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Abstract In this paper, we outline the foundations of a general global optimisation
strategy for the solution of multilevel hierarchical and general decentralised multi-
level problems, based on our recent developments on multi-parametric programming
and control theory. The core idea is to recast each optimisation subproblem, present
in the hierarchy, as a multi-parametric programming problem, with parameters being
the optimisation variables belonging to the remaining subproblems. This then trans-
forms the multilevel problem into single-level linear/convex optimisation problems.
For decentralised systems, where more than one optimisation problem is present at
each level of the hierarchy, Nash equilibrium is considered. A three person dynamic
optimisation problem is presented to illustrate the mathematical developments.

Keywords Hierarchical decision making · Multilevel programming ·
Multi-parametric programming · Discrete-time systems · Closed-loop optimal control

1 Introduction

The development of a general theory to solve multi-person objective decision prob-
lems is of great importance for decision making and control theory (Başar 1975).
Multi-person objective decision problems have attracted numerous investigations
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Fig. 1 Hierarchical control of
an automatic vehicle (Rodić and
Vukobratović 1999)

Fig. 2 Product positioning
under price competition (Choi
et al. 1990)

(Başar 1975, 1978; Tolwinski 1981; Başar and Olsder 1982; Anandalingman 1988;
Liu 1998; Li et al. 2002; Shih et al. 2004), with diverse applications in engineering
(Morari et al. 1980; Clark 1983; Stephanopoulos and Ng 2000), financial problems
(Anandalingman 1988; Nie et al. 2006) and in other areas, two examples of such
applications are depicted in Figs. 1 and 2.

In this work we focus on multilevel decentralised optimisation problems, where
the objectives (optimisation subproblems) are organised in a hierarchy of decisions.
In this hierarchy, each optimisation subproblem controls a subset of the full set of
optimisation variables; the latter is completely controlled by the unique optimisation
problem positioned at the top level.

The multi-layer nature in such problems results in non-linearities and non-con-
vexities (Vicente and Calamai 1994); hence, it is not surprising that general solution
strategies for solving such complex problems are rather limited. Moreover, the possible
presence of logical decisions further increases the problems’ complexity. Therefore,
it is widely accepted that a global optimisation approach is needed for the solution of
such multilevel problems (Floudas 2000).

Recently, Pistikopoulos and co-workers have been developing a general theory,
algorithms and computation tools for the solution of general classes of multi-para-
metric programming problems (Pistikopoulos et al. 2007a) and multi-parametric con-
trol (Pistikopoulos et al. 2007b). The application of parametric programming theory
to multi-level problems (Faísca et al. 2007b) makes possible the development of a uni-
fied strategy for their solution to global optimality. The core idea behind this approach
is to recast each optimisation subproblem as a multi-parametric programming prob-
lem. Computing the rational reaction set for each subproblem in the entire feasible
space, and subsequently, computing the corresponding equilibria within the hierarchi-
cal network, disassembles the complexity of the original problem. For instance, in an
optimisation level with two subproblems or more, these explicit expressions are used
to compute the Nash equilibrium between them. In our previous work (Faísca et al.
2007b; Pistikopoulos et al. 2007a) we have addressed the bilevel programming prob-
lem, a hierarchy of two optimisation subproblems organised in two levels. In this paper
we extend the methodology proposed in Faísca et al. (2007b) to cope with multilevel
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decentralised optimisation problems. Furthermore, the methodology is applied to an
optimal control problem of multi-level nature, where the foundations of a general
theory for multi-level hierarchical and decentralised problems are established.

This paper is organised as follows. Section 2 introduces the multi-level mathemat-
ical formulation, which is used throughout the paper, and respective definitions of
feasible and rational reaction set. It also briefly introduces the relevant multi-paramet-
ric programming theory and algorithms. The proposed multi-parametric programming
approach for the solution of tri-level programming problems and bilevel programming
with multi-followers problems is then described in detail in Sect. 3, and illustrated with
example problems. Sect. 4 outlines the application of the proposed approach to mul-
tilevel optimal control of dynamic systems.

2 Preliminaries

2.1 Problem formulation

The general multilevel decentralised optimisation problem can be described as follows:

min
x,yi

1,y
k
2 ,...,yl

m

f1(x, yi
1, yk

2 , . . . , yl
m), (1st level)

s.t. g1(x, yi
1, yk

2 , . . . , yl
m) ≤ 0,

where
[
yi

1, yk
2 , . . . , yl

m

]
solve,

. . . , min
yi

1,y
k
2 ,...,yl

m

f i
2 (x, yi

1, yk
2 , . . . , yl

m), . . . (2nd level)

s.t. gi
2(x, yi

1, yk
2 , . . . , yl

m),≤ 0,

where
[
yk

2 , . . . , yl
m

]
solve,

...

. . . , min
yl

m

f l
m(x, yi

1, yk
2 , . . . , yl

m), . . . (mth level)

s.t. gl
m(x, yi

1, yk
2 , . . . , yl

m) ≤ 0.

(1)

Here, f are real convex functions, g are vectorial real functions defining con-
vex sets and x, y are sets of variables belonging to the group of real numbers; i ∈
{1, 2, . . . , I }, k ∈ {1, 2, . . . , K }, l ∈ {1, 2, . . . , L}, implying that (2nd level) has I
optimisation subproblems (3rd level) K optimisation subproblems and (mth level) has
L optimisation subproblems, respectively.

For the sake of simplicity and without loss of generality, we analyse the relations in
Problem (1) using two particular classes of multilevel programming problems: the tri-
level programming problem, which organises vertically in three levels, and the bilevel
programming problem with multi-followers, in a horizontal structure at the second
level.
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2.1.1 Tri-level programming

The tri-level programming problem can be stated as follows:

min
x,y1,y2

f1(x, y1, y2), (1st level)

s.t. g1(x, y1, y2) ≤ 0,

where [y1, y2] solve,
min
y1,y2

f2(x, y1, y2), (2nd level)

s.t. g2(x, y1, y2),≤ 0,

where [y2] solve,
min

y2
f3(x, y1, y2), (3rd level)

s.t. g3(x, y1, y2) ≤ 0,

(2)

with the following definitions:

– feasible set for the third level,

�2(x, y1) = {y2 ∈ Y2 : g3(x, y1, y2) ≤ 0}, (3)

– rational reaction set for the third level,

φ2(x, y1) = {y2 ∈ Y2 : y2 ∈ argmin{ f2(x, y1, y2) : y2 ∈ �2(x, y1)}}, (4)

– feasible set for the second level,

�1(x) = {y1, y2 ∈ Y1, Y2 : g2(x, y1, y2) ≤ 0, g3(x, y1, y2) ≤ 0}, (5)

– rational reaction set for the second level,

φ1(x) = {y1, y2 ∈ Y1, Y2 : y1 ∈ argmin

×{ f2(x, y1, y2) : y1 ∈ �1(x), y2 ∈ φ2(x, y1)}}. (6)

Note the parametric nature of the rational reaction sets, Eqs. (4) and (6), which
reflects the dependence of the decisions taken at the upper levels on the decisions
taken at the lower levels. This in fact, evidences that in multilevel programming prob-
lems the relations between the levels differ from the well-known Stackelberg game,
where the decisions made by the followers don’t affect the decision, already taken by
the leader (Vicente 1992).
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2.1.2 Bilevel programming with multi-followers

Bilevel programming problems with multi-followers involve two optimisation levels
with several optimisation subproblems at the lower (2nd) level:

min
x,y1,y2,...,ym

F(x, y1, y2, . . . , ym), (1st level)

s.t. G(x, y1, y2, . . . , ym) ≤ 0,

x ∈ X,

yi ∈ argmin{ fi (x, y1, y2, . . . , ym) : gi (x, y1, y2, . . . , ym)

≤ 0, yi ∈ Yi }, (2nd level)
i ∈ {1, 2, . . . , m},

(7)

with the following definitions:

– feasible set for the i th follower,

�i (x, y1, y2, . . . , yi−1, yi+1, . . . , ym) = {yi ∈ Yi : gi (x, y1, y2, . . . , ym) ≤ 0},
(8)

– rational reaction set for the i th follower,

φi (x, y1, y2, . . . , yi−1, yi+1, . . . , ym)

= {yi ∈ Yi : yi ∈ argmin{ fi (x, y1, y2, . . . , ym) : yi ∈ �i (x)}}. (9)

Since one assumption is that followers may exchange information, conflicts nat-
urally occur. The Nash equilibrium is often a preferred strategy to coordinate such
decentralised systems (Başar 1975, 1978; Cruz 1978; Başar and Selbuz 1979; Choi
et al. 1990; Liu 1998). Consequently, the optimisation subproblems positioned in the
lower level are assumed to reach a Nash equilibrium point (x, y∗

1 , y∗
2 , . . . , y∗

m) (Başar
and Olsder 1982):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(x, y∗
1 , y∗

2 , . . . , y∗
m) ≤ f1(x, y1, y∗

2 , . . . , y∗
m),∀y1 ∈ Y1,

f2(x, y∗
1 , y∗

2 , . . . , y∗
m) ≤ f2(x, y∗

1 , y2, . . . , y∗
m),∀y2 ∈ Y2,

...

fm(x, y∗
1 , y∗

2 , . . . , y∗
m) ≤ fm(x, y∗

1 , y∗
2 , . . . , ym),∀ym ∈ Ym .

(10)

Once more observe the parametric nature of the followers’ rational reaction set,
Eq. (9). In this case, however, each rational reaction set is a function of both the
upper level decision variables and the decision variables of the other subproblems
located in the same hierarchical level. Additionally, the priority remains to solve the
leader’s objective function to global optimality. Thus, we aim to compute the set
{x, y1, . . . , ym} which optimises globally the leader objective:

min
x,y1,...,ym

{F(x, y1, . . . , ym) : G(x, y1, . . . , ym) ≤ 0, yi ∈ φi , i = 1, . . . , m}, (11)

and the set {y1, . . . , ym} which corresponds to a Nash equilibrium point, Eq. (10).
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2.2 Multi-parametric programming

Consider the general multi-parametric non-linear programming problem:

min
x

f (x, θ),

s.t. gi (x, θ) ≤ 0, ∀ i = 1, . . . , p,

h j (x, θ) = 0, ∀ j = 1, . . . , q,

x ∈ X ⊆ R
n,

θ ∈ � ⊆ R
m,

(12)

where f, g and h are twice continuously differentiable in x and θ . Assume also that f
is a convex function and g, h define a convex set. Therefore, the first-order Karush–
Kuhn–Tucker (KKT) optimality conditions for (12) are given as follows:

L = f (x, θ) +
p∑

i=1

λi gi (x, θ) +
q∑

j=1

µ j h j (x, θ),

∇xL = 0,

λi gi (x, θ) = 0, λi ≥ 0, ∀ i = 1, . . . , p,

h j (x, θ) = 0, ∀ j = 1, . . . , q.

(13)

The main sensitivity result for (12) derives directly from system (13), as shown in
Theorem 1.

Theorem 1 Basic sensitivity theorem (Fiacco 1976): let θ0 be a vector of parameter
values and (x0, λ0, µ0) a KKT triple corresponding to (13), where λ0 is nonnegative
and x0 is feasible in (12). Also assume that (i) strict complementary slackness (SCS)

holds, (ii) the binding constraint gradients are linearly independent (LICQ: Linear
Independence Constraint Qualification), and (iii) the second-order sufficiency con-
ditions (SOSC) hold. Then, in the neighbourhood of θ0, there exists a unique, once
continuously differentiable function, z(θ) = [x(θ), λ(θ), µ(θ)], satisfying (13) with
z(θ0) = [x(θ0), λ(θ0), µ(θ0)], where x(θ) is a unique isolated minimiser for (12), and

⎛

⎜
⎝

dx(x0)
dθ

dλ(x0)
dθ

dµ(x0)
dθ

⎞

⎟
⎠ = − (M0)

−1 N0, (14)

where, M0 and N0 are the Jacobian of system (13) with respect to z and θ :

M0 =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

∇2
xxL ∇x g1 · · · ∇x gp ∇x h1 · · · ∇x hq

−λ1∇T
x g1 −g1

...
. . . 0

−λp∇T
x gp −gp

∇T
x h1
... 0 0

∇T
x hq

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

,
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N0 = (∇2
θxL ,−λ1∇T

θ g1, . . . ,−λp∇T
θ gp,∇T

θ h1, . . . ,∇T
θ hq)T . �	

Proof See (Fiacco 1983, pp 72).
Note that the assumptions stated in the theorem above ensure M0 is invertible

(McCormick 1976).
Dua et al. (2002) has proposed an algorithm to solve Eq. (14) in the entire range

of the varying parameters for general convex problems. This algorithm is based on
approximations of the non-linear optimal expression, x = γ ∗(θ), by a set of first-order
approximations (Corollary 1).

Corollary 1 First-order estimation of x(θ), λ(θ), µ(θ), near θ = θ0 (Fiacco 1983):
Under the assumptions of Theorem 1, a first-order approximation of [x(θ), λ(θ),
µ(θ)] in the neighbourhood of θ0 is,

⎡

⎣
x(θ)

λ(θ)

µ(θ)

⎤

⎦ =
⎡

⎣
x0
λ0
µ0

⎤

⎦ − (M0)
−1 · N0 · θ + o(||θ ||), (15)

where (x0, λ0, µ0) = [x(θ0), λ(θ0), µ(θ0)], M0 = M(θ0), N0 = N (θ0), and φ(θ) =
o(||θ ||) means that φ(θ)/||θ || → 0 as θ → θ0.

Each piecewise linear approximation is confined to regions defined by feasibil-
ity and optimality conditions (Dua et al. 2002). If ğ corresponds to the non-active
constraints, and λ̃ to the Lagrangian multipliers of the active constraints:

{
ğ(x(θ), θ) ≤ 0 → Feasibility conditions,
λ̃(θ) ≥ 0 → Optimality conditions.

(16)

Consequently, the explicit expressions are given by a conditional piecewise linear
function (Dua et al. 2002):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = C1 + K1 · θ, θ ∈ C R1,

x = C2 + K2 · θ, θ ∈ C R2,
...

x = CL + KL · θ, θ ∈ C RL ,

(17)

where Ki and Ci are real matrices, and C Ri ⊂ R
m .

3 Proposed methodology

In this section, we show how we can address tri-level programming and bilevel pro-
gramming with multi-followers problems, and solve them to global optimality through
the application of parametric programming. For the sake of clarity, the methodology is
described using formulations with quadratic cost functions and linear constraints, how-
ever, it is applicable to general non-linear problems using suitable multi-parametric
programming algorithms (Dua et al. 2004).
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3.1 Tri-level programming problem

Consider the tri-level programming problem with a quadratic objective function and
linear constraints:

min
x,y1,y2

f1 = L1
1

+L1
2 · x + L1

3 · y1 + L1
4 · y2

+ 1
2 xT · L1

5 · x + 1
2 yT

1 · L1
6 · y1 + 1

2 yT
2 · L1

7 · y2 (1st level)

+xT · L1
8 · y1 + yT

2 · L1
9 · x + yT

2 · L1
10 · y1,

s.t.

∣∣
∣∣∣
∣∣∣
∣∣∣
∣∣∣
∣∣∣
∣∣∣
∣∣∣
∣∣∣
∣∣
∣∣

G1
1 · x + G1

2 · y1 + G1
3 · y2 ≤ 0,

min
y1,y2

f2 = L2
1

+L2
2 · x + L2

3 · y1 + L2
4 · y2

+ 1
2 xT · L2

5 · x + 1
2 yT

1 · L2
6 · y1 + 1

2 yT
2 · L2

7 · y2 (2nd level)

+xT · L2
8 · y1 + yT

2 · L2
9 · x + yT

2 · L2
10 · y1,

s.t.

∣∣
∣∣∣
∣∣∣
∣∣∣
∣∣∣
∣∣

G2
1 · x + G2

2 · y1 + G2
3 · y2 ≤ 0,

min
y2

f3 = L3
1

+L3
2 · x + L3

3 · y1 + L3
4 · y2 (3rd level)

+ 1
2 xT · L3

5 · x + 1
2 yT

1 · L3
6 · y1 + 1

2 yT
2 · L3

7 · y2

+xT · L3
8 · y1 + yT

2 · L3
9 · x + yT

2 · L3
10 · y1,

s.t. |G3
1 · x + G3

2 · y1 + G3
3 · y2 ≤ 0.

(18)
Problem (18) comprises three subproblems, one at each optimisation level. Each

optimisation level can be recast as a multi-parametric programming problem, where
the optimisation variables corresponding to the upper optimisation levels are classified
as parameters. For presentation and computation purposes, (i) we group the parame-
ters in the i th level in a single vector, ωi and (ii) we introduce an artificial variable,
vi , to eliminate all bilinear terms.

Beginning with the (3rd level), and considering a vector,

[
ω3

]T = [x | y1] ,

we re-write (18) as,

min
y2

f3(y2, ω
3) = L3

1 + L3∗
2 · ω3 + L3

4 · y2 + 1

2
ω3T · L3∗

5 · ω3

+1

2
yT

2 · L3
7 · y2 + yT

2 · L3∗
8 · ω3,

s.t. G3∗
1 · ω3 + G3

3 · y2 + G3
4 ≤ 0, x ∈ X. (19)

Introducing an artificial variable, v3 = y2 + � · ω3, where � is an appropriate
matrix, the bilinear terms, represented in (19) by matrix L3∗

8 , are eliminated. Under

the right conditions (Faísca et al. 2007b), � = L3−1

7 L3∗
8 , and (19) can be rewritten as

follows:
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min
v3

f3(v3, ω
3) = L3

1 + L3∗∗
2 · ω3 + 1

2
ω3T · L3∗∗

5 · ω3

+ min
v3

{
L3∗∗

4 · v3 + 1

2
vT

3 · L3∗∗
7 · v3

}
,

s.t. G3∗∗
3 · v3 ≤ G3∗∗

4 + G3∗∗
1 · ω3, v ∈ V, (20)

Problem (20) can be solved with a multi-parametric programming algorithm (Dua
et al. 2002), resulting in:

vk
3 = mk

3 + nk
3 · ω3, Hk

3 · ω3 ≤ hk
3,

which can be rewritten as,

yk
2 = mk

3 + (nk
3 − �) · ω3, Hk

3 · ω3 ≤ hk
3,

or,

yk
2 = mk

3 + pk
1 · x + pk

2 · y1, Hk
31 · x + Hk

32 · y1 ≤ hk, (21)

where, k = 1, . . . , K2, with K2 being the number of critical region, and conse-
quently, the number of linear approximations done on the optimal rational reaction set
φ2(x, y1) (see Corollary 1).

The expressions in (21) can then be incorporated in the second optimisation level
of (18). Note that since the expressions in (21) are piecewise linear functions of yk

2 ,
the complexity of the original problem does not increase. Hence, the second level can
be reformulated as the following K2 optimisation problems:

min
y1

f2 = L2∗
1 + L2∗

2 · x + L2∗
3 · y1 + 1

2
xT · L2∗

4 · x + 1

2
yT

1 · L2∗
5 · y1 + yT

1 · L2∗
8 · x,

s.t. G2∗
1 · x + G2∗

2 · y1 + G2∗
3 ≤ 0, x ∈ X. (22)

We can thus proceed with optimisation levels 1 and 2. Following this procedure,
tri-level optimisation problems in (18) result in K1 single level convex optimisation
problems:

min
x

f ∗
1 (x, y1(x), y2(x, y1)),

s.t. G1(x, y1(x), y2(x, y1(x))) ≤ 0,

x ∈ Cr f ,

Cr f = {x ∈ X : ∃y1,y2 ∈ Y1, Y2, G2(x, y1, y2) ≤ 0, G3(x, y1, y2) ≤ 0}.
(23)

The number of K1 final convex optimisation problems (23) depends on the number
of critical regions obtained in each optimisation level. The algorithm is summarised
in Table 1, and is illustrated with the following example.
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Table 1 Parametric
programming algorithm for
tri-level programming problems

Step Description

1 Recast the third level of the optimisation
problem as a multi-parametric programming
problem, with parameters being the upper
levels optimisation variables, x and y1 (19)

2 Solve the resulting problem using a suitable
multi-parametric programming algorithm

3 Substitute each of the K2 solutions in the 2nd
optimisation level, and formulate K2 multi-
parametric problems with the variables from
the leader being the parameters (22)

4 Solve the resulting problem using a suitable
multi-parametric programming algorithm

5 Substitute each of the K1 solutions in the
leader’s problem, and formulate the K1 one-
level optimisation problems (23)

6 Compare the K1 optima and select the best
one

3.1.1 Illustrative example 1

Consider the following linear tri-level example (Ruan et al. 2004):

min
x,y1,y2

f1 = −x − 4 · y2,

where [y1, y2] solve,
min
y1,y2

f2 = 2 · y2,

where y2 solves,
min

y2
f3 = −y2,

s.t. x + y1 + y2 ≤ 2.5,

0 ≤ x, y1, y2 ≤ 1.

(24)

Following the steps described in Table 1:

Step 1. Recast (3rd) level optimisation problem, f3, as a multi-parametric program-
ming problem, with parameters being x and y1

min
y2

f3 = −y2,

s.t. y2 ≤ 2.5 − x − y1,

0 ≤ x, y1, y2 ≤ 1,

(25)

solve the resulting problem using a multi-parametric optimisation algorithm (Dua
et al. 2002):

C R1

⎧
⎨

⎩

y2 = 1,

0 ≤ x, y1 ≤ 1,

x + y1 ≤ 1.5,

C R2

⎧
⎨

⎩

y2 = −x − y1 + 2.5,

x, y1 ≤ 1,

−x − y1 ≤ −1.5.

(26)
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Step 2. Incorporate rational reaction set (26) into the optimisation problem corre-
sponding to (2nd) level;

min
y1,y2

f C R1

2 = 2,

s.t. 0 ≤ x ≤ 1,

0 ≤ y1 ≤ 1,

x + y1 ≤ 1.5,

min
y1,y2

f C R2

2 = −2x − 2y1 + 5,

s.t. x, y1 ≤ 1,

−x − y1 ≤ −1.5.

(27)

Step 3. Solve problems (27) considering them as multi-parametric programming
problems, with x being parameter;

C R3

⎧
⎪⎪⎨

⎪⎪⎩

y2 = 1,

0 ≤ x ≤ 1,

0 ≤ y1 ≤ 1,

x + y1 ≤ 1.5,

C R4

⎧
⎨

⎩

y1 = 1,

y2 = −x + 1.5,

0.5 ≤ x ≤ 1.

(28)

Step 4. Incorporate rational reaction set (28) into the optimisation problem corre-
sponding to (1st) level;

min
x,y1,y2

f C R3

1 = −x − 4,

s.t. 0 ≤ x ≤ 1,

0 ≤ y1 ≤ 1,

x + y1 ≤ 1.5,

min
x,y1,y2

f C R4

1 = 3x − 6,

s.t. 0.5 ≤ x ≤ 1.
(29)

Step 5. Solve problems in (29);

Solution 1

⎧
⎪⎪⎨

⎪⎪⎩

f C R3

1 = −5,

x = 1,

y2 = 1,

0 ≤ y1 ≤ 0.5,

Solution 2

⎧
⎪⎪⎨

⎪⎪⎩

f C R4

1 = −4.5,

x = 0.5,

y1 = 1,

y2 = 1.

(30)

Note that in Solution 1, y1 is represented by an interval. This is due to the fact
that the objective function of (2nd level) does not depend on y1.

Concluding, two solutions are obtained: Solution 1 and Solution 2, which are com-
pared with the one obtained from the literature (Ruan et al. 2004, Solution 3), as shown
in Table 2.

From Table 2 we conclude that Solution 1 is the global optimum for this tri-level
programming problem.

3.2 Bilevel programming problem with multi-followers

Consider the bilevel programming problem with multi-followers, and assume qua-
dratic objective functions, linear constraints and two followers:
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Table 2 Solutions for
problem (24)

Parametric programming algorithm Ruan et al. (2004)

Solution 1 Solution 2 Solution 3

f 1 –5 −4.5 −4.5

f 2 2 2 2

f 3 1 1 1

x 1 0.5 –

y1 0.5 0 –

y2 1 0 –

min
x,y1,y2

f1 = L1
1

+L1
2 · x + L1

3 · y1 + L1
4 · y2(1st level)

+ 1
2 xT · L1

5 · x + 1
2 yT

1 · L1
6 · y1 + 1

2 yT
2 · L1

7 · y2

+xT · L1
8 · y1 + yT

2 · L1
9 · x + yT

2 · L1
10 · y1,

s.t.

∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
∣

G1
1 · x + G1

2 · y1 + G1
3 · y2 ≤ 0,

(2nd level)
min

y1
f2 = L2

1 Follower 1

+L2
2 · x + L2

3 · y1 + L2
4 · y2

+ 1
2 xT · L2

5 · x + 1
2 yT

1 · L2
6 · y1 + 1

2 yT
2 · L2

7 · y2

+xT · L2
8 · y1 + yT

2 · L2
9 · x + yT

2 · L2
10 · y1,

s.t. G2
1 · x + G2

2 · y1 + G2
3 · y2 ≤ 0,

min
y2

f3 = L3
1 Follower 2

+L3
2 · x + L3

3 · y1 + L3
4 · y2

+ 1
2 xT · L3

5 · x + 1
2 yT

1 · L3
6 · y1 + 1

2 yT
2 · L3

7 · y2

+xT · L3
8 · y1 + yT

2 · L3
9 · x + yT

2 · L3
10 · y1,

s.t. G3
1 · x + G3

2 · y1 + G3
3 · y2 ≤ 0.

(31)

The difference between Problem (31) and Problem (18) is the existence of two opti-
misation subproblems in a single level. Accordingly, the concept of Nash equilibrium
is introduced.

As in the tri-level programming case, each optimisation subproblem in (2nd) level
is recast as a multi-parametric programming problem. In this problem, the parameters
are all the variables from the optimisation problem at (1st) level as well as the optimi-
sation variables of the other subproblems at the same level, Follower 1 or Follower 2

in this case (31). Thus, defining vectors,
[
ω2

]T = [x | y2] and
[
ω3

]T = [x | y1], we
re-write the (2nd) level optimisation subproblems as,

min
y1

f2(y1, ω
2) = L2

1 + L2∗
2 · ω2 + L2

3 · y1 + 1

2
ω2T · L2∗

5 · ω2

+1

2
yT

1 · L2
6 · y1 + yT

1 · L2∗
8 · ω2,

s.t. G2∗
1 · ω2 + G2

2 · y1 ≤ 0, (32)
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and,

min
y2

f3(y2, ω
2) = L3

1 + L3∗
2 · ω3 + L3

4 · y2 + 1

2
ω3T · L3∗

5 · ω2a

+1

2
yT

2 · L3
7 · y2 + yT

1 · L3∗
9 · ω3,

s.t. G3∗
1 · ω3 + G3

3 · y2 ≤ 0, (33)

where ω2 and ω3 are the vectors of parameters. The bi-linearities can be circumvented
using a strategy similar to the one used in the tri-level case. Using a multi-paramet-
ric programming algorithm (Dua et al. 2002), problems (32) and (33) result in the
following parametric expressions:

{
y1 = φ1(x, y2) → rational reaction set follower 1,
y2 = φ2(x, y1) → rational reaction set follower 2,

(34)

which are then used to compute the Nash equilibrium (x, y∗
1 , y∗

2 ):

{
f1(x, y∗

1 , y∗
2 ) ≤ f1(x, y1, y∗

2 ),∀y1 ∈ Y1,

f2(x, y∗
1 , y∗

2 ) ≤ f2(x, y∗
1 , y2),∀y2 ∈ Y2,

(35)

easily computed by direct comparison (Liu 1998):

φ′
1(x, y1) = φ2(x, y1),→ y1 = φ∗

2 (x), (36a)

φ1(x, y2) = φ′
2(x, y2),→ y2 = φ∗

1 (x). (36b)

Finally, substituting the expressions in (36) in the leader’s optimisation problem
(1st) level, we end up with a single level convex optimisation problem, involving only
the leader’s optimisation variables, as follows:

min
x

f ∗
1 (x, y1(x, y∗

2 (x)), y2(x, y∗
1 (x))),

s.t. G1(x, y1(x, y∗
2 ), y2(x, y∗

1 )) ≤ 0,

x ∈ Cr f ,

Cr f = {x ∈ X : ∃y1,y2 ∈ Y, Z , G2(x, y1, y2) ≤ 0, G3(x, y1, y2) ≤ 0}.
(37)

The algorithm is summarised in Table 3 and is illustrated with the following
example.

3.2.1 Illustrative example 2

Consider the following linear bilevel programming example involving three followers
at the second level (Anandalingman 1988):
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Table 3 Parametric
programming algorithm for
bilevel programming problems
with multi-followers

Step Description

1 Recast each of the subproblems in the lower
level as a multi-parametric programming
problem, with the variables out of their con-
trol being the parameters (32, 33)

2 Solve the resulting problems using the suit-
able multi-parametric programming algo-
rithm

3 Compute a Nash equilibrium point by direct
comparison of the rational reaction sets (35)

4 Substitute each of the K solutions in the
leader’s problem, and formulate the K one
level optimisation problems

5 Compare the K optima points and select the
best one

min
x,y1,y2,y3

F(x, y1, y2, y3) = −x − y1 − 2y2 − y3,

s.t. min
y1

f1(x, y1, y2, y3) = x − 3y1 + y2 + y3,

min
y2

f2(x, y1, y2, y3) = x + y1 − 3y2 + y3,

min
y3

f3(x, y1, y2, y3) = x + y1 + y2 − 3y3,

s.t. 3x + 3y1 ≤ 30,

2x + y1 ≤ 20,

y2 ≤ 10,

y2 + y3 ≤ 15,

y3 ≤ 10,

x + 2y1 + 2y2 + y3 ≤ 40,

x, y1, y2, y3 ≥ 0.

(38)

Assume that the leader imposes all constraints to all followers. Thus, performing
the steps described in Table 3:

Step 1. Recast optimisation subproblems miny1 f1, miny2 f2 and miny3 f3 as multi-
parametric programming problems, with parameters being the set of variables out
of their control.
Step 2. Solve the three multi-parametric programming problems using a suitable
algorithm (Dua et al. 2002).

Follower 1

C R1
1

⎧
⎪⎪⎨

⎪⎪⎩

y1 = −x + 10,

0 ≤ x, y2, y3 ≤ 10,

y2 + y3 ≤ 15,

−0.5x + y2 + 0.5y3 ≤ 10,

C R2
1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y1 = −0.5x − y2 − 0.5y3 + 20,

0 ≤ x,

0.5x − y2 − 0.5y3 ≤ −10,

y2 ≤ 10,

y2 + y3 ≤ 15.

(39)
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Follower 2

C R1
2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y2 = 10,

0 ≤ x, y1, y3,

x + y1 ≤ 10,

y3 ≤ 5,

0.5x + y1 + 0.5y3 ≤ 10,

C R2
2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y2 = −y3 + 15,

0 ≤ x, y1,

x + y1 ≤ 10,

5 ≤ y3 ≤ 10,

0.5x + y1 − 0.5y3 ≤ 5,

C R3
2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y2 = −0.5x − y1 − 0.5y3 + 20,

0 ≤ x,

x + y1 ≤ 10,

−0.5x − y1 + 0.5y3 ≤ −5,

−0.5x − y1 − 0.5y3 ≤ −10.

(40)

Follower 3

C R1
3

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y3 = 10,

0 ≤ x, y1, y2,

x + y1 ≤ 10,

y1 ≤ 5,

0.5x + y1 + y2 ≤ 15,

C R2
3

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y3 = −y1 + 15,

0 ≤ x, y2,

x + y1 ≤ 10,

5 ≤ y1,

0.5x + 0.5y1 + y2 ≤ 12.5,

C R3
3

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y3 = −x − 2y1 − 2y2 + 40,

0 ≤ x, y1,

x + y1 ≤ 10,

−0.5x − 0.5y1 − y2 ≤ −12.5,

0.5x + y1 + y2 ≤ 20,

−0.5x − y1 − y2 ≤ −15.

(41)

Step 3. Compute the Nash equilibrium point, through direct comparison of the
explicit analytical rational reaction sets (39)–(41). Through this comparison we
generate 18 regions, from which, 12 have empty feasible sets. After removing
empty regions:

C R1

⎧
⎨

⎩

y1 = −x + 10,

y2 = 10,

y3 = x,

C R2

⎧
⎨

⎩

y1 = −x + 10,

y2 = −y3 + 15,

y3 = −x − 2y1 − 2y2 + 40,

C R3

⎧
⎨

⎩

y1 = −x + 10,

y2 = −0.5x − y1 − 0.5y3 + 20,

y3 = −x − 2y1 − 2y2 + 40,

C R4

⎧
⎨

⎩

y1 = −0.5x − y2 − 0.5y3 + 20,

y2 = 10,

y3 = −x − 2y1 − 2y2 + 40,

C R5

⎧
⎨

⎩

y1 = −0.5x − y2 − 0.5y3 + 20,

y2 = −y3 + 15,

y3 = −x − 2y1 − 2y2 + 40,

C R6

⎧
⎨

⎩

y1 = −0.5x − y2 − 0.5y3 + 20,

y2 = −0.5x − y1 − 0.5y3 + 20,

y3 = −x − 2y1 − 2y2 + 40.

(42)
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For the sake of brevity we omit here the constraints for each critical region.
Step 4. Incorporate the expressions (42) into F , and formulate 6 single level convex
optimisation problems. They result in the same unique solution, as follows:

F = −35; x = 5; y1 = 5; y2 = 10; y3 = 5.

The global optimum found is identical to the one reported in Anandalingman (1988).

4 An application to optimal control of multilevel systems

An important application of the proposed theory is the hierarchical control of dynamic
systems (Başar and Selbuz 1979), as shown in Fig. 3.

In hierarchical control, the performance of a dynamic system is optimised within a
complex structure with different objective functions at different levels, for instance as
shown in Fig. 3 for a control structure involving two levels. In such a system, typically
described by a discrete-time dynamic model:

xn+1 = An · xn + B0
n · un +

m∑

i=1

Bi
n · vi

n, (43)

we have a central controller, the leader, and m peripheral (local) controllers; xn is the
state vector of the system, un is the control vector of the central controller and vi

n is
the control vector of the i th local controller, all at time step n. Each local controller
may have its own dynamics, which can be incorporated in Equation (43) (Başar and
Selbuz 1979).

The goal is the optimisation of a quadratic objective function corresponding to the
central controller:

Fig. 3 Schematic representation of a hierarchical control configuration for a dynamic system
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J0 = (xN )T Q0
N xN +

N−1∑

n=0

[

(xn)T Q0
n xn + (un)T R00

n un +
m∑

i=1

(vi
n)T R0i

n vi
n

]

, (44)

subject to the optimisation of each local controller’s objective function:

Ji = (xN )T Qi
N xN +

N−1∑

n=0

[

(xn)T Qi
n xn + (un)

T Ri0
n un +

m∑

k=1

(vk
n)T Rik

n vk
n

]

. (45)

Expressions (43), (44) and (45) give rise to a multi-level optimisation problem
formulation: the leader, central controller, has control over the complete set of optimi-
sation variables, whereas the local controllers have access to their own optimisation
set, vi

n , and corresponding objective function. The aim is to obtain the global opti-
mum for the central controller and optimal strategies for the local controllers. Here,
we consider the general case involving constraints (where most previews strategies
considered the unconstrained case—see (Cruz 1978; Başar and Selbuz 1979; Başar
and Olsder 1982)).

We seek an optimal policy, as follows:

{un}∗ = {u∗
0, u∗

1, . . . , u∗
N } → γ ∗

0 , γ ∗
0 ∈ 	0, (46a)

{v1
n}∗ = {(v1

0)∗, (v1
1)∗, . . . , (v1

N )∗} → γ ∗
1 , γ ∗

1 ∈ 	1, (46b)

...

{vi
n}∗ = {(vi

0)
∗, (vi

1)
∗, . . . , (vi

N )∗} → γ ∗
i , γ ∗

i ∈ 	i , (46c)

...

{vm
n }∗ = {(vm

0 )∗, (vm
1 )∗, . . . , (vm

N )∗} → γ ∗
m, γ ∗

2 ∈ 	m . (46d)

Then the hierarchical control problem can be recast as the following multi-level
constrained optimisation problem:

min
γ0,γ1,...,γm

J0(γ0, γ1, . . . , γm), (Central controller),

s.t. g1(γ0, γ1, . . . , γm) ≤ 0,

. . . ,

{
min
γi

Ji (γ0, γ1, . . . , γm)

s.t. gi
2(γ0, γ1, . . . , γm),≤ 0

}

, . . . . (m local controllers).

(47)
Using Eq. (43) it is possible to express each state variable as a function of the initial

state and the control decisions (Pistikopoulos et al. 2000). Therefore, J0 and Ji become
functions only of the initial state: J0, Ji = f (x0, γ1, γ2, . . . , γm),∀i ∈ {1, 2, . . . , m}.
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Since in the lower level of this two-level optimisation problem there are multiple
optimisation subproblems, and there is the need to coordinate such group, it is fairly
natural to assume a Nash equilibrium (Başar and Selbuz 1979):

J1(γ
∗
1 , . . . , γ ∗

m) ≤ J1(γ
∗
1 , γ2, γ

∗
3 , . . . , γ ∗

K ), ∀γ1 ∈ 	1, (48a)

J2(γ
∗
1 , . . . , γ ∗

m) ≤ J1(γ
∗
1 , γ2, γ

∗
3 , . . . , γ ∗

K ), ∀γ2 ∈ 	2, (48b)

...

Jm(γ ∗
1 , . . . , γ ∗

m) ≤ J0(γ1, γ
∗
2 , . . . , γ ∗

m−1, γ
∗
m), ∀γm ∈ 	m, (48c)

where ∀γ0 ∈ 	0 and ∀x0 ∈ X0, with X0 being the feasible set of the system’s initial
state.

Problem (47) corresponds to a bilevel programming problem with multi-followers;
the followers being the local controllers and the leader, the central controller. In contrast
to Problem (31), the decisions involved in each subproblem are not only parametric
relatively to the decisions of the remaining subproblems, but also depend on the initial
state of the system. We refer to this class as multi-level optimisation problems with
uncertainty. The algorithm in Table 3 can be directly applied to solve (47) only with
a modification in Step 4, which requires ‘the formulation and solution of K multi-
parametric programming problems’.

A similar strategy can also be applied to tri-level optimisation problems. Moreover,
if different models are involved in the subproblem, the proposed optimisation strategy
is still applicable, with all control subproblems treated in a decentralised fashion. In
the next section, a dynamic three person control system is described to illustrate the
potential of the proposed approach.

4.1 Illustrative example 3

Consider a system which has a discrete dynamic behaviour described by the following
linear state transition model (Nie et al. 2006):

xt+1 = xt + ut − 2v1
t + v2

t ,

y1
t+1 = y1

t + 2v1
t , t = 0, 1, 2,

y2
t+1 = y2

t + 2v2
t ,

(49)

where u, v1 and v2 are input variables, and x, y1 and y2 output variables. And, with
constraints on the input and state variables as follows:

−30 ≤ v1
t , v2

t ≤ 30,

−20 ≤ ut ≤ 20, t = 0, 1, 2,

−10 ≤ x0, y1
0 , y2

0 ≤ 10.

(50)
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(a) (b)

Fig. 4 Three-controller multilevel problem

Additionally, consider a three-controller system (Nie et al. 2006):

J1 = min
u0,u1,u2

4x3 + 3y1
3 + 2y2

3 +
2∑

t=0

{
(ut )

2 +
(
v1

t

)2 −
(
v2

t

)2 + 2ut xt + x2
t

}
,

(51a)

J2 = min
v2

0 ,v2
1 ,v2

2

2x3 + 3y2
3 +

2∑

t=0

{
2 · utv

2
t +

(
v1

t + 1
)2 +

(
v2

t + 1
)2

}
, (51b)

J3 = min
v1

0 ,v1
1 ,v1

2

x3 + 2y1
3 − 10y2

3 +
2∑

t=0

{
−15ut +

(
v1

t − 1
)2 − 2v1

t v2
t +

(
v2

t

)2
}

,

(51c)

where J1, J2 and J3 correspond to Controllers 1,2 and 3, respectively. Figure 4 displays
two possible configurations for the control structure of the considered system.

The objective is then to derive suitable optimal strategies for the two controller
structures. Case (a) of Fig. (4) corresponds to a three-level optimisation problem,
whereas case (b) refers to a bilevel multi-follower optimisation problem. Therefore,
using the proposed methodology, fully implemented in Matlab �, we obtain the results
summarised in Tables 4 and 5.

Table 4 Solution to the three-level optimisation problem

Critical region 1 Critical region 2 Critical region 3 Critical region 4

u0 = 6.84615 − 0.76928x0 u0 = −0.333333 − 1.8519x0 u0 = −1.53333 − 1.6889x0 u0 = −9 − 0.72732x0

u1 = −20 u1 = −1.33333 + 2.8148x0 u1 = 8.26667 + 1.5111x0 u1 = 20

u2 = 15.2308 + 0.15388x0 u2 = −2 − 2.4444x0 u2 = −20 u2 = −20

−10 ≤ x0 ≤ −6.63161 −6.63161 ≤ x0 ≤ 7.36377 7.36377 ≤ x0 ≤ 7.76466 7.76466 ≤ x0 ≤ 10

v1
0 = v2

0 = −2 − 0.5u0; v1
1 = v2

1 = −2 − 0.5u1; v1
2 = v2

2 = −2 − 0.5u2
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Table 5 Solution to
multi-follower problem

Critical region 1

u0 = 1 − x0

u1 = −8 + x0

u2 = 5 − x0

v1
0 = v2

0 = −6 + x0

v1
1 = v2

1 = 3 − x0

v1
2 = v2

2 = −10 + x0

−10 ≤ x0 ≤ 10

5 Concluding remarks

We have described a novel global optimisation strategy for the solution of hierarchical
multi-level and decentralised multi-level programs based on our recent developments
in multi-parametric programming theory and algorithms (Pistikopoulos et al. 2007a,b).
The algorithms proposed are suitable for problems involving general convex objective
functions and convex sets of constraints.

Current research focus is towards general non-linear models, for which
recent results on global multi-parametric programming (Dua et al. 2004) can be used;
and general dynamic multi-level problems, for which a dynamic programming ap-
proach coupled with parametric programming can be applied (Faísca et al. 2007a).
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Başar T (1978) Decentralized multicriteria optimization of linear stochastic systems. IEEE Trans Automatic
Control 23(2):233–243
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Rodić AD, Vukobratović MK (1999) Contribution to the integrated control synthesis of road vehicles. IEEE

Trans Control Syst Technol 7(1):64–78
Ruan GZ, Wang SY, Yamakamoto Y, Zhu SS (2004) Optimality conditions and geometric properties of

linear multilevel programming problem with dominated objective functions. J Optim Theory Appl
123(2):409–429

Shih HS, Wen UP, Lee ES, Lan KM, Hsiao HC (2004) A neural network approach to multiobjective and
multilevel programming problems. Comput Math Appl 48:95–108

Stephanopoulos G, Ng C (2000) Perspectives on the synthesis of plant-wide control structures. J Process
Control 10:97–111

Tolwinski B (1981) Closed-loop stackelberg solution to a multistage linear-quadratic game. J Optim Theory
Appl 34(4):485–501

Vicente LN (1992) Bilevel programming. Master’s Thesis. Department of Mathematics, University of
Coimbra, Coimbra

Vicente LN, Calamai PH (1994) Bilevel and multilevel programming: a bibliography review. J Global
Optim 5(3):291–306

123


	A multi-parametric programming approachfor multilevel hierarchical and decentralised optimisation problems
	Abstract
	Introduction
	Preliminaries
	Problem formulation
	Tri-level programming
	Bilevel programming with multi-followers
	Multi-parametric programming
	Proposed methodology
	Tri-level programming problem
	Illustrative example 1
	Bilevel programming problem with multi-followers
	Illustrative example 2
	An application to optimal control of multilevel systems
	Illustrative example 3
	Concluding remarks
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


