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Abstract The paper introduces the Active Observer (AOB) algorithm in the frame-
work of Kalman filters. The AOB reformulates the Kalman filter to accomplish
model-reference adaptive control based on: (1) A desired closed loop system. (2) An
extra equation to estimate an equivalent disturbance referred to the system input. An
active state is introduced to compensate unmodeled terms, providing a feedforward
compensation action. (3) Stochastic design of the Kalman matrices. Stability analysis
with model errors is discussed. An example of robot force control with an external
and unknown nonlinear disturbance is presented (SISO system). Another example
of model-matching control for steer-by-wire (SBW) vehicles with underactuated
structure is discussed (MIMO system).

Key words disturbances · Kalman filter · observers · state space control ·

stochastic estimation

1. Introduction

In complex control systems, unknown disturbances, higher order dynamics, nonlin-
earities and noise are always present. All these disturbances may arise in a dynamical
model due to the intrinsic nature of the system or deliberately introduced by external
sources. A great variety of methods and techniques have been proposed to deal with
disturbances. De Schutter [20] has proposed an extended deterministic observer to
estimate the motion parameters of a moving object in a force control task. In [5],
model uncertainties, nonlinearities and external disturbances are merged to one term
and then compensated with a nonlinear disturbance observer based on the variable
structure system theory. Several drawbacks of previous methods are also pointed
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out in [5]. The problem of disturbance decoupling is classical and occupies a central
role in modern control theory. Many control problems including robust control,
decentralized control and model reference control can be recast as an almost dis-
turbance decoupling problem. To tackle the disturbance decoupling problem, PID-
based techniques [15], state feedback [6] geometric concepts [8], tracking schemes
[4] and observer techniques [17] have been proposed among others. In the AOB,
the disturbance estimation is modeled as an auto-regressive (AR) process with fixed
parameters driven by a random source. This process represents stochastic evolutions.
The AOB provides a methodology to achieve model-reference adaptive control
through extra states and stochastic design. It has been applied in several robotic
applications, such as autonomous compliant motion of robotic manipulators [10, 11,
18], haptic manipulation [13], humanoids [19], and mobile systems [2, 7, 9, 16].

The paper is organized as follows: This section briefly discusses previous work,
pointing out the differences of the AOB approach. The AOB concept including the
AOB structure is discussed in Section 2. The AOB design is analyzed in Sections 3
and 4 for the first-order AOB (AOB-1) and Nth-order AOB (AOB-N), respectively.
Estimation strategies are discussed in Section 5. Stability analysis is made in Section 6.
Before the conclusions, two example are presented. The first one discusses robot
force control (SISO system). The second one addresses model-matching control for
SBW vehicles with underactuated structure (MIMO system).

2. AOB Concept

A linear system represented in state space can be controlled through state feedback
(e.g. optimal control, adaptive control and explicit pole placement control). In
practice, the main problem of this approach is that unmodeled terms including noise,
higher order dynamics, parameter mismatches and unknown disturbances are not
addressed in the control design. Therefore, it is necessary to develop a control
structure that can deal with them, to boost control performance. The main goal of
the AOB is to achieve model-reference adaptive control using Kalman techniques.
To accomplish this goal, a description of the system in closed loop and open loop is
necessary. The motivation for the AOB, discussed in the sequel, is based on:

1. A desired closed loop system.
2. An extra equation to estimate an equivalent disturbance referred to the system

input. An active state active state pk (extra-state) is introduced to compensate
unmodeled terms, providing a feedforward1 compensation action.

3. The stochastic design of the Kalman matrices Qk (model uncertainty) and Rk

(measure uncertainty) for the AOB context.

The AOB can be applied to systems modeled by linear equations plus an equiv-
alent disturbance referred to the input. Modeling nonlinear systems by nominal
nonlinear systems plus disturbances has not been considered yet, but it is one of the
goals for the future.

1 The word “feedforward” is used to emphasize the fact that the AOB is generating an “external”
input to act on the system.
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2.1. AOB Structure

Given a system with equations

xr,k = 8r xr,k−1 + 0ruk−1 + ξxr,k (1)

and

yk = Cr xr,k + ηk, (2)

an observer of the state xr,k, x̂r,k, can be written as

x̂r,k = 8r,n x̂r,k−1 + 0r,nuk−1 + Kk[yk − Cr(8r,n x̂r,k−1 + 0r,nuk−1)], (3)

where 8r,n and 0r,n are, respectively, the nominal state transition and command
matrices (i.e., the ones used in the design). 8r and 0r are the real matrices. ξxr,k and ηk

are Gaussian random variables associated to the system and measures, respectively,
having a key role in the AOB design. Defining the estimation error as

er,k = xr,k − x̂r,k, (4)

and considering ideal conditions (i.e., the nominal matrices are equal to the real ones
and ξxr,k and ηk are zero), er,k can be computed from Eqs. 1 and 3. Its value is

er,k = (8r − KkCr8r)er,k−1. (5)

The error dynamics given by the eigenvalues of (8r − KkCr8r) is function of the
Kk gain. The Kalman observer computes the best Kk in a straightforward way,
minimizing the mean square error of the state estimate due to the random sources ξxr,k

and ηk. When there are unmodeled terms, Eq. 5 needs to be changed. A deterministic
description of er,k is difficult, particularly when unknown modeling errors exist.
Hence, a stochastic approach is attempted to describe it. If state feedback from the
observer is used to control the system, an additional input pk enters in the system,

pk = −Lrer,k, (6)

where Lr is the state feedback gain. A state space equation should be found to char-
acterize this undesired input, leading the system to an extended state representation.

The classical observer depicted in Figure 1 cannot detect pk. The observer receives
uk given by

uk = rk − Lrxr,k + pk. (7)

From uk, it is not possible to distinguish pk from rk. To overcome this difficulty, the
observer ought to know rk. Figure 2 shows the AOB. The active state2 p̂k estimates
the extended state pk permitting the overall system to have the desired behavior.

2 The name “active state” is used for both pk and p̂k. pk can be seen as an equivalent disturbance
state that exists in the real system, and p̂k is the estimation of pk.
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Figure 1 Classical observer. The observer error −er,k enters in the system as an additional input
through the state feedback gain Lr .

2.2. Active State Equations

The pk equation has a key role in the AOB structure, crossing the AOB design. To
be able to track functions with unknown dynamics, a stochastic equation is used to
describe pk:

pk − pk−1 = ξpk , (8)

Figure 2 Active observer. The active state p̂k compensates the error er,k referred to the system input,
which is described by pk.
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in which ξpk is a zero-mean Gaussian random variable.3 Equation 8 says that the first
derivative (or first-order evolution) of pk is randomly distributed. Defining Nξpk as
the Nth-order evolution of ξpk (or the (N + 1)th-order evolution of pk),

Nξpk =
N−1ξpk −

N−1ξpk−1 , with 0ξpk = ξpk , (9)

the general form of Eq. 8 is

pk =

N∑
j=1

(−1) j+1 N!

j!(N − j)!
pk− j +

N−1ξpk . (10)

{pn} is an AR process4 of order N with undetermined mean. It has fixed parameters
given by Eq. 10 and is driven by the statistics of {

N−1ξpn}. The properties of N−1ξpk

can change on-line based on a given strategy. The stochastic equation (8) for the
AOB-1 or Eq. 10 for the AOB-N is used to describe pk. If N−1ξpk = 0, Eq. 10 is a
deterministic model for any disturbance pk that has its Nth-derivative equal to zero.
In this way, the stochastic information present in N−1ξpk gives more flexibility to pk,
since its evolutionary model is not rigid. The estimation of unknown functions using
Eqs. 8 and 10 is discussed in [12].

3. AOB-1 Design

The AOB-1 algorithm is introduced in this section based on a continuous state space
description of the system.

3.1. System Plant

Discretizing the system plant (without considering disturbances)
dxr(t)

dt
= Axr(t) + Bu(t − τ)

y(t) = Crxr(t)

(11)

with sampling time h and dead-time

τ = (d − 1)h + τ ′, with 0 < τ ′
≤ h, (12)

the discrete time system
x′

k
uk−d

...

uk−2

uk−1

 =


81 01 00 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0




x′

k−1
uk−d−1

...

uk−3

uk−2

 +


0
0
...

0
1

 uk−1 (13)

3 The mathematical notation along the paper is for single input systems. For multiple input systems,
pk in Eq. 8 is a column vector with dimension equal to the number of inputs.
4 pk is a random variable and {pn} is a random process.
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and

yk = Crxr,k (14)

is obtained. 81, 00 and 01 are given by Eqs. 15 to 17, respectively [1].

81 = eAh
= φ(h), (15)

00 =

∫ h−τ ′

0
φ(λ) dλ B (16)

and

01 = φ(h − τ ′)

∫ τ ′

0
φ(λ) dλ B. (17)

The state xr,k is

xr,k =
[

x
′

k uk−d · · · uk−2 uk−1
]T

, (18)

in which x
′

k is the system state considering no dead-time. Therefore, the τ of Eq. 11
increases the system order.

3.2. AOB-1 Algorithm

From Figure 2 and knowing Eqs. 1 and 8, the augmented state space representation
(open loop)5 is [

xr,k

pk

]
=

[
8r 0r

0 1

] [
xr,k−1

pk−1

]
+

[
0r

0

]
u′

k−1 +

[
ξxr,k

ξpk

]
, (19)

where

u′

k−1 = rk−1 −
[

Lr 1
] [

xr,k−1

p̂k−1

]
, (20)

8r =


81 01 00 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 (21)

and

0r =
[

0 0 · · · 0 1
]T

. (22)

Lr is obtained by any control technique applied to Eq. 13 to achieve a desired closed
loop behavior. The measurement equation is

yk = C
[

xr,k

pk

]
+ ηk, (23)

5 In this context, open loop means that the state transition matrix does not consider the influence of
state feedback.
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with6

C =
[

Cr 0
]
. (24)

The desired closed loop system appears when p̂k = pk, i.e.,

[
xr,k

pk

]
=

[
8r − 0r Lr 0

0 1

] [
xr,k−1

pk−1

]
+

[
0r

0

]
rk−1 +

[
ξxr,k

ξpk

]
. (25)

The state xr,k in Eq. 25 is accurate if most of the modeling errors are merged to pk.
Hence, ξxr,k should be small compared to ξpk . The state estimation7 must consider
not only the influence of the uncertainty ξxr,k , but also the deterministic term due to
the reference input, the extended state representation and the desired closed loop
response. It is given by8[

x̂r,k

p̂k

]
=

[
8r,n − 0r,n Lr 0

0 1

] [
x̂r,k−1

p̂k−1

]
+

[
0r,n

0

]
rk−1 +

+Kk

{
yk − C

([
8r,n − 0r,n Lr 0

0 1

] [
x̂r,k−1

p̂k−1

]
+

[
0r,n

0

]
rk−1

)}
. (26)

Kk is

Kk = P1k CT
[C P1k CT

+ Rk]
−1

, (27)

and

P1k = 8n Pk−1 8T
n + Qk, (28)

with

Pk = P1k − Kk C P1k. (29)

8n is the augmented open loop matrix used in the design,

8n =

[
8r,n 0r,n

0 1

]
. (30)

Qk is the system noise matrix,9

Qk =

[
Qxr,k 0

0 Qpk

]
. (31)

Rk is the measurement noise matrix,Rk = E
{
ηkη

T
k

}
. Pk is the mean square error

matrix. It should be pointed out that P1k given by Eq. 28 uses 8n. Defining xk, L,
0, and ξxk as

xk =
[

xr,k pk
]T

, L =
[

Lr 1
]
, 0 =

[
0r 0

]T (32)

6 The form of C is maintained for the AOB-N, since the augmented states that describe pk are not
measured.
7 The classical Kalman filter (CKF) algorithm can be seen in [3].
8 8r,n and 0r,n represent the nominal values of 8r and 0r , respectively.
9 Further analysis of the Qk matrix is given in Section 4.2.
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and

ξxk =
[
ξxr,k ξpk

]T
, (33)

P1k = E
{(

xk − x̂−

k

) (
xk − x̂−

k

)T
}

, (34)

where10

x̂−

k = 8n x̂k−1 + 0n
(
rk−1 − Lx̂k−1

)
(35)

and

xk = 8xk−1 + 0
(
rk−1 − Lx̂k−1

)
+ ξxk . (36)

The term
(
rk−1 − Lx̂k−1

)
appears in Eqs. 35 and 36. Hence, its influence is canceled

in Eq. 34. Straightforward analysis of Eqs. 34 to 36 gives Eq. 28.

4. AOB-N Design

The AOB-N is discussed in this section enabling stronger nonlinearities to be
compensated by p̂k. Section 4.1 presents the AOB-N algorithm and Section 4.2
discusses the stochastic structure of AOB matrices.

4.1. AOB-N Algorithm

The AOB-1 algorithm has to be slightly changed for the AOB-N. Only the equation
of the active state changes, entailing minor modifications in the overall AOB design.

Equation 10 has the following state space representation:
pk−(N−1)

pk−(N−2)

...

pk−1

pk

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
aN aN−1 aN−2 · · · a1




pk−N

pk−(N−1)

...

pk−2

pk−1

 +


0
0
...

0
N−1ξpk

 ,

with ai = (−1)i+1 N!

i!(N − i)!
, i = 1, · · · , N. (37)

In compact form, Eq. 37 is represented by
N pk = 82,2

N pk−1 + ξN pk . (38)

Equation 19 is now re-written as[
xr,k
N pk

]
=

[
8r 81,2

0 82,2

] [
xr,k−1
N pk−1

]
+

[
0r

0

]
u′

k−1 +

[
ξxr,k

ξN pk

]
, (39)

where
N pk =

[
pk−(N−1) pk−(N−2) · · · pk−1 pk

]T
. (40)

10 P1k represents the a-priori error covariance matrix only due to the random source ξxk . Therefore,
to compute P1k, the real matrices are equal to the nominal ones (8 = 8n and 0 = 0n).
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82,2 is the state transition matrix of Eq. 37,

81,2 =

 0 · · · 0
...

. . .
...

0 · · · 1

 (41)

and

ξN pk =
[

0 0 · · · 0 N−1ξpk

]T
. (42)

The desired closed loop of Eq. 25 is changed to[
xr,k
N pk

]
=

[
8L 0
0 82,2

] [
xr,k−1
N pk−1

]
+

[
0r

0

]
rk−1 +

[
ξxr,k

ξN pk

]
, (43)

with

8L =


81 01 00 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−L1 −L2 −L3 · · · −LM

 . (44)

The Lr components (L1, · · · , LM) can be obtained by Ackermann’s formula, i.e.,

Lr =
[

0 · · · 0 1
]

W−1
c P(8r). (45)

Wc is the reachability matrix

Wc =
[
0r 8r0r · · · 8M−1

r 0r
]
, (46)

and P(8r) is the desired characteristic polynomial. The state estimation is11[
x̂r,k
N p̂k

]
=

[
8L,n 0

0 82,2

] [
x̂r,k−1
N p̂k−1

]
+

[
0r,n

0

]
rk−1

+Kk

{
yk − C

([
8L,n 0

0 82,2

] [
x̂r,k−1
N p̂k−1

]
+

[
0r,n

0

]
rk−1

)}
. (47)

Kk is given by Eqs. 27 to 29, with

8n =

[
8r,n 81,2

0 82,2

]
. (48)

The state feedback gain L is

L =
[

Lr LN pk

]
, (49)

with

LN pk =
[

0 · · · 0 1
]
. (50)

11 8L,n is the nominal value of 8L.
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4.2. AOB-N Matrices

Rk is function of sensor characteristics. The form of Qk is

Qk =

[
Qxr,k 0

0 QNpk

]
. (51)

Qxr,k is a diagonal matrix. The uncertainty associated with xr,k is low since all system
disturbances should be compensated with N pk. Hence, Qxr,k should have low values
compared to QNpk , which is defined as

QNpk = E
{
ξN pk · ξT

N pk

}
. (52)

From Eq. 42,

QNpk =

 0 · · · 0
...

. . .
...

0 · · · σ 2
N−1ξpk

 . (53)

σ 2
N−1ξpk

represents the variance of the Nth derivative of pk and is related with σ 2
ξpk

.

Hence, the design can be done for σ 2
ξpk

.

Theorem 1 If the variables ξpk are independent with zero mean, the relation between
σ 2

Nξpk
and σ 2

ξpk
is

σ 2
Nξpk

= σ 2
ξpk

N∑
j=0

(
N!

j!(N − j)!

)2

. (54)

Proof See [12] �

To improve relative stability (discussed in Section 6) for higher order AOBs,
Eq. 54 may change to

σ 2
Nξpk

= σ 2
ξpk

N∑
j=0

(
N!

j!(N − j)!

)2

· cN, (55)

with

0 < c < 1. (56)

From Eqs. 55 to 56, improving stability is made at the expense of decreasing the
“activeness” of active state pk.

5. AOB Estimation Strategies

Multiplying the matrices Qk, Rk and P−1 by the same positive factor entails the same
Kalman gain [11]. Therefore, the estimation strategy only depends on the relations
between the Qk values, the Rk values, and both Qk and Rk values. In the AOB,
the relations between the Qk values are straightforward. The estimation strategy
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is thus a function of σ 2
N−1ξpk

and Rk. If model accuracy is very good compared to

measure accuracy, a model-based approach (MBA) is followed. The estimation is
mainly based on model information giving little importance to measures. The Kalman
gain has low values. On the other hand, if the measures are very accurate, a sensor-
based approach (SBA) is followed. The Kalman gain has high values. The hybrid-
based approach (HBA) is the general form of the AOB and establishes a trade-off
between SBA and MBA, i.e., it balances the estimates based on sensory and model
information.

6. AOB Stability

This section analyzes AOB absolute/relative stability with model errors.

6.1. Absolute Stability with Model Errors

Theorem 2 If a linear system with equations

xk = 8xk−1 + 0uk−1 + ξxk (57)

and

yk = Cxk + ηk (58)

is being controlled through an observer, where the real system matrix 8 is equal to the
nominal matrix 8n plus the unknown error 18, i.e., 8 = 8n + 18, and, in the same
way, the command matrix 0 = 0n + 10, the overall system can be described in state
space by[

xk

ek

]
=

[
8 − 0L 0L

(I − KkC)(18 − 10L) (I − KkC)(8n + 10L)

] [
xk−1

ek−1

]

+

[
0

(I − KkC)10

]
rk−1 +

[
I

I − KkC

]
ξxk +

[
0

−Kk

]
ηk, (59)

with the estimation error

ek = xk − x̂k. (60)

Kk, L, I and C, ξxk and ηk are, respectively, the observer gain, state feedback gain,
identity matrix, measurement matrix, system noise and measurement noise.12

Proof The command input is

uk−1 = rk−1 − Lx̂k−1. (61)

12 In this analysis, it is considered that the error in yk is only due to ηk, which is the common situation
in practice. Hence, no bias terms are considered and 1C = 0.
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Using Eqs. 60 and 61, Eq. 57 can be written as

xk = (8 − 0L)xk−1 + 0Lek−1 + 0rk−1 + ξxk . (62)

A generic observer of Eq. 62 is

x̂k = (8n − 0n L)x̂k−1 + 0nrk−1 + Kk
{

yk − C
[
(8n − 0n L)x̂k−1 + 0nrk−1

]}
. (63)

Manipulating Eqs. 62 and 63, Eq. 59 is obtained. �

In the AOB-N context,

xk =
[

xr,k
N pk

]T
. (64)

From Eq. 59, it is possible to know if the system is stable when model errors exist
in the design. Trial and error procedures can be applied to obtain the maximum
admissible mismatch that the whole system is able to cope, without loosing stability or
without affecting significantly the desired closed loop dynamics. Only the 1 matrices
have to be calculated for some parameter mismatches. Then, stability is assured if the
eigenvalues of the system matrix of Eq. 59 lie within the unitary circle.

6.2. Relative Stability with Model Errors

Theorem 3 If the linear system of Eqs. 57 and 58 is being controlled through an
observer, the loop transfer function (LTF) is

HLTF(z) =
[

L 0
] [

I − φz−1
]−1

γ z−1, (65)

in which φ and γ are the state transition and command matrices of Eq. 66, respectively,
I is the identity matrix and L is the state feedback gain.[

x̂k

ek

]
=

[
8n − 0n L + KkC (18 + 0n L) KkC8

(I − KkC) (18 + 0n L) (I − KkC) 8

] [
x̂k−1

ek−1

]
+

[
KkC0

(I − KkC) 0

]
uk−1. (66)

Proof A schematic representation of the LTF is depicted in Figure 3. From Figure 3a,

x̂k = 8n x̂k−1 + 0nu′

k−1 + Kk
[
yk − C

(
8n x̂k−1 + 0nu′

k−1

)]
, (67)

which is equivalent to x̂k in Figure 3b,

x̂k = (8n − 0n L)x̂k−1 + Kk
[
yk − C (8n − 0n L) x̂k−1

]
, (68)

with rk = 0. Hence, both systems have the same LTF form. The matrices 8n and 0n

are different if the AOB is used (extended matrices). Manipulating Eqs. 57, 60 and
67, Eq. 66 is obtained. The output of the LTF is

Yk =
[

L 0
] [

x̂k

ek

]
. (69)

The transfer function HLTF(z) is then given by Eq. 65. �
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Figure 3 LTF for systems with classical observer (a) and AOB (b). The reference rk does not enter
in the LTF computation (rk = 0).

Therefore, for a given mismatch it is possible to compute relative stability.13 As
the AOB order increases, relative stability decreases, since the LTF has more poles
at z ∼=∼ 1 due to the integral action of Eq. 10. An interesting aspect of the AOB
architecture is that phase and gain margins can be shaped by the statistics of Qk and
Rk, without changing the control structure.14

13 A robotic example can be seen in [13], where relative stability is computed based on the stiffness
mismatch.
14 In general, any observer-based system deteriorates relative stability regardless of the position of
the observer poles [21]. An example in [14], shows that making the observer poles faster degrades
even more stability margins.
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7. Example 1

This example shows the design of AOB based controllers for robotic manipulators
in contact tasks (SISO system for each degree of freedom). The control performance
is analyzed for the AOB-1, AOB-2 and AOB-3 in the presence of an external and
unknown nonlinear disturbance.

7.1. Cartesian Control of Robotic Manipulators

Given a set of generalized coordinates q (usually, joint angles for revolute joints)
describing the robot’s pose, the well-known robot dynamics is given by

M(q)q̈ + v(q, q̇) + g(q) = τ. (70)

M(q) is the mass matrix, v(q, q̇) is the vector of Coriolis and centripetal forces, g(q)

is the gravity term and τ is the generalized torque acting on q. Defining the Jacobian
J(q) as

Ẋ = J(q)q̇, (71)

with X the Cartesian position,

q̈ = J−1(Ẍ − J̇q̇). (72)

Applying Eq. 72 in Eq. 70 and knowing the relation between the joint torque τ and
the Cartesian force F at the end-effector, τ = JT F, Eq. 70 can be written in Cartesian
coordinates as

3Ẍ + Vx(q, q̇) + gx(q) = F, (73)

with

3 = J−T MJ−1, (74)

Vx = J−Tv(q, q̇) − 3 J̇q̇ (75)

and

gx = J−T g(q). (76)

An external force Fe appears always at the end-effector whenever the robot is in
contact. Hence, Eq. 73 can be written as

3Ẍ + Vx(q, q̇) + gx(q) = Fc − Fe − F f , (77)

where Fc and F f are, respectively, the forces due to the commanded torque and
friction. Applying the feedback linearization control law15

Fc = F̂e + F̂ f + V̂x(q, q̇) + ĝx(q) + 3̂ f ? (78)

to Eq. 77, the desired decoupled control system

Ẍ = f ? (79)

15 The symbol ˆ means estimate.
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Figure 4 Force control with AOB.

is obtained. Inserting the velocity feedback, the system deadtime Td and the system
stiffness Ks in Eq. 79, each Cartesian degree of freedom can be described by

Gv(s) =
Ks

s(1 + Tps)
e−sTd , (80)

where Tp is the position time constant. Figure 4 represents the force control of Eq. 80
with AOB.

7.2. Simulation Results

Figure 5 illustrates simulation results considering the influence of a nonlinear exoge-
nous disturbance D(t) added to the system input. The disturbance is

D(t) = u3
+ u2

− u, (81)

with16

u = 2 Chirp (0.01[Hz], 0.1[Hz], 20[s]) − 0.5 Step (t − 8). (82)

In this example there are no explicit modeling errors, i.e., the nominal parameters
that characterize the system are equal to the real ones. Hence, the dominant distur-
bance is given by Eq. 81. The sampling time h = 8 [ms], the deadtime Td = 5h, the
system stiffness Ks = 3 [N/mm] and Tp = 32 [ms]. The feedback gain Lr (L1, · · · , LM

with M = 7) for a critically damped response (ζ = 1) with time constant τc = 10Tp

and five extra poles at z = 0 is

Lr = [0.1148 −0.0717 −0.0615 −0.0797 −0.1031 −0.1332 −0.1718]. (83)

16 The Chirp function is a sine wave with increasing frequency.
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Figure 5 Simulation results for different AOBs. a Force response with AOB-1. b Disturbance
estimation with AOB-1. c Force response with AOB-2. d Disturbance estimation with AOB-2. e
Force response with AOB-3. f Disturbance estimation with AOB-3.

The measurement noise ηk has a power of Rk = 2.1 × 10−2 [N2]. Qxr,k is a diagonal
matrix given by Qxr,k(i, i) = 10−12, with i = 1, · · · , M. The variance of ξpk is σ 2

ξpk
∼=

∼ 10−3 and c = 1/500. Using Eq. 55,

σ 2
Nξpk

= 10−3
·

N∑
j=0

(
N!

j!(N − j)!

)2

· (1/500)N. (84)



J Intell Robot Syst (2007) 48:131–155 147

Table I Steady-state Kalman
gain for AOB-1, AOB-2 and
AOB-3

The bold values affect N p̂k.
The other values enter in the
estimate of x̂r,k, where
x′

k = [x′

1k x′
2k

]
T . x′

1k and x′
2k

represent the output force and
output force derivative,
respectively.

AOB-1 AOB-2 AOB-3

Kk 0.0959 0.1285 0.1691
0.6043 1.1033 1.9533
0.2073 0.4256 0.8134
0.2073 0.4385 0.8536
0.2073 0.4514 0.8949
0.2073 0.4643 0.9371
0.2073 0.4771 0.9803
0.2073 0.4771 0.9371

0.4900 0.9803
1.0245

QNpk is given by Eq. 53. The initial conditions are x̂r,k = 0, N p̂k = 0 and P−1 = Q0.
It can be inferred from Table I that the Kalman gain increases with the AOB order.
Hence, the state estimates react fast to measures being more sensitive to noise. It is
notorious the improvement of the force response as the AOB order increases. In this
example, the disturbance D(t) is high with respect to the system input L1rk.

8. Example 2

This example shows the design of AOB based controllers for SBW vehicles (MIMO
system) with underactuated structure. Model-matching is analyzed for the AOB-1, as
well as the effect of a road disturbance.

8.1. SBW Systems

Teleoperated robotic vehicles can benefit from SBW research. Guiding vehicles with
good haptic feeling improves driver’s skills, enabling the exploration of unstruc-
tured roads. Vehicle steering technology is substituting mechanical and hydraulic
subsystems by electrical equivalents to boost performance. SBW introduces complex
mechatronical steering technology consisting of processing units, sensors and actu-
ators. The conventional mechanical interface (steering column) between driver and
vehicle is replaced by two electrical actuators which are algorithmically coupled by
the SBW controller to provide a desired steering behavior. SBW technology has some
essential advantages, such as, simplified construction and higher design flexibility.
However, the independent torque assistance and active steering functionalities of
some steering technologies motivate a part of automotive engineers to reject SBW
technology. The main decision factors, such as safety, comfort and costs are still
unclear for SBW systems. Therefore, it is difficult to predict when and if ever
SBW vehicles will replace vehicles with steering column. Nevertheless, teleguided
vehicles are excellent candidates for SBW (or steer-by-wireless) products, enabling
the operator to have steering telepresence. SBW systems are basically master-slave
systems with small time delay. The driver corresponds to the operator, the vehicle
to the environment, the force-feedback actuator to the master and the front-wheel
actuator to the slave. From the control point of view, SBW includes a force feedback
inner-loop on the master side and a position or force inner-loop on the slave side.
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Figure 6 Target system. Fr is the road feedback, including unknown disturbances. Th, fA, Fr , v, µ,
τC , xr , δh and xA are, respectively, the torque on the steering wheel, assisted steering torque, steering
rack force, vehicle speed, tire-road adhesion coefficient, torsional torque on steering column, steering
rack position, steering wheel angle, and assisted steering angle.

The goal is to couple these sub-systems by a suitable outer-loop controller to provide
a desired steering feeling associated to the vehicle response.

8.2. Target Dynamics

A SBW system should reproduce, at least in a first stage, the same dynamics of a
steering column car. Some steering systems comprehend algorithms for independent
force and position assistance. Usually, the assisted torque steering filter is a nonlinear
function of the vehicle speed. The steering angle assistance is introduced to improve
lateral and vertical vehicle dynamics. The target system which represents the steering
of conventional cars is represented in Figure 6. The steering module includes the
steering wheel, steering column, steering rack, power steering actuator and torque
sensors, that can be assisted by Electrical and/or Hydraulic Power Assisted Steering
(EPAS, HPAS). Linearizing the target system, the overall dynamics can be expressed
in the s-domain (i.e., Laplace Transform) by[

s δh

s xr

]
=

[
y11 y12

y21 y22

] [
Th

Fr

]
, (85)

where δh, xr, Th and Fh are Laplace variables, and y11, y12, y21 and y22 are transfer
functions. The SBW technology has to match the target steering dynamics by suitable
actuation and control.

8.3. SBW Dynamics

The SBW setup controlled by the AOB is represented in Figure 7. It includes two
actuation inner-loops for torque and force control. The dynamics of the torque
feedback loop can be described by

s δh = yh (Th − αhτm) . (86)
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Figure 7 SBW control system with AOB. F?
r is artificially generated (i.e., computed) for a desired

vehicle impedance. Fr is the real road feedback (steering rack force). Th is measured by a torque
sensor on the steering wheel and Lc represents the DC gain compensation. δh and xr are, respectively,
the steering wheel angle and the steering rack position, and yh, αh, αr and yr are transfer functions
of the SBW setup.

The actuator, torque sensor and built-in controller are lumped into the transfer
functions yh and αh. Similarly, the road-wheel actuation loop is described by

s xr = yr (Fr − αr fs) . (87)

Target closed-loop dynamics, desired road feedback F?
r and torque on the steering

wheel enter in the AOB design. Disturbance rejection is based on extended states
and stochastic design. In the s-domain, the overall open-loop admittance structure is[

s δh

s xr

]
=

[
yh 0
0 yr

] ([
Th

Fr

]
− A1

[
τm

fs

])
, (88)

with

A1 =

[
αh 0
0 αr

]
. (89)

8.4. Model-matching

This section describes the SBW controller with AOB. The target model representing
a conventional vehicle at v = 80 [km/h] with µ = 0.8 is given by [9]

[
s δh

s xr

]
=

[
T1,1 0 T1,3 0
T2,1 0 T2,3 0

] 
Th

τm

Fr

fs

 . (90)
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Since it is not possible to make a direct feedback at the entry points Th and Fr,
four independent inputs (i.e., Th, τm, Fr and fs) and two outputs (i.e., δ̇h and ẋr) have
been used, where

T1,1 =
33.33 s2

+ 44.8.7 s + 93690

s3 + 20.71 s2 + 7655 s + 45790
, (91)

T1,3 =
1.295 s + 894.6

s3 + 20.71 s2 + 7655 s + 45790
, (92)

T2,1 =
−1.295 s − 894.6

s3 + 20.71s2 + 7655s + 45790
(93)

and

T2,3 =
−0.001789 s2

− 0.01296 s − 8.543

s3 + 20.71 s2 + 7655 s + 45790
. (94)

δh and xr are both functions of Th and Fr. Therefore, the SBW controller has to
impose this behavior to the naturally decoupled SBW system (the steering wheel
is physically decoupled from the road-wheel actuator). In our setup, the transfer
functions yh, yr, αh and αr have been identified (see Figure 7). They are

yh =
26.67 s2

+ 568 s + 218300

s3 + 28.1 s2 + 16430 s + 120000
, (95)

yr =
−0.00179

s + 9.395
, (96)

αh =
−13510

s2 + 21.3 s + 8188
(97)

and

αr =
1974000

s + 1885
. (98)

The model-matching problem consists in designing a state-space controller for the
system

[
s δh

s xr

]
=

[
yh −αh yh 0 0
0 0 yr −αr yr

] 
Th

τm

Fr

fs

 (99)

to achieve Eq. 90. Writing Eq. 90 in discrete state-space form with sampling time
Ts = 1 [ms], the desired closed-loop poles are

λ1,2 = 0.9890 ± 0.0859 i and λ3 = 0.9940. (100)

The discrete state-space of Eq. 99 can be represented by Eq. 19, where 8r and 0r

have dimensions 7 × 7 and 7 × 4, respectively. To apply the AOB design described
in Section 3, a state feedback matrix Lr has to be found, based on Eq. 100 and four
additional poles (λ4 · · · λ7), due to the dimension of 8r. There is not a straightforward
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procedure to obtain the additional poles. Simulations have shown that there are many
possibilities to achieve good results, such as

λ4 = 0.89, λ5 = 0.89, λ6 = −0.89 and λ7 = 0.994. (101)

The minus sign in one pole is important due to the transient effect of a positive
zero in the target system. To compute17 Lr, 0r has to be changed (only for this
computation) to reflect the lack of actuation on the inputs Th and Fr. The first and
third columns of 0r should be set to zero. This guarantees that if there is an Lr, it will
not generate a direct feedback referred to non-actuated inputs. The DC gain of the
SBW system is compensated by proper pre-amplification of the reference inputs. For
the target system18

tDC = Ct [I − (8t)]
−1 0t. (102)

For the SBW system,
SBWDC = CSBW [I − (8SBW − 0SBW LSBW)]−1 0SBW. (103)

Therefore,

Lc =
(SBWDC

)−1 tDC. (104)

In our system, Eq. 104 is

Lc =

[
0.4785 −0.0046

67.0076 −0.6399

]
. (105)

The reference input is then

rk = Lc

[
Th

Fr

]
. (106)

If input pre-amplification is not possible, Eq. 106 can be obtained from the
actuation points by (s-domain)

r′

k =

[
Th

Fr

]
+

[
αh 0
0 αr

]−1

(Lc − I)
[

Th

Fr

]
. (107)

In practice, low-pass filters applied to the inputs are necessary to compute r′

k.
For the SBW setup,

Qxr,k = 10−12 I7×7, (108)

Qpk =


0 0 0 0
0 10−1 0 0
0 0 0 0
0 0 0 103

 , (109)

Rk = 4 I2×2 and P−1 = Q0. Since there are four inputs, pk has four states,

pk =
[

p1,k p2,k p3,k p4,k
]T

. (110)

17 The place command in matlabTM does the job.
18 The notation ‘t’ means target system and I is the identity matrix.
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p̂1,k and p̂3,k cannot enter in the system (there is no actuation entry). Hence, the
first and third lines of Qpk are zero. This design locks the estimation of p1,k and p3,k

( p̂1,k = 0 and p̂3,k = 0). From Eq. 109, the uncertainty of p4,k is higher, enabling p̂4,k

to have faster dynamics.

8.5. Simulation Results

This section reports simulation results, comparing the performance of the target
system vs. the SBW controller with AOB. Applying a torque on the steering wheel
(Figure 8a), the steering angle δh and the rack position xr are depicted in Figure 8c
and d, respectively, for the SBW system (solid lines) and for the conventional
vehicle (dashed lines). It can be inferred that model matching was accomplished.
Figure 8b represents the road feedback. Fr can be computed based on the target

Figure 8 SBW with AOB vs. conventional car. Model matching data. a Torque input Th. b Road
feedback Fr based on desired vehicle impedance (Fr = F?

r ). c δh for SBW (solid line) and conven-
tional vehicle (dashed line). d xr for SBW (solid line) and conventional vehicle (dashed line).
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Figure 9 SBW with AOB vs. conventional car in the presence of road disturbances. a Road distur-
bance τD = 1000 [N] applied at 1 [s]. b Active state data ( p̂2,k and p̂4,k). c δh for SBW (solid line) and
conventional vehicle (dashed line). d xr for SBW (solid line) and conventional vehicle (dashed line).

vehicle impedance, which is of form [2]

Zv(s) =
a2 s2

+ a1 s + a0

s (b 2 s2 + b 1 s + b 0)
. (111)

The AOB structure may use this information to compensate all other road
disturbances. This situation is analyzed in Figure 9. For a step disturbance (see
Figures 7 and 9a)

τD = Fr − F?
r (112)
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applied at 1 [s], the active states p̂2,k and p̂4,k compensate it very fast (Figure 9b).
These states converge to the values[

p̂2,k

p̂4,k

]
→ −

[
αh 0
0 αr

]−1

s=0

· Lc

[
0
τD

]
, (113)

that is, [
p̂2,k

p̂4,k

]
→

[
−0.27

0.61

]
. (114)

On the contrary of conventional car, the steering angle has a small deviation and the
rack position is not affected by steady-state errors (Figure 9c and d).

9. Conclusions

The AOB has been introduced in this paper. The main goal is to achieve model-
reference adaptive control using Kalman techniques. The AOB design is based on:
(1) A desired closed loop system. (2) An extra equation (active state) to estimate
an equivalent disturbance referred to the system input, providing a feedforward
compensation action. (3) The stochastic design of the Kalman matrices Qk and Rk.

The active state is modeled as an auto-regressive process of order N with fixed
parameters (evolutions) driven by a Gaussian random source. In the AOB, Qk

has a well defined structure. Most of the modeling errors are merged in the active
state, therefore, the model for the other states is very accurate (the reference
model has low uncertainty). The relation between Qk and Rk defines the estimation
strategy, making the state estimates more or less sensitive to measures. Increasing the
AOB order increases the capability to track higher nonlinear disturbances, but the
sensitivity to noise and computational effort increase and the relative stability and
robustness decrease. Re-adapting the stochastic strategies for higher order AOBs
may improve relative stability margins. The design of AOB based controllers for
robotic manipulators in contact (SISO system) and for SBW vehicles (MIMO system)
have been discussed. Simulation results have shown the AOB performance in the
presence of external disturbances.
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