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Abstract A binaural sonar configuration with capability to detect and identify
walls, edges and corners on real-time is presented in this work. A new multi-echo
ultra-fast firing method increases the sonar acquisition rate, and provides crossed
measurements without interference. A feature map is built on-line using Bayesian
updating and classification rules. Three classifiers are implemented and analyzed:
minimum risk (MR), maximum a posteriori (MAP), and minimum distance (MD).
Experimental results of ultrasonic reflector recognition, using data collected in a
specular indoor environment are presented in the paper.

Keywords Sensors · Sensor systems · Ultrasonic transducers · Robot navigation ·
Pattern identification · Classification · Bayesian classification

1 Introduction

Thanks to their biological sonar, bats can distinguish between objects that are just
0.3 mm apart, know the size, the location, the speed, the direction of the movement
and even the thickness of the insect they are hunting [19]. All this, collision-free,
through a cave teeming with thousands of other bats and their calls, in total darkness
or under heavy rain. These amazing abilities certainly persuade the more sceptical to
accept the potentialities of the ultrasonic acoustic sensors.
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Ultrasound TOF1 sensors have been around for a while, used in mobile robot
applications such as distance measurement, environment perception and robot
navigation [12, 14]. However, they have been only marginally successful. In many
applications like environment perception or robot navigation, ultrasonic sensors
have been considered too unreliable and inaccurate, due to the wide opening angle
of this type of sensors that introduce a high angular uncertainty. This fact is due,
essentially, to the inefficient use of ultrasound information.

On the other hand ultrasound sensors are simple in construction and use, mechan-
ically robust, and they provide a cost-effective process for environment perception.
The widely used Polaroid device is inexpensive, easily integrated and has found wide
use in robotic applications.

Due to the importance of ultrasound sensors, much of the latest research work
has been focused on the ultrasound rangefinder data interpretation and improve-
ment [17].

Regarding data interpretation, several physical simulation models [12] and ex-
perimental based models derived from data collection [7, 14] have been addressed.
Detection and identification of reflectors using multiple sensor arrangements has
been intensively researched. One of the earliest systems, with two ultrasonic sensors
[2], was only able to differentiate between walls and edges, using TOF and amplitude
as source information. Afterwards, a new system with three active (movable) sensors
[18], providing TOF and amplitude information, was able do classify the reflectors
as small (edges) or large (walls and corners). Later on, a special combination of two
transmitters and two receivers [10] using only TOF information had the ability to
detect and distinguish among the three basic reflectors. A triaural system which has
the ability to determine the curvature of any reflector between the edge and the wall
is reported in [16]. The three basic reflectors can also be identified by a four-TOF
sensor system [9]. Lastly, a simple system with only two rotative Polaroid transducers
and TOF information [1] was able to detect and distinguish all the basic reflectors.

The ME-EERUF system [13] with only two transducers and TOF processing
together with an active firing scheme, shows ability to detect and classify on real-
time standard reflectors as edges, corners and walls. This new firing technique (ME-
EERUF) allows high data acquisition rates with a high level of error rejection, it is
easy to implement with simple sensor configurations, providing essential information
for reflector recognition.

The perception of reflector position and classification is of great importance,
allowing the implementation of new methods for real-time map building, and can be
an important source of information for robot localization, obstacle avoidance, safe
navigation and environment representation [3, 6, 20].

2 Polaroid Sonar Sensor

The Polaroid electrostatic transducer can transmit and receive the ultrasound waves
(T/R transducer). Initially the transducer works as a transmitter, emitting a train of

1Time-Of-Flight.
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Fig. 1 Polaroid 600 series
transducer, radiation
amplitude pattern
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pulses and then changes to the receiver mode to detect the echoes of the reflected
ultrasound wave. This type of transmitter is usually modelled by a circular piston
of radius a, vibrating at frequency f. The radiated sound pressure pattern, can be
modelled by equation

P(θ) =
∣
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2J1(k.a. sin θ)

k.a. sin θ

∣
∣
∣
∣

(1)

where J1 is a Bessel function of the first kind first order, k = 2π
λ

where λ is the sound
wave length, a is the transducer radius, and θ is the sensor orientation. A graphical
representation of the pattern is depicted in Fig. 1. The information proceeding from

Fig. 2 Polaroid 600 series
transducer experimental data,
showing clearly the main
perception areas of the sensor
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Fig. 3 Bias error ES(θ) and
precision σr(θ). The bias error
of the main lobe is
characterized with good
precision [low σr(θ)]
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an ultrasound sensor has an inherent uncertainty due to factors like poor directivity,
frequent misreading and corruption of data by interference. It is very important to
understand its real behavior and develop models taking into account these sonar
uncertainties.

2.1 Experimental Sensor Modelling

An experimental sensor modelling was carried out in a previous work [14], taking
measurements in the linear range of 0.12 to 6 m and in the angular range of -40
to 40◦. The orientation uncertainty is the main source of errors. In many applications,
ultrasonic sensors are used as ray tracers, however experimental results reveal a
large orientation uncertainty, as shown in Fig. 2. It is noticeable the main perception

Fig. 4 Linearized boundaries
of perception External limits with

precision 5 mm.≤

Uncertainty including
secondary lobes.

-13º +13º
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Main lobe
uncertainty.
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Fig. 5 Statistical perception
model
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lobe (−13 to 13◦) and the side areas (−17 to −22◦ and +17 to +22◦), with a
short perceptual range, due to secondary lobes. The bias and precision errors, are
depicted in Fig. 3. Two components make up the bias: the linear one, resulting
from constant internal delays, and the exponential component, that is related to the
transmitted amplitudes and perception variation with orientation. All these results
are synthesized by Figs. 4 and 5, and are modelled by the following equations:

Bias for the main lobe:

Es(θ) = 1

2.7e
(

−4θ2

12.92

) + 40 (mm) (2)

Precision:

σr =
{

2 mm main lobe
5 mm side lobes

(3)

Orientation uncertainty including side lobes:

σθ =
{

44o ∀ r ≤ 3, 5m
26o ∀ r > 3, 5m

(4)

Orientation uncertainty in main lobe:

σθ = 26o ∀ r (5)

3 The ME-EERUF System

The “error eliminating rapid ultrasonic firing (EERUF)” method [4] is the basis for
the new fast firing method. EERUF allows multiple sensors to be fired faster than in
conventional applications, reducing the number of misreadings. Taking into account
the advantages of this method, a new functionality was introduced: the multi-echo
reading. The new “multi-echo EERUF (ME-EERUF)” method has the capability
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of eliminating the undesirable echoes (resulting from indirect path crosstalk), and to
identify the echoes proceeding from adjacent sensors, a “desired crosstalk” necessary
to implement feature recognition algorithms.

3.1 System Configuration and Geometries

Often, due to design limitations, it is not practical to provide a robot with moving
or complex sensor distributions to achieve optimal performance in data acquisition.
Most commercial robots have settled sensor configurations, usually with rectangular
distributions [10, 14]. Since many commercial mobile robots and wheelchairs are
equipped with ultrasonic sensors, a sonar configuration that can be used with
advantages on these types of systems is presented. The configuration depicted in
Fig. 6 can be the result from any two collinear and adjacent sensors in a robot.
Considering a specular environment and the virtual image concept, the geometrical
configurations for the three reflectors (wall, edge and corner), are derived. From
the vector of measurements x = [R0, R1, R2] acquired by the binaural system, the
orientation (αW, αE, αC) for each feature can be computed and these measurements
can be related according to the following equations

Wall geometry (Fig. 6a):

R2W =
√

R0 R1 +
(

d
2

)2

(6)

αW = cos−1 R0 − R1

d
(7)

Fig. 6 a Virtual image geometry for the wall reflection; b diffuse edge reflection; c virtual image
geometry for the corner reflection; for all reflectors, R0 and R1 represent the shortest distance from
the respective sensors to the reflector. R2 is half the path length, which is defined as follows: ABC
represents the path for the wall and for the edge, and ABCD represents the path for the corner
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Fig. 7 Firing sequence for the ME-EERUF method, where Trnd represents a random time between
cycles

Edge geometry (Fig. 6b):

R2E = R0 + R1

2
(8)

αE = cos−1

(

R0
2 − R1

2 + d2

2dR0

)

(9)

Corner geometry (Fig. 6c):

R2C =
√

R0
2

2
+ R1

2

2
−

(
d
2

)2

(10)

αC = cos−1

(

R0
2 − R1

2 + d2

2dR0

)

(11)

3.2 Multi-Echo Firing Sequence

Firing two adjacent T/R sensors at the same time, or within a short time interval,
results in undesirable crosstalk. Firing two sensors with a short controlled delay
allows the identification of crossed echoes from side sensors. Taking the wall
reflection geometry as an example, the multi-echo firing procedure can be explained

Table 1 Notation for the firing
procedure T/Rk Sensor transmiter/receiver k, k = {0, 1}

Cx Firing cycle x, x = {A, B}
ak,x Sensor k firing delay at cycle x
Trnd Random delay between cycles
Rkj,x TOF of the wave emitted by sensor k and received by

sensor j, at cycle x, j = {0, 1}
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Table 2 Decision rules for the
ME-EERUF system if |R00,A − R00,B| < �t

then R0 = R00 = R00,A−R00,B
2

if |R11,A − R11,B| < �t

then R1 = R11 = R11,A−R11,B
2

if |(R10,A − (a1,A − a0,A)) − (R10,B − (a1,B − a0,B))| < �t

then R10 = (R10,A−(a1,A−a0,A))−(R10,B−(a1,B−a0,B))

2
if |(R01,A − (a0,A − a1,A)) − (R01,B − (a0,B − a1,B))| < �t

then R01 = (R01,A−(a0,A−a1,A))−(R01,B−(a0,B−a1,B))

2
if both R01 and R10 are valid

then R2 = R01+R10
2

if R01 is valid and R10 is not valid
then R2 = R01

if R10 is valid and R01 is not valid
then R2 = R10

by the firing sequence of Fig. 7, and the following step sequence, with notations
presented in Table 1.

Time Cycle A:
tA0 Starts cycle A;
tA1 T/R0 is fired after delay a0,A;
tA2 T/R1 is fired after delay a1,A;
tA3 The wave emitted by T/R0 is reflected and received by T/R0 with

TOF R00,A;
tA4 Through a different path, the same wave is received by T/R1, with

TOF R01,A;
tA5 The wave due to T/R1 is received back by T/R1, with TOF R11,A;
tA6 Through a different path, the same wave is received by T/R0, with

TOF R10,A;
tA6 Just after the last received echo, a short random delay Trnd is introduced

to reduce crosstalk between consecutive cycles.
Cycle B:

tB0 Starts cycle B;
Similar steps of cycle A, but with different delays: {a0,A; a1,A; a0,B; a1,B}.

At the end of the second cycle, each sensor has collected four TOFs. By checking
these consecutive sonar readings (Rkj,l values) and allowing only small differences,
i.e. “near identical readings” it is possible to eliminate random errors, corrupted
TOFs, and identify the important crossed echoes. Considering a Gaussian distribu-
tion for all measurements, the consecutive readings decision rule, for a two-tailed-test
with a significance level of 5%2 is presented in Table 2.

2From Eq. 3, in the main lobe, σr = 2 mm corresponds to a traveling time, σT OF , of 11.6 μs (for the
speed of sound c = 344 m/s). A two-tailed significance level of 5% is bounded approximately by the
critical values ± 2σT OF , resulting on 95% acceptance region of 4σT OF = �t = 50 μs.
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Fig. 8 a Total of true positive measurements; b error rate, ratio between false alarm and true positive
measurements

3.3 ME-EERUF Performance Analysis

To test the ME-EERUF effectiveness, a simple experience was performed with the
binaural system fired with three different modalities:

1. The conventional one, with independent sequential firings;
2. The EERUF modality, sequential with programmed alternate delays;
3. The ME-EERUF scheme, almost simultaneous fires with short alternate delays

and multi-echo receiving functionality.

The system was tested acquiring 1,000 TOFs from a 1 m distance wall, using different
firing periods, with an external interfering ultrasound transducer, firing straightly to
the system at a 10 Hz rate. The results are presented in Table 3, and Fig. 8a,b.

With acquisition rates four to six times greater, the ME-EERUF shows high
interference rejection capability, preserving a very low level of errors. Experimental
results have shown successful rejection of undesired crosstalk and good acceptance
of true measurements. With just two firing cycles, this system provides fast and more

Table 4 Precision and
field-of-view, or orientation
uncertainty, for the
measurements
x = [R0, R1, R2], gathered
from scanning the basic
reflectors

Feature Measurement Field of view Max. Std.
(degrees) (mm)

Wall R0 −12.6 + 13.5 1
R1 −13.5 + 13.5 1
R2 −13.5 + 13.5 3
visual-field −12.6 + 13.5

Corner R0 −11.7 + 9.9 2
R1 −8.1 + 10.8 2
R2 −10.8 + 10.8 3
visual-field −8.1 + 9.9

Edge R0 −8.1 + 8.1 1.5
R1 −9.9 + 5.4 1.5
R2 −6.3 + 8.1 3
visual-field −6.3 + 5.4
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Fig. 9 Binaural system
scanning a corner (R2C)

+30º

0º

-30º

(mm)

orientation (degrees)

1.5m

distance

reliable information, leading to a higher obstacle detection probability. These results
are important to implement feature detection and identification algorithms.

3.4 Experimental System Modelling

Work was carried out with the purpose of obtaining experimental models for the
binaural system in the presence of walls, corners and edges. A rotating system with
an angular resolution of 0.9◦ was used to perform the environment scanning (one
feature at a time) using the ME-EERUF firing method. A set of data was collected
for the ranges of 0.5, 1 and 1.5 m. As an example, Fig. 9 depicts an experimental
view for the binaural system scanning a corner. As can be observed in the Figs. 3
and 9, lateral lobes information exhibits an higher variability and lower precision.
Evaluated by geometry Eqs. 7, 9 and 11, the desired field-of-view can be bounded by
central main perception lobe with low σC. These results are summarized in Table 4.

4 Reflectors Recognition

The purpose of this section is to present experimental results concerning reflector
recognition (classification, localization, and orientation) for feature map set up,
using the ME-EERUF method. Feature map is carried out by Bayesian classi-
fiers, using the probabilistic information about the three classes of features, � =
{ω1, ω2, ω3} = {wall, edge, corner}. Figure 10 shows the overall recognition system,
which will also be described in the following subsections. The data acquisition and
the pre-processing blocks were already described in Section 3. Figure 11 shows the
non-structured environment composed by several objects of different textures and
materials such as paper box, concrete walls, wood, iron tubes, etc. This environment
was used to test the overall recognition system depicted in Fig. 10. The embedded
ultrasonic processing system (Fig. 11) includes a Microchip microcontroller running
at 40 MHz, with capability to implement the firing schedule (block B), the filtering
(block C), and the normalization (block D), of the classifier presented in Fig. 10. The
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Fig. 10 Block diagram of
the classifier: a – natural
patterns are captured
from a non-structured
laboratory; b – data is
acquired by the
ME-EERUF system;
c – data is filtered;
d – pattern tri-dimensional
space is reduced to an
unidimensional space; e –
reflectors classification

processed result zE(x) (Eq. 12) is sent through a CAN bus to an higher level PC-
based processing system (block E), which performs real-time feature classification.
The prototype depicted in Fig. 11 is placed on the top of a rotating system at
a height of 60 cm. Acquisition of 15 samples was carried out at every angular
displacement of 0.9◦.

4.1 Feature Extraction

Given a set of measurements, x, from the ME-EERUF system, the problem is to
decide the class ω to which this new pattern belongs (Fig. 10). This statistical pattern
recognition problem is well solved by using the Bayes’s rule [5], however it needs the
class conditional densities p(z|ωi), and their a priori probabilities P(ωi).
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Fig. 11 Non-structured environment used in the experiments, including the front and rear view of a
prototype of the binaural system

Combining and transforming the three observed measurements, it is possible to
reduce the pattern dimensional space, simplifying and improving the performance
of the classifier. Considering D = ( d

2

)2
and K = ( R1−R0

2

)2
, the following normalized

relations can be obtained manipulating Eqs. 6, 8 and 10:

zE(x) = R2
2 − ( R0+R1

2

)2

K − D
(12)

zW(x) = zE(x) + 1 (13)

zC(x) = zE(x) − 1 (14)
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Considering zE as the input, a set of unidimensional training patterns was obtained
for each reflector at different distances and orientations (see Fig. 12). This set of
training data was used to estimate the class conditional densities, whose expectation,
μi, and standard deviation, σi, are expressed as follows:

p(z|ωi) ≈ N(μi, σi)

p(z|Wall) ≈ N(−1, 0.27)

p(z|Edge) ≈ N(0, 0.44)

p(z|Corner) ≈ N(1.6, 0.7) (15)

and the a priori probabilities are estimated by empirical frequencies of the training
set

P(ωi) = # samples in class ωi

Total # of samples
(16)

It is worth noting that the experimental model for the corner (Eq. 15) is slightly
different from the theoretical one (Eq. 14), i.e. the expectation is 1.6 while in the
theoretical model is 1. This can be explained as follow: while [R0, R1, R2] are equally
affected by attenuation due to a single reflection for wall and edge reflectors (see
Fig. 6), R2 is affected by two reflections in the corner case, increasing the R2 value
and therefore μC.

0
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corner likelihood

C=1.56
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μ
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c

Fig. 12 Training data. A total of 3,600 acquisitions for each reflector at different ranges (0.5, 1, 1.5 m)
and different orientations (−30 to +30◦): a training set resulting from wall reflector; b training set
resulting from edge reflector; c training set resulting from corner reflector
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Fig. 13 Training data. Acquisitions were obtained for the non-structured environment of Fig. 11

In order to analyze the robustness of the training set parameters, a new set of
unidimensional training patterns was obtained, for the non-structured environment
presented in Fig. 13, at different distances and orientations. The results show that
the conditional densities estimated for each reflector (see Fig. 12) are in accordance
with the results presented for the non-structured environment. For this classification
system there are three distributions p(z|ω1), p(z|ω2), p(z|ω3) (see Fig. 12), which
overlap, and thus have non-zero Bayes classification error [5]. Any pattern from ω2

could be properly classified as ω2 (a “hit”), or misclassified as ω1 (a “false alarm”).

4.2 Classification

To design a Bayesian classifier, the expectation μi, and the standard deviation σi,
for the three classes (wall, edge, and corner), defined by Eq. 15 are considered. The
idea is to use the expectation of each class and the respective standard deviation,
directly as generative models for the trials [11]. Assuming a Gaussian distribution,
the probability of observing a class ωi for a given measurement zi, can be expressed
by the conditional density function:

p(z|ωi) = 1√
2πσi

exp

(

− (z − μi)
2

2σ 2
i

)

(17)

The a priori probabilities, and conditional densities are sufficient to design optimal
classifiers. However, another probability has to be previously derived: the a pos-
teriori probability P(ωi|z). It is the probability that an object belongs to class ωi

given that the measurement associated with the object is z. According to the Bayes
theorem for conditional probabilities:

P(ωi|z) = p(z|ωi)p(ωi)
∑3

j=1 p(z|ω j)P(ω j)
(18)
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Table 5 Cost function for
wall, edge, and corner
classification

C(ω̂k|ωi) True class

Assigned class Wall Edge Corner

Wall −1 0.5 0.8
Edge 0.5 −0.9 0.2
Corner 0.8 0.2 −0.7

Based on this, three decision rules were then derived:

– minimum risk (MR) classifier;
– maximum a posteriori probability classifier (MAP) (uniform cost function);
– minimum distance (MD) classifier.

4.2.1 Minimum Risk Classifier

If an arbitrary classifier assigns a class ω̂k to a measurement z coming from an object
with true class ωi, then a cost C(ω̂k|ωi) is involved. The a posteriori probability of
having such an object is P(ωi|z). Therefore, the expectation of the cost is [8]:

R(ω̂k|z) = E[C(ω̂k|ωi)] =
N

∑

i=1

C(ω̂k|ωi)P(ωi|z) (19)

The quantity R(ω̂k|z) is called the conditional risk. The optimal classifier is the one
with minimum risk. Therefore, the Bayes classifier takes the form:

ω̂BAY ES = ω̂i : R(ω̂i|z) ≤ R(ω̂ j|z),∀ j �= i (20)

Table 5 shows the assigned cost function for the MR classifier.

Table 6 Classification performance – pairwise comparison

Assigned class True class

“Hit” “False alarm”

Wall Edge Corner Wall Edge Corner

MAP Wall 17 – – – 7 1
Edge – 28 – 0 – 1
Corner – – 11 4 10 –

MR Wall 16 – – – 7 1
Edge – 29 – 0 – 0
Corner – – 12 4 9 –

MD Wall 14 – – – 6 0
Edge – 35 – 0 – 0
Corner – – 13 8 4 –
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4.2.2 MAP Classifier

If a unit cost is assumed when an object is misclassified, an uniform cost function is
obtained. When the classification is correct a zero cost function is obtained. In this
case, the minimization of the risk is equivalent to the maximization of the a posteriori
probability. Therefore, the decision rule takes the form [8]:

ω̂BAY ES = argmaxi=1...3(P(ωi|z)),∀ω ∈ � (21)

Application of Bayes’ theorem for conditional probabilities and cancelation of irrel-
evant terms yields a classification equivalent to a MAP classification, but expressed
in terms of the a priori probabilities, and the conditional probability densities:

ω̂BAY ES = argmaxi=1...3(p(z|ωi)P(ωi)),∀ω ∈ � (22)

4.2.3 Minimum Distance Classifier

To obtain the linear classifier a further development of Bayes classification with
uniform cost function is required. Substitution of Eq. 17 in Eq. 22 gives the following
classification [8]:

ω̂(z) = ωk

k = argmaxi=1...3

{
1√

2πσi
exp

(

− (z − μi)
2

2σ 2
i

)

P(ωi)

}

(23)
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Taking the logarithm of the function between brackets, the following decision rule is
obtained:

ω̂(z) = ωk

k = argmaxi=1...3

{

− ln(σi) + 2 ln P(ωi) − (z − μi)
2

σi

}

(24)

Considering that, for the given data set the standard deviation is very similar,
σWall , σEdge, and σCorner are replaced by a single constant σ , and the decision rule
is changed to:

ω̂(z) = ωk

k = argmaxi=1...3

{

2 ln P(ωi) − (z − μi)
2

σ

}

(25)

The quantity (z − μi)
2 can be regarded as a distance measurement between z and

the expectation value μi. The function (25) decides in favour of the class whose
expectation is nearest to the observed measurement [8].

4.3 Feature Map Results

Receiver operating characteristic (ROC) analysis is a widely used method for ana-
lyzing the performance of two-class classifiers. Since the present case is a three-class
classifier, a pairwise ROC analysis was carried out. Pairwise comparisons break down
a N-class classification problem into separate binary one-versus-one comparisons.
For a N-class classification, there are N(N − 1) different binary comparisons. Thus,
this method returns N(N − 1) pairwise ROC curves for each paired comparison.
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The three classifiers presented in Section 4.2 were applied to the unidimensional
normalized data, z, which resulted from the application of the acquisition and pre-
processing systems (see Fig. 10) to the non-structured environment depicted in
Fig. 11. Bearing in mind the three classes in analysis, Table 6 shows the number
of “hits” and “false alarms” for the three classifiers. Table 6 shows that the MD
classifier presents the lowest number of “false alarms” for all classes except the pair
corner–wall. The MD classifier also shows the higher number of “hits” for edges and
corners, but it presents the lowest number of “hits” for walls. The MR and the MAP
classifier present very similar results. Figure 14 shows the ROC curves resulting from
the pairwise comparison presented in Table 6.

The area under the ROC curve (AUC) is a numeric performance metric, which
represents how separable two objects are. An AUC of 1 suggests that the classifier
would always be able to distinguish a “hit” from a “false alarm.” A straight line
corresponding to all the points at which the “hit” rate and the “false alarm” rate
are equal to each other indicates chance classification and this has an AUC of 0.5.
Chance classification means that when posed with the task of distinguishing a “hit”
from a “false alarm,” the classifier could at best “guess” to which class the object
belongs. If the AUC is less than 0.5 most of the classification are incorrect. If all the
results are “hits,” the “false alarm” rate is always zero, and the ROC is a vertical line
in the y-axis.

The results presented in Fig. 14 show that the performance of the classifiers show
several similarities. The corner–edge ROC (Fig. 14f) shows that the MD classifier has
low performance, even though there were only four “false alarms” for this case (see
Table 6). This situation occurs because the misclassified corners do not disappear
even when the threshold is close to the limit. The opposite situation occurs for the
corner–wall ROC. In this case the MD classifier presents the highest level of “false
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alarms”, but the ROC curve shows a reasonable performance. The classifiers show
a better performance between classes with conditional density functions that do not
overlap so much. For instance, the wall–corner performance is significantly higher
than the wall–edge.

Figures 15, 16, and 17 present the classification results for the non-structured
environment depicted in Fig. 11. In this case a threshold was applied in order to
reduce misclassifications. The application of the threshold also eliminates some good
classification results, and because of this, its choice must be taken carefully. Since
most of good classifications belong to a cluster corresponding to the same object
(because data is obtained every 0.9◦), the elimination of some “hits” may not be a
problem. This cluster analysis will be one of the subjects of future work. The analysis
of Figs. 15, 16, and 17, show that all classifiers were able to identify most of the
reflectors “visible” according to Table 4. Let us consider cluster E for illustrating
the interpretation of results shown in Fig. 15. What can be observed in this case, is
that for the same scan the corner (true class) was classified eight times as corner, one
time as wall and one time as edge. A singular case occurs for the wooden seat, for
which none reflectors were identified, because it is a highly unstructured object.

5 Conclusions

The new firing technique (ME-EERUF) allows high data acquisition rates with a
high level of error rejection (see Fig. 8). This technique can be easily implemented
with simple sensor configurations, and provides essential information for reflector
recognition. The results obtained using three Bayes’ classifiers, show the potentiality
of the method. An unstructured environment, a conventional laboratory room
represented in Fig. 11, was used to test the three classifiers: MAP, MR, and MD.
The MD classifier presents the lowest level of “false alarms.” The MAP and the MR
classifier present similar results. However, the need to establish a cost matrix for the
MR classifier may be difficult to define.

These classification methods will be applied in robotic navigation, using time
integration and fusion with other sensor classification modules. These results are
the first step in the global development that will integrate several combined binaural
cells, vision, laser range-finder, and RADAR, in order to have a complete perception
of the environment. Several configuration networks integrating different sensors off-
board and on-board will be tested.

The binaural system, in particular, is also being improved. New functionalities and
methodologies will be applied, such as: signal amplitude, phase shift measurement,
burst codification, and more embedded processing capabilities.

This system is being developed considering its application in the RobChair sonar
system [15], which is a project aiming to assist physically and mentally handicapped
persons in steering and controlling powered intelligent wheelchairs.
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17. Randall, R.C., Michel, H.E.: Theoretical design issues of a multi-sensor doppler-tolerant ultra-
sonic system using pseudorandom codes. In: The 2006 World Congress in Computer Science,
Computer Engineering, and Applied Computing (ICAI’06), pp. 628–634. Las Vegas, Nevada,
USA (2006)

18. Sabatini, A.M.: Active hearing for external imaging based on an ultrasonic transducer array.
In: IEEE/RSJ International Conference on Intelligent Robotic Systems (IROS’92), pp. 829–836
(1992)

19. Simmons, J.A., Ferragamo, M.J., Moss, C.F.: Echo-delay resolution in sonar images of the big
brown bat, Eptesicus fuscus. In: National Academy of Science, vol. 95, pp. 12,647–12,652 (1998)

20. Wijk, O., Christensen, H.: Triangulation-based fusion of sonar data with applications in robot
pose tracking. IEEE Trans. Robot. Autom. 16, 740–752 (2000)


	A Fast Firing Binaural System for Ultrasonic Pattern Recognition
	Abstract
	Introduction
	Polaroid Sonar Sensor
	Experimental Sensor Modelling

	The ME-EERUF System 
	System Configuration and Geometries
	Multi-Echo Firing Sequence
	ME-EERUF Performance Analysis
	Experimental System Modelling

	Reflectors Recognition
	Feature Extraction
	Classification 
	Minimum Risk Classifier
	MAP Classifier
	Minimum Distance Classifier

	Feature Map Results

	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


