
The International Journal of Time-Critical Computing Systems, 17, 65–86 (1999)
c© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Stabilizing Pre-Run-Time Schedules With the Help
of Grace Time

ANTÓNIO PESSOA MAGALHÃES apmag@fe.up.pt
SAIC - DEMEGI Faculty of Engineering, University of Porto - PORTUGAL

JOÃO GABRIEL SILVA jgabriel@dei.uc.pt
GSC - DEI Faculty of Sciences and Technology, University of Coimbra - PORTUGAL

Abstract. This paper discusses the stability of a feasible pre-run-time schedule for a transient overload introduced
by processes re-execution during an error recovery action. It shows that the stability of a schedule strictly tuned to
meet hard deadlines is very small, invalidating thus backward error recovery. However, the stability of the schedule
always increases when a real-time process is considered as having a nominal and a hard deadline separated by
a non-zero grace time. This is true for sets of processes having arbitrary precedence and exclusion constraints,
and executed on a single or multiprocessor based architecture. Grace time is not just the key element for the
realistic estimation of the timing constraints of real-time error processing techniques. It also allows backward
error recovery to be included in very efficient pre-run-time scheduled systems when the conditions stated in this
paper are satisfied. This is a very important conclusion, as it shows that fault-tolerant hard real-time systems do
not have to be extremely expensive and complex.

Keywords: Real-time systems, pre-run-time scheduling stability, grace time, fault-tolerance.

1. Introduction

Real-time literature shows a tendency for deriving the timing constraints of a real-time
service from its timeliness. That is, from a function that maps the merit of a service to
its delivery time (Bond, Seaton, Ver´ıssimo and Waddington, 1991). The timeliness of a
service is always established in some particular metrics according to service importance for
a real-time application. Usually, it takes the form of atime-value function(Jensen, Locke
and Tokuda, 1985),time-utility function(Burns, 1991) or, more generically,cost function
(Shin, Krishna and Lee, 1985).

Using this approach, a real-time designer can identify a set of time milestones attached to
a service having several and specific goals. Each milestone represents a particular deadline
and has a suitable semantics revelling specific concerns and consequences if missed (Bond,
Seaton, Ver´ıssimo and Waddington, 1991; Burns, 1991; Jensen, 1993; Jensen, 1994; Geith
and Schwan, 1993; Kligerman and Stoyenko, 1986; Laplante, 1993; Ramamritham, 1993).
Unfortunately, classical scheduling theory (Cheng, Stankovic and Ramamrithan, 1987;
Audsley and Burns, 1992) typically takes single deadline processes and it does not seem
to provide a direct support for this approach. On the other hand,best-effortscheduling
algorithms based on processes’ time value functions (Locke, 1986) are not the optimal
solution, since they tend to be unpredictable during transient overloads (Burns and Fohler,
1991). Scheduling algorithms that can guarantee various performance or safety levels
(Stankovic, Spuri, Di Natale and Buttazzo, 1995) are thus required.

66 MAGALH ÃES AND SILVA

However, as far as we know, real-time scheduling algorithms explicitly supporting pro-
cesses having more than one deadline do not seem to exist (Magalh˜aes, 1996). As a
consequence, most real-time scientists tend to design their systems considering the hard
deadline of each critical process (Laplante, 1993) (Stankovic and Ramamrithan, 1993).
Yet, thestability of a system designed in this way may be very poor, in the sense that
a hard deadline can be easily missed at the impact of a minor non-deterministic event.
Thus, applications strictly tuned to meet hard deadlines have to assume a fault-free en-
vironment or a very complex and expensive structural redundancy providing error mask-
ing. This is particularly notorious when high processor utilisation is a major concern
and hard deadlines tend to be satisfied only by a short margin, even in the absence of a
fault.

Recently, we proposed a unifying approach that intents to contribute to change this view
(Magalhães, Rela and Silva, 1996). It departs from the establishment of the timeliness of a
real-time service according to acost function, concluding that a real-time process always
presents anominal deadline, and may exhibit ahard deadline. The nominal deadline
defines the maximum completion time that still guarantees the intended effectiveness of the
process for the application; the hard deadline establishes the maximum completion time
that prevents a catastrophic timing failure.

It is universally agreed that the first aim of every real-time application is the delivery
of some beneficial service, although safety has always to be guaranteed (Bond, Seaton,
Verı́ssimo and Waddington, 1991; Leveson, 1986). Thus, each process being part of a real-
time system must be scheduled to meet its nominal deadline under normal circumstances,
and not to miss its hard deadline in any case. Since the cost associated to a real-time service
increases with its delivery time (Shin, Krishna and Lee, 1985) one finds that the nominal
deadline of a process is more stringent than its hard deadline. From here, an important
conclusion emerges:

If, due to a fault, a process misses its nominal deadline, a catastrophic timing failure
will not immediately occur, but only later; namely, when the time interval separating the
nominal and the hard deadline of the process exhausts. Such a time interval is calledgrace
time—Figure 1. This grace time definition closely follows Kirrmann (1987).

Systems designed around nominal and hard deadlines are more stable than those strictly
tuned to meet hard deadlines. This is because, in the first case, processes are allowed to
miss their nominal deadlines by the corresponding grace time when the controller suffers the
impact of a non-deterministic event. Namely, a transient overload introduced by processes
executing for a time greater than the expected. This is very important in the context of
fault-tolerant computing. Particularly when low cost solutions are required, as it is usually
the case (Avizienis, 1997):

When processes are scheduled to satisfy their nominal deadlines,backward error recovery
(Rennels, 1984; Laprie, 1991; Somani and Vaidya, 1997; Ziv and Bruck, 1997) may become
a viable technique. As long as the recovery time is lower than the grace time of the affected
processes, system safety does not suffer. Thus, only very hard real-time systems—i.e.,
those that include one or more processes having a very small grace time—can not use time-
consuming error processing techniques. But these systems, while very important, are just
a small minority. Case studies show that grace time can span from just a few milliseconds

STABILIZING PRE-RUN-TIME SCHEDULES 67

Figure 1. Deadlines establishment and associated grace time (Magalh˜aes, Rela and Silva, 1996).

for very critical control loops, to tens of seconds for supervisory control (Kirrmann, 1987;
Magalhães, 1995).

It is worth noting that backward error recovery has its own limitations. Namely, it can
only be applied to reversible actions—i.e., computations. Backward error recovery can not
remove error masking sensors and actuators from hard real-time applications. However,
replicated I/O devices (Kopetz and Ver´ıssimo, 1993, Iyengar, Prasad and Min, 1995) are not
the main contribution to the great complexity and the enormous price of actual fault-tolerant
real-time systems.

The motivation for this paper is thus the notion that grace time is the key element for
designing low-cost, yet highly reliable and efficient, hard real-time systems. Pre-run-time
algorithms are considered because they are the most suitable for hard real-time applications
(Kopetz, 1995; Xu and Parnas, 1991) but are incapable of dealing with unpredictable envi-
ronmental or operational changes. Consequently, pre-run-time scheduled systems typically
require error masking (Carlow, 1984; Kopetz, 1989; Shepard and Cagn´e, 1991; Driscoll
and Hoyme, 1992; Carpenter, Driscoll, Hoyme and Carciofini, 1994). However, as shown
in this paper, this is not an absolute requirement when grace time is considered. The paper
is organised as follows:

Section 2 presents a scheduling model that reflects our nominal and hard deadlines con-
cepts. Section 3 quantifies the stability of a feasible pre-run-time schedule for a transient
overload introduced by process re-execution during an error recovery action. This quantifi-
cation, covering single and multiprocessor systems, is done in two contexts: ignoring and
considering grace time. The results are compared, showing that the stability of a schedule
always increases in the second case. The quantification of the maximum time redundancy

68 MAGALH ÃES AND SILVA

that can be included in a computer system based on pre-run-time scheduling is later pro-
vided. Section 4 presents a short note discussing the returning of a pre-run-time schedule
to normal conditions after suffering the impact of a transient overload. Section 5 concludes
the paper summarising the most important conclusions.

2. Scheduling Model

The assurance that the timing constraints of all the processes running on a real-time computer
are satisfied, requires to postulate ascheduling model. Usually, a scheduling model includes
a load modeland afault model(Kopetz and Ver´ıssimo, 1993). The load model, which
ignores faults, specifies available processors, executing processes, and a criterion to define
a schedule as feasible. The fault model defines the types and frequency of faults that
the system must be capable of handling. Since the purpose of this paper is to derive the
conditions that allow backward error recovery in a pre-run-time scheduled real-time system,
it departs from aload modeland afault-tolerance model. From here, it is possible to derive
the maximum time redundancy that can be used for error processing and the maximum
frequency of faults.

The load model only differs from traditional ones in the sense that it defines a nominal
and a hard deadline attached to each real-time process. Actually, it is very similar to the
models presented in (Xu and Parnas, 1990) and (Shepard and Cagn´e, 1991) if the grace time
of all processes is equal to zero. This means that our theory does not refuse the traditional
view of real-time processes having a single deadline, but only makes it a particular case of
a new and broader approach.

The fault-tolerance model is also very general. It is based in backward error recovery and
derives from the specialised literature (Laprie, Arlat, B´eounes and Kanoun, 1990; Laprie,
1991). Central to this model is astability criterion. That is, a criterion that defines a
schedule as feasible in the presence of a fault.

2.1. Load Model

The paper considers the execution ofn processes onm processors. The set of processors is
defined asV = {V1,V2, . . . ,Vm}. Each element of the set represents a unique processor.
Them processors can be viewed as having identical or arbitrary processing capabilities.

The setP = {P1, P2, . . . , Pn} represents then processes to be scheduled by a pre-run-
time scheduling algorithm. For a processorVi ∈ V , the subsetP(Vi) ⊆ P represents the
set of processes allocated toVi . Each process allocates to a single processor. Both periodic
and sporadic processes are considered inP. A periodic process,Pp, is characterised by a
set of five parameters: (Tp,Cp, N Dp, H Dp, Qp). Tp is the period of the process;Cp is the
upper bound on its execution time;N Dp andH Dp are, respectively, the nominal and the
hard deadline ofPp; Qp is the processor on whichPp executes. For all periodic processes
it is assumed that 0≤ Cp ≤ N Dp ≤ Tp andN Dp ≤ H Dp. The grace time of a periodic
processPp is, by definition, given byGTp = H Dp − N Dp.

STABILIZING PRE-RUN-TIME SCHEDULES 69

In a similar way, a sporadic processPs is characterised by the set (T ′s,Cs, N Ds, H Ds, Qs).
T ′s represents the minimum time interval between two successive requests ofPs. The param-
etersCs, N Ds, H Ds andQs keep the meaning declared for periodic processes. However,
pre-run-time scheduling always requires replacing all sporadic processes by polling period-
ics (Kopetz, 1991). A method for making such a transformation for dual deadline processes
is thus required.

Following (Mok, 1984), and while viewing a “standard” deadline as a nominal one, the
transformation of a sporadic processPs into a periodic processPp is done by observing the
following conditions:

Cp = Cs; (1)

N Ds ≥ N Dp ≥ Cs; (2)

Tp ≤ min(N Ds − N Dp + 1, T ′s). (3)

Two extra conditions are required for adapting Mok’s theory to dual deadline processes
running on a multiprocessor system:

Qp = Qs; (4)

H Dp − N Dp ≤ H Ds − N Ds. (5)

Condition (4) keepsPs allocated toQs; condition (5) preserves the grace time ofPs.
All processes inP can thus be seen as periodic and requesting execution at the beginning

of the period, as it is usual in a pre-run-time scheduling environment. Therefore, any process
Pi ∈ P can be characterised by the set (Ti ,Ci , N Di , H Di , Qi). All these parameters are
non-negative integers given in multiples of the basic time unit of the system.

The load model also considersprecedenceandexclusionconstraints between processes.
A precedence constraint declares that a processPi producing data to a processPj must be
scheduled to completion beforePj starts execution. A precedence constraint between two
processesPi andPj denotes as(Pi ≺ Pj), meaning thatPi precedes Pj . Precedence con-
straints can exist between processes scheduled on the same or on different processors. The
set of precedence constraints inP denotes asPRE= {(Pi , Pj) | Pi , Pj ∈ P ∧ (Pi ≺ Pj)

}
.

An exclusion constraint between two processesPi andPj is denoted as(Pi⊗Pj), meaning
that if Pi has started execution and it is not yet finished, thenPj cannot be started. Exclusion
constraints can be established between processes scheduled on the same or on different
processors and are symmetrical:(Pi ⊗ Pj) = (Pj ⊗ Pi). The set of exclusion constraints
in P denotes asEXC= {(Pi , Pj) | Pi , Pj ∈ P ∧ (Pi ⊗ Pj)

}
.

Since the aim of a pre-run-time scheduling algorithm is to generate afeasibleschedule, a
feasibility criterion is required. In here, a schedule is declared as feasible if, in the absence
of a fault, it guarantees that:

• All the precedence and exclusion constraints between processes are respected;

• No process starts executing before requesting execution;

• The completion time of every process is lesser than or equal to its nominal deadline.

70 MAGALH ÃES AND SILVA

2.2. Fault-Tolerance Model

The fault-tolerance model assumes a real-time system using backward error recovery (La-
prie, Arlat, Béounes and Kanoun, 1990). In the value domain, the system is supposed to
tolerate any permanent or transient fault originated from hardware or software. For achiev-
ing this, every time an error is detected the system is brought back into an error free state
occupied prior to error occurrence—arecovery point(Nelson and Carroll, 1987; Kopetz
and Ver´ıssimo, 1993)—restarting execution from there. All fault treatment actions required
in this scenario are supposed to be taken. Acceptance tests and checkpoint state storage
are supposed to be regularly performed by the executing processes. The time required to
perform these actions is included in processes execution times. Also assumed is that a
process must pass an acceptance test before completing execution.

On a first approach, the model assumes that the processing of an error detected during the
execution of a processPi only leadsPi to rollback its execution. In this case,Pi increases its
execution time by a margin1Ci . In the presence of a fault,Pi ’s execution time is thus equal
to Ci +1Ci , where1Ci denotes the error processing latency. On a second approach, the
model assumes that an error processing action requires multiple processes to rollback their
executions. This is a realistic view for preemptive schedules, where the running process as
well as all the preempted processes must rollback execution every time an error is detected.
This two step approach is because the analysis required in the second case is more complex
than in the first, but it is easily driven from there.

Only two restrictions are assumed for the fault-tolerance model. First, faults are consid-
ered rare enough so the effects of two consecutive error recovery actions do not overlap.
Second, no faults impacting the system introduce an error in more than one processor.

To define a schedule asfeasiblein the context of a fault, a special “feasibility criterion”
is required: astability criterion. In here, a schedule isstableif, in the presence of a fault,
it guarantees the precedence, exclusion, start time and hard deadlines constraints of all
the processes. Thisstability criterion closely follows the one stated in (Sha, Lehoczky
and Rajkumar, 1986) for prioritised preemptive scheduling. However, our calculations of
the stability margin of a real-time system will be very different from those presented in
(Lehoczky and Ramos-Thuel, 1992), (Ramos-Thuel and Lehoczky, 1993) and other papers
devoted to fixed priority scheduling. Fixed priority scheduling considers that every process
requests its first execution at system start-up, and that a processPi is allowed to preempt
processesPi+1, Pi+2, . . . Pn, which have no permission to preemptPi (Liu and Layland,
1973). These constraints are not usually present in pre-run-time scheduling. As a direct
and major consequence, it suffices to consider the layout of a fixed priority schedule in
the time interval [0, Tn] to derive system stability, while, in the general case, pre-run-time
scheduling requires the observation of the interval [0,LCM(T1, T2, . . . , Tn)].

3. Stability Analysis of Pre-Run-Time Schedules

Due to their inflexibility, pre-run-time scheduled systems can hardly support non-determin-
istic events such as transient overloads caused by backward error recovery. By handling a

STABILIZING PRE-RUN-TIME SCHEDULES 71

Figure 2. A pre-run-time schedule.

transient overload we mean to exhibit the necessary stability for guarantying processes hard
deadlines during the overload manifestation, and later returning to nominal conditions.

Consider figure 2. It depicts a feasible schedule for a single processor real-time application
consisting of two periodic processes,P1 and P2. Let T1 = T2 = T andC1 < C2 < T/2.
According to the usual approach, assume that both processes have a single deadline, such
thatD1 = D2 = T/2. Also assume thatP1 andP2 request execution for every timet = kT
andt = (2k+ 1) ∗ T/2, respectively, wherek is an integer greater than or equal to zero.

Observing figure 2 one infers that an overload thatmakesP1 to increase its execution time
by more thanT/2− C1 makesP1 to exhibit a timing failure. In that case, the start time of
P2 is delayed. In a similar way, an overload that makesP2 to enlarge its execution time by
more thanT/2− C2 also leads to a timing failure. It can thus be stated that thestability
marginof the schedule for an overload introduced by the execution ofP1 and P2 is given
by T/2−C1 andT/2−C2, respectively. If any processP1 or P2 enlarges its execution by
more than(T/2− C1)+ (T/2− C2), then both processes miss their deadlines. Although
this is a very simple scenario, it provides two important conclusions:

• Expected idle times are central to the quantification of the stability of a pre-run-time
schedule;

• A single transient overload can make a set of processes miss their deadlines in a row.

These conclusions are enhanced if one changes the scenario depicted in figure 1 such that
C1 = C2 = T/2. In that case, although the schedule is still feasible, it can be defined as
supercritical, in the sense that its stability margin reduces to zero for any process. Any
minor overload can start a chain reaction from where no process ever meets its deadline: the
“domino effect” (Buttazzo, Spuri and Sensini, 1995). However, ifD1 and D2 are viewed
as the nominal deadlines ofP1 and P2, respectively, and if both processes have a grace
time greater than zero, then the stability margin of the schedule is greater than zero, even if
C1 = C2 = T/2. This is true for any feasible schedule, as it proves trivially:

THEOREM1 Any feasible schedule of processes having grace times greater than zero has
a stability margin greater than zero.

Proof: Assume that, in the absence of an overload, a schedule guarantees the nominal
deadline of every process. That is, every processPi completes execution by a timec(Pi)such

72 MAGALH ÃES AND SILVA

thatc(Pi) ≤ N Di . Also assume that, in the presence of an overload, the schedule cannot
guarantee the nominal deadline,N Di , of a general process,Pi . However, an overload only
leads to a catastrophic timing failure ifPi ends execution by a timet > H Di . Therefore, the
schedule is stable for overloads that leadPi to complete execution during the time interval
[c(Pi), H Di]. Since it is assumed thatGTi > 0—that is,H Di > N Di —[c(Pi), H Di] is a
non-zero time interval. Thus, the stability margin of the schedule is greater than zero. It is
worth noting that this conclusion applies to any schedule, independently of the scheduling
algorithm from where it results.

3.1. Additional Definitions and Assumptions

A few definitions and assumptions must be presented before quantifying the stability of a
pre-run-time schedule:

• A schedule that is not disturbed by an overload is said to run undernominal conditions.
Under nominal conditions, the execution time of a processPi is considered to be equal
to its upper bound,CI , which can be defined asPi ’s nominal execution time. When a
nominal schedule cannot be met due to the occurrence of an overload, it is said to run
under anoverload condition.

• Thenominal completiontime of a processPi , denoted asc(Pi), is the time by which
Pi completes execution under nominal conditions. In the same way, thenominal start
time of Pi , denoted ass(Pi), is the time by whichPi starts execution under nominal
conditions. As stated, the parameter1Ci expresses an increase inPi ’s execution time
relative toCi . Therefore,1Ci is themagnitudeof an overload introduced byPi . The
parameter1C∗i denotes the maximum value of1Ci that does not cause any timing
failure—i.e., no deadline to be missed. Similarly,1C∗∗i denotes the1Ci maximum
that does not cause any catastrophic timing failure.

• Thenominal laxityof a processPi , nl(Pi), is the difference between its nominal deadline
and its nominal completion time. That is,nl(Pi) = N Di−c(Pi). Thecritical laxity of a
processPi , cl(Pi), is the difference between its hard deadline and its nominal completion
time: cl(Pi) = H Di − c(Pi), or cl(Pi) = N Di + GTi − c(Pi) = nl(Pi)+ GTi .

• The relation(Pi ⇒ Pj) denotes that, according to a pre-run-time schedule, processPj

executes after the execution of processPi . Note that(Pi ≺ Pj) imposes(Pi ⇒ Pj) ,
while the opposite may not be true.

• The total amount of time that, under nominal conditions, a processor is idle during the
interval [t1, t2] is denoted as∅t2

t1.

It is assumed that when a feasible pre-run-time schedule runs under an overload condition
no processes are skipped and the expected sequence of process executions is kept. These
assumptions require a run-time synchronisation mechanism to be added to a pre-run-time
schedule. In centralised systems such a mechanism is just a FIFO queue run-time managed
by the only processor existing in the computer system. When, due to an overload introduced

STABILIZING PRE-RUN-TIME SCHEDULES 73

Figure 3. A segment of a general schedule.

by a processPi , the execution of a processPj such that(Pi ⇒ Pj) cannot be started at the
expected time,Pj ’s execution request is placed at the end of the queue. ProcessPj will
start execution as soon at its execution request gets the top of the queue and all the requests
from processes scheduled to execute beforePj have been satisfied.

A FIFO queue attached to each processor and managed in the way stated in the last
paragraph, while necessary, does not suffice for a general multiprocessor system. This is
because synchronisation constraints between processes executing on different processors
cannot be guaranteed in this way. It is also necessary to include a run-time massage passing
system between processors. This mechanism is simple to implement and works in this way:

Every time a processorVi completes the execution of a processPi that, due to a syn-
chronisation constraint, is scheduled to execute before a processPj allocated to a different
processorVj , Vi sends an according message toVj . ProcessorVj only executesPj after
receiving such a message.

The assumption that when a feasible pre-run-time schedule operates under an overload
condition no processes are skipped and the sequence of process executions is kept, has
two important consequences. First, it means that during an overload no process starts
its execution before its request time, or delays its execution by more than the absolutely
required. Second, exclusion and precedence constraints are guaranteed. This leads to an
important conclusion in the context of the proposed stability criterion:

The only concern about the stability of a feasible schedule relies on guarantying process
hard deadlines. This is given by the quantification of the stability margin of a pre-run-time
schedule.

3.2. Single Processor System Analysis

The exact characterisation of the impact of a transient overload upon a feasible pre-run-time
schedule is central to the establishment of its stability. Single processor systems running
single deadline processes are first considered. This means that a general processPi is
viewed has having a deadlineDi and a laxityl (Pi) = Di − c(Pi).

Consider a segment of a general and feasible schedule where the deadline of the process
Pi that introduces an overload as well as the deadlines of processes executing afterPi are
arbitrarily placed—figure 3.

74 MAGALH ÃES AND SILVA

First thing to note is thatPi cannot increase its execution time by more thanDi − c(Pi)

without missing its deadline. Therefore:

1C∗i ≤ l (Pi). (6)

On the other hand,Pi cannot increase its execution time by more thans(Pj)−c(Pi)without
causing a delay onPj ’s start time. Additionally,Pj ’s completion cannot be delayed by more
l (Pj) without causing a timing failure. The maximum tolerable delay onPj ’s start time is
thusl (Pj). Therefore, one finds that:

1C∗i ≤ s(Pj)− c(Pi)+ l (Pj). (7)

Since during the time interval [c(Pi), s(Pj)] the processor is idle, the amount of time
s(Pj)− c(Pi) can be expressed as∅s(Pj)

c(Pi)
. Expression (7) can thus take the form:

1C∗i ≤ ∅s(Pj)

c(Pi)
+ l (Pj). (8)

In the general case, every processPk executed afterPi cannot delay its start time by
more than its nominal laxity,l (Pk), and has its start time delayed by1Ci −∅s(Pk)

c(Pi)
as a

consequence of the overload introduced byPi . Thus, the condition1Ci −∅s(Pk)

c(Pi)
≤ l (Pk)

has to be satisfied for every processPk such that(Pi ⇒ Pk). Consequently, the stability
margin of the schedule for processPi is given by:

1C∗i = min
(
l (Pi),∅s(Pk)

c(Pi)
+ l (Pk)

)
∀(Pi ⇒ Pk) | ∅s(Pk)

c(Pi)
< l (Pi),

(9)

where,

∅s(Pk)

c(Pi)
= s(Pk)− c(Pi)−

k−1∑
j=i+1

Cj = s(Pk)− s(Pi)−
k−1∑
j=i

Cj . (10)

An overload occurring during the execution of a processPi manifests itself during the
time interval [ts, tc], wherets andtc representthe startandthe cease timeof the overload,
respectively. Thets value is given byts = c(Pi), since nominal scheduling conditions are
abandoned at this time. When a processPi enlarges its execution time by a value1Ci , it
introduces an overload that will be extinguished as soon as the1Ci time is stolen from the
nominal idle times. Therefore,tc is the smallestt time that satisfies the equality:

1Ci = ∅t
ts = ∅t

c(Pi)
. (11)

For a1C∗i magnitude overloadtc is deduced from the expression:

1C∗i = ∅tc
c(Pi)
= tc − c(Pi)−

∑
Cj

∀Pj | ∅s(Pj)

c(Pi)
< 1C∗i .

(12)

Remember that the fault-tolerance model has assumed that the effects of two consecutive
overloads never overlap. Therefore, the maximum duration of an overload defines the

STABILIZING PRE-RUN-TIME SCHEDULES 75

minimum time interval between two consecutive overloads. Such a time is very important
to fault-tolerance, since it defines the maximum frequency of faults the system can handle.

It is important noting that expression (9) establishes the stability margin of a schedule for
a particular execution of a processPi . However,Pi is a general element of a set of periodic
processes whose periods are arbitrary. Therefore, a more detailed analysis is required for
quantifying the stability of a schedule for a processPi .

Let L be the least common multiple (LCM) of the periods of the processes executed on
a processor. Thus, during a time interval [t, t + L] Pi executesL/Ti times. It must be
noted that calculation to LCM is always required to devise a feasible pre-run-time schedule
(Locke, 1992). Therefore, calculation to LCM is always feasible if a feasible schedule is
assumed.

Let 1C∗i (j) denote the stability margin of the schedule for thej th execution ofPi in
the interval [t, t + L]. The parameter1C∗i (j) is established according to expression (9)
considering the particular sequence of process executed after the jth execution ofPi . The
stability margin of the schedule for processPi ,1C∗i , is thus given by:

1C∗i = min
(
1C∗i (1),1C∗i (2), . . . , 1C∗i (L/Ti)

)
. (13)

THEOREM2 A feasible pre-run-time-schedule of processes having non-zero grace time and
executed on a single processor system remains stable when a single process Pi increases
its execution time by no more than:

1C∗∗i = min
(
1C∗∗i (1),1C∗∗i (2), . . . , 1C∗∗i (L/Ti)

)
, (14)

where each1C∗∗i (j) is the maximum increase in Pi ’s execution time for its j th execution
in the time interval[t, t + L], and is calculated according to the formula:

1C∗∗i (j) = min
(
cl(Pi),∅s(Pk)

c(Pi)
+ cl(Pk)

)
∀(Pi ⇒ Pk) | ∅s(Pk)

c(Pi)
< cl(Pi).

(15)

Proof: The proof for theorem 2 directly follows from the analysis that derived expressions
(9) and (13), while considering the hard deadline and the critical laxity of each process.

THEOREM3 For a set of processes having a grace time greater than zero and executed on
a single processor system, the value of1C∗∗i associated to a process Pi is always greater
than1C∗i .

Proof: Note that the equallycl(Pi) = nl(Pi)+GTi applies for each processPi . Therefore:

min
(
cl(Pi),∅s(Pk)

c(Pi)
+ cl(Pk)

)
= min

(
nl(Pi)+ GTi ,∅s(Pk)

c(Pi)
+ nl(Pk)+ GTk

)
.

This is true since processor idle times do not depend on the placement and characterisation
of the deadlines. Therefore, and because the grace time of each process is greater than zero,

76 MAGALH ÃES AND SILVA

one finds that:

min
(
nl(Pi)+ GTi ,∅s(pk)

c(Pi)
+ nl(Pk)+ GTk

)
> min

(
nl(Pi),∅s(Pk)

c(Pi)
+ nl(Pk)

)
.

Another important conclusion emerges from the presented analysis:

Corollary 1 In a centralised system executing a P set of n processes scheduled according
to a feasible pre-run-time scheduling algorithm,Ä(t, P), the maximum time redundancy
that can be used for error processing is given by:

RTmax(Ä) = min
(
1C∗∗1 ,1C∗∗2 , . . . ,1C∗∗n

)
. (16)

Proof: Corollary 1 is true because a real-time system cannot include a time redundancy
that can lead any process to miss its hard deadline during an error processing action.
Therefore,RTmaxcannot be greater than the stability margin of the schedule for any process.

Expression (16) defines thestability marginof a pre-run-time schedule where no time
redundancy is used for error processing. Therefore, a real-time system that includes a time
redundancyRT ≤ RTmax for error processing purposes has a stability margin,ϕ(Ä), given
by:

ϕ(Ä) = RTmax(Ä)− RT. (17)

Finally, another important conclusion:

Corollary 2 The scheduling criterion that must be optimised by a pre-run-time scheduling
algorithm intended to maximise the stability of a single processor system is the maximisation
of processes’ laxity.

Proof: Note that the nominal laxity of a processPi increases when a feasible schedule
anticipatesPi ’s nominal start time. Processor idle time between the completion ofPi

and the start time of any other process executed afterPi also increases in this situation.
Therefore, according to expression (9), the parameter1C∗i increases. On the other hand,
if the laxity of a processPj , such that(Pi ⇒ Pj), is increased by anticipating its start
time by a valueξ , the value∅s(Pj)

c(Pi)
decreases byξ , but the sum∅s(Pj)

c(Pi)
+ l (Pj) keeps the

original value. This shows that1C∗i does not depend onPj ’s start time. Therefore,
when the laxity of a processPi increases, so does the stability of the schedule forPi .

It is worth noting that the maximisation of a process laxity is equivalent to the maximisation
of its critical laxity. However, the adjectivesnominalandcritical were intentionally omitted
in the statement of corollary 3. This was to emphasise that the optimisation criterion does not
need to assume any consideration about processes deadlines. Therefore, any pre-run-time
scheduling algorithm that satisfies the laxity maximisation criterion for processes having
a single deadline also provides the maximum stability to a schedule of processes having
arbitrary grace times.

STABILIZING PRE-RUN-TIME SCHEDULES 77

In (Xu and Parnas, 1990) it is presented a centralised pre-run-time scheduling algorithm
that satisfies the optimisation criterion stated above. The algorithm is optimal in the sense
that it always finds a feasible schedule providing that such a schedule exists. Another
advantage of this algorithm is that it departs from a very general load model similar to ours.
Therefore, the Xu and Parnas algorithm must be used in single processor pre-run-time
scheduled applications.

3.3. Multiprocessor System Analysis

In a multiprocessor system, a set of processesP(Vi) is said to be independent of the set
P(Vj) if no precedence or exclusion relations exist between a processPi belonging toP(Vi)

and a processPj belonging toP(Vj). A real time system iscomposed of independent process
setsif:

∀P(Vi), P(Vj) | Vi 6= Vj ,

¬∃(Pi , Pj) | Pi ∈ P(Vi) ∧ Pj ∈ P(Vj) ∧
(
(Pi ≺ Pj) ∨ (Pj ≺ Pi) ∨ (Pi ⊗ Pj)

)
.

Due to the absence of synchronisation constraints between processes executing on differ-
ent processors, a real-time system composed of independent process sets has nooverload
propagation pathsbetween processors. This means that there are no process executing
sequences that can make an overload introduced by a processPi ∈ P(Vi) to disturb the
nominal execution of a processPj ∈ P(Vj). Consequently, the analysis developed in the
last subsection directly applies for each processor of a multiprocessor system composed of
independent process sets.

However, multiprocessor systems composed of independent process sets are rare in prac-
tice. This means that most multiprocessor real-time systems have paths through which an
overload can propagate from one processor to another. Overload propagation paths can be
established with the help of a graph. In such a graph, nodes represent processes, and arcs
denote partial process execution orderings. The root node denotes a process that introduces
an overload. Nodes are organised in rows. Each row represents a particular processor.
An arc connecting two nodes in different rows denote a path from where an overload can
propagate from one processor to another.

An overload propagation graphis denoted asGO P(Pi) = (Np, Ao), where Pi is the
root node. Np and Ao denote the set of nodes and the set of arcs, respectively. Figure 4
shows the overload propagation graph for the processP1 belonging to a multiprocessor real-
time system having three processors and seven processes, such thatP(V1) = {P1, P2, P3},
P(V2) = {P4, P5, P6}, P(V3) = {P7}, (P1 ≺ P4) and (P5 ⊗ P7). It is assumed that
a pre-run-time scheduling algorithm has established a feasible schedule according to the
following process execution orderings:

For processorV1,
[
P1→ P2→ P3

]
; for V2,

[
P4→ P5→ P6

]
; for V3, [P7].

Also considered is that the exclusion constraint(P5 ⊗ P7) gave rise to the precedence
constraint(P5 ≺ P7). That is, processP5 is executed before processP7 according to some

78 MAGALH ÃES AND SILVA

Figure 4. Overload propagation graph for processP1.

feasible schedule. Using an overload propagation graph its possible to devise the different
paths from where an overload introduced by the process denoted as the root node spreads
to other processes. Such a set is represented as:

OPP(Pi) =
{
(Pi , Pj , . . . , Pk)

| Pi , Pj , . . . , Pk ∈ P ∧ [Pi → Pj → · · · → Pk
]}
. (18)

TheOPP(Pi) set is central to the stability analysis of a pre-run-time schedule executed on
a multiprocessor system. Also important in this context is the analysis developed in the last
subsection. This is because the maximum increase inPi ’s execution time for a particular
propagation path is given by expression (9). Using this expression for all the propagation
paths that originate fromPi , one finds the maximum allowable increase inPi ’s execution
time for each overload propagation path. The most stringent value of this set denotes the
maximum increase inPi execution that does not cause any timing failure. Therefore, for
the j th execution of a processPi having a single an arbitrary deadline, we have:

1C∗i (j) = min
(
(l (Pi),∅s(Pk)

c(Pi)
+ l (Pk)

)
,

∀ ([Pi → · · · → Pk
] ∈ OPP(Pi)

) | ∅s(Pk)

c(Pi)
< l (Pi).

(19)

SincePi is a periodic process, one concludes that:

1C∗i = min
(
1C∗i (1),1C∗i (2), . . . , 1C∗i (L/Ti)

)
, (20)

where L is the least common multiple of the periods of the processes allocated to the
processor on whichPi executes, and1C∗i (j) is the1C∗i value for thej th execution ofPi

in the time interval [t, t + L].
From here, it is possible to establish a set of theorems similar to those developed for single

processor systems while considering a multiprocessor real-time system.

STABILIZING PRE-RUN-TIME SCHEDULES 79

THEOREM4 A feasible pre-run-time-schedule of processes having non-zero grace time and
executed on a multiprocessor system remains stable when a single process Pi increases its
execution time by no more than:

1C∗∗i = min
(
1C∗∗i (1),1C∗∗i , (2), . . . , 1C∗∗i (L/Ti)

)
, (21)

where each1C∗∗i (j) is the maximum increase in Pi ’s execution time for its j th execution
in the time interval[t, t + L], and is calculated according to the formula:

1C∗∗i (j) = min
(
cl(Pi),∅s(Pk)

c(Pi)
+ cl(Pk)

)
,

∀ ([Pi → · · · → Pk
] ∈ OPP(Pi)

) | ∅s(Pk)

c(Pi)
< cl(Pi).

(22)

Proof: The proof for theorem 4 directly follows from the analysis that derived expressions
(19) and (20), while considering the hard deadline and the critical laxity of each process.

THEOREM5 For a set of processes having a grace time greater than zero and executed on
a multiprocessor system, the value of1C∗∗i associated to a process Pi is always greater
than1C∗i .

Proof: The approach is similar to the proof of theorem 3, while considering the values of
1C∗i and1C∗∗i in the context of a multiprocessor system.

Corollary 3 For a system given by a V set of m processors and a P set of n processes fea-
sibly scheduled according a pre-run-time scheduling algorithm,Ä(t, P,V), the maximum
time redundancy that can be used for error processing in a Vi ∈ V processor is given by:

RTmax(Ä,Vi) = min
(
1C∗∗1 ,1C∗∗2 , . . . ,1C∗∗n

)
∀Pi ∈ P(Vi). (23)

Proof: The proof for corollary 3 is similar to the proof for corollary 1. In this case it
should be noted thatRTmax(Ä,Vi) cannot be greater than the stability margin of the schedule
running inVi for any processPi ∈ P(Vi).

It is worth noting that the stability margin for a multiprocessing system based on a pre-run-
time schedule hasm components. Every component is given by expression (23). Thus, the
stability margin of a processorVi that uses a time redundancyRT(Vi) for error recovery
and belongs to a multiprocessing system is given by:

ϕ(Ä,Vi) = RTmax(Ä,Vi)− RT(Vi). (24)

The stability margin of a multiprocessing pre-run-time schedule of aP set of processes,
Ä(t, P), is thus given by the following vector:

ϕ(Ä) =

ϕ(Ä,V1)

ϕ(Ä,V2)
...

ϕ(Ä,Vm)

 . (25)

80 MAGALH ÃES AND SILVA

Corollary 4 The scheduling criterion that must be optimised by a pre-run-time scheduling
algorithm intended to maximise the stability of a multiprocessor system is the maximisation
of processes’ laxity.

Proof: The proof directly follows from the proof of corollary 2. In this case,Pi is the
process represented by the root node of an overload propagation path, andPj is a process
represented by an arbitrary node on the same path.

There is a multiprocessing pre-run-time scheduling algorithm that maximises processes’
laxity. This algorithm was developed by Shepard and Cagn´e (1991) and derives from
that developed by Xu and Parnas for single processor systems. The Shepard and Cagn´e
algorithm is claimed to be optimal for multiprocessor pre-run-time scheduling, and uses a
very general load model similar to ours. Therefore, the Shepard and Cagn´e algorithm must
be considered in multiprocessor pre-run-time scheduled systems.

3.4. Multiple Processes Re-execution

Rolling back solely the executing process every time an error is detected is only effective
for processes that execute for completion when their requests are satisfied. Otherwise, the
executing process as well as all the preempted processes must rollback their executions
every time an error is detected (Randell, 1975). This means that the stability analysis
developed so far only applies to non-preemptive pre-run-time scheduling. However, non-
preemptive real-time scheduling is avoided whenever possible: it is a NP-hard problem
(Cheng, Stankovic and Ramamrithan, 1987) and usually produces inefficient schedules.
Therefore, there is a strong interest in adapting to preemptive schedules the stability analysis
already developed.

The preemptive schedule of aP set ofn processes takes the segmentation of each process
Pi into a convenient number,z(i) ≥ 1, of segments:Pi,1, Pi,2, . . . Pi,z(i). This means
that when thej th 6= z(i) segment of a processPi completes execution,Pi is temporarily
suspended. Pi resumes execution by the time its(j + 1)th segment starts execution.
Since process segmentation and multiple processes re-execution are now considered, the
scheduling model used so far has to be slightly broadened. The following assumptions are
considered from now on:

1. The segmentation of a processPi intoz(i) ≥ 1 parts, gives rise to segmentsPi,1, Pi,2, . . . ,

Pi,z(i), such that:
(
Pi,1 ≺ Pi,2

)
,
(
Pi,2 ≺ Pi,3

)
, . . . ,

(
Pi,z(i)−1 ≺ Pi,z(i)

)
.

2. A pre-run-time schedule is feasible for a processPi if:

• SegmentPi,1 does not start execution beforePI ’s request time;

• Precedence and exclusion constraints between processes segments are respected;

• SegmentPi,z(i) does nor complete execution afterPi ’s nominal deadline,N Di .

3. A feasible pre-run-time schedule is stable for a processPi if segmentPi,z(i) does not
complete execution afterPi ’s hard deadline when an error processing action takes place.

STABILIZING PRE-RUN-TIME SCHEDULES 81

4. Every processPi contains an arbitrary number of checkpoints that are arbitrarily placed
on Pi execution code. However, it is assumed that:

• Every processPi performs an acceptance test by the end of the execution of its
Pi,z(i) segment. If the test passes, the execution ofPi is declared completed. If it
fails, Pi rollbacks to the last recovering point, and restarts execution from there.
This avoids the need of re-executing any segment ofPi after Pi ’s completion.

• If the segmentPi,k of a processPi is executed on a processorVi , and the segment
Pi,k+1 is executed on a different processorVj , then the segmentPi,k ends with
an acceptance test. This avoids the need of re-execution processes allocated to
multiple processors during an error recovering action.

5. Every time an error is detected the executing process and all the preempted processes
rollback execution to their last recovery points.

According to assumptions 2 and 3, the feasibility and the stability analysis of a preemptive
pre-run-time schedule does not require the consideration of the nominal and hard deadline
of a process segmentPi,k, for k 6= z(i). However, since processes segments are supposed
to have characteristics similar to those defined in the load model, it can be stated that:

N Di,1 = N D1,2 = · · · = N Di,z(i) = N Di , (26)

and

H Di,1 = H D1,2 = · · · = H Di,z(i) = H Di . (27)

Consider thus a pre-run-time scheduling segmentPk,k → · · · → Pj, j → Pi,i , such that
an error detected duringPi,i execution can only be properly recovered by re-executing
segmentsPk,k, . . . , Pj, j , Pi,i . Pi,i is a general segment of processPi ; namely, it can refer to
its last segment,Pi,z(i). The condition required for processing such an error without causing
a catastrophic timing failure is given by the following corollary:

Corollary 5 It is possible to process an error detected during the execution of a segment
Pi,i by re-executing the segments Pk,k, . . . , Pj, j , Pi,i , if it does not require a time greater
than1C∗∗i,i .

Proof: Note that1C∗∗i,i is calculated using expressions (15) or (22) as it relates to a single or
multiprocessor system, respectively. Remember that1C∗∗i,i defines the maximum increase
in Pi,i execution time that does not lead to a catastrophic time failure. However,1C∗∗i,i can
also be defined as the maximum delay onPi,i completion time that does not leadPi,i or any
process segment executed after itto miss its hard deadline. This delay can have any cause.
Namely, the re-execution of segmentsPk,k, . . . , Pj, j , Pi,i .

Also important to note is that the need of re-executing the segmentsPk,k, . . . , Pj, j as
a consequence of an error detected duringPi,i execution is synonymous that segments
Pk,z(k), . . . , Pj,z(j) are executed after Pi,i . Otherwise, there was no need to re-execute them,
since processesPk, . . . , Pj were already completed by the time the error is detected. Thus,
corollary 5 gives the condition for segmentPi,i as well as segmentsPk,z(k), . . . , Pj,z(j) not
to miss their hard deadlines. Consequently, if defines the condition for using backward
error recovery in a preemptive pre-run-time schedule.

82 MAGALH ÃES AND SILVA

Figure 5. A saturated schedule.

4. A Final Note on System Recovery

According to expression (11), the cease time of an overload depends on nominal idle times
following the start time of the overload. Therefore, it can be concluded that asaturated
system—that is, a system where nominal processor idle times do not exist—never returns
to nominal conditions after suffering the impact of an overload.

However, this view does not apply to many real-time applications. Consider the scenario
depicted in figure 5. It represents the only feasible schedule for a centralised real-time
application consisting of two periodic processes,P1 andP2 requesting execution every time
t = kT andt = (2k + 1) ∗ T/2, respectively, fork ≥ 0. It is assumed thatT1 = T2 = T ,
C1 = C2 = T/2, N D1 = N D2 = T/2 andH D1 = H D2 = T . Also presented in figure 5
is theobservation gridfor processesP1 and P2. An observation grid is the set of points
associated to the completion time of a processPi (Kopetz, 1991). Observation points are
represented by bold dots. LetÄN(t, P1, P2) denote the nominal schedule represented in
figure 5.

Consider now that the execution ofP2 starting at the timet = 3T/2 introduces an
overload such that1C2 < T/2. The impact of this overload upon process sequencing
is represented in figure 6. The dashed dots represent the nominal observation points.
Let ÄO(t, P1, P2) denote the schedule represented in figure 6. First thing to note is that
1C∗∗1 = 1C∗∗2 = min(cl(P1), cl(P2)) = T/2. Since1C2 < T/2, the overload does not
cause any catastrophic timing failure. On the other hand one finds that:

ÄO(t, P1, P2) =
{
ÄN

(
t, P1, P2

)
for t ≤ 2T;

ÄN
(
(t −1C2), P1, P2

)
for t > 2T; (28)

This means that nevertheless the nominal deadlines of both processes can no longer be
meet for a timet ≥ 2T , the period of each observation grid recovers its nominal value,T ,
a short time after the occurrence of the overload. Therefore, if the role of both processes,
P1 andP2, is to establish an observation grid with a periodT , one may state that processes
P1 and P2 recover their nominal conditions at the times 5T/2 + 1C2 and 2T + 1C2,

STABILIZING PRE-RUN-TIME SCHEDULES 83

Figure 6. A saturated schedule under an overload condition.

respectively. Thus, it can be argued that both processes miss a single nominal deadline due
to the occurrence of the overload. However, each observation grid has changed its phase
by1C2 time units as a consequence of the overload.

When a similar analysis is derived for the observation grids attached to a set of arbitrary
periodic processes, one finds that if a processPi increases its execution time by a margin
1Ci ≤ 1C∗∗i , then all processes making part of the system have, at most, one timing
failure. This is because no more than two observation points for a processPj become
separated by more thanN Dj as a consequence of the overload. On the other hand, the
phase change exhibited by an observation grid after suffering the impact of an overload is
always lesser than or equal to1Ci . This is because processor nominal idle times contribute
for the returning of a grid to its nominal observation points. However, idle times are not
necessary for making an observation grid to return to its nominal period.

We feel this note is important because, in many systems, the major real-time issue is
guaranteeing that two consecutive executions of a process are not separated by more than
a certain time. This is particularly true in control applications (Middleton and Goodwin,
1990;Åstrom and Wittenmark, 1990), where the execution of a periodic process is the way
for enforcing a timing regularity in the observation of the controlled object according to its
dynamic. A periodic control process typically reads data from the application environment,
performs data manipulations, and writes results on an output port, changing the environment
accordingly (Stankovic and Ramamritham, 1993). For a processPi that performs this way,
time is arelative measure, in the sense that it restarts counting every timePi completes an
execution. Therefore, the way thatPi recovers from an overload condition must be viewed
in the context oftime as a relative quantity.

While this concept is applicable to many real-time systems, it must be taken very carefully.
It can become very dangerous if generalised. Namely, to very critical systems where alarm
signals are expected to trigger a very fast operational change; e.g., a safe shutdown or

84 MAGALH ÃES AND SILVA

the reconfiguration of the controlling system. Real-time processes are very diversified.
Some of them—including the most critical ones—do not understand time as a relative
quantity.

5. Conclusions

The paper has dealt with the stability of pre-run-time schedules executed on single and
multiprocessor real-time systems. The point of departure was that most real-time processes
have a nominal and a hard deadline separated by a non-zero grace time. Therefore, processes
were considered to be scheduled to meet their nominal deadlines under nominal conditions,
and not to miss the hard deadlines in the presence of an overload.

The first major contribution of the paper is the proof that the stability of any real-time
system scheduled in this way is greater than the stability achieved when it is tuned to
guarantee a single and hard deadline for each process. This is important because it shows
that error masking is not the only solution for designing highly dependable hard real-time
systems. Backward error recovery or another time consuming error processing technique
can be used in critical real-time applications when certain conditions are satisfied. The
devising of these conditions for a set of various and realistic scenarios is the second major
contribution of the paper. The statement of the scheduling criterion that brings the maximum
stability to a schedule and the reference to existing algorithms that conform to such a criterion
is another important contribution. Therefore, this paper has provided a framework that can
provide a great help in the design of low cost and highly dependable pre-run-time scheduled
real-time systems.

References

Åström, K., and Wittenmark, B. 1990.Computer-Controlled Systems. Theory and Design. 2nd Edn. Prentice-Hall
International Editions.

Audsley, N., and Burns, A. 1992.Real-Time Scheduling. Department of Computer Science, University of York,
U.K. Tech. Report YCS 134.

Avizienis, A. 1997. Toward systematic design of fault-tolerant systems.IEEE Computer30(4): 51–58.
Bond, P., Seaton, D., Ver´ıssimo, P., and Waddington, J. 1991. Real-time concepts. In D. Powell (ed.),Springer-

Verlag Research Reports ESPRIT Series: Delta-4: a Generic Architecture for Dependable Distributed Comput-
ing. Springer-Verlag.

Burns, A. 1991. Scheduling hard real-time systems: a review.Software Eng. J., pp. 116–128.
Burns, A., and Fohler, G. 1991. Incorporating flexibility into offline scheduling for hard real-time systems. Esprit

Bra Project 3092: Predictably Dependable Computing Systems. Second Year Report, Vol. 1, Chap. 3, Pt II.
Buttazzo, G., Spuri, M, and Sensini, F. 1995. Value vs. deadline scheduling in overload conditions.Proc. of the

IEEE Real-Time Systems Symp., pp. 90–99.
Carlow, G. 1984. Architecture of the space shuttle primary avionics software system.Comm. ACM27(9):

926–936.
Carpenter, T, Driscoll, K., Hoyme, K., and Carciofini, J. 1994. ARINC 659 scheduling: problem definition.Proc.

of the IEEE Real-Time Systems Symp, pp. 165–169.
Cheng, S-C, Stankovic, J., and Ramamritham, K. 1987. Scheduling algorithms for hard-real time systems: a brief

survey. In J. Stankovic and K. Ramamritham (eds.),Hard Real-Time Systems. IEEE Computer Society Press,
pp. 150–173.

Driscoll, K., and Hoyme, K. 1992. The airplane information system: an integrated real-time flight-deck control
system.Proc. of the IEEE Real-Time Systems Symp., pp. 267–270.

STABILIZING PRE-RUN-TIME SCHEDULES 85

Gheith, A., and Schwan, K. 1993. CHAOSarc: kernel support for multiweight objects, invocations, and atomicity
in real-time multiprocessor applications.ACM Trans. on Computer Systems11(1): 33–72.

Iyengar, S., Prasad L., and Min, H. 1995.Advances in Distributed Sensor Technology. New Jersey: Prentice Hall
PTR.

Jensen, E., Locke, C., and Tokuda, H. 1985. A time-driven scheduling model for real-time operating systems.
Proc. of the 1995 IEEE Real-Time Systems Symp., pp. 112–122.

Jensen, E.D. 1993.Asynchronous decentralized realtime computers. Realtime Computer Systems, Digital Equip-
ment Corp.

Jensen, E. D. 1994. Eliminating the hard/soft real-time dichotomy.Embedded Systems Programming7(10):
28–34.

Kirrmann, H. 1987. Fault tolerance in process control: an overview and examples of European products.IEEE
Micro 7(5): 27–50.

Kligerman, E., and Stoyenko, D. 1986. Real-time Euclid: a language for reliable real-time systems.IEEE Trans.
on Software Eng. SE-12(9): 941–949.

Kopetz, H. et al. 1989. Distributed fault-tolerant real-time systems: the mars approach.IEEE Micro, pp. 25–40.
Kopetz, H. 1991. Event-triggered versus time-triggered real-time systems.Proc. Int. Workshop on Operating

Systems of the 90s and Beyond. In A. Karshmer and J. Nehmer (eds.),Springer-Verlag Lecture Notes in Computer
Science, Berlin, Germany, 563: 87–101.

Kopetz, H. 1995. Why time-triggered architectures will succeed in large hard real-time systems.Proc. of the 5th
IEEE Computer Society Workshop on Future Trends of Distributed Computer Systems, pp. 2–9.

Kopetz, H., and Ver´ıssimo, P. 1993. Real time and dependability concepts. In Sape Mullender (ed),ACM Press
Frontier Series: Distributed Systems, 2nd edition. Addison-Wesley, ACM Press.

Laplante, P. 1993.Real-Time Systems Design and Analysis. IEEE Computer Society Press.
Laprie, J-C. 1991. Dependability concepts. In D. Powell (ed.),Springer-Verlag Research Reports ESPRIT Series:

Delta-4: A Generic Architecture for Dependable Distributed Computing. Springer-Verlag.
Laprie, J., Arlat, J., B´eounes, C., and Kanoun, K. 1990. Definition and Analysis of Hardware- and Software-

Fault-Tolerant Architectures.IEEE Computer, July, pp. 39–51.
Lehoczky and Ramos-Thuel. 1992. An optimal algorithm for scheduling soft-aperiodic tasks in fixed-priority

preemptive systems.Proc. of the IEEE Real-Time Systems Symp., pp. 110–123.
Leveson, N. 1986. Software safety: why, what, and how.ACM Computing Surveys18(2): 125–163.
Liu, C., and Layland, J. 1973. Scheduling algorithms for multiprogramming in a hard real-time environment.

Journal of the ACM20(1): 46–61.
Locke, C. 1986. Best Effort Decision Making for Real-Time Scheduling. PhD. Thesis. Carnegie-Mellon Univer-

sity.
Locke, C. 1992. Software architectures for hard real-time applications.Real-Time Systems4(1): 37–53.
Magalhães, A. 1995. Estabiliza¸cão dos Controladores de Tempo-Real Atrav´es da Complacˆencia Temporal dos

Objectos Controlados. PhD Thesis. Faculty of Engineering, University of Porto, Portugal. (In Portuguese).
Magalhães, A., Rela, M., and Silva, J. 1996. On the nature of deadlines.Microprocessors and Microsystems

20(2): 79–88.
Magalhães, A. P. 1996. A survey on estimating the timing constraints of hard real-time systems.Design Automa-

tion for Embedded Systems1(3): 213–230.
Middleton, R., and Goodwin, G. 1990.Digital Control and Estimation: A Unified Approach. Prentice-Hall

International Editions.
Mok, A. 1984. The design of real-time programming systems based on process models.Proc. of the IEEE

Real-Time Systems Symp., pp. 5–16.
Nelson, V., and Carroll, B. 1987.Tutorial: Fault-Tolerant Computing. IEEE Computer Society Press.
Ramamritham, K. 1993. Real-time databases.Distributed and Parallel Databases1: 199–226.
Ramos-Thuel and Lehoczky. 1993. On-line scheduling of hard deadline aperiodic tasks in fixed-priority systems.

Proc. of the IEEE Real-Time Systems Symp., pp. 160–171.
Randell, B. 1975. System Structure for Software Fault Tolerance.IEEE Trans. on Software Eng. SE-1(2):

220–232.
Rennels, D. 1984. Fault-tolerant computing—concepts and examples.IEEE Trans. on ComputersC-33(12):

1116–1129.
Sha, L. Lehoczky, J., and Rajkumar, R. 1986. Solutions for some practical problems in prioritized preemptive

scheduling.Proc. of the IEEE Real-Time Systems Symp., pp. 181–191.

86 MAGALH ÃES AND SILVA

Shepard, T., and Gagn´e, J. 1991. A pre-run-time scheduling algorithm for hard real-time systems.IEEE Trans.
on Software Eng. 17(7): 669–677.

Shin, G., Krishna, C., and Lee, Y.-H. 1985. A unified method for evaluating real-time computer controllers and
its application.IEEE Trans. on Automatic ControlAC-30(4): 357–366.

Somani, A., and Vaidya, N. 1997. Understanding fault-tolerant and reliability.IEEE Computer30(4): 45–50.
Stankovic, J., and Ramamritham, K. 1993.Advances in Real-Time Systems. IEEE Computer Society Press.
Stankovic, J., Spuri, M., Di Natale, M., and Buttazzo, G. 1995. Implications of classical scheduling results for

real-time systems.IEEE Computer28(6): 16–25.
Xu, J., and Parnas, D. 1990. Scheduling processes with release times, deadlines, precedence, and exclusion

relations.IEEE Trans. on Software Eng. 16(3): 360–369.
Xu, J., and Parnas, D. 1991. On satisfying timing constraints in hard-real-time systems.Proc. of the ACM

SIGSOFT ’91 Conference on Software for Critical Systems. New Orleans, Louisiana, pp. 132–146.
Ziv, A., and Bruck, J. 1997. An on-line algorithm for checkpoint placement.IEEE Trans. on Computers46(9):

976–985.

