Pij)ϕ(T\Pij, λ)2, and therefore θ has multiplicity

of each ϕ(T\Pij, λ) at least mA(θ) − 1. �	
In general, we say that a path P is P-essential if mA(T\P)(θ) = mA(T)(θ) − 1.

Given any θ -essential vertex i, with θ �= aii, there is an adjacent vertex j, such that
the path ij is essential. For, if mA(T\ik)(θ) ≥ mA(T)(θ), for all k ∼ i, then by (3.2),
mA(T\P)(θ) ≥ mA(T)(θ), which is a contradiction.

We also point out that if a path Pij is essential, for some vertex j, then i is an essential
vertex. In fact, suppose that mA(T\i)(θ) ≥ mA(T)(θ). For any j(�= i), the multiplicity of
θ as a zero of ϕ(T\i, λ)ϕ(T\j, λ) − ϕ(T\ij, λ)ϕ(T, λ) is at least 2mA(T)(θ) − 1. It is in
fact, by (4.5), at least 2mA(T)(θ), and therefore mA(T\Pij)(θ) ≥ mA(T)(θ).

Given a tree T on n vertices, in [12], Johnson and Leal Duarte consider the max-
imum multiplicity of any single eigenvalue among all matrices in H(T), M(T). They
established inequalities between the quantities ζ(T) and �(T) defined in Sect. 2, M(T)

and n − minA∈H(T) rankA, and prove the following:

Corollary 5.2 ([12]) For each (weighted) tree T,

M(T) = ζ(T).

Proof Using induction on (5.1), it is immediate that M(T) ≤ ζ(T). Suppose now that
P1, . . . , Pζ(T) is a set of path cover of T. Given a real θ as an eigenvalue of A� ∈ H(P�),
for all �, the direct sum A1 ⊕ · · · ⊕ Aζ(T) has at least ζ(T) eigenvalues equal to θ .
Therefore M(T) ≥ ζ(T). �	

Let q(T) be the number of distinct eigenvalues of a Hermitian matrix whose graph
is the tree T, and d(T) the number of vertices in a longest path of T. Johnson and Leal
Duarte [17] consider an analog of the well known result for matching polynomial due
to Godsil [7].

Corollary 5.3 ([7,17])

q(T) ≥ d(T).

Proof From (5.1), for any path,

2
∑

θ

(
mA(T)(θ) − 1

) ≤ 2
∑

θ

mA(T\P)(θ) ≤ 2 |V(T\P)| ,

where de sums are over all distinct eigenvalues of A(T). Hence

n − q(T) ≤ n − V(P),

for any path, i.e., q(T) ≥ d(T). �	



258 C. M. Da Fonseca

6 The Parter–Wiener Theorem

As we noticed, any weighted tree has at least one essential vertex. In a very interesting
work, Parter [20] proved that if mA(T)(θ) ≥ 2, then there is a vertex i such that
mA(T\i)(θ) ≥ 3. In particular, if mA(T)(θ) = 2, then i is positive. Later, Wiener [22]
proved that if mA(T)(θ) ≥ 2, then there is a positive vertex in T. If we join these
consequences we get the so-called Parter–Wiener Theorem (cf. [14]).

Theorem 6.1 (Parter–Wiener Theorem) Let T be a tree and suppose that A ∈ H(T)

such that mA(T)(θ) ≥ 2. Then, there is a θ -positive vertex i of T and θ occurs as an
eigenvalue in the direct summands of A(T) which corresponds to at least three branches
of T at i.

Recently, Johnson, Leal Duarte and Saiago considered the following generalization
of the Parter–Wiener Theorem describing also how to choose the positive vertex.

Theorem 6.2 ([14]) Let T be a tree and A ∈ H(T). If θ is an eigenvalue of A(T) and
there is vertex of T, j, such that mA(T\j)(θ) �= 0, then

(a) there is a θ -positive vertex i of T;
(b) if mA(T\i)(θ) ≥ 2, then i may be chosen so that deg(i) ≥ 3 and so that there are

at least three components T1, T2 and T3 of T\i such that mA(T�)(θ) ≥ 1, for
� = 1, 2, 3;

(c) if mA(T\i)(θ) = 2, then i may be chosen so that deg(i) ≥ 2 and so that there are
two components T1 and T2 of T\i such that mA(T�)(θ) = 1, for � = 1, 2.

In this section we consider a different approach to the existence of the positive ver-
tex in the tree, based on the tool developed before. The proof shows how to choose
in the tree such vertex. But first, we state an important lemma.

Lemma 6.3 Let T be (weighted) tree and i be a non-essential vertex in T. Then i is
positive if and only if there exists j ∼ i essential in T\i.

Proof Suppose i is θ -positive and mA(T\ij)(θ) > mA(T)(θ), for all j ∼ i. Then (3.2)
leads to a contradiction. Conversely, by a remark of the last section, the path ij, for
any j, is not essential and, consequently, mA(T\ij)(θ) ≥ mA(T)(θ). Suppose that j ∼ i is
essential in T\i. Then mA(T\ij)(θ) = mA(T\i)(θ) − 1. Hence i is positive. �	
Theorem 6.4 Let T be a tree and A ∈ H(T). If there is a vertex of T, say j, and a
real number θ such that mA(T)(θ) �= 0 and mA(T\j)(θ) �= 0, then there is at least one
θ -positive vertex in T.

Proof From (4.3), θ is a zero of ϕ(T\Pjk, λ), for each k. Let S be the a subtree of
T which is inclusion-minimal subject to the condition mA(S)(θ) > 0, and let i be the
vertex of T such that S is a component of T\i. Let k ∼ i be a (unique) vertex of S and
let e = (i, k). Then T\e has exactly two components, one of which is S and the other
we call R.

For any component S′ of S\k, we know that mA(S′)(θ) = 0, and by Lemma 3.1 we
have mA(S\k)(θ) = 0. Thus mA(S)(θ) = 1. On the other hand, we have

mA(T\i)(θ) = 1 + mA(R\i)(θ) and mA(T\ik)(θ) = mA(R\i)(θ),

i.e., k is essential in T\i. Hence, by the Lemma 6.3, θ -positive vertex in T. �	
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Fig. 1 Tree T

Consider the matrix

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −2i 0 0 0 0 0 0
2i 3 1 + i 0 0 0 0 0
0 1 − i 40 2 0 2 0 0
0 0 2 1/2 1/2 0 0 0
0 0 0 1/2 1/2 0 0 0
0 0 2 0 0 1

√
2 0

0 0 0 0 0
√

2 −1 1
0 0 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.1)

The graph of A is given by the tree T (Fig. 1).
Note that 1 is an eigenvalue of A with multiplicity 2 and the vertex 3 is 1-positive.

We know that a tridiagonal matrix has only simple eigenvalues. The next result
strengthens this statement.

Corollary 6.5 Let T be a tree and A ∈ H(T). If there exists a θ -essential path Pij, for all
j in V(T), then mA(T)(θ) = 1 and mA(T\k)(θ) = 0, for all k in V(T).

Proof Note the hypothesis implies that all vertices in T are essential. Therefore
mA(T\k)(θ) = 0, for all k in V(T). �	

7 Other consequences

Finally, using some results on the matching polynomials, due essentially to Lovász and
Plummer [18] and Godsil [7,8], we can derive some important consequences on the
multiplicity of an eigenvalue of weighted trees.

Lemma 7.1 Let T be a weighted tree. If i and j are essential vertices in T and j is not
essential in T\i, then Pij is essential.
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Proof If Pij is non-essential, by Theorem 4.4, the multiplicity of θ as a zero of

ϕ(T\i, λ)ϕ(T\j, λ) − ϕ(T\ij, λ)ϕ(T, λ)

is at least 2mA(T)(θ). Since

mA(T\ij)(θ) ≥ mA(T\i)(θ) = mA(T)(θ) − 1,

the multiplicity of θ as a zero of ϕ(T\ij, λ)ϕ(T, λ) is at least 2mA(T)(θ) − 1, and, con-
sequently, the same conclusion applies to ϕ(T\i, λ)ϕ(T\j, λ). Thus i and j cannot both
be essential. �	

We may conclude all paths starting in a vertex in T be essential is equivalent to all
vertices in T be essential.

Letting i be a θ -essential vertex in T, consider the non-essential path P of minimum
length starting in i, and let j be the end-vertex. Denote by P′ the path P\j. Then P′ is
essential in T and by interlacing, mA(T\P′)(θ) = mA(T)(θ), and j is positive.

Theorem 7.2 Let T be a tree and A ∈ H(T). Suppose that θ is an eigenvalue of A and
let k be a non-essential vertex in T. Then i is essential in T if and only if it is essential in
T\k.

Proof First assume that i is essential in T. Suppose that k is positive in T. Then
mA(T\ik)(θ) = mA(T)(θ) by interlacing which means that i is essential in T\k. Sup-
pose now that k is neutral in T. If i is non-essential in T\k, then by Theorem 4.4,
the multiplicity of θ as a zero of ϕ(T\i, λ)ϕ(T\k, λ) is at least 2mA(T)(θ), which is
impossible.

Similarly, if i is essential in T\k, then i is essential in T. �	
Note that by this theorem and Lemma 6.3, a positive vertex in a tree has an essential

adjacent vertex in the same tree.
If i is a non-essential vertex but it is adjacent to an essential one j, then j is essential

in T\i, by the last theorem. But this implies that i is positive, by the Lemma 6.3. We
may state the following result.

Corollary 7.3 A non-essential vertex adjacent to an essential one is positive.

Theorem 7.4 Let T be a tree and A ∈ H(T). Let θ is an eigenvalue of A and k be a
positive vertex in T. Then

(a) if i is positive in T then it is essential or positive in T\k;
(b) if i is neutral in T then it is essential or neutral in T\k.

Proof Suppose that i is positive in T and it is neutral in T\k. Once again, by
Theorem 4.4, the multiplicity of θ has a zero of

ϕ(T\i, λ)ϕ(T\k, λ) − ϕ(T\ik, λ)ϕ(T, λ)

must be even, in this case at least 2mA(T)(θ) + 2. But mA(T\ik)(θ) = mA(T)(θ) + 1,
which is a contradiction.

Similarly we prove (b). �	
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