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Abstract. We present some applications of the renormalized RPA in bosonic field theories. We first present
some developments for the explicit calculation of the total energy in Φ4 theory and discuss its phase
structure in 1 + 1 dimensions. We also demonstrate that the Goldstone theorem is satisfied in the O(N)
model within the renormalized RPA.
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1 Introduction

The application to quantum field theories of non-
perturbative methods used in the nuclear many-body
problem [1] has recently given rise to numerous promis-
ing works. One central motivation is to obtain tools to
describe matter made of strongly interacting hadrons in
the presence of broken symmetries such as chiral symme-
try. In particular, the well-known RPA method, which has
been originally developed in the context of condensed mat-
ter physics, has been recently applied to study a bosonic
O(N) model (i.e. the linear sigma model). It has been
demonstrated [2] that the standard RPA is able to restore
the Goldstone theorem which is violated at the level of the
usual variational Gaussian approximation [3–5]. Although
this result can be seen as a major success, the RPAmethod
in its standard form possesses some weak points. In par-
ticular it has the tendency to overestimate the attractive
correlation energy, at least in examples of nuclear physics.
In a recent paper [6], hereafter referred as I, we have de-
veloped the formalism of a superior version of the RPA,
namely the renormalized RPA (r-RPA) in the particular
context of λΦ4 theory. As shown in I, one important merit
of the r-RPA is to cure the instability problem appearing
in the standard RPA in 1+ 1 dimensions. The purpose of
this paper is to present a more detailed study of the phase
structure of this theory within the r-RPA approach. Be-
sides, we introduce improvements of the former calculation
and obtain a second-order phase transition for this model.
We also present the r-RPA method for the O(N) model,
demonstrating that the Goldstone theorem (massless pi-
ons) is also satisfied at this level. Since all the details of
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the approach have been given in I, we limit ourselves to
the strict minimum for what concerns the formalism.

2 The r-RPA in Φ4 theory

We consider the Lagrangian density:

L = 1
2
∂µΦ(x, t) ∂µΦ(x, t) − 1

2
µ2

0 Φ
2(x, t) − b

24
Φ4(x, t),

(1)
where µ2

0 is a constant and the bare coupling constant
b = λ/6 is positive for reasons of stability. We decompose
the scalar field Φ(x, t) into a classical part or condensate
s and a fluctuating piece φ(x, t):

Φ(x, t) = φ(x, t) + s, s = 〈Φ(x, t)〉 . (2)

The presence of the condensate s indicates a spontaneous
breaking of the underlying Φ → −Φ symmetry. Introduc-
ing the conjugate field Π(x), one obtains for the Hamil-
tonian (in d+ 1 dimensions)

H =
∫
ddx

{
1
2
µ2

0 s
2 +

b

24
s4 +

(
µ0 s +

b

6
s3

)
φ(x)

+
1
2

[
Π2(x) + (∂iφ)

2 (x) +
(
µ2

0 +
b

2
s2

)
φ2(x)

]

+
b s

6
φ3(x) +

b

24
φ4(x)

}
. (3)

Putting the system in a large box of volume V = Ld, it
is convenient to work in momentum space and to expand
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the fields according to

φ(x) =
1√
V

∑
�q

ei�q·�x φ�q(t) ,

Π(x) = − i√
V

∑
�q

ei�q·�x Π�q(t) , (4)

i.e., in terms of creation and annihilation operators obey-
ing the standard canonical commutation relations:

φ�q =

√
1
2κ�q

(
b�q + b†−�q

)
, Π�q =

√
κ�q

2

(
b�q − b†−�q

)
.

(5)
The choice of the basis (i.e. the choice of the κ�q) will come
out as a part of the RPA solution.

In I [6] we have explicitly solved the r-RPA problem,
using the Green’s function method, taking into account
one-particle b†�q and two-particle b†�q b†�q ′ , b

†
�q b−�q ′ excitation

operators. We refer the reader to I for the detailed deriva-
tion and we only quote here the main results (we also give
in the appendix the results for the 1-1 1-2 and 2-2 Green’s
functions).

It is convenient to choose the basis κ�q = ε�q where ε�q

is the generalized mean-field energy, solution of the gap
equation 〈[H, b�q b−�q]〉 = 0. This gap equation reads

ε2
�q = �q 2 + µ2

0 +
b

2
s2 +

b

2
〈φ2〉R ≡ �q 2 + m2 , (6)

where 〈φ2〉R = (1/V )
∑

�q 〈1 + 2b†�q b�q〉/2ε�q is the self-
consistent scalar density. To obtain the standard RPA
case, one simply has to replace the self-consistent scalar
density 〈φ2〉R by the Gaussian one 〈φ2〉ε, i.e. the expecta-
tion value is calculated on the vacuum of particles having
the energy ε�q and such that 〈b†�q b�q〉ε = 0. In one spatial
dimension, the generalized mean-field mass m is rendered
finite by a simple mass renormalization:

m2 = µ2 +
b

2
s2 +

b

2

(
〈φ2〉R −

∫ +Λ

−Λ

dq
2π

1

2
√

q2 + µ2

)
,

(7)
where µ is the renormalized bare mass of the theory.

The r-RPA single-particle propagator has been derived
in I and is given by:

G(E, �P ) =
(
E2 − ε2

�P
− Σ(E, �P )

)−1

with

Σ(E, �P ) =
b2 s2

2
I(E, �P )

1 − b
2I(E, �P )

. (8)

The two-particle loop I(E, �P ) has the explicit form given
by eq. (A.3) in the appendix. It explicitly depends on the
“occupation number” N�q = 〈φ�q φ

†
�q〉R which constitutes

the remaining problem to solve. One serious difficulty is
that covariance is lost in the r-RPA in the sense that the
loop integral I(E, �P ) and, consequently, the mass operator

Σ(E, �P ), depends separately on E and �P due to the pres-
ence of the density N in its expression. This is certainly
a weakness of the present approach (see discussion in I).
One natural possibility to recover covariance consists in
imposing that the correct I(E, �P ) is obtained through its
center-of-mass (CM) expression according to

I(E, �P ) ≡ I(E2 − �P 2) =∫
d�t
(2π)d

2Nt

E2 − �P 2 − 4 ε2
t + iη

. (9)

The densities Nt can be calculated self-consistently using
the spectral theorem:

N�P =
∫

idE
2π

eiEη+
G(E, �P ). (10)

In the quasi-particle approximation used in I, the solution
is NP = 1/2ΩP where ΩP =

√
M2 + P 2 is the energy of

the one-particle RPA mode. As explained in detail in I,
the problem reduces to determining the pole of the one-
particle propagator. One important result of I is linked to
the fact that the instability present in 1+1 dimensions at
the level of the standard RPA (imaginary solution for the
mass M of the RPA mode) just disappears in r-RPA.

3 r-RPA correlation energy in Φ4 theory

The energy of the system is calculated from the various
Green’s functions using the spectral theorem. However, as
is well-known, this cannot be done directly from the RPA
results since important correlations would be lacking at
the level of the expectation value of the kinetic energy.
To solve this problem we have generalized the so-called
“charging formula” method [7] to the r-RPA case. We de-
compose the Hamiltonian in two pieces H0 and Hint:

H = V

(
1
2
µ2

0 s
2 +

b

24
s4

)

+
∑
1

1
2

(
Π1 Π

†
1 +O2

1 φ1φ
†
1

)
+ H3 + H4

≡ H0 + Hint , (11)

where H3 and H4 are the 3- and 4-particle pieces of the
Hamiltonian (last line of eq. (3)). H0 has a form of a
free Hamiltonian for quasi-particles with the generalized
mean-field mass m (eq. (7)):

H0 = E0 +
∑
1

1
2

(
: Π1 Π

†
1 :ε + ε2

1 : φ1 φ
†
1 :ε

)
. (12)

where E0 is the generalized mean-field vacuum energy
given in eq. (61) of I. As explained in subsect. 4.2 of I,
the interacting Hamiltonian is thus

Hint = H3 + H4 − b

4
〈φ2〉R

∑
1

: φ1 φ
†
1 :ε −V

b

8
〈φ2〉2ε .

(13)
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We also introduce an auxiliary Hamiltonian:

H ′(ρ) = H0 + ρHint , H ′(ρ = 1) = H . (14)

The price to pay is to solve the r-RPA problem (in practice
the calculation of the commutators and double commuta-
tors entering the RPA equations) for the H ′(ρ) Hamilto-
nian. As explained in I, this can be done by making the
following modifications in the corresponding r-RPA prob-
lem for H:

H → H ′(ρ) ,

ε2
1 → ε2

1ρ = ε2
1 +

b

2
ρ

(〈φ2〉Rρ − 〈φ2〉R
)
,

H3 +H4 → ρ (H3 + H4) , (15)

where 〈φ2〉Rρ is the self-consistent scalar density in the
correlated RPA ground state ofH ′(ρ). We now employ the
charging formula to calculate the ground-state energy as
a function of the condensate s, i.e., the effective potential
needed to study the phase structure of the theory:

ERPA = E0 +
∫ 1

0

dρ
ρ

〈ρHint〉ρ. (16)

Using the Wick theorem with respect to the vacuum of the
quasi-particle with energies ερ, the correlated part can be
rewritten as

〈ρHint〉ρ = 〈ρH3〉ρ + 〈ρ : H4 :ερ
〉ρ

−V
ρ b

8
(〈φ2〉ερ

− 〈φ2〉ε
)2

−V
ρ b

4
(〈φ2〉R − 〈φ2〉ερ

) (〈φ2〉Rρ − 〈φ2〉ε
)
.

(17)

In this formula 〈φ2〉R is as before the self-consistent scalar
density of the original H, whereas 〈φ2〉Rρ corresponds
to the same quantity in the H ′(ρ) problem. 〈φ2〉ε is the
scalar density in the generalized mean-field vacuum (vac-
uum of quasi-particles with energy ε�q) in the H problem
and 〈φ2〉ερ

corresponds to the equivalent quantity for the
H ′(ρ) Hamiltonian. The expectation values 〈 ρH3 〉ρ and
〈ρ : H4 :ερ

〉ρ are calculated by using the spectral theo-
rem applied to the 1-2 and 2-2 Green’s functions relative
to the r-RPA H ′(ρ) problem. These are actually the main
contributions noted E(3)

corr and E(4)
corr of the correlation

energy. However, at this level, we would like to precise one
point. In the previous article I, we have taken into account
the term

FT =
∫

dρ
ρ

[
− V

ρ b

8
(〈φ2〉ερ

− 〈φ2〉ε
)2

−V
ρ b

4
(〈φ2〉R − 〈φ2〉ερ

) (〈φ2〉Rρ − 〈φ2〉ε
) ]

(18)

(called factorized term thereafter) in the following man-
ner. The self-consistent scalar density in the ρ problem
was calculated by using the spectral theorem:

〈
φ2

〉
Rρ
=

∫
dp
2π

∫
idE
2π

eiEη+
Gρ(E, p). (19)

In this article, we calculate the difference of scalar den-
sities for the various masses with the following formula
(Λ → +∞):〈
∆φ2

〉
m1,m2

=
〈
φ2

〉
m2

− 〈
φ2

〉
m1

=
∫ Λ

−Λ

dp
2π

(
1

2
√

m2
2 + p2

− 1
2
√

m2
1 + p2

)

= − 1
4π
ln

(
m2

2

m2
1

)
.

We will show in the section about numerical results that
this method gives better results. In particular, with the
non-covariant terms (see discussion below) we obtain this
very important new result: the Simmon-Griffith theo-
rem [8] (which states that the order of the transition in
the Φ4 model cannot be of the first order) is satisfied.

Two problems arise in the calculation of the effective
potential. First, there is an ambiguity in the calculation
of the expectation value 〈 ρH3 〉ρ which was not addressed
in I and second, non-covariant terms appear, even when
the covariance is forced in the loop integral Iρ(E,P ). We
will show below that the first ambiguity gives a numeri-
cally negligible effect and concentrate mainly on the non-
covariance problem. We notice that we have combinations
of Green’s function (see eqs. (A.9) and (A.10) in the ap-
pendix) which are explicitly covariant if the two-particle
loop integral is covariant. Hence, we can decompose the 3-
particle and 4-particle correlation energies into covariant
pieces (which correspond to expressions (A.9) and (A.10))
and non-covariant pieces (the remaining terms) accord-
ing to

Ecorr = E(3c)
corr + E(3nc)

corr + E(4c)
corr + E(4nc)

corr . (20)

The 4-body pieces have been given in I with the result

E
(4c)
corr

V
=

∫ 1

0

dρ
ρ

∫
d�P
(2π)d

∫
idE
(2π)

ei E η+

× I2
ρ(E , �P )Fρ(E , �P ), (21)

E
(4nc)
corr

V
=

∫ 1

0

dρ
ρ

∫
d�P
(2π)d

∫
idE
(2π)

ei E η+

× 4 I(1) 2
ρ (E , �P )Fρ(E , �P ) (22)

with Fρ(E , �P ) =
1
24

(
ρ2 b2

1 − ρ b
2 Iρ(E, �P )

+
ρ2 b3 s3 Gρ(E, �P )(
1 − ρ b

2 Iρ(E, �P )
)2

)
, (23)

where the indices ρ mean that the quantities are related
to the H ′(ρ) problem. The non covariance comes from the
presence of the loop integral:

I(1)(E, �P )
∫

d�k1 d�k2

(2π)d
δ(d)

(
�P − �k1 − �k2

)
2 ε1 ε2

× ε1 N1 + ε2 N2

E − ε1 − ε2 + i η
(24)
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which is not covariant (i.e., it depends separately on E and
�P ) even if covariance is forced by taking as before the CM
expression. We have neglected E

(4nc)
corr (which vanishes to

leading order in the interaction) in our previous numerical
estimate in I. However, this contribution, although rela-
tively small, turns out to be very important for the precise
nature of the phase transition. In other words, E(4nc) is
very important to reproduce good numerical results. Let
us come to the calculation of the expectation value of H3:

〈H3〉 = b s

6
√
V Πi2εi

δ1+2+3

(
〈(b†1 b†2 + b−1 b−2) (b−3 + b†3)

+ 2 (b†1 b
†
2 b−3 + b†1 b−2 b−3)〉

)
. (25)

The first line generates the covariant contribution:

E
(3c)
corr

V
=

∫ 1

0

dρ
ρ

∫
d�P
(2π)d

∫
idE
(2π)

ei E η+

×ρ2 b2 s2

6
Gρ(E, �P ) Iρ(E, �P )

1 − ρ b
2 Iρ(E, �P )

(26)

which was already considered in I. The second line of
eq. (25) generates the already mentioned ambiguity: it is
not uniquely defined since two different combinations of
Green’s functions can be used:

δ1+2+3

〈
b†1b−2b−3

〉
= δ1+2+3

∫
idE
2π

eıEη+
G

(1)

−2−3,1†(E)

(27)
or

δ1+2+3

〈
b†1b−2b−3

〉
= δ1+2−3

∫
idE
2π

eıEη+
G

(2)
−1−2,3(E) ,

(28)
where the notations of the appendix (eq. (A.7)) have been
used. The second form gives identically zero in standard
RPA and in r-RPA when covariance is forced in I(2) (see
appendix for its definition), whereas the first one gives a
finite contribution. If eq. (27) is used, we obtain for the
non-covariant correlation energy:

E
(3nc)
corr

V
=

∫ 1

0

dρ
ρ

∫
d�P
(2π)d

∫
idE
(2π)

ei E η+

×ρ2 b2 s2

6

(
E + ερP

2ερP

)
2 I(1)

ρ (E , �P )Gρ(E, �P )

1− ρ b
2 Iρ(E, �P )

.

(29)

In 1 + 1 dimensions all the various contributions can
be calculated using a Wick rotation (E2 − P 2 → −S)
according to the method explained in I.

E
(4c)
corr

V
= −

∫ 1

0

dρ
ρ

∫ ∞

0

dS
4π

I2
ρ(−S)Fρ(−S) , (30)

E
(3c)
corr

V
=−

∫ 1

0

dρ
ρ

∫ ∞

0

dS
4π

ρ2 b2 s2

6
Iρ(−S)Gρ(−S)
1 − ρ b

2 Iρ(−S)) , (31)
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Fig. 1. Generalized mean-field effective potential (top panel);
generalized mean-field effective potential plus the factorized
term FT (bottom panel), for different values of the reduced
coupling constant p, as a function of s.

E
(4nc)
corr

V
=

∫ 1

0

dρ
ρ

∫ ∞

0

dS
2π2

∫ π/2

0

dθ

×
(
S cos2 θ J2(S , θ) − I2(−S)

)
Fρ(−S) , (32)

E
(3nc)
corr

V
= −

∫ 1

0

dρ
ρ

ρ2b2s2

3

∫
dS
2π2

∫ π
2

0

dθ

×

 S cos2 θ
4
√

ε2
tρ+S sin2 θ

J(S, θ)− 1
4
I(−S)


 Gρ(−S)
1− ρb

2 Iρ(−S)
(33)
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with

J(S , θ) = −
∫

dt
2π

1√
4ε2

tρ + S sin2 θ

2Ntρ

S + 4 ε2
tρ

. (34)

4 Numerical results

Before going to the discussion of the correlation energy,
let us mention the following result. The generalized mean-
field effective potential E0(s) (vacuum energy as a func-
tion of the condensate s) presents a strong first-order
phase transition as shown in fig. 1, top panel (all numer-
ical results are obtained with the reduced coupling con-
stant p = b/24µ2 and µ = 1). When we add the factorized
term FT , this strong potential barrier disappears (fig. 1,
bottom panel). The transition is practically, up to an ex-
tremely small potential barrier, of second-order nature
with a critical coupling constant pc  2.3. It is thus tempt-
ing to consider the sum E0 + FT as the true mean-field
energy for the r-RPA calculation because it contains all
factorisable or reducible parts of the total energy. The fact
that this term has a second-order phase transition is very
important in the following. The full energy is obtained by
adding the pure interaction terms 〈H3+ : H4 :〉 (diagram-
matically, irreducible terms) which we will discuss below.

We first consider the ambiguous term E(3nc) term us-
ing eq. (33) and we obtain the results shown in fig. 2 for
standard and renormalized RPA. We can verify that this
term is negligible at least in r-RPA. The maximum of
this term is about, respectively, 10 and 100 times in s-
RPA and r-RPA, smaller than the covariant contribution
in the correlation energy shown in fig. 3. This demon-
strates that the ambiguity linked to the non-covariance
problem is not so serious in r-RPA. Hence, in the follow-
ing we take the reasonable option of putting this contribu-
tion to zero. The other term not considered in I, E(4nc),
is shown in fig. 3 in comparison with the covariant cor-
relation energy E(3c) + E(4c). We clearly see that E(4nc)

which was ignored in I is sizeable especially for low val-
ues of the condensate s. The covariant effective potential
(Ecov = E0 + FT + E(3c) + E(4c)) and the total effective
potential (Etot = E0 + FT +E(3c) +E(4c) +E(4nc)) in r-
RPA are shown in fig. 4. For completeness we also show in
fig. 5 the results obtained in standard RPA which were al-
ready given in I (in this calculation the RPA single-particle
propagator is replaced by the mean-field one to avoid the
divergence associated with instability). One sees that the
RPA fluctuations in the standard RPA case are able to
transform the strong first-order transition of the Gaussian
approximation into a second-order phase transition. This
comes from the fact that the attractive s-RPA correlations
in the metastable region of the Gaussian approximation
(p ∈ [0.2, 0.5]) strongly reduce the potential barrier of the
Gaussian effective potential. We see in fig. 5 the evolu-
tion of the global minimum of the effective potential with
increasing p. The fact that the transition is of second or-
der is demonstrated by the fact that the condensate s is
a continuous function of p and this is in agreement with
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Fig. 2. Non-covariant 3-body correlation energy E(3nc) calcu-
lated with eq. (33) (top panel: standard RPA; bottom panel:
r-RPA), for different values of the reduced coupling constant
p, as a function of s.

the Simon-Griffith theorem [8] which states that the phase
transition in the λφ4 cannot be of the first order. However
the critical coupling pc = 1.8 is different from both the
lattice result [9–11], pc = 2.55, and the cluster expansion
technique result [12], pc = 2.45. Although this result is not
so bad, the standard RPA result cannot be really trusted
since this method is spoiled by the instability problem. We
obtained in I a preliminary result in r-RPA but keeping
only the covariant pieces in the correlation energy. Here,
the result is shown in the top panel of fig. 4 with the ex-
plicit incorporation of the FT term as explained in sect. 3.
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Fig. 3. Top panel: non-covariant 4-particle correlation energy
E(4nc). Bottom panel: covariant correlation energy E(3c)+E(4c)

(in r-RPA, for different values of p, as a function of s).

Although much less marked than in the Gaussian case, one
again obtains a first-order transition. There is nevertheless
a slight progress with respect to the result obtained in I.
The potential barrier is smaller and the critical coupling
constant, pc = 1.9, is much closer to the lattice and clus-
ter results. When the non-covariant contribution E(4nc) is
added, the transition is of second-order nature (see fig. 4,
bottom panel). Indeed, this repulsive E(4nc) decreases the
correlation energy in the metastable region i.e., around
the local maximum. Consequently, the potential barrier
is so weakened that it becomes negligible (about 10−3).
Although the critical parameter is pc = 1.6, this consti-
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tential E
(c)
tot = E0 + E(3c) + E(4c) + FT . Bottom panel: total

potential Etot = E0 + E(3c) + E(4c) + E(4nc) + FT .

tutes an important result of this paper. The restoration
of Simmon-Griffith theorem indicates that the r-RPA de-
scribes correctly the phase transition region. In addition,
the absolute value of the effective potential becomes very
similar to the cluster effective potential. As an example
for s = 0 and p = 2, one gets the following results for
the total energy. Ignoring the non-covariant contribution
one gets −0.14 to be compared with −0.11 in the cluster
calculation. When E(4nc) is added, one gets −0.105. This
is a very encouraging result and certainly further work is
needed in the direction of the fully self-consistent RPA.
The problem of the covariance is certainly a key issue in
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sate at the global minimum of E
(c)
tot in s-RPA. The transition

is of the second order, because this curve is continuous.

that respect. One interesting possibility is to incorporate
three-body excitations in the line of the work of ref. [13].

5 The linear-σ model

We now discuss another model, the linear-σ one. It can be
seen as a Ginsburg-Landau effective Lagrangian for the
SU(2) × SU(2) chiral symmetry (spontaneously broken
in one direction). This model can give us physical insight
into the chiral phase transition and may also describe far
from the transition the dynamics of pionic systems.

The Lagrangian reads

Lσ =
1
2
∂µσ∂

µσ +
1
2
∂µ�π∂

µ�π

−m2

2
(
σ2 + π2

) − λ

4
(
σ2 + π2

)2
+ cσ , (35)

where �π is a pseudo-scalar isovector field and σ a scalar
iso-scalar field. �π corresponds to the physical pion and its
chiral partner σ may describe a mode associated with the
amplitude fluctuation of the chiral condensate.

This model can formally be seen as a generalization of
the Φ4 model for a N + 1 dimensional multiplet (σ, �π). It
possesses an exact O(N + 1) invariance if the parameter
c is zero. The cσ piece of the Lagrangian describes the
amount of explicit breaking of chiral symmetry in QCD.

For the application of r-RPA we use notations similar
to the Φ4 model. We introduce s, the condensate in σ
field direction (the chiral symmetry being broken in one
direction) and the fluctuating field σ′: σ = σ′ + s with
〈σ〉 = s (hence 〈σ′〉 = 0) and we omit the prime thereafter.
We note Πσ and �Ππ the conjugate momenta of the fields
σ and �π with usual commutation relations.

The Hamiltonian reads

H(σ, π) =
∫
dx

{
1
2
(
�Π2

π + (�∇�π)2 + (µ2
0 + λs2)�π2

)
+
1
2
(
Π2

σ + (∇σ)2 + (µ2
0 + 3λs

2)σ2
)

+λsσ(σ2 + �π2) +
λ

4
(σ2 + �π2)

2

+σ(µ2
0s+ λs3 − c) +

µ2
0

2
s2 +

λ

4
s4 − cs

}
. (36)

We define quasi-particle operators for quasi-pion and
quasi-sigma:

bπβ =
√

κπβ

2
πβ +

√
1

2κπβ

Ππβ and

bσβ =
√

κσβ

2
σβ +

√
1

2κσβ

Πσβ

and we introduce the scalar densities Nα = 〈παπ
†
α〉 and

Nα = 〈σασ
†
α〉. For what concerns the sigma operators,

the index α represents a momentum state whereas for the
pionic operators it represents a momentum and isospin
state.

As in ref. [2] we can introduce the r-RPA excitation
operators in the pionic channel according to

Q†
ν = Xα b†π, α − Y−α bπ,−α

+Xαβ b†π, αb
†
σ, β − Y−α−β bπ,−αbσ,−β .

This is equivalent, in the Green’s function approach that
we really use at variance with [2], to calculate the RPA
correction to the pion mass operator (Σπ) originating from
the πσ RPA bubbles.
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With the same techniques used in the Φ4 theory, we
derive the generalized mean-field equations for pion and
sigma modes. For N = 3 they read

ε2
α = µ2

0 + k2
α + λ

∑
α

(Nα + 5Nα) + λs2 , (37)

E2
α = µ2

0 + k2
α + 3λ

∑
α

(Nα +Nα) + 3λs2 . (38)

The r-RPA inverse pion propagator is obtained as

G−1(ω, kα) = ω2 − ε2
α(ω)−Σπ

α(ω) , (39)

with the pion mass operator given by

Σπ
α(ω) = 4λ

2s2 Iπσ
α (ω)

1− 2λIπσ
α (ω)

.

It contains an iteration of the πσ bubble Iπσ which is
given by

Iπσ
α (ω) =

∑
ββ′

2δα−β−β′

× (Nβ +Nβ′)ω2 + (Nβ′ −Nβ)(E2
β′ − ε2

β)
[ω2 − (εβ + Eβ′)2][ω2 − (εβ − Eβ′)2]

(40)

or, in a form analogous to the RPA loop in the Φ4 model

Iπσ
α (ω) =

∑
ββ′

δα−β−β′
εβ +Eβ′

2εβEβ′

Nβεβ +Nβ′Eβ′

ω2 − (εβ + Eβ′)2

−εβ − Eβ′

2εβEβ′

Nβεβ −Nβ′Eβ′

ω2 − (εβ − Eβ′)2
. (41)

Our preliminary goal was to show that the r-RPA fluctu-
ations restore the Goldstone theorem. With the use of the
generalized mean-field equations and using the expression
of eq. (39) for ω = 0, one can obtain the following result:

G−1(ω, kα) = ω2 −
[
µ2

0 + λs2 + 3λ
∑
α

(Nα +Nα)

]

−(
Σπ

α(ω)−Σπ
0 (ω = 0)

)
(42)

= ω2 − c

s
− (

Σπ
α(ω)−Σπ

0 (ω = 0)
)

(43)

(the last result (43) is obtained by using the gap equation
∂E/∂s = 0 which shows that the term in square brackets
in eq. (42) is just c/s). These expressions clearly show
that the Goldstone theorem is satisfied in the chiral limit
because the spurious mode ω = 0 is allowed.

As a preliminary conclusion, we underline this encour-
aging result: the r-RPA fluctuations can correctly treat the
spontaneously broken symmetry and the spurious mode is
obtained even if the covariance is lost. In particular it re-
stores the Goldstone theorem violated at the level of the
mean-field or Gaussian approximation [5]. This general-
izes in r-RPA the result already obtained in the s-RPA
formalism in [2].

6 Conclusion

We have discussed in this article some problems encoun-
tered in the calculation of the effective potential in r-RPA
and we have also presented some new numerical results for
the λΦ4 theory in 1 + 1 dimensions. We have shown that
the ambiguity in the calculation of the 3-particle energy
is only apparent in the sense that it is numerically very
small. We have also shown that the incorporation of the
so-called non-covariant contributions in the effective po-
tential significantly improves the description of the phase
transition in the direction of lattice and cluster expansion
results. The most important result of this work is that we
found a way to take into account the different contribu-
tions of the RPA correlations that give us a second-order
phase transition.

For what concerns the linear-σ model we have shown
that the Goldstone theorem is explicitly satisfied despite
the covariance problem. A further work of interest is evi-
dently to calculate the effective potential possibly at finite
temperature to study the chiral phase transition.

We thank P. Schuck, D. Davesne, M. Oertel and A. Rabhi
for constant interest in this work and many fruitful discus-
sions. One of the author (H. Hansen) is supported by grant
SFRH/BPD/11579/2002 of FCT.

Appendix A.

In this appendix we list the explicit expressions for the
Green’s functions. Here the momentum indices are repre-
sented by Greek letters α, β, γ. For this purpose we intro-
duce various quantities:

I
(1)
ββ′(E) =

1
2εβ

1
2εβ′

εβ Nβ + εβ′ Nβ′

E − εβ − εβ′ + iη
,

I
(2)
ββ′(E) =

εβ − εβ′

2 εβ εβ′

εβ Nβ − εβ′ Nβ′

E2 − (εβ − εβ′)2 + iη
,

I
(3)
ββ′(E) = − 1

2εβ

1
2εβ′

εβ Nβ + ε′β Nβ′

E + εβ + εβ′ − iη
.

(A.1)

We also introduce the loop integrals

I(i)
α (E) =

1
V

∑
ββ′

δα−β−β′ I
(i)
ββ′(E) ,

Iα(E) = I(1)
α (E) + I(2)

α (E) + I(3)
α (E) . (A.2)

In particular, for α corresponding to the momentum �P ,
one has the explicit expression

I(E, �P ) ≡ Iα=�P (E)

=
∫

d�k1 d�k2

(2π)d
δ(d)

(
�P − �k1 − �k2

)

×
[
ε1 + ε2

2 ε1 ε2

ε1 N1 + ε2 N2

E2 − (ε1 + ε2)
2 + iη

− ε1 − ε2

2 ε1 ε2

ε1 N1 − ε2 N2

E2 − (ε1 − ε2)
2 + iη

]
. (A.3)
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For the one-particle Green’s functions one obtains

Gαα′†(E) = δα,α′
E + εα +

Σα(E)
2εα

2εα
Gα(E) ,

G−α†−α′(E) = δα,α′
−E + εα +

Σα(E)
2εα

2εα
Gα(E) ,

G−α†α′†(E) = Gα−α′(E) = δα,α′
Σα(E)
4ε2

α

Gα(E) , (A.4)

where the full propagator is

Gφαφ†
α′
(E) = δα,α′ Gα(E) = δα,α′

(
E2 − ε2

α −Σα(E)
)−1

.

(A.5)
The mass operator being given by

Σα(E) =
b2 s2

2
Iα(E)

1− b
2 Iα(E)

. (A.6)

For what concerns the 2p-1h and 2p-2p Green’s func-
tions, we introduce indices i to label the destruc-
tion (creation) operators: 1 = β, β′(β†, β′†), 2 =
(β,−β′†)sym((β†,−β′)sym) and 3 = −β†,−β′†(−β,−β′).
The results are:

G
(i)

ββ′,α†(E) = G
(i)

α†,ββ′(E)

=
b s√
V

δα−β−β′
I
(i)
ββ′(E)

1− b
2 Iα(E)

(
E + εα

2 εα

)
Gφαφ†

α
(E),

G
(i)
ββ′,−α(E) = G

(i)
−α,ββ′(E)

=
b s√
V

δα−β−β′
I
(i)
ββ′(E)

1− b
2 Iα(E)

(−E + εα

2 εα

)
Gφαφ†

α
(E),

(A.7)

G
(ij)
ββ′, γγ′(E) = I

(i)
ββ′(E) δi,j (δβγ δβ′γ′ + δβγ′ δβ′γ)

+
b

V

∑
α

δα−β−β′I
(i)
ββ′(E) δα−γ−γ′I

(j)
γγ′(E)

1− b
2 Iα(E)

+
b2 s2

V

∑
α

δα−β−β′I
(i)
ββ′(E) δα−γ−γ′I

(j)
γγ′(E)(

1− b
2 Iα(E)

)2 Gφαφ†
α
(E).

(A.8)

Finally, we give the useful relations

∑
i=1,2,3

∑
ββ′

1√
V

b s
(
G

(i)
ββ′,ᾱ(E) +G

(i)
ββ′,−α(E)

)
=

2Σα(E)Gφαφ†
α
(E) (A.9)

and ∑
i,j∈1,2,3

∑
ββ′γγ′

G
(ij)
ββ′, γγ′(E) = 2

∑
α

Iα(E)

+ b
∑
α

(Iα(E))
2

1− b
2 Iα(E)

+ b2 s2
∑
α

(Iα(E))
2(

1− b
2 Iα(E)

)2 Gφαφ†
α
(E) . (A.10)

These particular combinations are explicitly covariant if
we forced the covariance in the loop I(E, p) = I(E2 −p2).
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