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Abstract. This paper discusses the stability of a feasible pre-run-time schedule for a transient overload introduced
by processes re-execution during an error recovery action. It shows that the stability of a schedule strictly tuned to
meet hard deadlines is very small, invalidating thus backward error recovery. However, the stability of the schedule
always increases when a real-time process is considered as having a nominal and a hard deadline separated by
a non-zero grace time. This is true for sets of processes having arbitrary precedence and exclusion constraints,
and executed on a single or multiprocessor based architecture. Grace time is not just the key element for the
realistic estimation of the timing constraints of real-time error processing techniques. It also allows backward
error recovery to be included in very efficient pre-run-time scheduled systems when the conditions stated in this
paper are satisfied. This is a very important conclusion, as it shows that fault-tolerant hard real-time systems do
not have to be extremely expensive and complex.

Keywords: Real-time systems, pre-run-time scheduling stability, grace time, fault-tolerance.

1. Introduction

Real-time literature shows a tendency for deriving the timing constraints of a real-time
service from its timeliness. That is, from a function that maps the merit of a service to
its delivery time (Bond, Seaton, Mesimo and Waddington, 1991). The timeliness of a
service is always established in some particular metrics according to service importance for
a real-time application. Usually, it takes the form dirae-value functiorfJensen, Locke
and Tokuda, 1985}jme-utility function(Burns, 1991) or, more genericallgpst function
(Shin, Krishna and Lee, 1985).

Using this approach, a real-time designer can identify a set of time milestones attached to
a service having several and specific goals. Each milestone represents a particular deadline
and has a suitable semantics revelling specific concerns and consequences if missed (Bond,
Seaton, Vassimo and Waddington, 1991; Burns, 1991; Jensen, 1993; Jensen, 1994; Geith
and Schwan, 1993; Kligerman and Stoyenko, 1986; Laplante, 1993; Ramamritham, 1993).
Unfortunately, classical scheduling theory (Cheng, Stankovic and Ramamrithan, 1987,
Audsley and Burns, 1992) typically takes single deadline processes and it does not seem
to provide a direct support for this approach. On the other hbest-effortscheduling
algorithms based on processes’ time value functions (Locke, 1986) are not the optimal
solution, since they tend to be unpredictable during transient overloads (Burns and Fohler,
1991). Scheduling algorithms that can guarantee various performance or safety levels
(Stankovic, Spuri, Di Natale and Buttazzo, 1995) are thus required.
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However, as far as we know, real-time scheduling algorithms explicitly supporting pro-
cesses having more than one deadline do not seem to exist (Magalh996). As a
consequence, most real-time scientists tend to design their systems considering the hard
deadline of each critical process (Laplante, 1993) (Stankovic and Ramamrithan, 1993).
Yet, the stability of a system designed in this way may be very poor, in the sense that
a hard deadline can be easily missed at the impact of a minor non-deterministic event.
Thus, applications strictly tuned to meet hard deadlines have to assume a fault-free en-
vironment or a very complex and expensive structural redundancy providing error mask-
ing. This is particularly notorious when high processor utilisation is a major concern
and hard deadlines tend to be satisfied only by a short margin, even in the absence of a
fault.

Recently, we proposed a unifying approach that intents to contribute to change this view
(Magaltées, Rela and Silva, 1996). It departs from the establishment of the timeliness of a
real-time service according tocast function concluding that a real-time process always
presents amominal deadline and may exhibit éhard deadline The nominal deadline
defines the maximum completion time that still guarantees the intended effectiveness of the
process for the application; the hard deadline establishes the maximum completion time
that prevents a catastrophic timing failure.

It is universally agreed that the first aim of every real-time application is the delivery
of some beneficial service, although safety has always to be guaranteed (Bond, Seaton,
Verissimo and Waddington, 1991; Leveson, 1986). Thus, each process being part of a real-
time system must be scheduled to meet its nominal deadline under normal circumstances,
and not to miss its hard deadline in any case. Since the cost associated to a real-time service
increases with its delivery time (Shin, Krishna and Lee, 1985) one finds that the nominal
deadline of a process is more stringent than its hard deadline. From here, an important
conclusion emerges:

If, due to a fault, a process misses its nominal deadline, a catastrophic timing failure
will not immediately occur, but only later; namely, when the time interval separating the
nominal and the hard deadline of the process exhausts. Such a time interval igzdied
time—Figure 1. This grace time definition closely follows Kirrmann (1987).

Systems designed around nominal and hard deadlines are more stable than those strictly
tuned to meet hard deadlines. This is because, in the first case, processes are allowed to
miss their nominal deadlines by the corresponding grace time when the controller suffers the
impact of a non-deterministic event. Namely, a transient overload introduced by processes
executing for a time greater than the expected. This is very important in the context of
fault-tolerant computing. Particularly when low cost solutions are required, as it is usually
the case (Avizienis, 1997):

When processes are scheduled to satisfy their nominal deadia@syard error recovery
(Rennels, 1984; Laprie, 1991; Somani and Vaidya, 1997; Zivand Bruck, 1997) may become
aviable technique. As long as the recovery time is lower than the grace time of the affected
processes, system safety does not suffer. Thus, only very hard real-time systems—i.e.,
those that include one or more processes having a very small grace time—can not use time-
consuming error processing techniques. But these systems, while very important, are just
a small minority. Case studies show that grace time can span from just a few milliseconds
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Figure 1. Deadlines establishment and associated grace time (MzemlRela and Silva, 1996).

for very critical control loops, to tens of seconds for supervisory control (Kirrmann, 1987;
Magalhées, 1995).

It is worth noting that backward error recovery has its own limitations. Namely, it can
only be applied to reversible actions—i.e., computations. Backward error recovery can not
remove error masking sensors and actuators from hard real-time applications. However,
replicated 1/O devices (Kopetz and V&simo, 1993, lyengar, Prasad and Min, 1995) are not
the main contribution to the great complexity and the enormous price of actual fault-tolerant
real-time systems.

The motivation for this paper is thus the notion that grace time is the key element for
designing low-cost, yet highly reliable and efficient, hard real-time systems. Pre-run-time
algorithms are considered because they are the most suitable for hard real-time applications
(Kopetz, 1995; Xu and Parnas, 1991) but are incapable of dealing with unpredictable envi-
ronmental or operational changes. Consequently, pre-run-time scheduled systems typically
require error masking (Carlow, 1984; Kopetz, 1989; Shepard ande;d®91; Driscoll
and Hoyme, 1992; Carpenter, Driscoll, Hoyme and Carciofini, 1994). However, as shown
in this paper, this is not an absolute requirement when grace time is considered. The paper
is organised as follows:

Section 2 presents a scheduling model that reflects our nominal and hard deadlines con-
cepts. Section 3 quantifies the stability of a feasible pre-run-time schedule for a transient
overload introduced by process re-execution during an error recovery action. This quantifi-
cation, covering single and multiprocessor systems, is done in two contexts: ignoring and
considering grace time. The results are compared, showing that the stability of a schedule
always increases in the second case. The quantification of the maximum time redundancy
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that can be included in a computer system based on pre-run-time scheduling is later pro-
vided. Section 4 presents a short note discussing the returning of a pre-run-time schedule
to normal conditions after suffering the impact of a transient overload. Section 5 concludes
the paper summarising the most important conclusions.

2. Scheduling Model

The assurance that the timing constraints of all the processes running on areal-time computer
are satisfied, requires to postulatecheduling modelUsually, a scheduling model includes
aload modeland afault model(Kopetz and Vassimo, 1993). The load model, which
ignores faults, specifies available processors, executing processes, and a criterion to define
a schedule as feasible. The fault model defines the types and frequency of faults that
the system must be capable of handling. Since the purpose of this paper is to derive the
conditions that allow backward error recovery in a pre-run-time scheduled real-time system,

it departs from doad modebnd afault-tolerance modelFrom here, it is possible to derive

the maximum time redundancy that can be used for error processing and the maximum
frequency of faults.

The load model only differs from traditional ones in the sense that it defines a nominal
and a hard deadline attached to each real-time process. Actually, it is very similar to the
models presented in (Xu and Parnas, 1990) and (Shepard and,@8§1) if the grace time
of all processes is equal to zero. This means that our theory does not refuse the traditional
view of real-time processes having a single deadline, but only makes it a particular case of
a new and broader approach.

The fault-tolerance model is also very general. Itis based in backward error recovery and
derives from the specialised literature (Laprie, ArlagoBhes and Kanoun, 1990; Laprie,
1991). Central to this model is stability criterion That is, a criterion that defines a
schedule as feasible in the presence of a fault.

2.1. Load Model

The paper considers the executiomgdrocesses om processors. The set of processors is

defined a3/ = {V1, Va, ..., Vin}. Each element of the set represents a unique processor.
Them processors can be viewed as having identical or arbitrary processing capabilities.
The setP = {Py, P,, ..., Py} represents tha processes to be scheduled by a pre-run-

time scheduling algorithm. For a processbre V, the subseP(V;) C P represents the
set of processes allocated\fo Each process allocates to a single processor. Both periodic
and sporadic processes are considerell.ith periodic processpP,, is characterised by a
set of five parametersTy, C,, NDp, HDp, Qp). T, is the period of the procesS;, is the
upper bound on its execution timi;D, andH D, are, respectively, the nominal and the
hard deadline oPy; Q, is the processor on which, executes. For all periodic processes
itis assumed that & C, < ND, < T, andN D, < HD,. The grace time of a periodic
processP, is, by definition, given by T, = HD, — N Dp,.
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Ina similar way, a sporadic proceBsis characterised by the sd@t( Cs, N Ds, H Ds, Qs).
T, represents the minimum time interval between two successive requstsidfe param-
etersCs, N Ds, H Ds and Qs keep the meaning declared for periodic processes. However,
pre-run-time scheduling always requires replacing all sporadic processes by polling period-
ics (Kopetz, 1991). A method for making such a transformation for dual deadline processes
is thus required.

Following (Mok, 1984), and while viewing a “standard” deadline as a nominal one, the
transformation of a sporadic proceRsinto a periodic procesB, is done by observing the
following conditions:

Cp = Csg; (1)
NDs > ND, > Cs; )
Ty <min(NDs — NDp + 1, T)). A3)

Two extra conditions are required for adapting Mok’s theory to dual deadline processes
running on a multiprocessor system:

QpZQs§ (4)
HDp — NDp < HDs — NDs. (5)

Condition (4) keep$s allocated toQs; condition (5) preserves the grace timeRaf

All processes irP can thus be seen as periodic and requesting execution at the beginning
ofthe period, as itis usual in a pre-run-time scheduling environment. Therefore, any process
P, € P can be characterised by the s&t Ci, ND;, HD;, Q;). All these parameters are
non-negative integers given in multiples of the basic time unit of the system.

The load model also considgpsecedencandexclusionconstraints between processes.
A precedence constraint declares that a pro&gsoducing data to a proce§ must be
scheduled to completion befoR starts execution. A precedence constraint between two
processe$ andP; denotes asP, < P;), meaning tha® precedes R Precedence con-
straints can exist between processes scheduled on the same or on different processors. The
set of precedence constraintsRrdenotes aPRE = {(P., P)IR,PePA(R < PJ-)}.

An exclusion constraint between two procesBesndP; is denoted aéP; ® P;), meaning
thatif P has started execution and itis not yet finished, tRecannot be started. Exclusion
constraints can be established between processes scheduled on the same or on different
processors and are symmetricaP, ® P;) = (P; ® P). The set of exclusion constraints
in P denotes aEXC= {(R,P) | R, P € PA (R ® P)]}.

Since the aim of a pre-run-time scheduling algorithm is to genera@sibleschedule, a
feasibility criterion is required. In here, a schedule is declared as feasible if, in the absence
of a fault, it guarantees that:

e All the precedence and exclusion constraints between processes are respected;
e No process starts executing before requesting execution;

e The completion time of every process is lesser than or equal to its nominal deadline.
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2.2. Fault-Tolerance Model

The fault-tolerance model assumes a real-time system using backward error recovery (La-
prie, Arlat, Béounes and Kanoun, 1990). In the value domain, the system is supposed to
tolerate any permanent or transient fault originated from hardware or software. For achiev-
ing this, every time an error is detected the system is brought back into an error free state
occupied prior to error occurrence—ecovery pointNelson and Carroll, 1987; Kopetz

and Verssimo, 1993)—restarting execution from there. All fault treatment actions required

in this scenario are supposed to be taken. Acceptance tests and checkpoint state storage
are supposed to be regularly performed by the executing processes. The time required to
perform these actions is included in processes execution times. Also assumed is that a
process must pass an acceptance test before completing execution.

On afirst approach, the model assumes that the processing of an error detected during the
execution of a procedd only leadsP, to rollback its execution. In this cas@,increases its
execution time by a marginGC;. Inthe presence of a faulg, 's execution time is thus equal
to C; + AC;, whereAC; denotes the error processing latency. On a second approach, the
model assumes that an error processing action requires multiple processes to rollback their
executions. This is a realistic view for preemptive schedules, where the running process as
well as all the preempted processes must rollback execution every time an error is detected.
This two step approach is because the analysis required in the second case is more complex
than in the first, but it is easily driven from there.

Only two restrictions are assumed for the fault-tolerance model. First, faults are consid-
ered rare enough so the effects of two consecutive error recovery actions do not overlap.
Second, no faults impacting the system introduce an error in more than one processor.

To define a schedule dsasiblein the context of a fault, a special “feasibility criterion”
is required: sstability criterion In here, a schedule &ableif, in the presence of a fault,
it guarantees the precedence, exclusion, start time and hard deadlines constraints of all
the processes. Thigability criterion closely follows the one stated in (Sha, Lehoczky
and Rajkumar, 1986) for prioritised preemptive scheduling. However, our calculations of
the stability margin of a real-time system will be very different from those presented in
(Lehoczky and Ramos-Thuel, 1992), (Ramos-Thuel and Lehoczky, 1993) and other papers
devoted to fixed priority scheduling. Fixed priority scheduling considers that every process
requests its first execution at system start-up, and that a précéssallowed to preempt
processes .1, P2, ... Py, which have no permission to preemipt (Liu and Layland,

1973). These constraints are not usually present in pre-run-time scheduling. As a direct
and major consequence, it suffices to consider the layout of a fixed priority schedule in
the time interval [0 T,] to derive system stability, while, in the general case, pre-run-time
scheduling requires the observation of the intervalL[OM (Ty, Ty, ..., Tp)].

3. Stability Analysis of Pre-Run-Time Schedules

Due to their inflexibility, pre-run-time scheduled systems can hardly support non-determin-
istic events such as transient overloads caused by backward error recovery. By handling a
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Figure 2. A pre-run-time schedule.

transient overload we mean to exhibit the necessary stability for guarantying processes hard

deadlines during the overload manifestation, and later returning to nominal conditions.
Considerfigure 2. Itdepicts a feasible schedule for a single processor real-time application

consisting of two periodic processd®, andP,. LetT; = T, = T andC; < C, < T/2.

According to the usual approach, assume that both processes have a single deadline, such

thatD; = D, = T/2. Also assume thd®; andP, request execution for every tinhe= kKT

andt = (2k + 1) % T/2, respectively, wherk is an integer greater than or equal to zero.
Observing figure 2 one infers that an overload thatmd#kéds increase its execution time

by more tharl /2 — C; makesP; to exhibit a timing failure. In that case, the start time of

P, is delayed. In a similar way, an overload that make$o enlarge its execution time by

more thanT /2 — C, also leads to a timing failure. It can thus be stated thastability

margin of the schedule for an overload introduced by the executio® afnd P, is given

by T/2 — C; andT/2 — C,, respectively. If any proced?; or P, enlarges its execution by

more than(T /2 — C;) + (T /2 — Cy), then both processes miss their deadlines. Although

this is a very simple scenario, it provides two important conclusions:

e Expected idle times are central to the quantification of the stability of a pre-run-time
schedule;

e Asingle transient overload can make a set of processes miss their deadlines in a row.

These conclusions are enhanced if one changes the scenario depicted in figure 1 such that
C. = C, = T/2. In that case, although the schedule is still feasible, it can be defined as
supercritical in the sense that its stability margin reduces to zero for any process. Any
minor overload can start a chain reaction from where no process ever meets its deadline: the
“domino effe¢t(Buttazzo, Spuri and Sensini, 1995). Howeverpif and D, are viewed

as the nominal deadlines & and P,, respectively, and if both processes have a grace
time greater than zero, then the stability margin of the schedule is greater than zero, even if
C1 = C, =T/2. This is true for any feasible schedule, as it proves trivially:

THEOREM1 Any feasible schedule of processes having grace times greater than zero has
a stability margin greater than zero.

Proof: Assume that, in the absence of an overload, a schedule guarantees the nominal
deadline of every process. Thatis, every proégs®mpletes execution by atingéP,) such
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thatc(P) < ND;. Also assume that, in the presence of an overload, the schedule cannot
guarantee the nominal deadlineéD;, of a general proces®,. However, an overload only
leads to a catastrophic timing failureRf ends execution by a tinte= H D;. Therefore, the
schedule is stable for overloads that [d&ddo complete execution during the time interval
[c(P), HD;]. Since itis assumed th@&T; > 0—thatis,HD; > ND,—[c(P,), HDj]isa
non-zero time interval. Thus, the stability margin of the schedule is greater than zero. Itis
worth noting that this conclusion applies to any schedule, independently of the scheduling
algorithm from where it results. ]

3.1. Additional Definitions and Assumptions

A few definitions and assumptions must be presented before quantifying the stability of a
pre-run-time schedule:

e Aschedule that is not disturbed by an overload is said to run umahemal conditions
Under nominal conditions, the execution time of a prodéds considered to be equal
to its upper boundC,, which can be defined &’'s nominal execution timeWhen a
nominal schedule cannot be met due to the occurrence of an overload, it is said to run
under aroverload condition

e Thenominal completiortime of a proces#,, denoted as(P,), is the time by which
P, completes execution under nominal conditions. In the same wapgtimnal start
timeof P, denoted as(P,), is the time by whichP, starts execution under nominal
conditions. As stated, the paramete€; expresses an increaseRyis execution time
relative toC;. Therefore AC; is themagnitudeof an overload introduced bl;. The
parameterAC’ denotes the maximum value ofC; that does not cause any timing
failure—i.e., no deadline to be missed. SimilanyC** denotes theAC; maximum
that does not cause any catastrophic timing failure.

e Thenominal laxityof a proces®,, nl(P,), is the difference between its nominal deadline
and its nominal completiontime. Thatid(P,) = N D; —c(P). Thecritical laxity of a
proces$, cl(P,), isthe difference between its hard deadline and its nominal completion
time: cl(P) = HD; —c(R),orcl(P) =ND; + GT — ¢c(P) =nl(R) + GT,.

e The relation(P; = P;) denotes that, according to a pre-run-time schedule, prdgess
executes after the execution of proc€ss Note that(P < P;) imposes(P. = P)) ,
while the opposite may not be true.

e The total amount of time that, under nominal conditions, a processor is idle during the
interval [ty, t,] is denoted a®¢.

It is assumed that when a feasible pre-run-time schedule runs under an overload condition

no processes are skipped and the expected sequence of process executions is kept. These

assumptions require a run-time synchronisation mechanism to be added to a pre-run-time
schedule. In centralised systems such a mechanismis just a FIFO queue run-time managed
by the only processor existing in the computer system. When, due to an overload introduced
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Figure 3. A segment of a general schedule.

by a proces#;, the execution of a proce$¥ such thai P, = P;) cannot be started at the
expected timeP;’s execution request is placed at the end of the queue. Prétesl

start execution as soon at its execution request gets the top of the queue and all the requests
from processes scheduled to execute beRyreave been satisfied.

A FIFO queue attached to each processor and managed in the way stated in the last
paragraph, while necessary, does not suffice for a general multiprocessor system. This is
because synchronisation constraints between processes executing on different processors
cannot be guaranteed in this way. Itis also necessary to include a run-time massage passing
system between processors. This mechanism is simple to implement and works in this way:

Every time a processdy; completes the execution of a procdgsthat, due to a syn-
chronisation constraint, is scheduled to execute before a pré¢edi®cated to a different
processolV;, V; sends an according message/fjo ProcessoW; only executesP; after
receiving such a message.

The assumption that when a feasible pre-run-time schedule operates under an overload
condition no processes are skipped and the sequence of process executions is kept, has
two important consequences. First, it means that during an overload no process starts
its execution before its request time, or delays its execution by more than the absolutely
required. Second, exclusion and precedence constraints are guaranteed. This leads to an
important conclusion in the context of the proposed stability criterion:

The only concern about the stability of a feasible schedule relies on guarantying process
hard deadlines. This is given by the quantification of the stability margin of a pre-run-time
schedule.

3.2. Single Processor System Analysis

The exact characterisation of the impact of a transient overload upon a feasible pre-run-time
schedule is central to the establishment of its stability. Single processor systems running
single deadline processes are first considered. This means that a general prdsess
viewed has having a deadliig and a laxityl (B) = D; — c(P).

Consider a segment of a general and feasible schedule where the deadline of the process
P, that introduces an overload as well as the deadlines of processes execultirigy after
arbitrarily placed—figure 3.
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First thing to note is thalP, cannot increase its execution time by more titan- c(P,)
without missing its deadline. Therefore:

ACH <I(R). (6)

Onthe other hand?} cannot increase its execution time by more to@?) ) — c(P,) without
causing a delay oR;’s start time. AdditionallyP;'s completion cannot be delayed by more
[ (P;) without causing a timing failure. The maximum tolerable delayPps start time is
thusl (P;). Therefore, one finds that:

ACF < s(P) —c(P) +1(P)). (7)

Since during the time intervab(H)ﬁs(Pj)] the processor is idle, the amount of time
s(P;) — c(P) can be expressed a%sgp’; Expression (7) can thus take the form:

ACH < ) +1(P). (8)
In the general case, every procdds executed aftel’, cannot delay its start time by
more than its nominal laxity,(Py), and has its start time delayed WBC; — @Eﬁf; as a
consequence of the overload introducedmy Thus, the conditiom\C; — @iﬁﬁf; < I(Py)
has to be satisfied for every procedssuch that(P, = Py). Consequently, the stability
margin of the schedule for proceBsis given by:

AC; = min (I(F’.), D +'(Pk)>

9
V(P = P | G5 <I(R), ©

where,

k—1 k-1
25P) = s(Py—c(P) - Y Cj=s(R) —s(R) - _C;. (10)

j=i+1 j=i

An overload occurring during the execution of a proc&ssnanifests itself during the
time interval [s, tc], wherets andt; representhe startandthe cease timef the overload,
respectively. Theg value is given byts = ¢(P,), since nominal scheduling conditions are
abandoned at this time. When a proc€sgnlarges its execution time by a valne;, it
introduces an overload that will be extinguished as soon aa @dime is stolen from the
nominal idle times. Thereforg, is the smallest time that satisfies the equality:

ACi =2} =2 p). (11)
For aAC;" magnitude overloat} is deduced from the expression:

ACH =@¢p, =tc—Cc(R) = Y.C
VP | ogp) < AC

(12)

Remember that the fault-tolerance model has assumed that the effects of two consecutive
overloads never overlap. Therefore, the maximum duration of an overload defines the
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minimum time interval between two consecutive overloads. Such a time is very important
to fault-tolerance, since it defines the maximum frequency of faults the system can handle.

Itis important noting that expression (9) establishes the stability margin of a schedule for
a particular execution of a proceBs However,P, is a general element of a set of periodic
processes whose periods are arbitrary. Therefore, a more detailed analysis is required for
quantifying the stability of a schedule for a procéss

Let L be the least common multiple (LCM) of the periods of the processes executed on
a processor. Thus, during a time intervalt[+ L] P executed/T; times. It must be
noted that calculation to LCM is always required to devise a feasible pre-run-time schedule
(Locke, 1992). Therefore, calculation to LCM is always feasible if a feasible schedule is
assumed.

Let AC(j) denote the stability margin of the schedule for ffie execution ofP; in
the interval {, t + L]. The parametenC/*(j) is established according to expression (9)
considering the particular sequence of process executed after the jth execugorTae
stability margin of the schedule for proceBs AC?, is thus given by:

ACF =min(ACH(1), ACH(2), ..., AC(L/T)). (13)

THEOREM?2 A feasible pre-run-time-schedule of processes having non-zero grace time and
executed on a single processor system remains stable when a single protessd3es
its execution time by no more than:

ACH =min(AC™ (1), AC*(2), ..., AC*(L/T)) . (14)

where eachAC;™(j) is the maximum increase in '® execution time for its jth execution
in the time interva(t, t + L], and is calculated according to the formula:

K0T\ — Al s(Px)
AC (J)—mmg(m,@c(p)+cl<Pk>) as)

V(R = PO | g5 < cl(R).

Proof: The proof for theorem 2 directly follows from the analysis that derived expressions
(9) and (13), while considering the hard deadline and the critical laxity of each process.
[ |

THEOREM 3 For a set of processes having a grace time greater than zero and executed on
a single processor system, the valueAd;™ associated to a process B always greater
than AC/'.

Proof: Notethatthe equallgi(P) = nl(P,)+GT, applies for each proce&s. Therefore:
min (cI(P.), TR + cI(Pk)> = min (nI(R) +GT, &35 +nl(P) + GTk) .

This is true since processor idle times do not depend on the placement and characterisation
of the deadlines. Therefore, and because the grace time of each process is greater than zero,



76 MAGALH AES AND SILVA

one finds that:
min (nl(R) + GT., 258 +nl(R) + GT) > min (nl(R), 257 +nl(R). ™

Another important conclusion emerges from the presented analysis:

Corollary 1 In a centralised system execugia P set of n processes scheduled according
to a feasible pre-run-time scheduling algorithf(t, P), the maximum time redundancy
that can be used for error processing is given by:

RTnax(2) = min (ACF*, ACS*, ..., AC¥) . (16)

Proof: Corollary 1 is true because a real-time system cannot include a time redundancy
that can lead any process to miss its hard deadline during an error processing action.
Therefore R ThaxCcannot be greater than the stability margin of the schedule for any process.

[ |

Expression (16) defines thatability marginof a pre-run-time schedule where no time
redundancy is used for error processing. Therefore, a real-time system that includes a time
redundancyRT < RTnaxfor error processing purposes has a stability makgif), given

by:
0(2) = RTnax() — RT. a7)
Finally, another important conclusion:

Corollary 2 The scheduling criterion that must be optimised by a pre-run-time scheduling
algorithm intended to maximise the stability of a single processor system is the maximisation
of processes’ laxity.

Proof: Note that the nominal laxity of a proce§s increases when a feasible schedule
anticipatesP,’s nominal start time. Processor idle time between the completioR of
and the start time of any other process executed &talso increases in this situation.
Therefore, according to expression (9), the param&t@f increases. On the other hand,
if the laxity of a proces®;, such that(P;, = Pj), is increased bly anticipating its start
time by a valuet, the vaIue@iEFP,f; decreases by, but the Surr@ip.f; +1(P;) keeps the
original value. This shows thahC;" does not depend oR;’s start time. Therefore,
when the laxity of a procesB, increases, so does the stability of the schedulePfor

[ |

Itis worth noting that the maximisation of a process laxity is equivalent to the maximisation
of its critical laxity. However, the adjective®minalandcritical were intentionally omitted
inthe statement of corollary 3. This was to emphasise that the optimisation criterion does not
need to assume any consideration about processes deadlines. Therefore, any pre-run-time
scheduling algorithm that satisfies the laxity maximisation criterion for processes having
a single deadline also provides the maximum stability to a schedule of processes having
arbitrary grace times.
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In (Xu and Parnas, 1990) it is presented a centralised pre-run-time scheduling algorithm
that satisfies the optimisation criterion stated above. The algorithm is optimal in the sense
that it always finds a feasible schedule providing that such a schedule exists. Another
advantage of this algorithm is that it departs from a very general load model similar to ours.
Therefore, the Xu and Parnas algorithm must be used in single processor pre-run-time
scheduled applications.

3.3.  Multiprocessor System Analysis

In a multiprocessor system, a set of procedB€¥;) is said to be independent of the set
P (V;) if no precedence or exclusion relations exist between a prégésdonging toP (V;)
and a procesB; belonging taP (V;). Arealtime systemisomposed of independent process
setsif:

VPV, P(V)) | Vi # Vi,
~3(R.R) [P e PV) AR € PO A ((R < P) V(R <P)V(R&P).

Due to the absence of synchronisation constraints between processes executing on differ-
ent processors, a real-time system composed of independent process setsvetoad
propagation pathdetween processors. This means that there are no process executing
sequences that can make an overload introduced by a prBces® (V;) to disturb the
nominal execution of a proce$} € P(Vj). Consequently, the analysis developed in the
last subsection directly applies for each processor of a multiprocessor system composed of
independent process sets.

However, multiprocessor systems composed of independent process sets are rare in prac-
tice. This means that most multiprocessor real-time systems have paths through which an
overload can propagate from one processor to another. Overload propagation paths can be
established with the help of a graph. In such a graph, nodes represent processes, and arcs
denote partial process execution orderings. The root node denotes a process that introduces
an overload. Nodes are organised in rows. Each row represents a particular processor.
An arc connecting two nodes in different rows denote a path from where an overload can
propagate from one processor to another.

An overload propagation graplis denoted a$sop(P) = (Np, Ao), WhereP, is the
root node. N, and A, denote the set of nodes and the set of arcs, respectively. Figure 4
shows the overload propagation graph for the proBe®®longing to a multiprocessor real-
time system having three processors and seven processes, suetMbat { Py, Py, Ps},

P(V2) = {P4, Ps, Ps}, P(V3) = {P7}, (P < Psy) and(Ps ® Py). It is assumed that
a pre-run-time scheduling algorithm has established a feasible schedule according to the
following process execution orderings:

For processoWy, [PL — P, — Ps]; for Vo, [Py — Ps — Pg]; for V3, [Py].

Also considered is that the exclusion constraiBt ® P;) gave rise to the precedence
constraint(Ps < P7). That is, proces®s is executed before proceBs according to some
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Figure 4. Overload propagation graph for procdds

feasible schedule. Using an overload propagation graph its possible to devise the different
paths from where an overload introduced by the process denoted as the root node spreads
to other processes. Such a set is represented as:

OPP(P) = {(P. P,.... R
|R.P.....,kePA[R - P> - = R]}. (18)

TheOPP(P,) set is central to the stability analysis of a pre-run-time schedule executed on
a multiprocessor system. Also important in this context is the analysis developed in the last
subsection. This is because the maximum increas®’$nexecution time for a particular
propagation path is given by expression (9). Using this expression for all the propagation
paths that originate fror®,, one finds the maximum allowable increaseFjfs execution
time for each overload propagation path. The most stringent value of this set denotes the
maximum increase i, execution that does not cause any timing failure. Therefore, for
the jth execution of a procedd having a single an arbitrary deadline, we have:

AC(j) =min (((R), R +1(RY)

s(Ro) (19)
V([P — = B] € OPP(P)) | 25y < I(P).
SinceP, is a periodic process, one concludes that:
ACF =min(ACH(1), AC*(2), ..., AC(L/T)), (20)

where L is the least common multiple of the periods of the processes allocated to the
processor on whicl®, executes, andC;*(j) is the AC;" value for thejth execution ofP,
in the time interval{, t + L].

From here, itis possible to establish a set of theorems similar to those developed for single
processor systems while considering a multiprocessor real-time system.
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THEOREM4 A feasible pre-run-time-schedule of processes having non-zero grace time and
executed on a multiprocessor system remains stable when a single protese&ses its
execution time by no more than:

ACH = min (AC*(1), AC™, (2), ..., ACF*(L/T)), (21)

where eachAC;™(j) is the maximum increase in '® execution time for its jth execution
in the time intervalt, t + L], and is calculated according to the formula:

AC(j) = min (C|(P.), @i((g‘)) + cI(Pk)> ,

(R (22)

V([P — - = RB] € OPP(R)) | 25 < cl(P).
Proof: The proof for theorem 4 directly follows from the analysis that derived expressions
(19) and (20), while considering the hard deadline and the critical laxity of each process.
]

THEOREM5 For a set of processes having a grace time greater than zero and executed on
a multiprocessor system, the value/©C;™ associated to a process B always greater
thanACY.

Proof: The approach is similar to the proof of theorem 3, while considering the values of
AC andAC™ in the context of a multiprocessor system. |

Corollary 3 For a system given by a V set of m processors and a P set of n processes fea-
sibly scheduled according a pre-run-time scheduling algoritf¥tt, P, V), the maximum
time redundancy that can be used for error processing in & V processor is given by:

RTmax(@, Vi) = min (AC{*, AC", ..., ACYY)
VR € P(V). (23)

Proof: The proof for corollary 3 is similar to the proof for corollary 1. In this case it
should be noted th& Thax(€2, Vi) cannot be greater than the stability margin of the schedule
running inV; for any proces$; € P(V;). [ |

It is worth noting that the stability margin for a multiprocessing system based on a pre-run-
time schedule has components. Every component is given by expression (23). Thus, the
stability margin of a processd; that uses a time redundan&yT (V;) for error recovery

and belongs to a multiprocessing system is given by:

@(2, Vi) = RTmax(2, Vi) — RT(V). (24)

The stability margin of a multiprocessing pre-run-time schedule Bfset of processes,
Q(t, P), is thus given by the following vector:

0(2, V1)
PR, Va)
= || (25)

(2, Vin)
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Corollary 4 The scheduling criterion that must be optimised by a pre-run-time scheduling
algorithm intended to maximise the stability of a multiprocessor system is the maximisation
of processes’ laxity.

Proof: The proof directly follows from the proof of corollary 2. In this ca$®,is the
process represented by the root node of an overload propagation path), iaraprocess
represented by an arbitrary node on the same path. ]

There is a multiprocessing pre-run-time scheduling algorithm that maximises processes’
laxity. This algorithm was developed by Shepard and @a(®91) and derives from
that developed by Xu and Parnas for single processor systems. The Shepard aad Cagn’
algorithm is claimed to be optimal for multiprocessor pre-run-time scheduling, and uses a
very general load model similar to ours. Therefore, the Shepard anc@igprithm must
be considered in multiprocessor pre-run-time scheduled systems.

3.4. Multiple Processes Re-execution

Rolling back solely the executing process every time an error is detected is only effective
for processes that execute for completion when their requests are satisfied. Otherwise, the
executing process as well as all the preempted processes must rollback their executions
every time an error is detected (Randell, 1975). This means that the stability analysis
developed so far only applies to non-preemptive pre-run-time scheduling. However, non-
preemptive real-time scheduling is avoided whenever possible: it is a NP-hard problem
(Cheng, Stankovic and Ramamrithan, 1987) and usually produces inefficient schedules.
Therefore, there is a strong interest in adapting to preemptive schedules the stability analysis
already developed.

The preemptive schedule ofaset ofn processes takes the segmentation of each process
P into a convenient numbeg(i) > 1, of segments:P, 1, P 2, ... R 2. This means
that when thejth # z(i) segment of a procedd completes executior® is temporarily
suspended. P resumes execution by the time it§ + 1)th segment starts execution.
Since process segmentation and multiple processes re-execution are how considered, the
scheduling model used so far has to be slightly broadened. The following assumptions are
considered from now on:

1. Thesegmentationofaprocd3sntoz(i) > 1parts, givesrisetosegmems, P 2, ...,
Pz, suchthat(P1 < P2), (R2=<P3)..... (Pzi-1 < Pzp)-

2. A pre-run-time schedule is feasible for a procBEssH:

e Segment’ ; does not start execution befoRe’s request time;
e Precedence and exclusion constraints between processes segments are respected;
e Segment?, ,;, does nor complete execution aftérs nominal deadlineN D;.

3. A feasible pre-run-time schedule is stable for a proégsEsegmentP, ,;, does not
complete execution aftd® 's hard deadline when an error processing action takes place.
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4. Every proces®; contains an arbitrary number of checkpoints that are arbitrarily placed
on P execution code. However, it is assumed that:

e Every process? performs an acceptance test by the end of the execution of its
P .zi) segment. If the test passes, the executioR; a§ declared completed. If it
fails, B, rollbacks to the last recovering point, and restarts execution from there.
This avoids the need of re-executing any segmer, affter P,’s completion.

e Ifthe segmen®, i of a process, is executed on a processgr, and the segment
P «+1 is executed on a different processdqr, then the segmer® ;. ends with
an acceptance test. This avoids the need of re-execution processes allocated to
multiple processors during an error recovering action.

5. Every time an error is detected the executing process and all the preempted processes
rollback execution to their last recovery points.

According to assumptions 2 and 3, the feasibility and the stability analysis of a preemptive
pre-run-time schedule does not require the consideration of the nominal and hard deadline
of a process segment i, for k # z(i). However, since processes segments are supposed
to have characteristics similar to those defined in the load model, it can be stated that:

NDi1=NDio=---=ND)=ND, (26)
and
HDi1=HDy2="---=HD; )= HD;. 27)

Consider thus a pre-run-time scheduling segnf&it — --- — P;; — B, such that

an error detected durin;; execution can only be properly recovered by re-executing
segment$ i, ..., P j, Bi. B is ageneral segment of proceds namely, it can refer to

its last segmen® ,i,. The condition required for processing such an error without causing
a catastrophic timing failure is given by the following corollary:

Corollary 5 It is possible to process an error detected during the execution of a segment
P by re-executing the segmentgyP. .., P; j, P ;, if it does not require a time greater
than AC/Y.

Proof: Note thatAC}*"is calculated using expressions (15) or (22) as it relates to a single or
multiprocessor system, respectively. Remember A@t* defines the maximum increase
in P ; execution time that does not lead to a catastrophic time failure. Hows@t, can
also be defined as the maximum delayf®ncompletion time that does not led&l; or any
process segment executed aftepitniss its hard deadline. This delay can have any cause.
Namely, the re-execution of segmeiigy, ..., P, j, P.i.

Also important to note is that the need of re-executing the segni&nis .., P ; as
a consequence of an error detected durihg execution is synonymous that segments
Pczi0, - - - » Pj zj) are executed after; . Otherwise, there was no need to re-execute them,
since processes,, ..., P, were already completed by the time the error is detected. Thus,
corollary 5 gives the condition for segmeRt; as well as segment® k), - - ., Pj zj) not
to miss their hard deadlines. Consequently, if defines the condition for using backward
error recovery in a preemptive pre-run-time schedule. ]
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Figure 5. A saturated schedule.

4. A Final Note on System Recovery

According to expression (11), the cease time of an overload depends on nominal idle times
following the start time of the overload. Therefore, it can be concluded tkatwaated
system-that is, a system where nominal processor idle times do not exist—never returns
to nominal conditions after suffering the impact of an overload.

However, this view does not apply to many real-time applications. Consider the scenario
depicted in figure 5. It represents the only feasible schedule for a centralised real-time
application consisting of two periodic processesand P, requesting execution every time
t = kT andt = (2k + 1) % T/2, respectively, fok > 0. Itis assumed thdy = T, =T,
Ci=C,=T/2,ND;=ND,=T/2andHD; = HD, = T. Also presented in figure 5
is theobservation gridfor processe$’; and P,. An observation grid is the set of points
associated to the completion time of a procBsg§Kopetz, 1991). Observation points are
represented by bold dots. L& (t, P;, P,) denote the nominal schedule represented in
figure 5.

Consider now that the execution & starting at the timé¢ = 3T /2 introduces an
overload such thahC, < T/2. The impact of this overload upon process sequencing
is represented in figure 6. The dashed dots represent the nominal observation points.
Let Qo(t, P1, P2) denote the schedule represented in figure 6. First thing to note is that
ACy* = AC3* = min(cl(Py), cl(Py)) = T/2. SinceAC, < T/2, the overload does not
cause any catastrophic timing failure. On the other hand one finds that:

QN(t, P1, Pg) fort < 2T;

QN((t — ACz), Pl, Pz) fort > 2T; (28)

Qo(t, P1, Pp) = {
This means that nevertheless the nominal deadlines of both processes can no longer be
meet for a time > 2T, the period of each observation grid recovers its nominal valye,
a short time after the occurrence of the overload. Therefore, if the role of both processes,
P1 andP;, is to establish an observation grid with a periodone may state that processes
P, and P, recover their nominal conditions at the time§/2 + AC, and 2 + AC,,
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Figure 6. A saturated schedule under an overload condition.

respectively. Thus, it can be argued that both processes miss a single nominal deadline due
to the occurrence of the overload. However, each observation grid has changed its phase
by AC, time units as a consequence of the overload.

When a similar analysis is derived for the observation grids attached to a set of arbitrary
periodic processes, one finds that if a procBseicreases its execution time by a margin
AC; < AC*, then all processes making part of the system have, at most, one timing
failure. This is because no more than two observation points for a prégesscome
separated by more thad D; as a consequence of the overload. On the other hand, the
phase change exhibited by an observation grid after suffering the impact of an overload is
always lesser than or equalAC;. This is because processor nominal idle times contribute
for the returning of a grid to its nominal observation points. However, idle times are not
necessary for making an observation grid to return to its nominal period.

We feel this note is important because, in many systems, the major real-time issue is
guaranteeing that two consecutive executions of a process are not separated by more than
a certain time. This is particularly true in control applications (Middleton and Goodwin,
1990;Astrom and Wittenmark, 1990), where the execution of a periodic process is the way
for enforcing a timing regularity in the observation of the controlled object according to its
dynamic. A periodic control process typically reads data from the application environment,
performs data manipulations, and writes results on an output port, changing the environment
accordingly (Stankovic and Ramamritham, 1993). For a proEessat performs this way,
time is arelative measurgn the sense that it restarts counting every tilheompletes an
execution. Therefore, the way thatrecovers from an overload condition must be viewed
in the context otime as a relative quantity

While this conceptis applicable to many real-time systems, it must be taken very carefully.

It can become very dangerous if generalised. Namely, to very critical systems where alarm
signals are expected to trigger a very fast operational change; e.g., a safe shutdown or
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the reconfiguration of the controlling system. Real-time processes are very diversified.
Some of them—including the most critical ones—do not understand time as a relative
guantity.

5. Conclusions

The paper has dealt with the stability of pre-run-time schedules executed on single and
multiprocessor real-time systems. The point of departure was that most real-time processes
have a nominal and a hard deadline separated by a non-zero grace time. Therefore, processes
were considered to be scheduled to meet their nominal deadlines under nominal conditions,
and not to miss the hard deadlines in the presence of an overload.

The first major contribution of the paper is the proof that the stability of any real-time
system scheduled in this way is greater than the stability achieved when it is tuned to
guarantee a single and hard deadline for each process. This is important because it shows
that error masking is not the only solution for designing highly dependable hard real-time
systems. Backward error recovery or another time consuming error processing technique
can be used in critical real-time applications when certain conditions are satisfied. The
devising of these conditions for a set of various and realistic scenarios is the second major
contribution of the paper. The statement of the scheduling criterion that brings the maximum
stability to a schedule and the reference to existing algorithms that conform to such a criterion
is another important contribution. Therefore, this paper has provided a framework that can
provide a great help in the design of low cost and highly dependable pre-run-time scheduled
real-time systems.
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