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Regulation by Magnesium of Potato Tuber Mitochondrial
Respiratory Activities
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Dehydrogenase activities of potato tuber mitochondria and corresponding phosphorylation rates were
measured for the dependence on external and mitochondrial matrix Mg2+. Magnesium stimulated
state 3 and state 4 respiration, with significantly different concentrations of matrix Mg2+ required for
optimal activities of the several substrates. Maximal stimulation of respiration with all substrates was
obtained at 2-mM external Mg2+. However, respiration of malate, citrate, and α-ketoglutarate requires
at least 4-mM Mg2+ inside mitochondria for maximization of dehydrogenase activities. The phos-
phorylation system, requires a low level of internal Mg2+ (0.25 mM) to reach high activity, as judged
by succinate-dependent respiration. However, mitochondria respiring on citrate or α-ketoglutarate
only sustain high levels of phosphorylation with at least 4-mM matrix Mg2+. Respiration of succi-
nate is active without external and matrix Mg2+, although stimulated by the cation. Respiration of
α-ketoglutarate was strictly dependent on external Mg2+ required for substrate transport into mito-
chondria, and internal Mg2+ is required for dehydrogenase activity. Respiration of citrate and malate
also depend on internal Mg2+ but, unlike α-ketoglutarate, some activity still remains without external
Mg2+. All the substrates revealed insensitive to external and internal mitochondrial Ca2+, except the
exogenous NADH dehydrogenase, which requires either external Ca2+ or Mg2+ for detectable activity.
Calcium is more efficient than Mg2+, both having cumulative stimulation. Unlike Ca2+, Mn2+ could
substitute for Mg2+, before and after addition of A23, showing its ability to regulate phosphorylation
and succinate dehydrogenase activities, with almost the same efficiency as Mg2+.

KEY WORDS: Magnesium regulation; plant mitochondria; mitochondrial respiration; A23187 mitochondrial
Mg2+ depletion.

INTRODUCTION

Magnesium is an essential divalent cation for regu-
lation of several life activities in cells. Most of the free
Mg2+ is cytosolic and a small part is inside organelles, the
majority being bound to proteins and metabolites (Corkey
et al., 1986; Flatman, 1984). Some information is avail-
able on the regulatory action of Mg2+ for mitochondrial
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dehydrogenases in animal tissues, mainly in isolated en-
zymes (Bedino and Testore, 1992; Bowman and Ikuma,
1976; McCormack and Denton, 1979; Panov and Scarpa,
1996a; Thomas et al., 1986).

The biochemical role of Mg2+, in addition to Ca2+,
concerning mitochondrial activities, is assigned to the con-
trol of dehydrogenases (Moravec and Bond, 1991, 1992).
Mitochondrial free [Mg2+] reversibly changes during the
transition of respiration from stage 4 to stage 3 (Jung
et al., 1997). It plays a central role to the mitochondrial
metabolism by modulating enzyme activities (Coultate
and Dennis, 1969) and on the transport of anions (Beavis
and Garlid, 1987; Beavis and Vercesi, 1992) and cations
(Bernardi, 1999). However, the regulation of cell Mg2+ is
far less understood than other ions as Ca2+, K+, Cl−, and
H+. ATP-synthase (ATPase) activities are strictly depen-
dent on the presence of Mg2+ in the mitochondrial matrix
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(Bulygin et al., 1993; Gómez-Puyou et al., 1983). Mito-
chondria store Mg2+ that can be rapidly mobilized to assist
several metabolic processes (Romani et al., 1991, 1993).

In this work, we investigated the regulatory role of
Mg2+, inside and outside potato tuber mitochondria, on
the respiratory activities elicited by specific substrates. We
analyzed the involvement of Mg2+ as a potential mod-
ulator of potato tuber mitochondrial respiration, since
scarce studies on this area, with similar methodologies
and/or purposes, only used animal mitochondria (Panov
and Scarpa, 1996b; Pfeiffer et al., 1974; Reed and Lardy,
1972; Thomas et al., 1986). The divalent cation ionophore
A23187 (A23) was used as a tool for depletion of mito-
chondrial matrix Mg2+, permitting the control of its con-
centration (Panov and Scarpa, 1996b; Pfeiffer et al., 1974;
Reed and Lardy, 1972). In these cases, the Ca2+ trans-
membrane movements render difficult the evaluation of
the Mg2+ regulatory role. In advantage, potato tuber mi-
tochondria are devoid of Ca2+ movements, thus yielding
clear data and conclusions. As a complement, Ca2+ and
Mn2+ were investigated as putative replacers for Mg2+ in
particular activities of respiration.

MATERIALS AND METHODS

Preparation of Mitochondria

Fresh potato tubers (Solanum tuberosum L.) were
obtained from the local market. Mitochondria were iso-
lated and purified according to a procedure involving
Percoll gradient centrifugation as a terminal purification
step (Neuburger et al., 1982). The mitochondrial fraction
was collected from the Percoll gradient with a Pasteur
pipette and washed twice, by centrifugation, at 30000 × g
for 5 min in washing medium (medium A) containing
250-mM mannitol, 0.1% BSA, and 10-mM Hepes (pH
7.2). The pellet was gently resuspended in medium A, at
a protein concentration of 20–30 mg/mL. Protein was de-
termined by the procedure of Bradford (Bradford, 1976)
calibrated with bovine serum albumin standards.

Measurement of Respiratory Activities

Oxygen consumption was monitored with a Clark
oxygen electrode, at 25◦C. The polarographic mea-
surements were performed in 1.5-mL reaction medium
(medium B) containing 0.25-M sucrose, 10-mM Hepes
(pH 7.2), 20- mM KCl, 2-mM K2HPO4, and 0.05% BSA.
We always added 0.2-mM ATP to the reaction medium for
assays of all the substrates, 0.5-mM NAD+ and thiamine
pyrophospate for citrate, malate, and α-ketoglutarate, and

also 100-µM ADP only for assays with α-ketoglutarate
(Bowman and Ikuma, 1976; Coultate and Dennis, 1969;
Soole et al., 1990). The divalent cations, in the form of
chloride salts, were added at the concentrations referred
in the figures of legends. State 3 was elicited by adding
ADP, and uncoupled respiration by adding 1-µM FCCP or
75 ng/mL valinomycin. Respiration rates were calculated
assuming an oxygen concentration of 250 nmol O2/mL of
experimental medium at 25◦C.

The mitochondrial transmembrane electric potential
(�ψ) was monitored with a TPP+-electrode (Kamo et al.,
1979). All experiments were carried out in an opened ves-
sel at 25◦C, with efficient magnetic stirring in 1 mL of
medium B, supplemented with 3-µM TPP+. About 0.3–
0.45 mg/mL of mitochondrial protein were used in the
reaction medium supplemented with the additions indi-
cated in the legends of the figures. Membrane potential
was calculated using the equation of Kamo et al. (Kamo
et al., 1979) where the deflection of the TPP+-electrode
potential (�E) was determined according to the size of the
trace collapsed as a consequence of valinomycin-induced
K+ diffusion, by using 75 ng/mL valinomycin at the end
of each assay.

Mitochondrial Swelling

Mitochondrial osmotic volume changes were esti-
mated from decrease in the absorbance at 520 nm with a
suitable spectrophotometer-recorder set up (Beavis and
Vercesi, 1992). Mitochondria (0.5–0.75 mg) were sus-
pended in 2.5 mL of hypoosmotic sulphate medium
(50-mM sulphate, 5-mM Hepes-pH 7.1, 0.1-mM EDTA,
and 0.1-mM EGTA) supplemented with 0.1% BSA, 0.2-
mM ATP, 0.5-mM NAD+, 0.5-mM thiamine pyrophos-
phate, at 30◦C.

RESULTS AND DISCUSSION

An Overview of Respiration Control by Mg2+

Using potato tuber mitochondrial fractions, by
adding exogenous Mg2+, activities of state 3 and state
4 succinate-elicited respiration were maximal at 2-mM
Mg2+, like with other respiratory substrates (Fig. 1). In
the absence of external Mg2+ (0.5-mM EDTA), state 4
and state 3 activities are depressed (30–60%) for respi-
ration dependent on succinate, exogenous NADH-Ca2+,
malate and citrate, and no activity was detected for α-
ketoglutarate-dependent respiration (Fig. 1), suggesting
that α-ketoglutarate transport depends on external Mg2+,
at variance with the transport of the other substrates.
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Fig. 1. Effect of external Mg2+ on mitochondrial state 3 respira-
tion of several substrates. Oxygen consumption by mitochondria (0.2–
0.3 mg/mL) in reaction medium containing 250-mM sucrose, 10-mM
Hepes (pH 7.2), 20-mM KCl, 2-mM K2HPO4, 0.05% BSA, 0.2-mM
ATP. Succinate (◦), NADH (�), Malate (•), α-ketuglutarate (�), and
citrate (�). Media were supplemented with 0.5-mM NAD+ plus 0.5-mM
thiamine pyrophosphate for citrate, malate, and α-ketoglutarate, and also
100-µM ADP only for assays with α-ketoglutarate. Maximal activities
corresponding to 100%, expressed in nmol O2. mg protein −1. min−1

(±SD) in state 3 for: succinate (5 mM), 175 (±2); NADH-Ca2+ (2–
0.05 mM), 213 (±6);malate (20 mM), 89 (±4); α-ketoglutarate (2 mM),
92 (±9); citrate (4 mM), 49(±4). Inset: state 4 respiration with: succi-
nate, 58 (±14); NADH-Ca2+ (2–0.05 mM), 46 (±6); malate (20 mM),
31 (±2); α-ketoglutarate (2 mM), 24 (±3); citrate (4 mM), 16(±4). Val-
ues are means from at least three independent experiments with three
replicates per experiment.

Mitochondria were treated with A23, an ionophore
specific for divalent cations, making it possible to appre-
ciate the effect on respiration of divalent cations depletion
from the mitochondrial matrix. In the presence of A23
(1 µM), endogenous mitochondrial Mg2+ and Ca2+ con-
centrations equilibrate with the external medium (Panov
and Scarpa, 1996b; Pfeiffer et al., 1974; Reed and Lardy,
1972). Thus, internal Mg2+ is virtually identical to the
added concentration in the reaction medium. The endoge-
nous mitochondrial Mg2+ moved to the medium is ne-
glected since the mitochondrial volume is negligible as
compared with the volume of assay medium (matrix and
assay volumes ratio is about 1/4500).

Activities of all the respiratory substrates were stimu-
lated by internal Mg2+ (A23 present), with a higher depen-
dence for substrates of Complex I respiration (malate, cit-
rate, and α-ketoglutarate), all being completely inactive in
the absence of added Mg2+ (Fig. 2). They required at least
4-mM Mg2+ for maximal activities, similar with those ob-
tained without A23, suggesting that intrinsic Mg2+ is at

Fig. 2. Effect of mitochondrial matrix Mg2+ on state 3 respiration of sev-
eral substrates. Oxygen consumption by mitochondria (0.2–0.3 mg/mL)
in conditions indicated in Fig. 1, after A23187 (1µM) addition. Succinate
(◦), NADH (�), Malate (•), α-ketuglutarate (�), and citrate (�). Maxi-
mal activities corresponding to 100%, expressed in nmol O2. mg protein
−1. min−1 (±SD) in state 3 for: succinate (5 mM), 175 (±8); NADH-
Ca (2–0.05 mM), 212 (±5); malate (20 mM), 92 (±6); α-ketoglutarate
(2 mM), 97 (±8); citrate (4 mM), 51(±5). Inset: results for state 4 respi-
ration with: succinate, 58 (±12); NADH-Ca2+ (2–0.05 mM), 47 (±5);
malate (20 mM), 35 (±1); α-ketoglutarate (2 mM), 22 (±2); citrate
(4 mM), 16(±4). Values are means from at least three independent ex-
periments with three replicates per experiment.

this range in native mitochondria. As succinate and ex-
ogenous NADH-dependent activities still remain at about
30% without added Mg2+ (plus A23), we conclude that
these activities are not completely dependent on Mg2+

although stimulated by it.
Potato tuber mitochondrial state 4 respiration of suc-

cinate (with or without oligomycin 1 µg/mL) improved
by Mg2+ (Figs. 1 and 2, insets), in contrast with the
results observed for succinate-dependent respiration of
rat skeletal-muscle mitochondria, where Mg2+, decreas-
ing proton conductance, inhibits state 4 O2 consumption
(Cadenas and Brand, 2000).

The Dependence of α-Ketoglutarate-Dependent
Respiration on Mg2+

The dependence on external Mg2+ of α-ketoglutarate
transport into the mitochondria was checked by hypoos-
motic swelling in sulphate medium. Without Mg2+, no
significant swelling was elicited by α-ketoglutarate addi-
tion (Fig. 3(A)). However, significant swelling of respir-
ing mitochondria, due to α-ketoglutarate entry, occurs
with Mg2+ (2–4 mM) in medium (Fig. 3(A)). In con-
trast, swellings elicited by malate or citrate (Fig. 3(B)
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Fig. 3. Effect of Mg2+ on the mitochondrial swelling induced by sub-
strate entry. Swelling in hypoosmotic K+-sulphate medium (pH 7.1)
supplemented with 0.1% BSA, 0.2-mM ATP, 0.5-mM NAD+, 0.5-mM
thiamine pyrophosphate, and the respiratory substrate as indicated. A,
α-ketoglutarate (10 mM). B, malate (10 mM). C, citrate (10 mM). D,
NADH (2 mM). Numbers in parentheses state for Mg2+ concentrations
(mM). +KCN, incubation with 0.2-mM KCN. Val., addition of 1-µM
valinomycin. Curves are representative of a group of at least four inde-
pendent experiments.

and (C)) occur without added Mg2+, ascertaining that
these substrates, unlike α-ketoglutarate, are not strictly
dependent on external Mg2+ for the transport into the ma-
trix where they are oxidized. In Fig. 3(A), inhibition of
α-ketoglutarate-dependent respiration by KCN (0.2 mM)
blocks the entry of substrate avoiding swelling. This be-
havior is also observed with the other substrates (Fig. 3),
ascertaining that the uptake of these substrates requires en-
ergization. Sulphate medium is experimentally appropri-
ate for these swelling studies, since plant energized mito-
chondria (respiring exogenous NADH, which is not trans-
ported into the matrix) are almost impermeable to sulphate
(Fig. 3(D)). Therefore, valinomycin-induced swelling af-
ter addition of the respiratory substrates is mainly due to
the entry of each added substrate.

Internal mitochondrial Mg2+ is required at higher
concentrations than external Mg2+ (Fig. 4). The maximal
value of about 200 nmol O2. mg protein−1. min−1 is ob-
tained at about 2-mM external and/or internal mitochon-
drial Mg2+ for succinate respiration, but other substrates
require 4-mM Mg2+ inside mitochondria (A23 present) to
reach the maximal activities, namely for α-ketoglutarate
(about 95 nmol O2. mg protein−1. min−1). With
0.5-mM Mg2+ added, strong inhibition ofα-ketoglutarate-
dependent state 3 (61%) and uncoupled respiration (65%)

Fig. 4. Comparative analyses of stimulation by Mg2+ of succinate
(upper) and α-ketoglutarate (lower) state 3 respiration, before and af-
ter A23 addition. Oxygen consumption by potato tuber mitochondria
(0.2–0.3 mg/mL) in the conditions indicated in Fig. 1. Full lines, without
A23 (external Mg2+); dashed lines, with 1- µM A23 (internal Mg2+).
Insets: Percentages of activities with 0.5-mM Mg2+, in state 3 and uncou-
pled respiration before and after A23 addition. Activities corresponding
to 100%, expressed in nmol O2. mg protein −1. min−1 (±SD): for suc-
cinate, 175 ± 8; for α-ketoglutarate, 58 ± 9. Values are means ± SEM
from at least four independent experiments.

occurred by A23 addition (Fig. 4, inset), in contrast
with succinate-dependent respiration, where both activ-
ities were only slightly inhibited (about 10%). Therefore,
a significantly higher internal Mg2+ concentration is re-
quired for maximal activity of α-ketoglutarate dehydro-
genase than for succinate dehydrogenase.

The Dependence of Citrate-Dependent
Respiration on Mg2+

At 0.1-mM Mg2+, the succinate-dependent phos-
phorylation rate (540 nmol ADP phosphorylated. mg
protein−1. min−1) decreased more than 50% by A23
addition (Fig. 5). As succinate uncoupled respiration
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Fig. 5. Effect of A23 on the phosphorylation rates of potato tuber mito-
chondria respiring succinate (A) and citrate (B) as a function of Mg2+.
Records produced by a TPP+-electrode system of �ψ elicited by mito-
chondria respiring succinate (succ) and citrate. Assays were performed
as indicated in Fig. 1, plus 3-µM TPP+. Record of each experiment
was performed at the Mg2+ concentration expressed in a box, and num-
bers within parentheses state �ψ values in mV. A23, addition of 1 µM
A23187.

(142 nmol O2. mg protein−1. min−1) was significantly
higher than state 3 respiration (87 nmol O2. mg protein−1.
min−1), this indicates that the phosphorylation system it-
self is the limiting step of succinate dehydrogenase ac-
tivity in state 3, with 0.1-mM Mg2+ inside mitochondria.
For concentrations of at least 0.25-mM Mg2+, state 3 and
uncoupled succinate-dependent respiration activities ex-
hibit similar values. In agreement with state 3 succinate-
dependent O2 consumption expressed in Fig. 1, the TPP+-
electrode records (Fig. 5) indicate that 0.25- mM external
Mg2+ induces a high level of phosphorylation rate (612
nmol ADP phosphorylated. mg protein−1. min−1), which
is not significantly affected by A23 addition.

On the other hand, the maximal citrate-dependent
phosphorylation rate (192 nmol ADP phosphorylated. mg
protein−1. min−1, with 4-mM Mg2+) is considerably lower
than succinate-dependent phosphorylation rate in the pres-
ence of 0.25-mM Mg2+ (Fig. 5). This is not due to the
level of �ψ , since both substrates, citrate and succinate,
elicited a similar �ψ (about −232 mV). After A23 addi-
tion, citrate-dependent phosphorylation rate decreases at
less than 4-mM Mg2+. The phosphorylation system, com-
mon to respiration with all the substrates, is not the limiting
step of the citrate-dependent phosphorylation. This indi-
cates that optimal activities of citrate-dependent respira-
tion require 4-mM internal Mg2+ and this concentration is
putatively sequestered into native potato tuber mitochon-
dria. Therefore, high Mg2+ concentrations (at least 4 mM)
are required inside mitochondria for maximal citrate de-
hydrogenase activity, rather than for the phosphorylation
system itself.

Fig. 6. Recovering of maximal citrate-dependent activity by Mg2+ after
inhibition by A23. The assay was performed as described in Fig. 5, using
reaction medium without Mg2+. ADP, ADP 50 µM; Val.,valinomycin
1 µM; A23, A23187 1 µM. Numbers within parentheses state �ψ

values in mV. Record representative of a group of four independent
experiments.

As already observed (Fig. 2), mitochondrial matrix
Mg2+ is essential for activities of dehydrogenases of the
referred TCA cycle intermediates (Bowman and Ikuma,
1976; Coultate and Dennis, 1969; Panov and Scarpa,
1996b; Tobin et al., 1980). It is known that the phos-
phorylation system requires internal mitochondrial Mg2+

(Bulygin et al., 1993; Gómez-Puyou et al., 1983). How-
ever, results in Fig. 5 revealed that significantly lower
internal Mg2+ (0.25 mM) is required for high phos-
phorylation than for high citrate dehydrogenase activ-
ity (4 mM), like with α-ketoglutarate respiration activity
(Fig. 4).

In Fig. 6, we clearly observe that plant mitochon-
dria respiring citrate develop �ψ (−195 mV) and phos-
phorylate ADP in the absence of external Mg2+. How-
ever, addition of A23 induces fast dissipation of �ψ as a
consequence of inhibition of citrate-dependent respiration
(Fig. 2), resulting from internal Mg2+ efflux induced by
A23. We observed that this inhibition is reversed by adding
1-mM Mg2+, recovering �ψ (−190 mV) and phosphory-
lation capacity. Furthermore, second and third additions
of 1 mM and then 2-mM Mg2+ both increased phosphory-
lation efficiency (Fig. 6). Similar results can be obtained
using malate instead of citrate.

Maximal activity succeeded with at least 4-mM
Mg2+ added, as was already detected. This shows that
A23 only depletes mitochondrial Mg2+, in exchange for
protons (Panov and Scarpa, 1996b; Pfeiffer et al., 1974;
Reed and Lardy, 1972). No direct inhibitory action on
respiration of citrate, like any other substrate, was de-
tected by us, in contrast with observations in animal mito-
chondria for α-ketoglutarate or pyruvate dehydrogenases
(Panov and Scarpa, 1996b). These discrepancies are most
probably a consequence of differences in the experimental
conditions.
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Control of Respiration by Divalent
Cations Other Than Mg2+

It has been ascertained if Mg2+ could be replaced
for the most common divalent cations, namely Ca2+ and
Mn2+. Successful replacements will relate with ATP-
synthase activity and mitochondrial respiration-dependent
dehydrogenases.

Because A23 equilibrates external and internal mito-
chondrial free Ca2+ and Mg2+ (Panov and Scarpa, 1996b;
Reed and Lardy, 1972), one effect on the mitochondrial
respiration could be accounted for by different sensitivi-
ties of the dehydrogenases to both or either of the diva-
lent cations. However, addition of Mg2+, but not Ca2+,
totally recovers dehydrogenase activities of all the tested
substrates, except for exogenous NADH dehydrogenase
(Soole et al., 1990), an enzyme not known in animal mi-
tochondria, that is sensitive to external Ca2+ after Mg2+.

Exogenous NADH dehydrogenase activity (Table I)
is higher with Ca2+ (67%) than with Mg2+ (30%), and
is the only respiratory activity where cumulative stimu-
latory action was clearly achieved by adding Mg2+ and
Ca2+ (87%). However, this is a regulation occurring in the
absence of A23, meaning dependence on divalent outer
anions.

Succinate-dependent respiration, evaluated by �ψ

estimation with the TPP+-electrode (Fig. 7) shows that, in
the absence of added divalent cations, A23 induces �ψ

increase as a result of internal Mg2+ exchange by external
protons, converting the �pH component into �ψ (TPP+-

Table I. Control of the Divalent Cations Mg2+ and Ca2+ on the
Phosphorylation Efficiency of Potato Tuber Mitochondria Respiring
Exogenous NADH, as Compared With Succinate Activities

Phosphorylation
Substrate Divalent cation activity (%) �ψ (mV)

Succ. Mg2+ 100 −215
“ — 93 −213
NADH Mg2+ + Ca2+ 87 −222
“ Ca2+ 61 −215
“ Mg2+ 30 −208
“ — 22 −210
“ —+EDTA nd −166

Note. Relative phosphorylation activities, in percentage, and �ψ val-
ues after phosphorylations. Maximal activity, referred as 100% was
obtained for succinate-dependent respiration with 0.25-mM Mg2+,
corresponding to 612 nmol ADP phosphoylated. mg protein−1.
min−1. Results obtained from TPP+-electrode records of 100-µM
ADP phosphorylated with additions of Mg2+ (0.25 mM) and Ca2+
(0.25 mM), as indicated. Assays were produced in conditions ex-
pressed in Materials and Methods. Results are representative of a
group of at least three independent experiments.

Fig. 7. Compared regulation of succinate-dependent respiration by
Mg2+, Mn2+, and Ca2+. TPP+-electrode phosphorylation records, be-
fore and after A23 addition, in the absence (control) and presence of 0.25-
mM Mg2+, Mn2+, or Ca2+. Assays were performed as indicated in Fig. 5.
Numbers within parentheses state �ψ values in mV. All the phosphory-
lations are with 100-µM ADP. A23, addition of 1 µM A23187. Records
are representative of a group of at least three independent experiments.

electrode only detects �ψ). Further ADP addition induces
a small cumulative increase, indicating full inhibition of
phosphorylation by A23. This was also observed when
Ca2+ (0.25 mM) was added, showing that this cation does
not replace Mg2+ in its requirement for the phosphoryla-
tion system. In contrast, Mn2+ can replace Mg2+, showing
almost the same phosphorylation rate (Fig. 7) and succi-
nate dehydrogenase activities.

In the presence of A23 and absence of external Mg2+,
Ca2+ (0.25 mM) neither dissipates �ψ (Fig. 7) nor sig-
nificantly stimulates state 4 respiration, at variance with
results in rat liver mitochondria, where �ψ was dissi-
pated simultaneously with strong stimulation of O2 con-
sumption (>300%) (Panov and Scarpa, 1996b; Reed and
Lardy, 1972). These effects were avoided by ruthenium
red (RR), a noncompetitive inhibitor of the animal mito-
chondrial Ca2+ uniporter (Reed and Bygrave, 1974) or by
EGTA, a Ca2+ chelator, showing that they are caused by
Ca2+ movements across the mitochondrial membranes.
However, the absence of those effects in potato tuber mi-
tochondria confirm nonexistence of similar Ca2+ move-
ments across the mitochondrial membranes (Chen and
Lehninger, 1973), making it easier to discern Mg2+ action.

Even for α-ketoglutarate and malate/pyruvate de-
hydrogenases, after addition of A23 (in the presence of
1-mM Mg2+ and 0.5-mM EGTA), we never observed stim-
ulation by Ca2+ (0.1–0.5 mM) instead of Mg2+ (results
not shown), suggesting that Ca2+ (or at least free Ca2+)
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is not required at all for those plant dehydrogenase activ-
ities. However, our results of potato tuber mitochondria,
are not in contrast with results for known Ca2+-sensitive
dehydrogenases of animal (McCormack et al., 1990; Mc-
Cormack and Denton, 1979; Panov and Scarpa, 1996a)
and plant mitochondria (Coultate and Dennis, 1969; Tu-
rano, 1998), because our experiments were produced in
conditions different from the other authors.

In summary, conclusions about the regulatory role
of Mg2+ on potato tuber mitochondrial respiration are: 1)
activities of the several respiratory substrates were sig-
nificantly enhanced by external (without A23) and mito-
chondrial matrix Mg2+; 2) higher levels of Mg2+ are re-
quired inside than outside the mitochondria for maximal
state 3 activity, with different requirements of Mg2+ for
the several substrates; 3) no respiration of α-ketoglutarate
was detected in the absence of external Mg2+, which re-
vealed essential for the substrate transport, unlike citrate
and malate dependent-respiration, however, both required
internal Mg2+; 4) the phosphorylation system, which is
used by all the respiratory substrates, is efficient at low
mitochondrial matrix Mg2+ (0.25-mM) as judged for suc-
cinate activities, but high rates of Complex I-dependent
phosphorylation were only obtained with higher Mg2+

concentrations (at least 4-mM), demonstrating that high
levels of Mg2+ are required for high Complex I-dependent
dehydrogenase activities, rather than for the phosphoryla-
tion system itself.

Preliminary results obtained with turnip (Brassica
napus L.) and sweet potato (Ipomoea batatas L.) indicate
a similar qualitative regulatory role of the divalent cations
(results not shown).
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