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Abstract We propose a global optimisation approach for the solution of various
classes of bilevel programming problems (BLPP) based on recently developed para-
metric programming algorithms. We first describe how we can recast and solve the
inner (follower’s) problem of the bilevel formulation as a multi-parametric program-
ming problem, with parameters being the (unknown) variables of the outer (leader’s)
problem. By inserting the obtained rational reaction sets in the upper level prob-
lem the overall problem is transformed into a set of independent quadratic, linear or
mixed integer linear programming problems, which can be solved to global optimality.
In particular, we solve bilevel quadratic and bilevel mixed integer linear problems,
with or without right-hand-side uncertainty. A number of examples are presented to
illustrate the steps and details of the proposed global optimisation strategy.
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1 Introduction

Multilevel optimisation problems have attracted considerable attention from the
scientific and economic community in recent years. Due to its many applications,
multilevel and in particular bilevel programming have evolved significantly. Bilevel
programming problems (BLPP) involve a hierarchy of two optimisation problems, of
the following form (Vicente and Calamai 1994a; Floudas 2000; Dempe 2003):

min
x,y

F(x, y),

s.t. G(x, y) ≤ 0,
x ∈ X,
y ∈ argmin{f (x, y) : g(x, y) ≤ 0, y ∈ Y}

(1)

where X ⊆ Rnx and Y ⊆ Rny are both compact convex sets; F and f are real func-
tions: R(nx+ny) → R; G and g are vectorial real functions, G : R(nx+ny) → Rnu and
g: R(nx+ny) → Rnl; nx, ny ∈ N and nu, nl ∈ N ∪ {0}. The following definitions are
associated to Problem (1):

Relaxed feasible set (or constrained region),

� = {x ∈ X, y ∈ Y : G(x, y) ≤ 0, g(x, y) ≤ 0}. (2)

Lower level feasible set,

C(x) = {y ∈ Y : g(x, y) ≤ 0}. (3)

Follower’s rational reaction set,

M(x) = {y ∈ Y : y ∈ argmin{f (x, y) : y ∈ C(x)}}. (4)

Inducible region,

IR = {x ∈ X, y ∈ Y : (x, y) ∈ �, y ∈ M(x)}. (5)

Applications of bilevel and multilevel programming include design optimisation
problems in process systems engineering (Clark 1990; Clark and Westerberg 1990);
design of transportation networks (LeBlanc and Boyce 1985); agricultural planning
(Fortuny-Amat and McCarl 1981); management of multi-divisional firms (Ryu et al.
2004) and hierarchical decision-making structures (Fortuny-Amat and McCarl 1981).
These multilevel problems are classified accordingly to the number of levels and the
type of their cost functions and variables: if the problem has two levels, where both
cost functions are affine functions and the variables are continuous, the problem is
classified as a linear BLPP; if at least one of these functions has a quadratic expression,
it is a quadratic BLPP; adding uncertainty to the formulations results in a BLPP with
uncertainty; on the other hand, if binary and continuous variables coexist in the same
bilevel problem formulation, it corresponds to a mixed integer BLPP.

Recently, Pistikopoulos and co-workers (Dua and Pistikopoulos 2000, Dua et al.
2002) have proposed novel solution algorithms which open the possibility of
using a general framework to address general classes of bilevel and multilevel pro-
gramming problems. These algorithms are based on parametric programming theory
(Acevedo and Pistikopoulos 1997, Dua 2000) and use of the Basic Sensitivity Theo-
rem (Fiacco 1976, 1983). This approach can be classified as a Reformulation Technique
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(Visweswaran et al. 1996) since the bilevel problem is transformed into a number of
quadratic or linear problems. The main idea is to divide the follower’s feasible area
into different rational reaction sets, and search for the global optimum of a simple
quadratic (or linear) programming problem in each area.

1.1 Global optimum of a bilevel programming problem

While for an optimal control problem (one-player problem) there is a well-defined
concept for optimality, the same is not always true for multi-person games (Başar and
Olsder 1982).

In the case of bilevel programming, Vicente (1992), Visweswaran et al. (1996),
Shimizu et al. (1997), Floudas et al. (1999), Floudas (2000) and Dempe et al. (2005)
interpret the optimisation problem as a leader’s problem, F, and search for the global
minimum of F. The solution point obtained for the follower’s problem, f , will respect
the stationary (KKT) conditions and hence it can be any stationary point.

Obviously, this solution strategy is acceptable when the player in the upper level
of the hierarchy is in the most “powerful” position, and the other levels just
react to the decision of their leader. Such approach is sensible in many engineer-
ing applications of bilevel programming (for instance, see Clark and Westerberg
1990; Clark 1990). It is also a valid strategy for the cases of decentralised man-
ufacturing and financial structures, when the leader has a full insight and control
of the overall objectives and strategy of the corporation, while the follower does
not.

However, this is not always the case. For example, using the feedback Stackelberg
solution, where at every level of play a Stackelberg equilibrium point is searched, the
commitment of the leader for his/her decision increases with the number of players
involved. Cao and Chen (2006) present an example where the sacrifice of the leader’s
objective on behalf of the followers results in a better solution for both levels. Similar
solution strategies have also been studied (Tabucanon 1988; Lai 1996; Shih et al. 1996;
Cao and Chen 2006).

Theorem 1 (Vicente 1992) If for each x ∈ X, f and g are twice continuously differen-
tiable functions for every y ∈ C(x), f is strictly convex for every y ∈ C(x) and C(x) is a
convex and compact set, then M(·) is a real-valued function, continuous and closed.

If Theorem 1 applies and assuming that M(x) is non-empty, then M(x) will have
only one element, which is y(x). Thus, Eq. (1) can be reformulated as:

min
x,y

F(x, y(x)),

s.t. G(x, y(x)) ≤ 0,
x ∈ Crf ,
Crf = {x ∈ X : ∃y ∈ Y, g(x, y) ≤ 0}.

(6)

Considering that f is a convex real function, the function y(x) can be computed
as a linear conditional function based on parametric programming theory, as follows
(Dua et al. 2002):
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y(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1 + n1x, if H1x ≤ h1,
m2 + n2x, if H2x ≤ h2,
...
mk + nkx, if Hkx ≤ hk,
...
mK + nKx, if HKx ≤ hK,

(7)

where, nk, mk and hk are real vectors and Hk is a real matrix.

Theorem 2 (Vicente 1992) If the assumptions of Theorem 1 hold, F is a real continuous
function, X and the set defined by G(x,y) are compact, and if {∃x ∈ X : G(x, y(x)) ≤ 0},
then there is a global solution for Problem (1).

Since an explicit expression for y can be computed, if the assumptions of Theorem 2
hold, and the two players have convex functions to optimise, then the global optimum
for Problem (1) can be obtained via the parametric programming approach.

The advantage of using this approach is that the final solution will consider the
possibility of existence of other global minima, which could correspond to better
solutions for the follower. Moreover, the parametric nature of the leader’s problem
is preserved.

Regarding computational complexity, a number of authors have shown that BLPP
are NP-Hard (Hansen et al. 1992, Deng 1998). Furthermore, Vicente et al. (1994b)
proved that even checking for a local optimum is a NP-Hard problem.

The objective of this work is to describe a parametric programming framework
which can solve different classes of multilevel programming problems to global opti-
mality. Section 2 presents the fundamental developments for the quadratic bilevel
programming case. The theory is extended, in Sect. 3, to cover the existence of RHS
uncertainty, and Sect. 4 addresses mixed integer bilevel programming.

2 Quadratic bilevel programming

Consider the following general quadratic BLPP:

min
x,y

F(x, y) = L1 + L2x + L3y + 1
2

xTL4x + yTL5x + 1
2

yTL6y,

s.t. G1x + G2y + G3 ≤ 0,

min
y

f (x, y) = l1 + l2x + l3y + 1
2

xTl4x + yTl5x + 1
2

yTl6y,

s.t. g1x + g2y + g3 ≤ 0 ,

(8)

where x and y are the optimisation variables, x ∈ X ⊆ Rnx and y ∈ Y ⊆ Rny. [L2]1×nx,
[L3]1×ny, [L4]nx×nx, [L5]ny×nx, [L6]ny×ny,

[
l2

]

1×nx,
[
l3

]

1×ny,
[
l4

]

nx×nx,
[
l5

]

ny×nx and
[
l6

]

ny×ny are matrices defined in the real space. The matrices [G1]nu×nx, [G2]nu×ny,

[G3]nu×1,
[
g1

]

nu×nx,
[
g2

]

nu×ny,
[
g3

]

nu×1 correspond to the constraints, also defined in
the real space.

Focusing the attention on the follower’s optimisation problem, considering x as a
parameter vector and operating a variable change (z = y+ l−1

6 l5x), it can be rewritten
as the following multiparametric quadratic programming (mp-QP) problem:



J Glob Optim (2007) 38:609–623 613

min
z

f ′(x, z) = l′1 + l′2x + 1
2

xTl′4x +
{

l′3z + 1
2 zTl′6z

}
,

s.t. g′
2z ≤ g′

3 + g′
1x,

(9)

where: l′1 = l1; l′2 = l2 − l3l−1
6 l5; l′3 = l3; l′4 = l4 − lT5 l−1

6 l5; l′5 = 0; l′6 = l6; g′
1 =

−(g1 − g2l−1
6 l5); g′

2 = g2; g′
3 = −g3.

The mp-QP Problem (9) can be solved applying the algorithm of Dua et al. (2002)
(Appendix A). As a result, a set of rational reaction sets (Definition 4) is obtained for
different regions of x:

zk = mk + nkx; Hkx ≤ hk, k = 1, 2, . . . , K. (10)

By incorporating the expressions (10) into Problem (8) results in the the following K
quadratic problems:

min
x

F ′(x) = L
′k
1 + L

′k
2 x + 1

2
xTL

′k
4 x,

s.t. G
′k
1 x ≤ G

′k
3

(11)

with:

L
′k
1 = L1 + L3mk + 1

2
mkT

L6mk,

L
′k
2 = L2 + L3nk − L3l−1

6 l5 + mkT
L5 + mkT

L6nk − mkT
L6l−1

6 l5,

L
′k
4 = L4 + 2nkL5 − 2lT5 l−1

6 L5 + nkT
L6nk − 2nkT

L6l−1
6 l5 + lT5 l−1

6 L6l−1
6 l5,

G′
1 = G1 + G2nk − G2l−1

6 l5,

G′
3 = −(G3 + G2mk),

G
′k
1 = [G′

1|Hk]T
(nx)×(nu+nhk ),

G
′k
3 = [G′

3|hk]T
(1)×(nu+nhk ).

Clearly, the solution of the BLLP Problem (8) is the minimum along the K solutions
of Problem (11).

Remark 1 The artificial variable, z, introduced in Problem (9) is only necessary if
l5 �= 0

¯̄
. In all other cases the multi-parametric problem can be easily formulated

through algebraic manipulations.

Remark 2 When one of the matrices l′6, L
′k
4 is null the optimisation problem where

these are involved becomes linear. Particulary, if l′6 = 0
¯̄
, Problem (9) is transformed

into a mp-LP; on the other hand, if L
′k
4 = 0

¯̄
, Problem (11) becomes a LP problem.

In both cases, the solution procedure is not affected, due to the fact that the Basic
Sensitivity Theorem (Fiacco 1976, 1983) also applies to the mp-LP problem.

Remark 3 The expression for the artificial variable introduced, z, is only valid when
l6 is symmetric. If not, with the following transformation:

l̄6 =
{

l6 + lT6
2

}
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the resulting matrix is non-singular. If the resulting matrix is singular the expression
for the artificial variable should be given by:

z = y + Ax,

where A should satisfy:
{

A ∈ Rnx×nx : l5 −
(

1
2 l6 + 1

2 lT6

)

A = 0
}

.

In this case, several solutions for the system above can exist. However, as long as the
bilinear terms are eliminated in Problem (9) any solution can be selected.

Remark 4 This technique is not valid when at the same time: (1) f is a pure quadratic
cost function; (2) f involves bilinear terms and (3) matrix l̄6 is singular.

Observing Formulation (11) we can conclude that the parametric programming
approach (Table 1), transforms the original quadratic BLPP into simple quadratic
problems, for which a global optimum can be reached.

In the following subsections, examples are presented for LP|LP, LP|QP and QP|QP
BLPP.

2.1 LP|LP bilevel programming problem

Consider the following linear BLPP (Bard and Falk 1982):

min
x,y

F(x, y) = −8x1 − 4x2 + 4y1 − 40y2 + 4y3,

s.t. min
y

f (x, y) = x1 + 2x2 + y1 + y2 + 2y3,

s.t. −y1 + y2 + y3 ≤ 1,
2x1 − y1 + 2y2 − 0.5y3 ≤ 1,
2x2 + 2y1 − y2 − 0.5y3 ≤ 1,
y ≥ 0,
x ≥ 0.

(12)

Problem (12) was solved using the steps described in Table (1):

Step 1 Formulate a mp-LP problem for the lower level:

min
y

f (x, y) = x1 + 2x2 + y1 + y2 + 2y3,

s.t. −y1 + y2 + y3 ≤ 1,
−y1 + 2y2 − 0.5y3 ≤ 1 − 2x1,
2y1 − y2 − 0.5y3 ≤ 1 − 2x2,
y ≥ 0,
x ≥ 0.

(13)

Table 1 Parametric
programming approach
for a BLPP

Step Description

1 Recast the inner problem as a multi-parametric
programming problem, with the leader’s variables
being the parameters (9)

2 Solve the resulting problem using the suitable
multi-parametric programming algorithm

3 Substitute each of the K solutions in the leader’s
problem, and formulate the K one level
optimisation problems

4 Compare the K optimum points and select the best one
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Step 2 The application of the mp-LP algorithm to the lower level results in the
following five rational reaction sets in Table 2.
Step 3 Substituting each of the sets obtained into the leader’s problem, five linear
programming problems result (Table 3).
Step 4 Observing the best values achieved for each region (Table 3), the global solu-
tion is obtained for: x1 = 0; x2 = 0.9; y1 = 0; y2 = 0.6; y3 = 0.4 (F = −26; f = 3.2).

The global minimum obtained is the same as the one reported by Floudas et al.
(1999). Here only the solution of a single mp-LP and five LP was required to obtain
the global minimum; whereas for the same problem Shimizu et al. (1997) report that
their strategy requires the solution of ten subproblems. Clearly, the computational
efficiency of the proposed procedure depends on the performance of the underlying
multi-parametric programming algorithm (which, in independent studies, has been
reported as robust and efficient: Dua and Pistikopoulos 2000; Dua et al. 2002; Sakizlis
et al. 2003; Sakizlis et al. 2004 a, b).

2.2 LP|QP bilevel programming problem

Consider a linear cost function at the leader’s level and a quadratic at the lower level:

min
x,y

F(x, y) = 2x1 + 2x2 − 3y1 − 3y2 − 60,

s.t. x1+ x2 + y1 − 2y2 − 40 ≤ 0,
min

y
f (x, y) = (y1 − x1 + 20)2 + (y2 − x2 + 20)2,

s.t. −x1 + 2y1 ≤ −10,
−x2 + 2y2 ≤ −10,
0 ≤ x ≤ 50,
−10 ≤ y ≤ 20 .

(14)

Table 2 Rational reaction sets
(Step 2) k yk(x) = mk + (nk − l−1

6 l5)x Hkx ≤ hk
i

y1(x) = 0
1 y2(x) = 0 0 ≤ x ≤ 1

2
y3(x) = 0
y1(x) = −1 + 2x1 0 ≤ x2

2 y2(x) = 0 4x1 + 2x2 ≤ 3
y3(x) = 0 1

2 ≤ x1
y1(x) = 2

3 x1 − 2
3 x2 0 ≤ x2

3 y2(x) = 0 2x1 + 2x2 ≤ 3
y3(x) = −2 + 8

3 x1 + 4
3 x2 −x1 + x2 ≤ 0

−4x1 − 2x2 ≤ −3
y1(x) = 0 2

3 x1 + 10
3 x2 ≤ 3

4 y2(x) = − 2
3 x1 + 2

3 x2 x1 − x2 ≤ 0
y3(x) = −2 + 4

3 x1 + 8
3 x2 0 ≤ x1

−2x1 − 4x2 ≤ −3
y1(x) = 0 0 ≤ x1

5 y2(x) = −1 + 2x2 2x1 + 4x2 ≤ 3
y3(x) = 0 1

2 ≤ x2
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Table 3 Formulation of new problems (Steps 3 and 4)

k Optimisation problem Optimised variables Function values

1
min

x
F = −8x1 − 4x2

s.t. 0 ≤ x ≤ 1
2

x1 = 0.5, x2 = 0.5
y1 = 0, y2 = 0, y3 = 0

F = −6
f = 1.5

2

min
x

F = −4x2 − 4

s.t. 0 ≤ x2
4x1 + 2x2 ≤ 3
0.5 ≤ x1

x1 = 0.5, x2 = 0.5
y1 = 0, y2 = 0, y3 = 0

F = −6
f = 1.5

3

min
x

F = 16
3

x1 − 4
3

x2 − 4

s.t. 0 ≤ x2
2x1 + 2x2 ≤ 3
−x1 + x2 ≤ 0
−4x1 − 2x2 ≤ −3

x1 = 0.5, x2 = 0.5
y1 = 0, y2 = 0, y3 = 0

F = −6
f = 1.5

4

min
x

F = 24x1 − 20x2 − 8

s.t. 2
3 x1 + 10

3 x2 ≤ 3
x1 − x2 ≤ 3
x1 − x2 ≤ 0
0 ≤ x1−2x1 − 4x2 ≤ −3

x1 = 0, x2 = 0.9
y1 = 0, y2 = 0.6, y3 = 0.4

F = −26
f = 3.2

5

min
x

F = −8x1 − 84x2 + 40

s.t. 0 ≤ x1
2x1 + 4x2 ≤ 3
0.5 ≤ x2

x1 = 0, x2 = 0.75
y1 = 0, y2 = 0.5, y3 = 0

F = −23
f = 2

The solutions found for this problem (Solutions 1 and 2) are compared to solutions
reported in the literature (Aiyoshi and Shimizu 1981; Visweswaran et al. 1996), as
shown in Table 4.

It is interesting to note: (1) Solutions 1 and 2 have the same (global) solution for
the leader’s problem, F = 0. However, they differ in the solution of the follower’s
problem, (2) Solution 2 is identical to the solution reported in Visweswaran et al.
(1996), (3) Solution 1 is the global solution (as discussed in 1.1), where both the leader
and follower’s cost functions are optimised. Thus, this comparison enhances a singular
property of the framework developed in this work, which is the lower level optimi-
sation; whereas most of the Reformulation Techniques just satisfy the requirement of
having a stationary point, KKT optimality conditions, for the lower level, with this
approach the decision maker optimises firstly the leader cost function but has the
opportunity to optimise the lower level as well.

2.3 QP|QP bilevel programming problem

Consider the following problem, introduced by Muu and Quy (2003), which has
quadratic functions in both levels:

Table 4 Different solutions
for Problem (14)

Solution F f x1 x2 y1 y2

Aiyoshi and Shimizu (1981) 5 100 25 30 5 10
Visweswaran et al. (1996) 0 200 0 0 −10 −10
Solution 1 0 100 0 30 −10 10
Solution 2 0 200 0 0 −10 −10
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min
x,y

F(x, y) = y2
1 + y2

3 − y1y3 − 4y2 − 7x1 + 4x2,

s.t. x1 + x2 ≤ 1,

min
y

f (x, y) = y2
1 + 1

2
y2

2 + 1
2

y2
3 + y1y2 + (1 − 3x1)y1 + (1 + x2)y2,

s.t. 2y1 + y2 − y3 + x1 − 2x2 + 2 ≤ 0,
x ≥ 0,
y ≥ 0 .

(15)

Muu and Quy (2003) have solved this oligopolistic market example to find an
ε-global minimum (ε = 0.01). The global minimum computed in the present work is
compared to the former and presented in Table 5.

It is interesting to note here that: (1) the solution obtained is in full agreement with
the one reported in Muu and Quy (2003); (2) the solution of one mp-QP and one QP
were required to arrive at the global solution.

3 Bilevel programming with uncertainty

Evans (1984) highlighted the importance of considering uncertainty/risk (e.g. prices,
technological attributes, etc.) in the solution of decentralised decision makers. The
presence of uncertainty in bilevel problems has been addressed before for the lin-
ear case (Ryu et al. 2004). Uncertainty is considered unstructured, taking any value
between its bounds. In the present work we present an extension of our earlier work
to the quadratic case.

We address the following quadratic BLPP with uncertainty, θ :

min
x,y

F(x, y, θ) = L1 + L2x + L3y + 1
2

xTL4x + yTL5x + 1
2

yTL6y,

s.t. G1x + G2y + G3 ≤ G4θ ,

min
y

f (x, y, θ) = l1 + l2x + l3y + 1
2

xTl4x + yTl5x + 1
2

yTl6y,

s.t. g1x + g2y + g3 ≤ g4θ ,

(16)

The steps for solving (16) are as follows:

1. Recast the inner problem as a mp-QP, with parameters being both x and θ . The
solution obtained is similar to (10):

zk = mk + nk
bx + n̄k

c θ , Hkx + H̄kθ ≤ hk, k = 1, 2, . . . , K. (17)

2. Incorporate expressions (17) in (16) to formulate K mp-QPs, with parameters
being the uncertainty θ :

min
x

F ′(x, θ) = L̄
′k
1 + L̄

′k
2 x + 1

2
xTL̄

′k
4 x,

s.t. Ḡ
′k
1 x ≤ Ḡ

′k
3 + Ḡ

′k
4 θ ,

(18)

Table 5 Different solutions
for Problem (15)

Solution F f x1 x2 y1 y2 y3

Muu and Quy (2003) 0.6426 1.671 0.609 0.391 0 0 1.828
Solution 1 0.6384 1.6799 0.6111 0.3889 0 0 1.8333
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where L̄
′k
1 , L̄

′k
2 , L̄

′k
4 , Ḡ

′k
1 , Ḡ

′k
2 , Ḡ

′k
4 are appropriate matrices derived by algebraic

manipulations.
We will illustrate the proposed procedure by revisiting example (15) with the

addition of two uncertain parameters (θ1,θ2) as follows:

min
x,y

F(x, y) = y2
1 + y2

3 − y1y3 − 4y2 − 7x1 + 4x2,

s.t. x1 + x2 ≤ 1 + θ1,

min
y

f (x, y) = y2
1 + 1

2
y2

2 + 1
2

y2
3 + y1y2 + (1 − 3x1)y1 + (1 + x2)y2,

s.t. 2y1 + y2 − y3 + x1 − 2x2 + 2 ≤ θ2,
x ≥ 0,
y ≥ 0,
0 ≤ θ1 ≤ 0.25,
0 ≤ θ2 ≤ 0.5 .

(19)

The solution of the inner mp-QP problem of Step 1 results in a single critical region,
with the following parametric expressions:

y1 = 0,
y2 = 0,
y3 = x1 − 2x2 − θ2 + 2,
x1 + x2 ≤ 1 + θ1,
−x1 + 2x2 ≤ 2 − θ2,
x ≥ 0,
0 ≤ θ1 ≤ 0.25,
0 ≤ θ2 ≤ 0.5.

(20)

Then, Step 2 involves (1) the substitution of the expressions in (20) into the leader’s
problem and (2) formulation and solution of the outer mp-QP problem, based on
which the following results were obtained:

x1 = 0.444θ1 + 0.556θ2 + 0.611,
x2 = 0.556θ1 − 0.556θ2 + 0.389,
0 ≤ θ1 ≤ 0.25,
0 ≤ θ2 ≤ 0.5.

(21)

For the limiting case, when θ1 = 0 and θ2 = 0, the results obtained in (21)
correspond to the results obtained in Sect. 2.3, Table 5.

In this example, Step 1 results in a single critical region (20). However, it is
possible that, by the end, different parametric expressions are computed to the same
critical region. We overcome this redundancy by keeping the best solution and dis-
carding the others through the formal comparison procedure proposed by Acevedo
and Pistikopoulos (1997).

4 Mixed integer bilevel programming

In many real systems, the leader may have to take “yes–no” decisions (Wen and Yang
1990). This type of decisions can be described by the introduction of binary variables
in the model. Assuming that the optimisation variables are separable and appear in
linear relations, the following mixed integer BLPP is derived (Shimizu et al. 1997):
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min
x1,x2,y1,y2

F(x1, x2, y1, y2) = L1 + LT
2 x1 + LT

3 y1 + LT
4 x2 + LT

5 y2,

s.t. G1x1 + G2y1 + G3x2 + G4y2 + G5 ≤ 0,
min
y1,y2

f (x1, x2, y1, y2) = l1 + lT2 x1 + lT3 y1 + lT4 x2 + lT5 y2,

s.t. g1x1 + g2y1 + g3x2 + g4y2 + g5 ≤ 0,

(22)

where x1, x2, y1 and y2 are the optimisation variables, x1 ∈ X1 ⊆ Rnx1 , x2 ∈ {0, 1}nx2

y1 ∈ Y1 ⊆ Rny1 , y2 ∈ {0, 1}ny2 . [L2]nx1 , [L3]ny1 , [L4]nx2 , [L5]ny2
,
[
l2

]

nx1
,
[
l3

]

ny1
,
[
l4

]

nx2[
l5

]

ny2
are vectors defined in the real space. The matrices [G1]nu×nx1

, [G2]nu×ny1

[G3]nu×nx2 , [G4]nu×ny2 , [G5]nu×1,
[
g1

]

nu×nx1
,

[
g2

]

nu×ny1
,
[
g3

]

nu×nx2
,
[
g4

]

nu×ny2[
g5

]

nu×1 correspond to the constraints, also defined in the real space.
If the integrality conditions, with respect to x2, are moved to the upper level,

a multi-parametric mixed integer linear programming (mp-MILP), with x1 and x2
being the parameters, can be formulated as follows (Formulation 23):

min
y1,y2

f (x, y1, y2) = l′1 + l
′T
2 x + l

′T
3 y1 + l

′T
5 y2,

s.t. g′
2y1 + g′

4y2 ≤ g′
5 + g′

1x,
(23)

where: x = [x1|x2]T ; l′1 = l1; l′2 = [l2|l4]T ; l′3 = l3; l′5 = l5; g′
1 = −[g1|g3]T ; g′

2 = g2;
g′

4 = g4; g′
5 = −g5.

The mp-MILP problem in (23) can be solved applying the algorithm of Dua and
Pistikopoulos (2000), from which the following group of K solutions are obtained:

yk
2 = ȳk

2 ,

yk
1 = mk + nkx ⇔ yk

1 = mk + nk
1x1 + nk

2x2, k = 1, 2, . . . , K,

Hkx ≤ hk ⇔ Hk
1 x1 + Hk

2 x2 ≤ hk.

(24)

Introducing these expressions in (22), a set of K independent MILPs is obtained:

F(x1, x2) = min
x1,x2

{L′k
1 + L′kT

2 x1 + L′kT

4 x2},
s.t. G′k

1 x1 + G′k
3 x2 ≤ G′k

5

(25)

with: L
′k
1 = L1 + L3mk + L5ȳk

2 ; L
′k
2 = L2 + L3nk

1 ; L
′k
4 = L4 + L3nk

2 ;

G′
1 = G1 + G2nk

1 ,

G′
3 = G3 + G2nk

2 ,

G′
5 = −(G4ȳk

2 + G5 + G2mk),

G
′k
1 = [G′

1|Hk
1 ]T ; G

′k
3 = [G′

3|Hk
2 ]T ; G

′k
5 = [G′

3|hk]T .

The solution of the K MILPs in (25) results in the selection of the global optimum by
direct comparison.
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Table 6 Solution for
Problem (26)

F = −1011.67
f = −4673.34
y1 = 0.00
y2 = 75.00
y3 = 21.67
x1 = 0
x2 = 1
x3 = 0
x4 = 1

The proposed strategy will be illustrated by the following MILP|LP BLPP
introduced by (Wen and Yang 1990):

min
x,y

F(x, y) = −(20x1 + 60x2 + 30x3 + 50x4 + 15y1 + 10y2 + 7y3),

s.t. min
y

f (x, y) = −(20y1 + 60y2 + 8y3),

s.t. 5x1 + 10x2 + 30x3 + 5x4 + 8y1 + 2y2 + 3y3 ≤ 230,
20x1 + 5x2 + 10x3 + 10x4 + 4y1 + 3y2 ≤ 240,
5x1 + 5x2 + 10x3 + 5x4 + 2y1 + y3 ≤ 90,
x ∈ {0, 1},
y ≥ 0.

(26)

Moving the integrality constraint to the outer level, the inner problem can be
rewritten as a mp-LP with x being the parameter. Its solution results in the following
parametric expressions (single critical region):

y1 = 0,
y2 = −6.667x1 − 1.667x2 − 3.333x3 − 3.333x4 + 80,
y3 = 2.778x1 − 2.222x2 − 7.778x3 + 0.5556x4 + 23.33,
0 ≤ x1, x2, x3, x4 ≤ 1 .

(27)

Introducing these expressions in the leader’s problem, and taking into account the
binary nature of x, the following MILP problem is obtained:

min
x

F = −(20x1 + 60x2 + 30x3 + 50x4 + 15y1 + 10y2 + 7y3),

s.t. y1 = 0,
y2 = −6.667x1 − 1.667x2 − 3.333x3 − 3.333x4 + 80.00,
y3 = 2.778x1 − 2.222x2 − 7.778x3 + 0.5556x4 + 23.33,
x ∈ {0, 1},
y ≥ 0.

(28)

Table 6 presents the solution for Problem (28), and subsequently for Problem (26).
The result obtained is identical to the one obtained by Wen and Yang (1990).

5 Concluding remarks

We have described the foundations of a novel global optimisation strategy for the
solution of general classes of bilevel programming based on our recent developments
in multi-parametric programming. It was shown that bilevel linear, quadratic and
mixed-integer linear programs, also involving uncertainty, can be effectively solved. It
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was further shown that issues related to global optimality for both levels of the bilevel
program can be addressed.

The proposed approach can be further extended for trilevel and general multi-
level programming problems (Ruan et al. 2004), Stackelberg-Nash Equilibrium type
of problems (Liu 1998), as well as to diverse application areas, such as hierarchical
control structures (Stephanopoulos and Ng 2000) and enterprise-wide supply chain
optimisation problems (Cao and Chen 2006). These are currently undergoing further
investigation.

Acknowledgements Financial support from EPSRC (GR/T02560/01) and Marie Curie European
Project PRISM (MRTN-CT-2004-512233) is gratefully acknowledged.

Appendix A: the mp-QP algorithm

The steps of the solution algorithm (Dua et al. 2002) for mp-QP problems are as
follows:

Step 1 Treating θ as a free variable, solve the following mp-QP problem to obtain a
feasible point [θQ]:

z(θ) = min
x

cTx + 1
2 xTQx,

s.t. Ax ≤ b + Fθ ,
x ∈ X ⊆ Rn,
θ ∈ � ⊆ Rm.

(29)

where c is a constant vector of dimension n, Q is an (n × n) symmetric positive
definite constant matrix, A is a (p × n) constant matrix, F is a (p × m) con-
stant matrix, b is a constant vector of dimension p and X and � are compact
polyhedral convex sets of dimensions n and m, respectively.

Step 2 Fix θ = θQ and solve (29) to obtain [x(θQ), λ(θQ)], where λ are the Lagrange
multipliers.

Step 3 Applying the Basic Sensitivity Theorem (Fiacco 1976) to (29), and considering
first-order estimations, the following expressions are obtained:

[
xQ(θ)

λQ(θ)

]

= − (MQ)−1NQ(θ − θQ) +
[

x(θQ)

λ(θQ)

]

, (30)

where,

MQ =

⎛

⎜
⎜
⎜
⎝

Q AT
1 · · · AT

p
−λ1A1 −V1

...
. . .

−λpAp −Vp

⎞

⎟
⎟
⎟
⎠

,

NQ = (Y, λ1F1., . . . , λpFp.)
T

Vi = Ai.x(θQ)− bi − Fi.θQ and Y is a null matrix of dimension (n × m). Obtain
[xQ(θ), λQ(θ)] from (30).

Step 4 Form a set of inequalities, CRR:

CRR = {ĂxQ(θ) ≤ b̆ + F̆θ , λ̃Q(θ) ≥ 0, CRIG}, (31)
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where Ă, b̆ and F̆ correspond to the inactive inequalities, λ̃Q to the active
constraints and CRIG represents a set of linear inequalities defining an ini-
tial given region. From the parametric inequalities thus obtained, the redun-
dant inequalities are removed and a compact representation of the CRQ is
obtained: CRQ = �{CRR}, where � is an operator which removes redundant
constraints—for a procedure to identify redundant constraints (see Gal 1995).

Step 5 Define the rest of the region, CRrest = CRIG − CRQ.
Step 8 If there are no more regions to explore, go to next step, otherwise go to Step 1.
Step 9 Collect all the solutions and unify the regions having the same solution to

obtain a compact representation.
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