
Autonomous Agents and Multi-Agent Systems, 5, 103–111, 2002
© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

M&M’s: Building Binary Software
Components for Supporting Mobile-Agent
Enabled Applications

PAULO MARQUES, LUIS SILVA AND JOÃO GABRIEL SILVA �pmarques, luis,
jgabriel�@dei.uc.pt
CISUC, Computer Science Department, University of Coimbra, 3030 Coimbra, Portugal

Abstract. Mobile Agents provide a new promising paradigm for developing distributed applications.
Nevertheless, although the basic concept has been around for some years and many agent platforms are
available both from the industry and research community, there are currently few examples where the
technology has been deployed in the real world. One important reason for this is that using the current
available agent frameworks it is quite difficult to develop applications without having to center them com-
pletely on the agents and on the agent infrastructure. In this paper, we present the M&M project, taking
place at the University of Coimbra. In this project, we are developing an extensive component-based
framework that enables ordinary applications to use mobile agents in a flexible and easy way. By using
this approach, applications can be developed using current object-oriented approaches and become able
of sending and receiving agents by the simple drag-and-drop of mobility components. The framework
was implemented using the JavaBeans component model and provides integration with ActiveX, which
allows applications to be written in a wide variety of programming languages. By using this framework,
the development of applications that can make use of mobile regents is greatly simplified, which can
contribute to a wider spreading of the mobile agent technology.

Keywords: mobile agents, component-based development, JavaBeans

1. Introduction

Mobile Agents (MAs) provide a new promising paradigm for developing dis-
tributed applications. Nevertheless, although the basic concept has been around
for some years, and many agent platforms are available both from the industry and
research community, there are currently few examples where the technology has
been deployed in the real world.
We believe that one important factor preventing the widespread of mobile agents

is the lack of proper support for application development. Research has been mainly
focused on the agent technology and on mobility issues rather than on the support
needed for real-world application development. This issue has two aspects: the pro-
grammer and the user.

1.1. The programmer

From the point of view of the programmer, constructing an application that uses
mobile agents is a difficult process. Current mobile agents systems force the



104 marques, silva and silva

development to be centered on the agents, many times requiring the applica-
tions themselves to be coded as a special type of agents—stationary agents. When
this does not happen, special interface agents (service agents) have to be setup
between the application and the incoming agents. These agents must know how to
speak with the mobile agents and with the application. Although the mobile agent
concept—a thread that can move to another node, is a very useful structuring primi-
tive, all the currently required setup to use it is an overkill that prevents acceptance
by the developers.
Since basically anything that can be done with mobile agents can be done using

simple client/server remote method evocations, the reasoning goes: “Mobile agents
do not give me any fundamentally different (and needed) mechanism, and at the
same time force me to develop systems in a completely different way. Why should
I bother?”
The problems include: the mobile agent concept is not readily available at the

language level; the applications have to be centered on the mobile agents; and a
complicated interface between the agents and the applications must be written. The
programmers want to develop applications as they currently do. Agents will typically
play a small part on the application (90-10 rule: 90% traditional development, 10%
mobile agents). Current systems force exactly the opposite.

1.2. The user

From the viewpoint of the user, if an application will make use of mobile agents, it
is necessary to first install an agent platform. The security permissions given to the
incoming agents must also be configured and the proper hooks necessary to allow
the communication between the agents and the application must also be setup.
While some of these tasks can be automated using installation scripts, this entire
setup package is too much of a burden for the average user. Usually, the user
is not concerned with mobile agents nor wants to configure and manage mobile
agent platforms. The user is much more concerned with the applications than with
the middleware they are using in the background. In the currently available mobile
agent systems, the agents are central and widely visible. They are not the background
middleware but the foreground applications.
The term mobile code also has very strong negative connotations that make the

dissemination of the MA technology difficult. The user is afraid of installing a plat-
form capable of receiving and executing code without his permission. This happens
even though the existence of mobile code is present in technologies like Java, in par-
ticular in RMI and JINI. The fundamental difference is that in those cases, the user
is shielded from the middleware being used. In many cases, using mobile agents do
not pose an increased security threat, especially if proper authentication and autho-
rization mechanisms are in place. However, because the current agent platforms do
not shield the user from the middleware, the risk associated with this technology is
perceived as being higher, which causes users to back away from applications that
use it.



m&m’s 105

In the M&M project, at the University of Coimbra, we have developed an exten-
sive component-based framework for easily supporting the mobile-agent concept
when creating applications. In our approach there is no agent platform. The appli-
cations become capable of sending, receiving and interacting with mobile agents
by using well-defined binary software components [l7]. If a Visual Development
Environment is used, this can be accomplished by the simple drag-and-drop of
components from a component palette and by visually configuring their proper-
ties and interconnections. This is a step forward over the traditional development
approaches used in the platform-based MA systems. Because in this approach there
is no mobile-agent platform and because the emphasis is put on the applications
and not on the agents, we call this approach ACMAS—Application-Centric Mobile
Agent Systems.
The main goals of the project are twofold: (a) to address the problems that

inherently make the development and deployment of mobile-agent based applica-
tions difficult; (b) to investigate the tradeoffs associated to building mobile-agent
enabled applications using a component-based approach.
The rest of this paper is organized as follows. Section 2 discusses the ACMAS

approach being explored in M&M. Section 3 presents the application areas being
addressed to validate the approach. Section 4 discusses some lessons learned.
Section 5 presents related work. Finally, Section 6 gives the conclusion of the
paper.

2. The M&M project

2.1. The ACMAS approach

In the ACMAS approach, the applications are developed using industry object-
oriented development best practices and can additionally become agent-enabled by
incorporating the mobility components. In this approach, the emphasis is put on
the development of applications and not on the agents. Each agent arrives and
departs of the application that it is specific. The application knows the interface of
the agents and the agents know how to interact with the applications (Figure 1).

Mobility
Component

Mobility
Component

Application A Application B

Application
objects

Application
objects

Mobile
agents

Mobile
agent

Figure 1. Applications become agent-enabled by using mobility components.



106 marques, silva and silva

From the perspective of the programmer, all he has to do is to use the mobility
components and write the agents. The agents arrive and departure directly from the
application without the needing a fully blown agent platform. From the user point
of view, he just sees an ordinary application. The user is completely shield from the
usage of mobile agents taking place in the application.
In ACMAS, the applications are developed using three different kinds of compo-

nents (Figure 2):

• Mobile-agent support components;
• Third-party off-the-shelf components;
• Domain specific components.

Mobile-agent support components provide the basic needs in terms of mobile-agent
infrastructure. We currently have components for supporting the migration of agents
between applications, components for supporting different inter-agent communica-
tion mechanisms, components for agent tracking, security and others.
Third-party off-the-shelf components are components that are commercially avail-

able from software makers and can be used for building the system. Currently there

Migration
Support

Agent
Tracking

Agent &
Infrastruture
Management

Persistence

Mobile-agent Support Components

Hardware
Monitoring

Parsers (... Others ...)

Domain Specific Components

Selection and Wiring of
the Necessary Components

Application

Graphical
Components

Network
Management

Database
Access

Messaging
Mathematical
Calculations

(... Others ...)

Third-party Off-The-Shelf Components

Inter-Agent
Comm.

(... Others ...)

Figure 2. The applications are developed by wiring different kinds of software components.



m&m’s 107

is a large variety of components available for the most different things, like accessing
databases, designing graphical user interfaces, messaging and others. All these com-
ponents can be used for building the applications without having to re-implement
the required functionalities.
Domain specific components are modules that must be written in the context of the

application domain being considered, providing functionalities not readily available
off-the-shelf. For instance, while implementing a particular application it may be
necessary to write special parsers for extracting information from files, or to write
supporting services for allowing agents to monitor the hardware of a machine. These
modules can be coded as components and incorporated into the application.
One important point in ACMAS is that while developing an application only the

components required for that particular application domain have to be included.
Also, because the features available to the programmer are implemented in separate
binary components, which have well-defined boundaries, it is possible to expand
the package without influencing already developed applications. Each time a new
feature is required or a new service implemented, this can be done by creating
a new component. This allows a high degree of flexibility, since the component
palette is constantly being enriched with new components. At the same time, the
new features do not force the applications to become heavier or bulkier since only
required functionalities are introduced in each application.

2.2. Supporting ActiveX

The component package was implemented in the Java programming language and
using the JavaBeans [15] component model. Nevertheless, we have also decided to
support the ActiveX component model, that is based on Microsoft’s COM [11]. We
have taken this decision because of the wide adoption of this component model
in the software industry and in research. By supporting ActiveX, a much wider
usage base and a much richer set of environments where to experiment with the
framework is available.
Another important point is that any language that has the necessary mechanisms

to make use of COM and ActiveX is able to use the mobility components. At
the present, most languages that available for the Windows platform [9] have this
capability. By supporting ActiveX, the developer is no longer limited to write appli-
cations in Java. Applications can be coded in languages like Visual C++ [4], Visual
Basic [2] or Delphi [18]. This happens without having to implement any special
layer between the components and the target languages. During our experiments, a
simple instant messaging application was written in Visual C++, Visual Basic and
Java. The agents migrated and executed in all the client applications independently
of the language where they were written.

3. Application domains being explored

In order to evaluate the strengths and weaknesses of the ACMAS approach, when
compared in the traditional platform-based model, two application domains were



108 marques, silva and silva

selected:

• Accessing Information Systems in Disconnected-Computing Environments;
• Network Management.

3.1. Accessing information systems in disconnected-computing environments

Over the last few years, mobile phones, laptops and personal digital assistants
(PDAs) have become commonplace. Laptops and mobile phones are already
reshaping the way people work. As mobile devices become more powerful, users
are starting to expect to have access to information in any place they are, by using
such devices.
To complicate maters, today’s Corporate Information Systems (CIS) are being

deployed using a three-tier architecture [10]. Thus, accessing the databases is no
longer enough. It is becoming increasingly important to have mechanisms that allow
mobile end-devices to access and interact with the business logic present in the
middle-tier.
Mobile agents are a very interesting approach to software development in dis-

connected computing environments [3, 12]. The advantages of using mobile agents
in mobile computing include:

• Connections must only be up for receiving and sending the agents.
• Data must not be transferred from the server to the client: the agents just process
it at the server.

• Multiple interactions occur locally at the server, between the agents and server
processes.

We are currently exploring the ACMAS approach for building systems where
mobile agents provide the base mechanisms for allowing client applications to inter-
act with the business logic present on the information systems [6]. ACMAS is espe-
cially interesting in this context since the requirements at the client-side are very
different from the requirements at the server-side. ACMAS provide a very flexi-
ble way of addressing these different requirements by having different components
deployed in the applications of the end-devices and on the server.

3.2. Network management

Network Management has always been one of the most privileged demonstration
fields for MA technology. In fact, it was during a previous project [13] on this area
that we have identified many of previously mentioned problems of the platform-
based approach.
While the previous application domain gives us the opportunity to experi-

ment directly at the application level, for network management we are building a



m&m’s 109

domain-specific component palette that gives applications and agents the services
that we found to be the most interesting on this application field:

• Multi-level delegation of management support.
• Distribution of management services across unstructured topologies.
• Disconnected or very low bandwidth operation.
• Dynamic service deployment, reconfiguration and relocation.
• On-the-fly extension of installed management services.
• Heuristic data collection over large network domains.

Working on a component palette for the specific domain of network manage-
ment is giving us the opportunity to assess the limitations and strengths of the
implemented extensibility mechanism for supporting new services [7], and it is also
allowing us to evaluate ACMAS in the context of building non-hierarchical man-
agement meshes supported by mobile agents.

4. Lessons learned

From building the ACMAS component palette and developing some prototype
applications, we have already gathered some important lessons.
When developing applications based on mobile agents, it is a lot more easy to

use components to agent-enhance the applications than to center all the devel-
opment around agents, where complicated setups have to be done. This is espe-
cially important if it is necessary to use other middleware like CORBA [10] or
SNMP [14]. While current MA frameworks do not integrate well with existing mid-
dleware, applications using the mobility components can transparently use other
middleware solutions.
After presenting some demonstrations of applications that are mobile-agent

enabled, the reaction of the users was very positive. One key point for this was that
they were not aware of the mobile agents but only of the results obtained from
the applications. This clearly contrasts with our experience on presenting applica-
tions based on classical platform-based systems, where the use of agent-technology
typically raised concerns and some suspicion.
Developing component for supporting mobile agents can be hard. When it comes

to security, it is not trivial to design an approach where the mobility components do
not impose restrictions on the application. In addition, when developing distributed
network components (e.g., agent tracking support), managing the configuration of
the components becomes complicated since there is no central point to address.
This typically requires that the configuration must be replicated on the existing
components. Technologies like Sun’s InfoBus [15] may help to solve some of these
problems.
For a more complete account of the experiences we had while implementing the

framework, please refer to [6–8].



110 marques, silva and silva

5. Related work

The two works most related to ours are JIAC [1] from TU-Berlin and Gypsy [5]
from TU-Vienna.
JIAC is a component toolkit for building intelligent agent systems for telecom-

munication applications. In JIAC components are scripts that can be plug in into
an agent backbone or into a place.
Gypsy is a component-oriented mobile agent system, where everything is a

JavaBean component. Agents are components that run inside of places. Places can
be assembled by connecting several components and host the agents.
While on these approaches, the main objective is to develop mobile agents and

agent platforms by combining different components, in ACMAS the key idea is to
embed sufficient support for agent mobility inside of the applications, bringing the
focus back to the application development.

6. Conclusion

In this paper, we have presented the M&M project, which aims to address some
of the questions that make the usage of mobile agent technology difficult. In our
approach, the applications become agent-enabled by means of software components
that allow them to receive and send agents and provide the necessary services.
We believe that this approach will contribute to a easier dissemination of the

mobile agent paradigm because:

• The applications can be developed using traditional OO techniques.
• The applications become agent-enable by the simple drag-and-drop of compo-
nents in Visual Development Environments.

• The final user does not have to deal with agent platforms but only with applica-
tions.

• Integration with ActiveX provides a wide usage platform on where to use mobile
agents.

In addition, using a component-based approach brings several benefits when com-
pared to a platform-based approach:

• Agents only migrate to the applications they are interested in, and not to a plat-
form that runs all agents for all the applications. This contributes for having a
much more lightweight and robust system.

• By creating components that represent new services, the framework can be easly
extended.

• Mobile agents are just like any other middleware and coexists pacifically with
other programming tools. This is specially important when supporting legacy
applications.

After having developed a comprehensive component pallete, we are presently
working on validating the approach by experimenting in two application domains:



m&m’s 111

information systems in disconnected computing environments and network man-
agement. Applying the ACMAS technology on these areas will certainly provide a
valuable learning experience.

Acknowledgments

This investigation was partially supported by the Portuguese Research Agency
FCT, through the program PRAXIS XXI (scholarship number DB/18353/98) and
the M&M Project (ref. POSI/33596/CHS 1999), and through CISUC (R&D Unit
326/97).

References

1. S. Albayrak and D. Wieczcorek, “JIAC—A toolkit for telecommunication applications,” in Proc.
Intelligent Agents for Telecommunication Applications Workshop (IATA’99), Stockholm, Sweden, 1999.

2. F. Balena, Programming Visual Basic 6.0, Microsoft Press, 1999.
3. D. Kotz, R. Gray, S. Nog, D. Rus, S. Chawla, and G. Cybenko, “AGENT TCL: Targeting the needs

of mobile computers,” IEEE Internet Computing vol. 1, no. 4, pp. 58–67, 1997.
4. D. Kruglinski, S. Wingo, and G. Shepherd, Programming Visual C++, Fifth ed., Microsoft Press,

1998.
5. W. Lugmayr, “Gypsy: A component-based mobile agent system,” in Proc. 8th Euromicro Workshop

on Parallel and Distributed Processing (PDP2000), Rhodos, Greece, 2000.
6. P. Marques, L. Silva, and J. Silva, “A flexible mobile agent framework for acessing information sys-

tems in disconnected computing environments,” in Proc. Third Int. Workshop on Mobility in Databases
and Distributed Systems MDDS’2000, Greenwich, UK, September 2000, to appear.

7. P. Marques, L. Silva, and J. Silva, “Addressing the question of platform extensibility in mobile agent
systems,” in Proc. Int. ICSC Symp. on Multi-Agents and Mobile Agents in Virtual Organizations and
E-Commerce (MAMA’2000), Wollongong, Australia, December 2000, to appear.

8. P. Marques, L. Silva, and J. Silva, “Building domain-specific mobile-agent platforms from reusable
software component,” in Proc. IEEE 2000 Int. Conf. on Software, Telecommunications and Computer
Networks (SoftCom’2000), Split and Dubrovnik (Croatia), Trieste and Venice (Italy), October 2000,
to appear.

9. Microsoft Corporation, Microsoft Windows Products Homepage, http://www.microsoft.com/windows/
default.asp.

10. R. Orfali, D. Harkey, J. Edwards, and R. Crfali, Instant CORBA, Wiley: New York, 1997.
11. D. Rogerson, Inside COM, Microsoft Press, 1996.
12. A. Sahai and C. Morin, “Mobile agents for enabling mobile user aware applications,” in Proc.

Autonomous Agents 98’, Minneapolis, USA, 1998.
13. L. Silva, P. Simoes, G. Soares, P. Martins, V. Batista, C. Renato, L. Almeida, and N. Stohr, “JAMES:

A platform of mobile agents for the management of telecommunication networks,” in Proc. Intelligent
Agents for Telecommunication Applications Workshop (IATA’99), Stockholm, 1999.

14. W. Stallings, SNMP, SNMPv2, and CMIP, Addison-Wesley: Reading, MA, 1993.
15. Sun Microsystems, JavaBeans Specification 1.01, Sun Microsystems, 1997, available at http://

www.javasoft.com/beans.
16. Sun Microsystems, InfoBus 1.2 Specification, Sun Microsystems, 1999, available at http://

www.javasoft.beans/infobus.
17. C. Szyperski, “Component software,” Beyond Object-Oriented Programming, Addison-Wesely:

Reading, MA, 1998.
18. S. Teixeira and X. Pacheco, Delphi 5 Developer’s Guide, Sams, 1999.


