
University of Coimbra
Faculty of Sciences and Technology

Department of Physics

Integration of optical tracking
system for determination of the

position and orientation of
instruments during the surgery

Michel Antunes

Coimbra, 2008

Integration of optical tracking system for
determination of the position and orientation

of instruments during the surgery

Michel Antunes

A Thesis submitted for the degree of Integrated Master in Biomedical
Engineering

Department of Physics

Faculty of Science and Technology, University of Coimbra

August 2008

Contents

1 Introduction 1
1.1 Surgical Navigation . 2
1.2 Surgical Navigation in minimal invasive procedures (Arthoscopy) 4
1.3 The Project . 5

2 Equipment Description 8
2.1 Opto-tracker . 9

2.1.1 Position Determination 11
2.1.2 Pose Estimation . 11
2.1.3 API Description . 13

2.2 Arthroscope . 14
2.3 FireWire Camera . 15

3 Hardware for the Synchronization 16
3.1 Synchronization’s Problem . 16
3.2 Synchronization’s Solution . 18
3.3 Hardware specification . 20

3.3.1 Opto-tracker Synchronization 24
3.3.2 PointGrey Camera Synchronization 24
3.3.3 Arthroscope as Trigger Source 26
3.3.4 PushButton Trigger . 26

3.4 PCB design . 27
3.4.1 OrCAD for the board design 27
3.4.2 Altium Designer for the board design 28

3.5 Evaluation of the Final SyncCard 29

i

4 Software 31
4.1 General Objective . 31
4.2 Development environment . 32
4.3 Requirements . 33
4.4 Application’s Architecture . 34

4.4.1 Configuration using a XML file 34
4.4.2 The devices and their configurations 35
4.4.3 Insertion of of user defined modules 37
4.4.4 ArthroNavMain . 39
4.4.5 Acquisition Loop . 39
4.4.6 How to use the application 41
4.4.7 Processors created . 42
4.4.8 Software results . 45
4.4.9 Problems during the development 46

5 Construction of a Tool with LEDs 50
5.1 Rigid Body characterization 50
5.2 Tool Constraints . 52

6 Conclusion 53

A Software Documentation 55

B Schematic Design and PCB Layout 56

Bibliography 61

ii

List of Figures

1.1 TKR surgery using navigation based on optical tracking. . . . 3

2.1 Optotrak Certus System . 10
2.2 Cylindrical lens . 12
2.3 The complete endoscopic system 14

3.1 Output signals of the Opto-tracker Synchronization Port [1]. . 17
3.2 External signals from the Flea2 Synchronization Port [2] . . . 18
3.3 Composite Video . 19
3.4 Logic circuit for frame signal extraction 20
3.5 Output Signals of the LM1881 21
3.6 The final circuit for the SyncBoard 23
3.7 The Trigger connectors of the cameras 25
3.8 The first components soldered on the SyncBoard 29
3.9 Arthroscope as Trigger Source 30

4.1 An overview of the Software Architecture 35
4.2 Virtual call of user defined methods 38
4.3 Acquisition timing . 40
4.4 Matched and shuffled acquisition 41
4.5 The configuration.xml file . 42
4.6 ArthtroNavTracker . 43
4.7 ArthroNavTracker communication 44
4.8 OptoRigidAR animation . 45
4.9 Acquisition using a storing module. 47
4.10 The flow of the application . 49

5.1 Rigid Body . 51

B.1 Schematic of the SyncBoard 57
B.2 Bottom Layer of the PCB Layout. 58

iii

B.3 Top Layer of the PCB Layout. 58

iv

List of Tables

1.1 Solutions to meet the specified requirements 7

2.1 Technical specifications of the equipment 9
2.2 PC Specifications . 9

3.1 The components of the SyncBoard 22
3.2 The Synchronization Modes of the SyncBoard. 22
3.3 Opto-tracker Sync Port Pin Description 25
3.4 GPIO Flea2 Pin Description 26
3.5 Principal design rules of the PCB 28

4.1 Elements that the application can parse 36
4.2 Opto-tracker attributes that can be parsed 36
4.3 Processing and acquisition duration 46

v

Glossary

Anterior Cruciate Ligament (ACL)
One of the four major ligaments of the knee. Connects the femur to
the tibia, providing stability to the knee and minimizing stress across
the knee joint.

Application Programmer Interface (API)
Set of function declarations to support requests made by a computer

Augmented Reality (AR)
Field of computer research which deals with the combination of real-
world and computer-generated data.

Computer-Aided Design (CAD)
Computer technology to aid the engineers and architects in the design
of a variety of products.

Computer Assisted Surgery (CAS)
Surgery performed with the help of a computer system that aims to
assist the practitioner and improve the accuracy

Charge Coupled Device (CCD)
Sensor technology, commonly used in conventional digital cameras, that
measures the incident light intensity.

Computed tomography (CT)
Medical imaging method.

Dynamic-link library (DLL)
Microsoft’s implementation of the shared library concept.

vi

Digital Video (DV)
Video using digital signals.

Fundação para a Ciência e a Tecnologia (FCT)
Portuguese governmental institution responsible for financing the ArthroNav
project.

Ground (GND)
Reference voltage in which other voltages are measured

General Purpose Input/Output (GPIO)
Device providing a set of ports that can be configure for either input
or output. The communication with the Flea2 camera is achieved with
a GPIO port.

Global Positioning System (GPS)
Navigation System

Input/Output (I/O)
Communication between a device and the outside.

Infrared Light emitting diodes (IRED)
Diodes emitting IR light when actvated.

Institute of Systems and Robotics (ISR)
Institution where the ArthroNav project is in development.

Minimalist GNU for Windows (MinGW)
MinGW provides a complete Open Source programming tool set which
is suitable for the development of native Windows programs that do
not depend on any 3rd-party C runtime DLLs.

Northern Digital Inc. (NDI)
Company where the optical tracking system was acquisted.

Optotrak Application Programmer Interface (OAPI)
Set of functions to support the interface with the opto-tracker

vii

Object-Oriented Programming (OOP)
Programming which is oriented around objects, taking advantage of
Encapsulation, Polymorphism, and Inheritance to increase code reuse
and decrease code maintenance

Open Source Computer Vision Library (OpenCV)
Library with programming functions principally aimed at real time
computer vision.

Open Graphics Library (OpenGL)
Cross-platform API to produce 2D and 3D computer graphics.

Printed Circuit Board (PCB)
Provides place to mount components,and means of electrical connection
between the components, for electronic devices

RGB
Additive color model, adding red, green and blue light together.

System Control Unit (SCU)
Processing device that controls the operations of the Position Sensor
and the Strober

Simple DirectMedia Layer (SDL)
Cross-platform multimedia library designed to provide low level access
to audio, keyboard, mouse, joystick, 3D hardware via OpenGL, and 2D
video framebuffer

Total Knee Arthroplasty (TKA)
Replacement of the arthritic knee surface

Total Knee Replacement (TKR)
Refer to Total Knee Arthroplasty

Transistor-Transistor-Logic (TTL)
Class of digital circuits. Logic gating and amplification are both per-
formed by transistors.

viii

Vtable
C++ implements dynamic dispatch using virtual function tables. The
dispatch process consists of loading the receiverŠs dispatch table, load-
ing the function address by indexing into the table with the selector
number, and jumping to that function.

Extensible Markup Language (XML)
A custom markup language.

ix

Acknowledgments

During this year a lot of persons were very important to me. Some of
them helped me to become a better engineer. Others helped by standing at
my side during the pains of the process.

I want to thank my Advisors to trust me from the beginning and give me
the chance to continue my work. My thanks to Prof. Joao Barreto for his
constant motivation and help, and to Prof. Paulo Menezes for his numerous
tips and suggestions.

The biggest acknowledgment goes to my girlfriend. This year was a hard
one where I worked a lot. But she was always near when I needed, and gave
me strength to keep going.

I want to thank Mom and Dad. Without them I could never be here.
Thank you for all your efforts to provide me with the tools to build a better
future.

I want to thank my Lab. mates Joao, Pedro, Hugo and Cristovao for
being my project companions. Thanks also to Jose Pascoal for the PCB
help.

I want to thank my sister and my friends. Thank you friends for being
my friends. Sorry for the less attention this year.

Thanks to all that in one way or another were close to me during this
year.

x

Abstract

The purpose of this project was the design and implementation of a com-
plete system for acquisition and fusion of data provided by an optical tracking
system and a set of cameras (including an arthroscope).

Synchronous data acquisition was a major requirement. For this purpose
we designed a Printed Circuit Board (PCB), that assures perfect synchrony
between equipments, and can be configured to use different trigger sources.
In addition, we developed a complete software architecture in C++, that runs
in a work-station and makes the communication with the opto-tracker and
cameras. The software enables the insertion of different modules for data
processing. We developed a Visualization Module using OpenGL and Qt,
and a recording module that enables data acquisition for off-line processing
in Matlab.

In future work, the navigation system will be extended with 3D recon-
struction/registration computer vision algorithms. These algorithms will use
the intra-operative endoscopic video, enhanced with the pose information,
for estimating the 3D pose of organs and anatomical structures in the knee.
The final goal is to build a complete navigation system to assist surgeons
during arthroscopic interventions.

Chapter 1

Introduction

The project described in this thesis is part of a bigger project, funded by
Fundação para a Ciência e a Tecnologia (FCT), and named ArthroNav - Com-
puter Assisted Navigation in Orthopedic Surgery using Endoscopic Images.
The goal of the ArthroNav project is to enhance the surgeon’s perception
and enable precise navigation in the knee joint during the Anterior Cruciate
Ligament (ACL) reconstruction.

The ACL connects the femur to the tibia, providing stability to the knee
and minimizing stress across the knee joint. It is a common injury, that usu-
ally occurs by sudden change of direction (e.g. sport practice). The treatment
of the damaged ligament involves minimal invasive surgical reconstruction.
The injured ligament is removed, and drill guides are used to open holes in
the tibia and the femur at the attachment locations of the original ligament.
A ligament graft is passed trough the bone tunnel into the knee joint, and
it is attached using screws. It is a difficult surgical procedure, requiring the
surgeon to be able to navigate inside the knee joint using only endoscopic im-
age feedback. Small errors in the graft placement lead to abnormal tensions
during the movement of the knee, that can cause complete clinical failure.
Statistics show that, in 50% of the cases, there are non negligible errors.
The objectives of the ArthroNav project is to develop a computer naviga-
tion system to assist the practitioner, and improve the accuracy in the graft
placement [3] [4].

1

1.1 Surgical Navigation
Surgical navigation stems from the demand of higher accuracy and repro-

ducibility in a wide variety of medical interventions, allowing the surgeon to
track the patient anatomy and surgical instruments in a three dimensional
space. Real-time manipulation of the obtained positions, with fusion of im-
age registration techniques, allow surgeons to localize surgical positions on
preoperative images.

To better understand the need for a navigation system in the surgery
room, it is possible to make an analogy with a car trip. Suppose we are at
city A and want to arrive at city B. Being the first time that we go trough this
path, we first look and analyze some maps of the region, and then start the
trip. Without road signalization and no Global Positioning System (GPS),
we know more ore less when to turn right, or in which city we will pass, but
easily fall in disorientation. The principal problem of the trip is the doubt
if we will arrive at the desired location. Using an updated GPS, we arrive
at the exact same location where we wanted initially while looking the road
maps.

So, the trip is the surgery, and city B is a surgical position where the
medical intervention must be done. First, the surgeon analysis the anatomy
maps, like Computed tomography (CT) images, and during the surgery tries
to arrive at the planed position B (e.g. to open the hole for the graft introduc-
tion). The surgeon knows more or less, due to his experience, the location of
B. However and since the incision must be made with sub-milimetrical preci-
sion, it is a very difficult task to accomplish using just the human eye without
external support. This is the scenario where the surgical navigation has im-
pact. The surgical navigation is like a GPS in the surgery room, tracking
real-time positions of instruments and tools with respect to a target organ.
The system will tell the surgeon how far he is from the desired location, and
will supply all the necessary measurements to arrive at point B. It will give
instructions to the practitioner (e.g. 1.1mm more right and 0.63mm more
down). Ironically, it is possible to say that 1mm error in the surgery room is
1km mistake during the road trip. So, 1mm for the patient is a considerably
distance, and has a strong repercussion in the success of the operation.

Today, Computer Assisted Surgery (CAS) is broadly used for navigation
purposes. In orthopedics, it has been proven that a surgery with the assis-
tance of a navigation system is much more accurate than a surgery using
traditional techniques. CAS, beside improving the accuracy of the surgery,
it also improves the reproducibility and allows surgeons with less experience
to do the interventions without fear of making mistakes [5].

An example of a surgery using a navigation system is shown in Figure

2

1.1. The figure concerns the Total Knee Arthroplasty (TKA) procedure. The
goal is to replace the knee joint by a prothesis. From a clinical perspective,
it is fundamental a correct alignment between the prothesis and the femur
head that is hidden in the hip. The alignment is achieved using optical
tracking. The surgeon starts by determining landmarks in the knee joint
using a digitizing touch probe over the surface of the femoral head. The
acquired positions from the tracked probe are used to calculate the center of
the femoral head via registration with a pre-operative model. Rigid attached
bodies are also tracked, providing a reference frame for the calculation of the
pose of the objects in displacement [6].

Figure 1.1: Total knee replacement surgery using navigation based on opti-
cal tracking. The opto-tracker is a stereo head able to estimate the positions
of Infra Red Markers using triangulation. This enables the estimation of the
3D position and orientation of tools and organs [6].

3

1.2 Surgical Navigation in minimal invasive

procedures (Arthoscopy)
Arthroscopy is a minimally invasive procedure that aims decreasing the

incision size and minimize the time for surgery recovery. Large incisions are
replaced by a couple of small incisions (surgery ports). One port gives access
to an arthroscope, providing the surgeon with intra-operative endoscopic
images. This enables the visualization of the interior of the knee joint on
a video screen. Other ports are used to insert small surgical instruments,
allowing the diagnosis of injuries, as well as the repair, reconstruction, or
removal of damage tissue and organs.

The Arthroscopy is a difficult technique to perform. Visibility is very
reduced throughout the procedure, and anatomic landmarks are difficult to
localize. The surgeon has difficulty in perceiving depth, and can easily loose
the orientation. As the success of the surgery depends on the accuracy and
precision of the surgeon, the final clinical outcome can be considerably influ-
enced by these problems. Computer systems for enhancement of surgeon’s
perception and precise navigation in the knee joint can improve the clinical
success rate and decrease the practitioner training requirements. The devel-
opment of such systems can bring great benefits in improving the life quality
of patients [5].

The development of navigation systems for minimal invasive surgery is
a difficult task. The main problem is the fact that tissues and organs can
not be directly accessed. The Total Knee Replacement (TKR) surgery, de-
scribed in the previous section, is an open procedure, where it is possible to
attach markers to the bones. While in the TKR procedure the pose of the fe-
mur/tibia can be estimated by optical tracking, this is no longer possible for
the case of the arthroscopic ACL reconstruction. The surgeon observes the
cavity in an indirect manner using the endoscopic camera, and it is virtually
impossible to attach optical markers that can be tracked from the outside.

The ArthroNav project aims to overcome this problem by employing com-
puter vision techniques over the endoscopic video. The key idea is to employ
optical tracking for the pose of the arthroscope and instruments (observ-
able from the exterior), and estimate the rotation/translation of the organs
with respect to the camera by registering pre-operative 3D models to intra-
operative images.

Our work concerns the hardware and software infrastructure that will
support this research. The computer vision algorithms for reconstruction/
registration will require endoscopic video augmented with pose information

4

provided by the opto-tracker. During the project we designed, developed and
implemented a complete system, composed by a work-station connected to
cameras and an optical tracker. The system was complemented by suitable
hardware and software to enable synchronous acquisition of video and optical
data.

1.3 The Project
The objective of this project was the development and validation of a

complete infrastructure for acquisition and fusion of data provided by the
opto-tracker and a set of N cameras (including the arthroscope). The fi-
nal outcome was a system providing real-time video, enhanced with pose
information about cameras and other tools.

In order to achieve the objective, the main project steps were:

• Familiarization with the equipment, including the study of the manuals
for the Arthroscopic system, opto-tracker, and corresponding Applica-
tion Programmer Interface (API).

• Specification, acquisition and installation of equipments (work-station,
arthroscope, etc).

• Decision about operating system, development environment, and addi-
tional software tools (libraries).

• Integration of the opto-tracker and arthroscopic video system for syn-
chronous data acquisition.

• Development of a supporting software infrastructure, enabling the fu-
ture integration of different processing modules.

• Development of a software module for Data Recording

• Construction of a marker tool to be attached to camera and instru-
ments, that minimize surgeon disturbance while keeping good line of
sight.

These steps were all accomplished, except the construction of the marker
tool. This is explained by the fact that several objectives took more time
than initially expected, and also because new features were added during the
project. The tool was not built, but the parameters involving the utilization

5

of rigid bodies in surgical environment were studied, and an initial design
was proposed. We hope to finish this part in a near future.

The accomplishment of the objectives must keep in mind the following
important requirements :

• Synchronous Data Acquisition: This requirement is essential to com-
bine the tracking system with the endoscope. The ArthroNav project
will use the information from the arthroscope, enhanced with the pose
information, to construct a complete surgical navigation system. If the
data from different sources would not correspond to the exact same
time instant, then this would be a major source of error, with direct
impact in the accuracy and reliability of the final navigator.

• Real-Time: The final infrastructure will be used intra-operatively to
assist the surgeons. This implies real-time information retrieval to the
medical practitioner.

• Flexibility and Modularity: Future research within the ArthroNav project
will rely on this infrastructure. Different approaches will need the ac-
quisition of different data sets (e.g. variation of the frequency, different
devices, different rigid bodies). Also, various processing algorithms
will be produced and tested along the project. Therefore, the software
infrastructure must be flexible, allowing re-configuration of the data
acquisition, and easy insertion of user defined modules.

• The software should be portable between Windows and Linux operating
systems.

Table 1.1 briefly overviews some of the solutions used to meet the require-
ments.

The created system makes the synchronous fusion of opto-tracker infor-
mation and arthroscopic video, and allows its visualization and processing.
The additional features added to the system during the project were:

• Implementation of time analysis mechanisms enabling the control of
the acquisition rate. This is enables the double-checking of synchrony,
as well as alerts for information loss or when information captured in
different instances is shuffled.

• During the project, we realize the need of a third camera. This camera
will allow video of the acquisition environment, which can be helpful
for ground truth analysis for the algorithms that will be created.

6

Table 1.1: Solutions to meet the specified requirements

Requirements Solution Overview

Synchronism

Design and implementation of PCB that syn-
chronizes the different equipments using as trig-
ger source the arthroscope, the opto-tracker, the
FireWire camera, or an external push button.

Real-time Careful programming in order to minimize la-
tency.

Easy Re-Configuration Achieved by using Extensible Markup Language
(XML) parsing.

Easy addition of modules Abstract classes were produced as input port
for external modules.

Portability The development environment was Cygwin,
which should ensure easy portability.

• Development of a software module for visualization. An interface was
designed, allowing an easy and user-friendly utilization of the navi-
gation system. A 3D animation of rigid bodies using the rotational
and translational data from the optical tracking was also implemented.
This animation allows the visualization of kinematics applied on rigid
bodies during the real-time tracking.

7

Chapter 2

Equipment Description

The developed surgical system employs an optical tracking system, an
arthroscope, a FireWire camera, and a work-station (PC computer). Table
2.1 gives an account of the relevant specifications of the opto-tracker, and
the cameras.

At the beginning of the project, the Institute of Systems and Robotics
(ISR) had already purchased an optical tracking system. We were the first
that used this system in order to capture pose information. The opto-tracker
is a stereo head able to estimate the positions of Infrared Light emitting
diodes (IRED) by triangulation. The utilization of this equipment involved
the study of its manuals, and its Application Programmer Interface (API).

An old endoscope was used for the first contact with medical equipment.
To improve the capabilities of our research, a new endoscopic with surgi-
cal lens was acquired. The new endoscope has a camera with three CCDs,
allowing the capture of high quality imagery.

A third camera was included in the setup. This camera will allow external
processing, and will provide ground truth information for the evaluation of
algorithms created during the future research.

In order to merge the information in real-time, a PC capable of a good
performance was acquired. Table 2.2 provides the principal characteristics
of the computer.

8

Table 2.1: Technical specifications of the equipment used in the navigation
system.

Endoscope (3CCD) Opto-tracker PointGrey Camera
(Smith & Nephew 460H) (NDI CERTUS) (Flea2-08S2C)
Size (pixel) 576× 720 Resolution(mm) 0.01 Size a(pixel) 1032× 776

Sensor 3 CCD 1/2 Accuracy (mm) 0.15 Sensor ICX204 1/3
Output DV-25 Operation Range(m) 2.3− 6 Output Digital Data b

aThis is the maximal image size.
b 8, 16 and 24-bit digital data. The image data formats are : Y8, Y16, RGB, YUV411,

YUV422 and YUV444

Table 2.2: PC Specifications

Processor Intel Core 2 Quad
Processor Speed 2.4GHz

Memory 4Gb
Graphic Card GeForce 8800 GTS 320Mb 500MHZ

Hard Disk 500Gb 16Mb 7200rpm

2.1 Opto-tracker
There are many surgical navigation systems based in electromagnetical

tracking. The main advantage of this technology, when compared with opto-
tracking, is that it does not suffer from line-of-sight problems. The main
drawback is its susceptibility of interference to electromagnetical sources,
resulting in measurement errors. [7]. To achieve the best accuracy for the
estimation of surgical positions, an optical tracking system has been used.
Our optical navigator is an Optotrak Certus System. However, and despite of
the differences, the problem aimed by the ArthroNav project, which is image-
based navigation, is in a large extent independent of the chosen of technology
to track camera and instruments.

The opto-tracker is a position sensor, tracking motions of markers consist-
ing of IRED. 1 The typical operation of the opto-tracker is shown in Figure

1The manufacturer supplies two different Optotrak Certus Systems. We chose the E-
Type because it was designed with electromagnetical shielding, as specified by medical
electrical equipment standards [1].

9

System Control Unit (SCU)

receives the configuration

parameters , and sends the

instructions to the Positions

Sensor and the Strober; process

the captured pixel data

Marker Strober

activates the

Markers

Markers (IRED)

Position Sensor detects

the IR emission and

forwards the information

to the SCU

Host Computer

allows the

communication

with the

Optotracker

Camera 1

Camera 3

Camera 2

Lens 3

Lens 2

Lens 1

Front view

of the

Optotracker

Each camera forms a plane of view,

the intersection of the three planes

results in the marker position

The cameras are

constituted by linear

CCDs with 2048 pixels

Figure 2.1: Optotrak Certus System

2.1. First, the Position Sensor is placed so that the detection region23 incor-
porates all the field of interest, from where we want to obtain the marker
positions. Then, the communication with the Optotrak Certus system is ini-
tialized. The communication can be made using the supplied software4, or
with an our own application developed using the Optotrak Application Pro-
grammer Interface (OAPI). The System Control Unit (SCU)5 receives the
configuration parameters from the host computer, processes the values, and
sends the appropriate instructions to the Positions Sensor and the Marker
Strober6. Once started the collection, the Strober activates the markers, and
the Position Sensor detects the infrared light emission, forwarding the in-
tensity information to the SCU. It is the Optotrak System that controls the
activation order of the markers, being able to link the captured pixel data to
the corresponding marker. The SCU processes the received raw pixel data7

2Volume in which the position sensor can detect a marker, defining the field of view of
the Sensor

3The acquired Optotrak System is far focus, seeing from 2.2m until 6m
4NDI First Principles allows to capture,record and store data captured by the Optotrak

Certus System.
5Processes the data received by the Position Sensor and forward the information to the

host computer.
6Turn the markers on and off in response of the instructions supplied by the user.
7Subpixel positions from the Charge Coupled Device (CCD)’s

10

in their corresponding 3D or 6D positions if requested, and transmits the
information to the host computer.

2.1.1 Position Determination
The operation of the Optotracker is based on three cameras, each com-

posed by a linear Charge Coupled Device (CCD) with 2048 pixels. In front
of the CCD, a cylindrical lens focuses all incoming light rays onto the linear
matrix of the CCD, forming a plane of view. The intersection of the three
plane of views results in the position of the marker.

A cylindrical lens has two perpendicular meridians, but just one has op-
tical power [8]. The meridian parallel to the axis of the cylinder has zero
refractive power, and the meridian perpendicular to the axis is the power
meridian. Imagine the lens as if they were composed by thin horizontal sec-
tions. To each section corresponds a point in the image line that is right
behind. The lens makes incident light rays, lying on the horizontal planes
defined by the sections, to converge into the corresponding point of the image
line (see Figure 2.2). From the coordinates of the point in the image line, it
is possible the estimate from which horizontal segment it was formed, and so
the vertical coordinates of the light source can be calculated.

Figure 2.1 shows that the CCD one and three of the opto-tracker are
perpendicular to the CCD two. The cylindrical lens of the cameras one and
three are oblique. As for each camera it is possible to form a plane of view, the
intersection of the three planes gives the position of the light source, in this
case, of the IR Marker [9]. Using the centroid 8 positions of the three linear
pixel matrices, instead of the pixel with maximal intensity, it is possible to
achieve sub pixel precision, and estimate more accurately the position of the
IRED.

2.1.2 Pose Estimation
The opto-tracker captures light from the markers, and can transform

the CCD readings of multiple markers into 3D (or pose) data9. In order to
calculate the rotation and translation of an object with respect to a reference
frame, it is necessary to use the concept of rigid body. Generically, a rigid
body is an object in which the distance between any two points, and the

8The centroid position is the gaussian mean position of the intensities captured by the
CCD

9 The pose data refers to the rotation and translation.

11

Figure 2.2: Cylindrical lens

angles between any two vectors do not vary in time (it is rigid). By tracking a
certain number of points is is possible to compute the rigid motion undergone
by the object. Or in an alternative manner, to compute the translation and
rotation of a local reference frame, attached to the rigid body, with respect
to a global fixed reference frame [10]. To calculate the transformations of a
rigid body with the Optotracker, we need to observe a minimum of 3 markers
at each frame instant.

The OAPI can return various formats for real-time rigid body motion.
It’s possible to work with Euler parameters10, rotation matrices11 and quater-
nions.12

A rigid body is characterized using the NDI 6D Architect Software sup-
plied by Northern Digital Inc. (NDI). This software enables the creation of
a file that describes each feature of a rigid body. This file contains the in-

10The Euler angles describe completely any rotation, the parameters are roll (Rz), pitch
(Ry) and yaw(Rx).

11The rotation matrix is a 3× 3 matrix R, satisfying RT = R−1 and det(R) = 1.
12Quaternion is a mathematical efficient notation used to represent the rotation of an

object. Quaternions do not suffer from singularities and ambiguities, because they use
four parameters to represent the three degrees of freedom of the rotation. A quaternion
is represented by Q = q0 + qxi + qyj + qzk. The unit vector of the rotation is given by
v = (qx√

1−q2
0
, qy√

1−q2
0
, qz√

1−q2
0
) and the angle of rotation is θ = 2 ∗ arccos(q0).

12

formation that the system needs to determine the transformations. Such
information includes the origin and orientation of a coordinate system local
to the rigid body, the local coordinates of the attached markers, the normals
to the markers and the tracking tolerances. Setting the tracking tolerances
allows to specify the allowed maximum errors during the tracking of the
rotational and translational movements.

2.1.3 API Description
The Optotrak System has an API with every necessary functions and

routines needed to write custom application software. The OAPI was written
in C, but it can be easily integrated under C++ encapsulation. This enables
the creation of user defined wrapper classes that simplify its utilization. With
the OAPI, it is possible to obtain the system status, and obtain either real-
time data or buffered data in a blocked or non-blocked manner13. The OAPI
comes with useful sample programs, with which is possible to learn how to
use the opto-tracker.

Rigid bodies can be defined either by the above described rigid body files,
or by an array of 3D coordinates with the locations of the IRED markers in a
local reference frame. There are also two useful routines for mapping coordi-
nates between reference frames: OptotrakChangeCameraFor and RigidBody-
ChangeFor. The former allows to change the global coordinate system, the
latter allows to set a new global reference frame, so that the transformations
are expressed in a coordinate system based on the position and orientation
of another rigid body.

There are different methods to receive the rigid body data: DataGet-
Latesttransforms retrieves the latest frame of the 6D transformations. The
problem is that the same data can be read more than once, in the case of
the request being faster than the acquisition frequency. This can be how-
ever be controlled by checking the number automatically associated to each
of the frame; RequestNextTransforms, DataIsReady, and DataReceiveLatest-
Transformations allow request and receive of non-blocking data. The routine
used in the designed application was DataGetNextTransforms. This function
has a blocking behaviour and retrieves every time a new frame of data. We
chose this mode, mainly because the capture routines of the other devices
also acquire in this manner, allowing an uniform main loop design.

13Blocking means that the system waits for a response which can lead to a stall

13

2.2 Arthroscope
An arthroscopic camera is a conventional CCD camera to which is coupled

a special lens system (the rigid scope or arthroscope). The scope is inserted
through a small incision into an anatomic cavity (in our case the knee joint),
enabling the inspection and visualization of its interior. The arthroscopic
system allows the surgeon to diagnose and treat injuries in a minimal invasive
manner.

Figure 2.3: The complete endoscopic system

The complete arthroscopic system is shown in Figure 2.3. The camera
coupled to the arthroscope contains three CCDs 14, allowing high quality
image acquisition [11]. The Camera Control Unit used is a Smith Nephew
460P 3-CCD Camera Control Unit. The Control Unit provides different
video outputs: composite video, analogic RGB, digital DV-25 (compressed),
and S-Video.

During of our development we made use of the DV-25 and composite
video. The image acquisition was done using the Digital Video (DV) Output,
which provides compressed digital video through a IEEE1394 interface (the

14Normally, digital color cameras use a Bayer filter over a single CCD. Each square
of four pixels has a filtered red pixel, a filtered blue pixel, and two filtered green pixels.
Using a three CCD camera and a beam splitter, each CCD responds to a particular color,
achieving better color separation and higher quantum efficiency.

14

same interface used by the FireWire, standard). The composite video, as
we will see ahead, was used as synchronization source because unfortunately
commercial endoscopic systems do not have External Synchrony input.

2.3 FireWire Camera
To support the development of the navigation system, a second camera

was included in the project. This camera will be used for ground truth
analysis along further project steps (evaluation of created algorithms). The
support camera used in the project is a Point Grey Flea 2. This camera
contains a powerful API [2], allowing the design of user defined applications.
The communication is along a IEEE1394 b connector, that with its 800Mb/s,
enables full frame rate RGB image transmission. Another advantage for using
this camera is the availability of software drivers for Microsoft Windows,
Macintosh and Linux (portability).

15

Chapter 3

Hardware for the

Synchronization

In this chapter, the implementation of the synchronism in the navigation
system will be described. The circuit will be analyzed, and the resulting
construction of the board will be discussed.

3.1 Synchronization’s Problem
An essential requirement of the navigation system is the precise synchro-

nism of their components. We cannot use the information from the devices
together, if the capture is not done in the same time instant. It is like the
trip by car. We see the exit toward city B, but the GPS informs us to take
the exit when it has already passed. In this situation, the GPS becomes
useless. The navigation system can show the surgeon the correct localization
for the incision during the surgery. However, if the surgeon is informed after
the operation, that the frames shown on the monitor do not correspond to
the navigation information, he will certainly be afraid about the patient.

The SCU of the opto-tracker has an external Synchronization Port. This
port can be used to either trigger the opto-tracker for frame capture, or to
extract the acquisition rate signal and use it to trigger other devices. The
Synchronization Port uses Transistor-Transistor-Logic (TTL) Input/Output
(I/O) signal logic. Figure 3.1 shows the timing diagram of the output signal

16

during an optical tracking using two markers. The Frame Clock Output(FR
OUT) signal contains the pulses generated every time a frame is captured by
the opto-tracker, and can be directly used as synchronism source. In addition
there is an input to for external triggering under high to low transitions. The
voltage levels for this purpose should be :

2.0V ≤ VIH ≤ 5.0V (3.1)
0V ≤ VIL ≤ 0.8V (3.2)

The Table 3.3 in section 3.3 provides a full account of the signals involving
the opto-tracker.

Figure 3.1: Output signals of the Opto-tracker Synchronization Port [1].
(FR OUT) - Frame Clock Output, (HF OUT) - Marker Activation Signal,
and (TR OUT) - Start/Stop Collection [1]. Consult Table 3.3 for a complete
description.

17

Figure 3.2: External signals from the Flea2 Synchronization Port [2]

The Flea 2 camera used for environment observation also has an in-
put/output pin, allowing bidirectional synchronism using TTL signals. Fig-
ure 3.2 shows the trigger timing of the camera. The connector pin accept
3.3V TTL signals for the capture of frames. The API of the camera allows
to set various trigger modes, depending on the response that should be ob-
tained. We used Trigger Mode 14, allowing the overlapping of the exposure
with the data transfer. This mode enables the triggering of the camera at
faster frame rates than the standard trigger response.

The main challenge to achieve full synchronization was the arthroscopic
system. It has a lot of output ports, capable of supplying multiple video
formats. However, it does not accept external synchronism signals, which
means that it is impossible to trigger this device for the frame capture.. 1.
Thus, to achieve synchronous acquisition between opto-tracker, Flea 2 and
arthroscope, the unique possibility is to use one of the arthroscope video
outputs as triggering source. The signals that the Camera Control Unit can
supply were all analyzed. The solution found, was using the composite video
signal as explained in the next section.

3.2 Synchronization’s Solution
The solution found to synchronize the system, was the extraction of the

timing signals from the composite video output of the arthroscope (a pulse
for each start of frame).

Composite video is an analog video interface that carries all the informa-
tion necessary to display a 2D picture. The frames from a composite video

1The Arthroscope has just a bidirectional port that enables to call camera unit functions
for the voice control.

18

signal are composed by two fields, as shown in Figure 3.3(a). [12]. The com-
posite video signal transports the luminance 2, the chrominance 3, and the
synchronization information 4 modulated in a single signal [13]. Figure 3.3(b)
shows a video line, in which the color burst is the reference signal to decode
the color information. The synchronization part of the signal is composed
by the horizontal and vertical pulses, the beginning of a horizontal line scan,
and the beginning of an even/odd field scan, respectively 3.3(a).

(a) Composite Video Signal [14]

(b) Composite Video Line [15]

Figure 3.3: Composite Video

In order to extract the timing information, the LM1881 Video Sync Sep-
arator was used. As input the LM1881 receives the composite video signal,
and as output it extracts the signals shown in Figure 3.5. Each Vertical

2Intensity information of the video image, brightness or darkness.
3Color information of the video image.
4Horizontal and vertical scan signals.

19

Output Pulse corresponds to the beginning of a field.To obtain the beginning
of each frame, it is necessary to separate the odd fields from the even fields.
The separation is achieved indexing each vertical pulse with the correspond-
ing odd/even signal.

We must capture the vertical signal that coincides with the start of an
odd field. Fur this purpose, the logic circuit contains a NOR gate, as shown
in Figure 3.4. First, the odd/even field signal is inverted. Then both signals,
the inverted signal and the vertical output signal, are given as input to a NOR
Gate 5. The output is the frame signal, that can now be used to trigger the
cameras, and synchronize the complete navigation system.

Figure 3.4: Logic circuit for frame signal extraction

3.3 Hardware specification
In order to achieve the synchronism of the devices, we decided to construct

Printed Circuit Board (PCB) with all the necessary electronics. As discussed
above, in normal circumstances the arthroscope has to be the source of syn-
chronism. However, and in order to maximize the flexibility of the created
system, we decided to build a PCB that allows the user to choose between
different trigger sources.

The final design of the PCB is shown in Figure 3.6. The various syn-
chronization modes are represented in Table 3.2, where the triggering source
can alternate between the arthroscope, the opto-tracker, the Flea 2 or an
external push button (single frame acquisition). A multiplexer selects the
trigger signal based on the DIP switch combination configured by the user.
The power supply is done through USB connector plugged to the work sta-
tion. In Table 3.2, the arthroscope appears two times as trigger source. This
done because we were not sure that for all cameras the same field comes first.

5The output of NOR GATES with two inputs is true if both inputs are false; else, the
output is false.

20

Figure 3.5: (a) Composite Video; (b) Composite Sync; (c) Vertical Output
Pulse; (d) Odd/Even Field Index; (e) Burs Gate/Back Porch [16]

Thus we made the two modes available. The user can choose which is the
first field of the resulting vertical frame signal, the odd or the even field. In
Table 3.1 are the various components used in the board represented.

The opto-couplers between the multiplexer, the opto-tracker and Point-
Grey Camera, were use as a preventive measure. They assure isolation be-
tween circuits and protect expensive equipment. As we do not know the
internal circuits of the different equipments, the opto-couplers were used
to overcome possible overvoltages, separating the camera grounds from the
ground of the remaining board 6.

In this section, the synchronization ports of the devices, and the different
synchronization modes of the board will be briefly analyzed.

6We had a problem with the Synchronization Port of the Optotracker, this because
incorrect voltages were put in wrong pins.

21

Table 3.1: The components of the SyncBoard

Component Description
NE555N Timer for stable and controlled pulses
SN74LS00N Quad two input NAND Gatesa

SW DIP-4 DIP switch containing four switches
MHDR2X2 Simple connector with four inputs
LM1881N Video Sync Separator
SN74LS02N Quad two input positive NOR Gatesb

SN74HC7266D Quad two input Exclusive NOR Gatesc

1-353576-1 USB connector
LM7805CT Positive Voltage Regulator (5V)
D Connector 9 DB-9 Connector
SN74LS253N Multiplexer with three state outputs
Optoisolator PC817 Photocoupler

aThe output of NAND GATES with two inputs is false if both inputs are true; else,
the output is true.

bThe output of NOR GATES with two inputs is true if both inputs are false; else, the
output is false.

cThe output of Exclusive NOR GATES with two inputs is true if both inputs have the
same logic value; else, the output is false.

Table 3.2: The Synchronization Modes of the SyncBoard. The mode is
selected using the correct DIP switch combination.

DIP Switch SN74LS00N SN74LS253N Trigger
SW1 SW2 SW3 SW4 A B Output Source
On OFF OFF X High Low High 1C2/2C2 Optotracker

OFF ON OFF X High High Low 1C1/2C1 PointGrey
OFF OFF ON X Low Low Low 1C0/2C0 PushButton
OFF OFF OFF High High High High 1C3/2C3 Arthroscopea

OFF OFF OFF Low High High High 1C3/2C3 Arthroscopeb

aThe first field of the complete frame is the even field.
bThe first field of the complete frame is the odd field.

22

Figure 3.6: The final circuit for the SyncBoard

23

3.3.1 Opto-tracker Synchronization
The Synchronization Port of the opto-tracker is a DB-9 connector located

at the back of the SCU. The description of the allowed pins is in Table 3.3,
and the corresponding pin numbers are shown in Figure 3.7(a). The output
and input signals have the same TTL logic. The diagram in Figure 3.1 shows
the form of the output pulses7. The pins used for the synchronism were pin
1 and pin 5, allowing the power supply of the components in contact with
the Sync Port, and pins 3 and 9, allowing the bidirectional triggering.

The FR OUT is an active low, open collector output. It can provide until
150mA through an external pull-up resistor, connected to VCC . VCC cannot
exceed 15V . The pull-up resistor should be chosen so that:

Rpullup >
VCC
0.15 . (3.3)

Before the FR Out signal is received by the optocoupler and transmitted
to the multiplexer, it passes trough a pulse modulation component. The
configuration of the NE555 set, allows the output of a fixed pulse whenever
the trigger voltage falls below VCC/3. The pulse duration will be tpulse =
1.1× C6 ×R9

8.
The FR IN pin is pulled internally high by an 1kΩ pull-up resistor con-

nected to 5V . This input is triggered by a high to low signal. The TTL levels
are represented in Equation 3.1 and 3.2. The frequency supplied as input
should not exceed the threshold of:

Freqmax = MarkerFrequency

Number of Markers+ 2 , (3.4)

the maximal frame frequency that the opto-tracker can produce 9 [1].

3.3.2 PointGrey Camera Synchronization
The Flea2 PointGrey Camera has an General Purpose Input/Output

(GPIO) connector on the back, that can be configured to receive or send
signals. The pin definitions are shown in Table 3.4, and the corresponding

7The input signals are equivalent.
8C6 = 100nF , R9 = 10K; tpulse = 1.1ms
9The maximum Marker Frequency of the Optotrak Certus System is 4600Hz.

24

(a) DB-9 Optotracker connector (b) GPIO Flea2 connector

Figure 3.7: The Trigger connectors of the cameras

Table 3.3: Opto-tracker Sync Port Pin Description

PinNumber a Value Description
1 +5V SCU alimentation : 200mA, 5V
3 FR IN Frame trigger input (high to low)
5 GND Ground
6 HF OUT Marker activation signal(active high)
7 TR IN Trigger starts collection (high to low)
8 TR OUT Start/stop collection(active low)
9 FR OUT Frame clock output(active low)

aThe missing pins are unknow and reserved by NDI

connector is shown in Figure 3.7(b). The operation of the CCD in response
of the trigger signal is represented in Figure 3.2. The pins used were pin 5
and pin 8 to power the components in contact with, and pin 1 and pin 2 for
the communication.

The I/O pins are internally pulled high using a weak pull-up resistor,
allowing easy triggering by shorting the pin to Ground (GND). The config-
ured output pin sink until 150mA. The trigger signal of the camera passes
trough a Schmitt Trigger, allowing the signal to be increased from a 3.3V
TTL signal to a 5V TTL signal, maintaining a clean trigger pulse.

3.3.3 Arthroscope as Trigger Source
As explained before, to extract the timing information from the Arthro-

scope, the principal component is the LM1881. The final design allows to

25

Table 3.4: GPIO Flea2 Pin Description

PinNumber Value Description
1 IO0 IO default trigger source
2 IO1 IO
3 IO2 IO RS232 Transmit (TX)
4 IO3 IO RS232 Receive (RX)
5 GND Ground
6 GND Ground
7 VEXT Power camera externally
8 +3.3V Power external circuit up to 150mA

set if the signal who carries the odd/even index should be inverted or not.
If selecting the arthroscope as trigger source, and putting the fourth switch
to OFF, the index signal will be inverted in the Exclusive NOR Gate. This
implies that the output of the NOR Gate contains the timing information of
the start of a frame, in which the first field is odd. If the fourth switch is
set to ON, the signal passes the Exclusive NOR Gate without being altered.
The final synchronism signal correspond to a frame with an even field as start
frame. The output signal of the logic comparison, in which the first field is
an odd field, is shown in Figure 3.4.

3.3.4 PushButton Trigger
The PushButton on the board allows asynchronous triggering of the Opto-

tracker and the PointGrey Camera (a frame is acquired each time the button
is pressed). As explained before, it is not possible to do external trigger the
arthroscope. However, this functionality can be useful in situations where
the camera is kept static (e.g. calibration data). This because, as the camera
does not move during the capture, the information will be the same in every
instant, allowing a correct fusion of the acquired data.

The pulse from the PushButton passes first trough an Schmitt trigger
before it reaches the devices. The Schmitt trigger outputs a clean and square
inverted signal from the input pulse, and acts as a debouncing circuit for the
trigger signal. The resulting output signal of the Schmitt trigger is :

VCC (Output High) if Vinput <
1
3VCC (Input Low) (3.5)

26

0 (Output Low) ifVinput >
2
3VCC (Input High) (3.6)

3.4 PCB design
Initially, the schematic design and the layout for the Printed Circuit

Board (PCB) of the synchronization circuit, were made using the OrCAD
Capture and Layout software, respectively. After trying a few tutorial exam-
ples using this software, and exchanging ideas with experienced PCB design-
ers, we decided to switch forAltium Designer as the Computer-Aided Design
(CAD) software for the board design.

3.4.1 OrCAD for the board design
The first attempts in PCB design were made using OrCAD. With OrCAD

Capture the schematic of the board is created, and the parts and netlists are
imported to OrCAD Layout, where the final PCB is designed. The procedure
is as follows:

1. Make the circuit schematic using OrCAD Capture
2. Generate a Layout netlist
3. Start Layout and select a PCB technology template
4. Import the generated netlist to Layout
5. Position the parts within the board outline
6. Route the board
7. Generate the files to manufacture the PCB

This software involves the use of to different applications for the board
design. It is not easy to maintain the schematic design and the PCB layout
synchronized. The second drawback is related with the footprints. It is a
difficult task to find the necessary footprints in the library, as they are sorted
by inadequate names. This made us switch to Altium Designer.

3.4.2 Altium Designer for the board design
Altium Designer is much more intuitive than OrCAD. It contains a very

helpful documentation to start learning PCB design. The characteristic that
we appreciated more, was the possibility of designing the complete project in
the same application. This allows maintaining the schematic and the PCB

27

layout perfectly synchronized, enabling comparisons and matches between
them at each design stage. The footprint library is very complete, and the
required components are easy to find.

Since we do not have experience in soldering, the design was done in
order to simplify the subsequent construction and assembly. The principal
characteristics of the PCB are:

• The initial PCB has just one layer. To achieve the design of a smaller
board, two layers were used.

• Ground planes were set in order to decrease the necessary number of
tracks and vias.

• Initially, auto-routing was used. This feature does not lead to an ade-
quate space occupation, and the tracks are not designed parallel to each
other. The final board was routed manually, using interactive routing,
to overcome the auto-routing limitations.

• 90 Degrees angles of tracks were avoided. The circuit does not contain
high frequency signals, but is a good practice to keep a fluid current.

• Tracks were not designed under the components. This makes the solder
of the components much easier.

• The principal design rules are shown in Table 3.5 10. The rules were
strictly followed, in order to simplify the process of construction and
assembly.

Table 3.5: Principal design rules of the PCB

Design Rules Constraints
VCC and GND track width 40mil

Track width 24mil < Width < 30mil
Minimum Clearance 26mil

The manufacturing of the PCB was also done in the ISR. The board was
printed using mechanical techniques.

10 1mil = 0.001inches = 0.0254mm

28

3.5 Evaluation of the Final SyncCard
The construction of the board is now in progress. Figure 3.8 shows the

board with the first components soldered. The construction is achieved using
a normal solder station, and the board is continually tested against short
circuit.

Figure 3.8: The first components soldered on the SyncBoard

As the board is under construction, the operation of the circuit was tested
using a BreadBoard. The principal mode of the board is the triggering of the
opto-tracker and the Flea2 camera with the arthroscopic frame signal. It is
this configuration that will be used in the surgical environment. The results
of the synchronism, using the vertical pulses from the composite video, are
shown in Figure 3.9. The extracted frame pulse initiates at the first serration
pulse 11 of the vertical synchronization signal. These signal is given as frame
capture pulse for the Optotracker and the Flea2 camera, and their response

11The serration pulses of the video signal are equalization pulses to facilitate the monitor
to enter and to leave the vertical sync signal [17].

29

is observed in order to evaluate the synchronism. The two bottom signals of
Figure 3.9 are the output frame signals of the devices. They are contained
in the duration of the vertical pulse. So, the hardware implementation of
the synchronism with the arthroscope as trigger source can be considered
enough accurate for our application needs, and can be used without to worry
concerning hardware delays.

The other synchronization modes follow the same efficiency as the arthro-
scope as trigger source. This enables the use of the board for the navigation
system, proving the synchronism of the involving devices using different trig-
ger sources.

Figure 3.9: Arthroscope as Trigger Source. The response of the opto-tracker
and the Flea2 camera is contained in the duration of the vertical pulse.

30

Chapter 4

Software

In this chapter, the complete design of the software for the navigation
system will be explained. It allows the acquisition of frames following the
hardware timing explained in the last chapter. Th captured information can
be processed in real-time, visualized, and stored for offline investigations.

4.1 General Objective
The navigation system that will be created, should allow the following

features:

• Integration of the information acquired from the cameras during an
arthroscopy

• Process the information in real-time, and allow the surgeons to be
guided based on it

• The acquisition should follow the hardware timing, in order to create
an Augmented Reality (AR) for the surgeon

It was necessary the design and implementation of a software infrastruc-
ture, that accomplishes this requirements in order to be used in the surgical
environment. This application will allow to use a normal computer in the
surgery room, that captures the information from the complete acquisition
system, processes the information intra operatively, and shows the result on
a monitor to assist the practitioner during the surgery.

31

These system will be used in investigations based on computer vision, be-
sides the design for an adequate surgical visualizator and GPS, it also should
allow to be expanded with necessary modules for the research purpose.

4.2 Development environment
We start to work with the Optotracker under Linux (Suse 10.1), but

encounter a lot of errors while compiling our samples using the OAPI. Con-
tacting the NDI, we were informed that the Optotrak drivers just work under
a few older versions of Linux, and the new drivers for recent versions will be
available in a few months . In this situation, the two options to solve the
problem were:

• Downgrading to a older recommended version of Linux. Not a good
idea if we want to have our application updated.

• Choose a windows platform.

The OAPI works fine under Windows and Linux. Also do the API of
the Flea 2. To use the arthroscope, and after a long search on the internet,
the PortVideo Framework 1 was found. It is a open-source cross-platform
framework that provides access to cameras for video processing and display.
It contains libraries for Windows, Linux and MacOS X. The technique used
by this framework, is based on a simple wrapper class that communicates
with various platform dependent subclasses. The communication with the
devices is so achieved in a platform independent manner.

The final decision for the development environment is to work under
Windows using Minimalist GNU for Windows (MinGW) 2, that contains a
complete Open Source programming tool set, including the GCC compiler.
In order to achieve portability requirement, the GNU build system, also know
as autotools, was used. The main goal of using the autotools, is that it
allows the developer on writing the programs, while he solves the problems
of portability across Unix and Windows systems. To use this build system,
we incorporate Cygwin 3 in our development environment. Cygwin consist of
two parts, a Dynamic-link library (DLL) which acts as a Linux API emulation
layer providing substantial Linux API functionality, and a collection of tools
which provide Linux look and feel, containing the required autotools. So, as

1For further reading consult www.reactable.iua.upf.edu/?portwideo
2For further reading consult the main page www.mingw.org
3For further reading consult the main page www.cygwin.com

32

we just need the autotools for the development of our application, we will
compile our applications without the Cygwin’s DLL 4.

The development languages chosen are C/C++. The C part gives the
necessary low-level capability for the interface with the devices. The C++
part instead, allows to encapsulate data and functionalities using classes, and
to use features like Inheritance and Polymorphism 5, besides other features,
in order to allow Reusability and Extendibility of the code.

4.3 Requirements
For the validation of the navigation system in the surgery room, and

efficient support in theoretical analysis based on computer vision algorithms,
there are various important requirements that must be accomplished.The
Software requirements of the navigation system are:

• It is important that the application used for the navigation system is
of easy configuration. The user should be allowed to choose between
different device combinations, synchronization sources, and acquisition
parameters. In base on this configuration, the application must do the
capture in conformity with the hardware timing.

• The acquisition of the navigation system should be implemented in
real-time. It is essential that all the time latencies are minimized. The
objective is not to acquire at the maximum rate at which the devices
can work. Important is that the frames are processed intra-operatively,
in order to support the surgical intervention. For the surgeon, real-time
means that the processed frame shown on the monitor corresponds to
image seen by the arthroscope.

• The navigation system must allow the user to store the information
in a required format, modalities like continuous recording and storing
on demand of frames should be allowed. This feature is important for
analysis of intra operative situations. It allows to test the system in a
real environment, that can later be evaluated using the stored data.

4This is achieved using the flag -mno-cygwin
5Inheritance is a form of Software reusability, where new classes are created from ex-

isting classes by owning their attributes and behaviors, and overriding or improving these
with capabilities that the new classes require.Polymorphism enables to write programs in
a general fashion to handle a wide variety of situations [18] [19].

33

• The system will be used by a few investigators, with various objectives,
in the future. It should not be a closed application. It must have input
gates to introduce processing and visualization capabilities, without
the need to recompile and change the base system every time.

• Timing information should be analyzed by the system during the ac-
quisition, in order to inform the user if the frames correspond to the
same capture time, or if errors may have happened.

4.4 Application’s Architecture
A simplified sequence of the final application’s architecture is shown in

Figure 4.1. The user writes the configure.xml file, and introduces processing,
storing and/or visualization modules into the ArthroNavMain component.
The application configures the acquisition according the configure.xml file,
and call’s the virtual methods contained in the introduced modules.

For the complete description of the Software created during the project,
consult B. This appendix contains the documentation of the code produced
durign the project 6.

4.4.1 Configuration using a XML file
To solve the requirement of easy configuration, a parsing component was

put at the start of the application. This component allows the user to write
a configuration file 7 that will be parsed at the start of the application.
The parsing component is composed by two classes, the ArthroParser class
and the OptoTrackerParser class. Both use the expatpp library 8 to parse
the configuration file written by the user. The operation of the parsing is
performed as a tree configuration. When the parser recognizes an element
name, it will call the appropriate handler for that element. The handler
reads the possible attributes from the file until it encounters a final element
tag. The OptoTrackerParser class is a support for the ArthroParser while
parsing the opto-tracker attributes. The parsed information is stored in the

6The documentation was generated using doxygen.
7The application contains an initial template, so the user just changes it according his

needs.
8Expatpp is a C++ wrapper for expat, a Extensible Markup Language

(XML) Parser Toolkit. For further reading and for download, consult
www.oofile.com.au/xml/expatpp.html

34

ArthroNavMain

Device Configuration

Device Initialization

Data acquisition

Visualization Storage

Processing

Visualization Processing

Storage

User defined Copnfiguration

ArthroNav

Application

(a) Base flow of the application

ArthroNavMain

ArthroNavSettings

ArthroNavConfigure

Arthro OptoTracker

Parser

PGRCapture Arthroscope OptoTracker

Devices

ArthroNavGet

(b) ArthroNavMain communication

Figure 4.1: An overview of the Software Architecture

ArthroNavSettings class, that will be later used for the configuration of the
devices, and for the acquisition loop.

The element names that the application recognizes are shown in Table
4.1. The opto-tracker attributes possible to set, can be consulted in Table
4.2. For attributes and/or element options not set in the initial configuration
file, the application will use default values for the initialization of the devices.

4.4.2 The devices and their configurations
Each device used in the navigation system has a respective communica-

tion component in the software architecture. It allows the initialization and
configuration of the correspondent device, and captures the frames when
requested.

The component for the communication with the opto-tracker is the Op-
toTracker class, a wrapper class of the OAPI. These class facilities the usage
of the Optotracker and lowers the necessary code dimension. Each method

35

Table 4.1: Elements that the application can parse

Element Description
Arthronav Root element. Needed to initiate the application. No input.
Optotracker Activates the Opto-tracker. Consult the attributes on Table 4.2.
Arthroscope Activates the Arthroscope. No input.

PTGCam Activates the PointGrey Camera. As input can receive the frame
frequency.

Trigger Set the trigger source : (a) for Arthroscope, (o) for Optotracker,
(p) for the PointGrey Camera

RecordTime Time to record the capture
RecordRate Record frequency will be

TriggerFrequency/(RecordRate*AcquisitionRate)
AcquisitionRate Acquisition frequency will be

TriggerFrequency/AcquisitionRate

Table 4.2: Opto-tracker attributes that can be parsed

Atributes Description
Frequencia Rate at which a frame of data is generated by the Optotracker
MarkerNr Number of markers in the collection
RigidNr Number of rigid bodies in the collection
Port1 Number of markers connected to strober port 1
Port2 Number of markers connected to strober port 2
Port3 Number of markers connected to strober port 3
Format Return format for real-time rigid bodies
ChangeFor Rigid body ID which will be the new coordinate system

36

encapsulates the necessary OAPI routines for a specific action on the opto-
tracker. Besides other functionalities, this class allows the capture of marker
positions, and to track until three rigid bodies.

To communicate with the Flea2 camera, also a wrapper class was con-
structed. The PGRCapture class contains the necessary routines to capture
at internal rate, and set the camera to listen the external trigger port during
the capture. These components uses the API supplied by the manufacturer.

The arthroscope is activated by the Arthroscope class, inherited from the
cameraEngine class. The cameraEngine class is the base wrapper class that
allows communication with platform specific classes for video capture and
display . This class and the platform dependent classes associated, belong to
the PortVideo framework.

The ArthroNavConfiguration component achieves the communication be-
tween the application and the devices. When initialized, it starts the selected
devices, and configures them according an ArthroNavSettings object given as
input. These component is constituted by the ArthroNavConfigure class, and
contains an object for each device that composes the navigation system.

4.4.3 Insertion of of user defined modules
The application should be a closed box, allowing as input the insertion

of modules, and as output, supplies the navigation information according
the inserted modules. The way to do this in Object-Oriented Programming
(OOP), is using polymorphic classes containing virtual member functions,
that can be redefined in its derived class.

To better understand this part of the application, we will briefly make an
overview of two features of the used OOP. The first feature is the Inheritance.
This propriety allows one class to inherit, or derivate, the functionalities of
an existing class, being the existing class not a data member of the new
created class. The existing class is the base class, and the new created class
will be the derived class. An object of a derived class is at the same time an
object of the base class, and can redefine the member functions of the base
class. In this situation, when pointer assignments are used, the type of the
pointer determines which member function will be called, and not the type
of the object.

The second feature is the Polymorphism, the ability of a certain entity to
behave differently in different contexts. As said before, the standard behavior
is the type of pointer determines the method invoked. This can be changed
using the concept of Polymorphism and virtual member functions. Declaring
a function virtual in the base class and redefining this method in the derived

37

class, when pointer assignment is used, the type of object pointed-at will now
determine the method called. The caller of the virtual method just needs to
know the base class, in order to call the restant derived classes. It will be at
run-time that the correct function will be called using the Vtable, depending
on the object refered by the caller.

The implementation of the Polymorphism for the introduction of modules
is shown in Figure 4.2. The application three classes abstract classes, called
when the frames are captured, in order to process, visualize, and/or store the
acquired information. These classes are the ArthroProcessor class, called with
the information of the arthroscope. The OptoProcessor class, related to the
opto-tracker processing. Finally, the PGRProcessor component, that filters
the frames grabbed from the PointGrey camera. The user can derivate from
these classes, and reimplement the virtual functions that they are composed
by. The ArthroNavMain can receive at the start of the application pointers
to the user defined abstract classes. These objects will be called during the
acquisition loop, even if the application do not know them.

ArthroProcessor

OptoProcessor

PTGProcessor

UserArthroProcessor

UserOptoProcessor

UserPTGProcessor

ArthroNavMain

Acquisition

Loop

User

Figure 4.2: Virtual call of user defined methods

38

4.4.4 ArthroNavMain
The ArthroNavMain component forms the core of the application. It is con-
stituted by the ArthroNavMain class. This class contains all necessary ob-
jects to read a Extensible Markup Language (XML) file, initialize and com-
municate with the devices, and call user defined objects/modules. This is
the single class of the system that the user should know in order to use the
application. It has seven public methods, three methods to add processors,
one method that initiates the system, and three methods to remove the pro-
cessors from the application.

Each added processor is pushed into the corresponding list (e.g. all
ArthroProcessors are put in to the ArthoList). During the initialization and
the acquisition loop, the application will call all the objects in the list, al-
lowing more than one filter for each device to be inserted.

4.4.5 Acquisition Loop

The acquisition loop captures the frames from the devices in a controlled
manner. The devices are configured to retrieve a new frame on every software
request. If the acquisition loop runs without any control of the request time,
frames can be lost whenever the duration of the processing is longer than
the frame rate acquisition (the loop does not close on time). For constant
acquisition and processing, the solution is to control the acquisition period
based on the frame rate of the device. The acquisition period 9 should be
chosen to accomplish the Equation 4.1, where n is the smallest real integer
that verifies 4.2.

TAcquisition = n× TTriggerDevice (4.1)
n× TTriggerDevice > TProcessing > (n− 1)× TTriggerDevice (4.2)

To better illustrate this problem, Figure 4.3 shows two different acqui-
sition situations. Since the first capture is not controlled, it is not possible
to calculate the frequency of the acquisition, and frames can be lost without
realizing (which can lead to nasty consequences). In the second situation,
the duration of the acquisition is two times the duration of the frame period.

9Sum of the time to request the frame and processing.

39

The acquisition loop reads every time a frame after the processing period
ends, allowing perfectly synchronous acquisition and processing.

Frame Number 1 2 3 4 8765

Trigger Signal

Capture Timing

Device
T

ocess
T
Pr

Frame Lost

Frame Number 1 2 3 4 8765

Trigger Signal

Capture Timing

Device
T

ocess
T
Pr

Read out Read out Read out

unknow

acquisition

Acquisition=2*TDevice

Figure 4.3: Two examples of an acquisition loop. In the first example,
frames can be lost without to realizing. In the second example, one frame is
discarded per iteration, synchronous acquisition is achieved.

The need of the time control is clearly shown in the example of Figure 4.4.
Each frame is composed by three components, one for each device (arthro-
scope, opto-tracker and Flea 2). If we do not control the time of the frame
request, the acquired information can be shuffled. Information received in
the same frame iteration can not correspond to the same time instant (loss
of synchronism). The situation in which a set of frames are read out, allows
the constant processing of TDevice/2. This also ensures that each iteration
works with information incoming from the same time instant.

The initial configuration file allows to set the Acquisition Rate and the
Record rate, for the purpose of controlling the acquisition loop and storing
loop, respectively. It is the responsibility of the user to verify if this is
done correctly, since the application sends an alert message when frames are
lost, or frames are shuffled. If the user realizes that frames are shuffled, he
just needs to increase the Acquisition Rate attribute, in order to lower the
acquisition rate, achieving a constant and synchronized capture.

40

Frame Number 1 2 3 4 8765

? ? ?

Acquistion from

the 3 Devices

Information

is shuffled

Frame Number 1 2 3 4 8765

Read out Read out Read out

The captured

frames match

Figure 4.4: Acquired frames can be shuffled if the capture time is not
controlled. Reading a set of frames out, ensures that each iteration works
with information from the same time instant.

4.4.6 How to use the application
In this section, the necessary steps to use the application, as well as the

corresponding system flow are described.
The first step in order to use this application is to write the configura-

tion.xml file, that will configure the devices and the acquisition loop. The
element names and the opto-tracker attributes possible to be parsed are
shown in Table 4.1 and Table 4.2, respectively. Suppose we want to use
the an arthroscope, the PointGrey Camera, and the opto-tracker, tracking a
rigid body with four markers. The acquisition rate should be 5Hz. As the
default trigger source is the arthroscope, the fame rate will be 25fps. The
final configure.xml file will look like the configuratio shown in Figure 4.5. For
the attributes not set, a default value is used.

The ArthroProcessor and the PTGProcessor base classes contain the nec-
essary code to visualize the acquired frames in a OpenCV window. The
methods from the base class of the OptoProcessor print the marker or rigid
body positions on the command line. If the user wants a different visualiza-
tion and/or a different processing, he should inherit from this classes, and
re-define the virtual methods according his needs. When writing the main

41

Figure 4.5: The configuration.xml file

program, he just need to add the pointers of the objects created, and start
the capture.

In Figure 4.10 the flow of this configuration is shown. In this acquisition
sequence, all devices were used, and for each device a processor has been
added before the initialization.

4.4.7 Processors created
Various processors that can be added to the ArthroNavMain component were
developed during the project, a few of them will briefly described in this
section.

The StoringProcessor was created to allow the storing of acquired in-
formation. A folder is created for each capture loop, storing the equivalent
frames and their timing information. It uses the OpenCV library for the stor-
ing purpose. This class allows to write frames in various formats, the only
requirement is to change the frame name termination to the corresponding
format.

An interface for the application was created using the Qt Cross-Platform
Application Framework10. The interface of the ArthroNavTracker is shown
in Figure 4.6. The interface is composed by the ArthroNavTracker class, and
a QWidget 11 class for each device. The ArthroNavTracker class is a QMain-

10Qt is a cross-platform application framework for desktop and embedded develop-
ment.For further reading consult http://trolltech.com/products/qt/.

11The QWidget is the atom of the user interface: it receives mouse, keyboard and other
events from the window system, and paints a representation of itself on the screen.

42

Figure 4.6: ArthtroNavTracker

Window 12 that docks the QWidgets inherited from the device processors.
The communication is schematically shown in Figure 4.7.

The ArthroNavTracker contains an OptoRigidAr processor that provides
an animation of virtual rigid bodies using data acquired with the Optotracker.
It is a class derived from the OptoProcessor class, that uses the Augmented
Reality (AR) library created in the ISR. For this purpose, it was necessary
the 3D design of the objects used in order to create an OBJ 13 file. The 3D
designs were made using Wings3D 14. The 3D objects are introduced in a
glEngine 15 object. The glEngine class reads the OBJ files, draws them using
the Open Graphics Library (OpenGL) library, and renders them in a Sim-
ple DirectMedia Layer (SDL) window. The objects can than be positioned
according 3D data given as input.

Suppose we want to do the animation of two rigid bodies, as shown in
Figure 4.8. A femur and an arthroscope should be animated in front of

12The QMainWindow class provides a main application window, with a menu bar, dock
windows, and a status bar.

13Geometry definition file format.
14For further reading consult www.wings3d.com.
15A base class for the OpenGl engine; is contained in the AR library of the ISR.

43

ArthroNavTracker

ArthroNavMain

ArthroQTProcessor

PGRQTProcessor

OptoQTProcessor

ArthroProcessor

PGRProcessor

OptoProcessor

Visualization

Navigation System

Figure 4.7: ArthroNavTracker communication

the opto-tracker. First, it is necessary the design of the objects in order to
create the corresponding OBJ files. After the introduction of the virtual
rigid bodies in a glengine object, the movements must be supplied. The
opto-tracker retrieves the transformations of the local frame of reference of
the rigid body relative to its own fixed coordinate system 16. The virtual
rigid bodies are positioned according the data received by the opto-tracker,
transformed relative to the frame of reference of the virtual opto-tracker. If
the opto-tracker has a transformation TOptotracker relative to the OpenGL,
the virtual rigid bodies have TOptotracker × Trigidbody transformation relative
to the OpenGl, where Trigidbody is the data received from the opto-tracker,
rotated by 90◦ in Ry. This transformation is necessary because the frame
of reference of the opto-tracker, an the frame of reference of the OpenGL
are transformed by this rotation. The calculations were performed using the
Quaternion representation of the transformations, as support the quaternion
class of the AR library was also used.

16The opto-tracker frame of reference can also be altered using alignment routines.

44

Figure 4.8: OptoRigidAR animation

4.4.8 Software results
In this section we discuss the results of real experiments in running our

software. The analysis is done based on data obtained with the Storing
module described above. We use the PC clock to measure for each iteration
the time instants of entrance in the loop and of finishing processing. By
subtracting consecutive entrance instants we can infer the loop period, and
by subtracting the finishing time from the entrance time we can infer the
processing time.

Let the trigger source be the Arthroscopic video, which means that the
frame acquisition rate is 25 Hz (the PAL video frequency). The application
was ran with and without time control in entering the acquisition loop. In the
former case the data requests are performed at constant time intervals. In the
latter the request instant depends on the time that each processing iteration
takes (closes the loop as fast as it can). For each case the application was
tested under two different circumstances: (i) with the visualization module,
and (ii) with visualization and image storing modules.

Tab 4.3 shows the measured loop period, and Figure 4.9 shows a diagram
of the situation (ii) with and without the control of the acquisition loop.

45

Table 4.3: Processing and acquisition duration of three different capture
situationsa. (i) with visualization module, (ii) with visualization and image
storing module (StoringProcessor), and (ii + Control) Discarding one frame
in (ii).

Acquisition Processing Time Loop Period
(i) 15ms 40ms
(ii) 108ms 109ms

(ii+Control) 108ms 120ms
aThese are mean measurements of 30 seconds of acquisition. σ was : 2ms for (i)

Processing Time, 3ms for (i) Loop Period, 6ms for (ii) Processing Time, 5ms (ii) Loop
Period, 7ms (ii+Control) Processing Time, and 3ms (ii+Control) Loop Period.

In situation (i), it is possible the visualization of 25 frames per second,
as the duration of the processing is less than the trigger period. However,
in (ii) this is not the case. Using modules with a processing duration longer
than the frame period, involves the jumping of triggered information.

In situation (ii), the application was executed without time control. At
the 9th trigger, it was possible that information was shuffled, as shown in Fig-
ure 4.9. This occurs because the end of the processing loop almost matches
the instant of a trigger signal (The processing ends 319ms after the start of
the application, and the 9th trigger occurs at 320ms after the initialization.).
In this case, the system cannot be sure if the data corresponds to the same
time instant.

Controlling the situation (ii), we achieved the synchronism of the acqui-
sition, and a constant loop period of 120ms, shown in the the lower situation
of Figure 4.9. This occurs, because on frame was discarded in each iteration.

The software of the navigation system created, enables the user to con-
trol the data acquisition following the hardware mode selected. If correct
configuration parameters are set, the acquisition is synchronous, overcoming
the principal requirements of the project.

4.4.9 Problems during the development
The initial problem was the little knowledge about programming and

about the C/C++ languages. It was necessary to learn these languages and
their features, and to try and retry to use them, until it clicked.

At the beginning of the project, i did not have experience in Linux-like
environments and GNU tools. It was difficult to assemble all the device’s

46

Frame Number 1 2 3 4 87

40ms

Arthroscope as

Trigger Source :

25Hz

... 9 10

...

...

?

No Control

Read one

Frame out

cvSaveImage of Arthroscpe

cvSaveImage of PointGrey Camera

Store quaternion transformations

Discard Frame

Capture all frames

No Control processing times :

Loop1 : 104 ms

Loop2 : 105 ms

Loop3 : 110 ms

Third iteration of “No Control” ends after 319 ms.

Frame 9 is triggered after 320 ms. If the request of the frames lasts

longer than 1ms, the system cannot avoid frames to be shuffled

Processing Time

Figure 4.9: Acquisition using a storing module. The frame of the storing
rate can not follow the hardware triggering. In order to capture synchronous
information, frames must be discarded.

capabilities in Cygwin, and to produce code using the compiler and debugger
from GNU. After a while however, it was easy to understand how useful these
tools are for the programming purpose.

With the Arthoscope, we had difficulties to use the open-source available
PortVideo Framework. This because the libraries to use with Windows,
containing the required object files, were compiled using the Microsoft Visual
Studio development environment. As the code is written in C++, and to
give unique names to overloaded functions, the compilers must use name
mangling17 [20]. The problem is that the Microsoft Visual C++ compiler
and the g++ have different name mangling conventions, so the linker of g++
could not find the required functions from the libraries.

The solution was to create wrapper functions inside the DLL, that export
the necessary methods using the keyword extern18 with C. These functions

17Name mangling is used by the C++ compilers to add additional information to the
names of functions and objects, allowing function overloading, comparison by the linker
of them in different modules, and linkers to give information about unresolved references
in error messages [20].

18The extern keyword declares a variable or function and specifies that it has external
linkage [21].

47

are now compiled as C code, allowing the g++ compiler to recognize them.
These functions are called using callback functions outside the DLL [22].
When called, they forward the message to the brother class methods inside
the library, and return their result to the caller. With this technique, it is
possible to Microsoft Visual Studio C++ code with the GNU compiler.

The interface for the application was designed using Qt. To use the
SDL window from the glengine class, for the bone and arthroscope ani-
mation, an environment variable must be set every time the application
starts. SDL will create the window for the rendering purpose in an ad-
dress that the SDL WINDOWID environment variable contains. To inte-
grate the SDL window in the ArthroNavTracker, the solution is to initially
create a QWidget, and to get its window ID. At the start of the application,
the SDL WINDOWID variable is altered with the identity of the QWidget
window created [23]. So, any SDL window can be rendered inside Qt appli-
cations, without to copy the images from one window to the another.

It was not possible to acquire from the arthroscope and from the Point-
Grey Camera simultaneously RGB data at 25Hz. This was not possible as
we used just on FireWire controller for the acquisition. TO overcome this
limitation, the pixel data of the PointGrey camera is captured using the YUV
format, and is after transformated to the corresponding RGB data.

48

Figure 4.10: The flow of the application

ArthroNavMain

Arthro_Parser

ArthroNavSettings

OptoTracker_Parser

PGRCapture

Arthroscope

OptoTracker

ArthroGet

PGRProcessor

ArthroProcessor

OptoProcessor

run

configure.xml

create

create

Parse

SetIfArthroscope

SetIfPTGCamera

SetPTGFrameFreq

SetIfTrigger

SetRecordRate

SetRecordTime

SetAcquisitionRate

create

SetOptoFrameFreq

SetOptoMarkerNr

SetOptoRigidNr

SetOptoPort1

SetOptoPort2

SetOptoPort3

SetOptoReturnFormat

SetChangeFor

create

ArthroNavInit

create

initPGR

activate

create

create

SetFrameFreq

SetPortTable

SetMarkerNr

SetRigidBodies

initOptoTracker

activate

create

Init

initArthroProcessors

initOptoProcessors

initPGRProcessors

setVisualization

setVisualization

setVisualization

GetAllFrame

GetFrame

* ArthroFrame

PGRgrab

* PTGFrame

getTransform

GetAllFrame

receive, process, visual

receive, process, visual

receive, process, visual

user

destroy

destroy

destroy

destroy

destroy

destroy

destroy

ArthroNavConfigure

* OptoFrame

destroy

49

Chapter 5

Construction of a Tool with

LEDs

5.1 Rigid Body characterization
As explained in 2.1.2, a rigid body is a group of markers where the po-

sitions relative to each other is fixed. The minimum number of markers
to calculate the transformation of the object is three. For the opto-tracker
calculate the pose of a rigid body, the positions of the markers in its local
coordinate system must be supplied to the system, besides the information of
Tracking Tolerances if necessary. The best way to do this is creating a rigid
body file for the object using the NDI 6D Architect Software. An example
of a constructed rigid body using NDI 6D, an its equivalent rigid body file is
shown in Figure 5.1.

The steps to create a rigid body using the NDI 6D Software are [24]:

1. Select the Collection settings (marker power, frame frequency,...)

2. Position the rigid body in the measurement volume

3. Assign a local coordinate system for the rigid body

4. Add Marker Normals

5. Set Tracking Tolerances

50

(a) Rigid Body (NDI 6D Architect) (b) Rigid body file

Figure 5.1: Rigid Body

The Tracking Tolerances are the maximum allowed error tolerances when
fitting marker coordinates to a rigid body and calculation the rotational
and translational data. If a marker fails one of these tolerances during a
capture, depending on the tolerance constrain, the data for the marker, the
frame, or the transformation is considered as invalid and the transformation
is computed again without this marker.

One Tracking parameter that can be set is the Maximum Marker Angle,
the maximum angle that a marker can be pointed away from the Position
Sensor. Any marker turned away more than this value will not be used to
compute a rigid body transformation. In order to calculate the marker an-
gle, the Rigid body file should also contain the marker normals. A marker
normal of a marker is a vector that defines which way the marker is facing.
The greater the angle between the marker normal and the Position Sensor,
the less accurate will be the tracked position. The Minimum Number of

51

Markers is also a Tracking parameter, then the more number of markers to
calculate the pose of a Rigid Body are used, the more accurate will be the
measurement. The 3D error parameters are related to the errors between the
positions where the markers are observed by the system, and the positions
that are expected to be in the Rigid Body file. These parameters are set to
overcome errors like markers partially obscured, and external infrared light
sources misinterpreted. The last rigid body settings are the three minimum
spread parameters, the minimum distance, area, or volume that markers used
to calculate the transformations of a rigid body must cover. The minimum
spread improves the accuracy of the pose calculation, this because the ac-
curacy improves by increasing the 2D or 3D distribution of markers on the
rigid body [25].

5.2 Tool Constraints
As during a surgery the doctors must have enough freedom to operate,

there is a need for the construction of a tool to fix on the arthroscope and on
surgical tools, in order to allow its tracking. The tool to attach the markers
should not perturb the surgeons during the medical intervention, and at the
same time allow the best possible pose calculation accuracy. The principal
constrains for the tool will be :

• To solve the line-of-sight problem, use low 3D tolerances to overcome
errors caused by markers partial obscured.

• For good accuracies, the maximum allowed marker angle should be 60◦
or less.

• Three visible markers is the minimum. A good practice would be using
four markers for every calculation, ensuring accurate results.

• The tool should be great enough to have good spread distances be-
tween the markers, but small to not perturb the surgeon during the
medical intervention. It is important to found a compromise between
this requirements.

At the beginning of the project, prototypes were constructed to study
this constrains. However, as the problem of the synchronism was difficult
to solve, its construction has been left for a further step of the ArthroNav
project.

52

Chapter 6

Conclusion

The outcome of the project was a system, capable of the synchronous
acquisition of optical tracking data, and image data from the arthroscope
and FireWire camera. In addition we implemented modules for visualization
and storing that can be easily inserted in the software application. Test were
performed to confirm the synchronism and real-time processing.

This project was a very enriching experience, that gave me the opportu-
nity to acquired different skills, both in engineering (hardware and software)
and in science. I learn about the following topics:

• To program medium dimension applications in C/C++. This was nec-
essary in order to use the API of the opto-tracker and the API of the
cameras. A lot of features of the OOP were used during the project that
initially were unknow to me (e.g. Inheritance, Polymorphism, Encap-
sulation). I also tried to follow good practices of software development.

• To understand an electrical problem and design a circuit to solve it. I
studied the opto-tracker manuals, the video formats of the arthroscope,
and the manuals of the PointGrey Camera in order to find a solution
for their synchronism. I extensively used digital electronics principles.

• PCB design, necessary to create a board with the electronics for the
synchronism of the system.

• Kinematics theory, in order to understand the operation of rigid bodies,
and to manipulate the data supplied by the opto-tracker.

53

• 3D modeling and design, required to create the models for the rigid
body animation.

• Different programming libraries (e.g. Qt, Open Source Computer Vi-
sion Library (OpenCV), SDL, OpebGL).

Despite of being happy with the outcome, I believe there are improve-
ments that can be done:

• Create generic device classes, containing the communication and the
processing.

• Use of non-blocking grabbing routines to improve the time control of
the acquisition.

• Use various threads in order to increase the velocity the application.

• Implement an adaptive acquisition timing, in order to overcome non-
constant processing durations.

However, it can already be used by the ArthroNav project in order to
employ computer vision algorithms over the endoscopic video enhanced with
the pose information.

The future step of the project is to expand the navigation system with
3D reconstruction/registration techniques, to enable the migration of the
complete application to the surgical environment, and to provide the surgeon
with an accurate and precise visualization/navigation of the knee joint.

54

Appendix A

Software Documentation

The software produced during the project was documented using the code
generator Doxygen. The code and the documentation can be consulted on
http://orion.isr.uc.pt/∼michel/.

The documentation is avaliable online, in order to be simpler to consult
and find the required class/funtion. This because it is a large quantity of
code, and its management is difficult on a PDF.

55

Appendix B

Schematic Design and PCB

Layout

The schematic circuit and the final PCB were designed usign Alium De-
signer 6.

The final schematic design is shown in Figure B.1. First the circuit’s
response was evaluated using a BreadBoard. As the output was suitable for
our application, a PCB was designed in order to construct a board, making
it easier to synchronize the navigation system.

The Bottom Layer of the PCB is represented in Figure B.2, and the Top
Layer is shown in Figure B.3. A separate GND plane enables less number
of tracks and vias, and separates the user circuit from the camera and opto-
tracker circuit.

56

Figure B.1: Schematic of the SyncBoard

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
4

D
at

e:
8/

25
/2

00
8

Sh
ee

t
 o

f
Fi

le
:

C
:\P

ro
gr

am
 F

ile
s\

..\
A

rth
ro

-S
yn

c.
Sc

hD
oc

D
ra

w
n

B
y:

TR
IG

2

O
U

T
3

R
ST

4

C
V

O
LT

5
TH

R
6

D
IS

C
7

V
C

C
8

G
N

D
1

U
1

N
E5

55
N

IN
1

2

O
U

T
3

G
N

D

U
2

LM
78

05
C

T

V
B

U
S

1
D

-
2

D
+

3
G

N
D

4
J1 1-

35
35

76
-1G
N

D

V
C

C

C
1

10
0n

F

G
N

D
G

N
D

G
N

D

V
C

C
V

C
C

S1
SW

-P
B G

N
D

C
2

10
0n

F

R
1

1K

V
C

C

G
N

D

C
O

M
P

SY
N

C
 O

1

C
O

M
P

V
ID

 IN
2

V
ER

T
SY

N
C

 O
3

G
N

D
4

B
A

C
K

 P
O

R
C

H
5

R
ST

6
O

D
D

/E
V

EN
 O

7

V
C

C
8

U
3

LM
18

81
N

C
3

10
0n

F

G
N

D

V
C

C

C
4

10
0n

F
R

2 68
0K

G
N

D

1 2 3 4 56 7 8 9

11 10

J2 D
 C

on
ne

ct
or

 9

1 2 3 4 56 7 8 9

11 10

J3 D
 C

on
ne

ct
or

 9

1O
E

1

B
2

1C
3

3
1C

2
4

1C
1

5
1C

0
6

Y
1

7

G
N

D
8

Y
2

9
2C

0
10

2C
1

11

2C
2

12

2C
3

13

A
14

2O
E

15

V
C

C
16

U
4

SN
74

LS
25

3N

V
C

C

G
N

D

C
5

33
0n

F

G
N

D

141 2
3

U
5A SN

74
H

C
72

66
D

142 3
1

U
6A

SN
74

LS
02

N

G
N

D

V
C

C

R
3

10
K

R
4

10
K

R
6

10
K

R
7

10
K

G
N

D
G

N
D

141 2
3

U
7A

SN
74

LS
00

N

V
C

C 1 2 3 4

8 7 6 5

S2 SW
 D

IP
-4

U
8

O
pt

oi
so

la
to

r1

U
9

O
pt

oi
so

la
to

r1

U
10

O
pt

oi
so

la
to

r1

U
11

O
pt

oi
so

la
to

r1

R
8

38
4K

R
9

10
K

R
10

38
4K

R
11

38
4K

R
12

38
4K

G
N

D

TR
IG

2

O
U

T
3

R
ST

4

C
V

O
LT

5
TH

R
6

D
IS

C
7

V
C

C
_O

pt
o

8

G
N

D
_O

pt
o

1

U
12

N
E5

55
N

C
6

10
0n

F

V
C

C

R
13

2K

G
N

D

G
N

D

TR
IG

2

O
U

T
3

R
ST

4

C
V

O
LT

5
TH

R
6

D
IS

C
7

V
C

C
_C

am
8

G
N

D
_C

am
1

U
13

N
E5

55
N

V
C

C

R
14 2K

G
N

D

C
7 10

0n
F

G
N

D

C
8

10
0n

F
G

N
D

C
9

10
0n

F

G
N

D

C
10

10
0n

F
G

N
D

C
11 10

0n
F

V
C

C
G

N
D

C
12 10

0n
F

V
C

C
G

N
D

Sy
nc

hr
on

iz
at

io
n

of
 th

e
A

rth
ro

sc
op

e,
 O

pt
ot

ra
ck

er
 a

nd
 F

ire
W

ire
 C

am
er

a

1

C
13

10
0n

F

V
C

C
G

N
D

C
14 10
0n

F

G
N

D

C
15

10
0n

F

C
16

10
0n

F

C
18

10
0n

F

C
17

10
0n

F
G

N
D

G
N

D

G
N

D
G

N
D

V
C

C

12
34

P1 M
H

D
R

2X
2

G
N

D

C
20

10
0n

F

P0C101 P0C102

P0C201 P0C202

P
0
C
3
0
1

P
0
C
3
0
2

P0C401 P0C402

P0C501 P0C502

P0C601 P0C602

P
0
C
7
0
1

P
0
C
7
0
2

P
0
C
8
0
1

P
0
C
8
0
2

P
0
C
9
0
1

P
0
C
9
0
2

P
0
C
1
0
0
1
 P
0
C
1
0
0
2

P
0
C
1
1
0
1

P
0
C
1
1
0
2

P
0
C
1
2
0
1
 P
0
C
1
2
0
2

P
0
C
1
3
0
1
 P
0
C
1
3
0
2

P0C1401 P0C1402

P
0
C
1
5
0
1
 P
0
C
1
5
0
2

P0C1601 P0C1602

P
0
C
1
7
0
1
 P
0
C
1
7
0
2
 P
0
C
1
8
0
1
 P
0
C
1
8
0
2

P0C2001 P0C2002

P
0
J
1
0
1

P
0
J
1
0
2

P
0
J
1
0
3

P
0
J
1
0
4

P
0
J
1
0
5

P
0
J
1
0
6

P
0
J
2
0
1

P
0
J
2
0
2

P
0
J
2
0
3

P
0
J
2
0
4

P
0
J
2
0
5

P
0
J
2
0
6

P
0
J
2
0
7

P
0
J
2
0
8

P
0
J
2
0
9

P
0
J
2
0
1
0

P
0
J
2
0
1
1

P
0
J
3
0
1

P
0
J
3
0
2

P
0
J
3
0
3

P
0
J
3
0
4

P
0
J
3
0
5

P
0
J
3
0
6

P
0
J
3
0
7

P
0
J
3
0
8

P
0
J
3
0
9

P
0
J
3
0
1
0

P
0
J
3
0
1
1

P0P101 P0P102

P0P103 P0P104

P0R101 P0R102

P0R201 P0R202

P0R301 P0R302

P0R401 P0R402 P0R601 P0R602

P0R701 P0R702

P
0
R
8
0
1

P
0
R
8
0
2

P
0
R
9
0
1

P
0
R
9
0
2

P0R1001 P0R1002

P0R1101 P0R1102

P
0
R
1
2
0
1

P
0
R
1
2
0
2

P0R1301 P0R1302

P0R1401 P0R1402

P0S101 P0S102

P
0
S
2
0
1

P
0
S
2
0
2

P
0
S
2
0
3

P
0
S
2
0
4

P
0
S
2
0
5

P
0
S
2
0
6

P
0
S
2
0
7

P
0
S
2
0
8

P
0
U
1
0
1

P
0
U
1
0
2

P
0
U
1
0
3

P
0
U
1
0
4

P
0
U
1
0
5

P
0
U
1
0
6

P
0
U
1
0
7

P
0
U
1
0
8

P
0
U
2
0
1

P0U202

P
0
U
2
0
3

P
0
U
3
0
1

P
0
U
3
0
2

P
0
U
3
0
3

P
0
U
3
0
4

P
0
U
3
0
5

P
0
U
3
0
6

P
0
U
3
0
7

P
0
U
3
0
8

P
0
U
4
0
1

P
0
U
4
0
2

P
0
U
4
0
3

P
0
U
4
0
4

P
0
U
4
0
5

P
0
U
4
0
6

P
0
U
4
0
7

P
0
U
4
0
8

P
0
U
4
0
9

P
0
U
4
0
1
0

P
0
U
4
0
1
1

P
0
U
4
0
1
2

P
0
U
4
0
1
3

P
0
U
4
0
1
4

P
0
U
4
0
1
5

P
0
U
4
0
1
6

P
0
U
5
0
1

P
0
U
5
0
2

P
0
U
5
0
3

P
0
U
5
0
7

P
0
U
5
0
1
4

P
0
U
6
0
1

P
0
U
6
0
2

P
0
U
6
0
3

P
0
U
6
0
7

P
0
U
6
0
1
4

P
0
U
7
0
1

P
0
U
7
0
2

P
0
U
7
0
3

P
0
U
7
0
7

P
0
U
7
0
1
4

P
0
U
8
0
1

P
0
U
8
0
2

P
0
U
8
0
3

P
0
U
8
0
4

P
0
U
9
0
1

P
0
U
9
0
2

P
0
U
9
0
3

P
0
U
9
0
4

P
0
U
1
0
0
1

P
0
U
1
0
0
2

P
0
U
1
0
0
3

P
0
U
1
0
0
4

P
0
U
1
1
0
1

P
0
U
1
1
0
2

P
0
U
1
1
0
3

P
0
U
1
1
0
4

P
0
U
1
2
0
1

P
0
U
1
2
0
2

P
0
U
1
2
0
3

P
0
U
1
2
0
4

P
0
U
1
2
0
5

P
0
U
1
2
0
6

P
0
U
1
2
0
7

P
0
U
1
2
0
8

P
0
U
1
3
0
1

P
0
U
1
3
0
2

P
0
U
1
3
0
3

P
0
U
1
3
0
4

P
0
U
1
3
0
5

P
0
U
1
3
0
6

P
0
U
1
3
0
7

P
0
U
1
3
0
8

P0C101

P0C201

P0C401

P0C501

P
0
C
7
0
2

P
0
C
8
0
1

P
0
C
9
0
1

P
0
C
1
0
0
2

P
0
C
1
1
0
1

P
0
C
1
2
0
2

P
0
C
1
3
0
2

P0C1401

P
0
C
1
7
0
1

P
0
C
1
8
0
1

P
0
J
1
0
4

P
0
J
1
0
5

P
0
J
1
0
6

P0P101

P0P103

P0R201

P0R601

P0R701

P0R1301

P0R1402

P0S101

P
0
S
2
0
1

P
0
S
2
0
2

P
0
U
1
0
1

P0U202

P
0
U
3
0
4

P
0
U
4
0
1

P
0
U
4
0
5

P
0
U
4
0
8

P
0
U
4
0
1
2

P
0
U
4
0
1
5

P
0
U
5
0
7

P
0
U
6
0
7

P
0
U
7
0
7

P
0
U
8
0
2

P
0
U
1
0
0
2

N
0
G
N
D

P0C202 P0R101

P
0
C
3
0
1

P0P102

P0P104

P
0
C
3
0
2

P
0
U
3
0
2

P0C402

P0R202

P
0
U
3
0
6

P0C502

P
0
J
1
0
1

P
0
U
2
0
1

P0C601

P0C1601

P0C2001

P
0
J
3
0
5

P
0
J
3
0
1
0

P
0
J
3
0
1
1

P
0
U
8
0
3

P
0
U
9
0
2

P
0
U
1
2
0
1

P0C602

P
0
U
1
2
0
6

P
0
C
1
5
0
1

P
0
J
2
0
5

P
0
J
2
0
1
0

P
0
J
2
0
1
1

P
0
U
1
0
0
3

P
0
U
1
1
0
2

P
0
U
1
3
0
1

P
0
C
1
5
0
2
 P
0
J
2
0
1

P
0
U
1
3
0
4

P
0
U
1
3
0
8

P0C1602

P
0
J
3
0
1

P
0
R
9
0
2

P
0
U
1
2
0
4

P
0
U
1
2
0
8

P0C2002

P
0
U
1
2
0
5

P
0
J
1
0
2

P
0
J
1
0
3

P
0
J
2
0
2

P
0
J
2
0
3

P
0
U
1
0
0
4

P
0
J
2
0
4

P
0
J
2
0
6

P
0
J
2
0
7

P
0
J
2
0
8

P
0
J
2
0
9

P
0
U
1
3
0
2

P
0
U
1
3
0
6

P
0
J
3
0
2

P
0
J
3
0
3

P
0
U
8
0
4

P
0
J
3
0
4

P
0
J
3
0
6

P
0
J
3
0
7

P
0
J
3
0
8

P
0
J
3
0
9

P
0
U
1
2
0
2

P0R301

P
0
S
2
0
8

P
0
U
4
0
1
4

P0R302

P0R402

P
0
U
7
0
3

P0R401

P
0
S
2
0
7

P
0
U
4
0
2

P0R602

P
0
S
2
0
5

P
0
U
5
0
1

P0R702

P
0
S
2
0
6

P
0
U
7
0
2

P
0
R
8
0
1

P
0
U
4
0
9

P
0
R
8
0
2

P
0
U
8
0
1

P
0
R
9
0
1

P
0
U
1
2
0
7

P0R1001

P
0
U
1
2
0
3

P0R1002

P
0
U
9
0
1

P0R1101

P
0
U
1
0
0
1

P0R1102

P
0
U
4
0
7

P
0
R
1
2
0
1

P
0
U
1
1
0
1

P
0
R
1
2
0
2

P
0
U
1
3
0
3

P0R1302

P
0
U
4
0
4

P
0
U
9
0
3

P0R1401

P
0
U
4
0
1
1

P
0
U
1
1
0
3

P0S102

P
0
U
1
0
2

P
0
U
1
0
6

P
0
U
1
0
3

P
0
U
4
0
6

P
0
U
4
0
1
0

P
0
U
1
0
5

P
0
U
1
0
7

P
0
U
3
0
1

P
0
U
3
0
3

P
0
U
6
0
2

P
0
U
3
0
5

P
0
U
3
0
7

P
0
U
5
0
2

P
0
U
4
0
3

P
0
U
4
0
1
3

P
0
U
6
0
1

P
0
U
5
0
3

P
0
U
6
0
3

P
0
U
1
3
0
5

P
0
U
1
3
0
7

P0C102

P
0
C
7
0
1

P
0
C
8
0
2

P
0
C
9
0
2

P
0
C
1
0
0
1

P
0
C
1
1
0
2

P
0
C
1
2
0
1

P
0
C
1
3
0
1

P0C1402

P
0
C
1
7
0
2

P
0
C
1
8
0
2

P0R102

P
0
S
2
0
3

P
0
S
2
0
4

P
0
U
1
0
4

P
0
U
1
0
8

P
0
U
2
0
3

P
0
U
3
0
8

P
0
U
4
0
1
6

P
0
U
5
0
1
4

P
0
U
6
0
1
4

P
0
U
7
0
1

P
0
U
7
0
1
4

P
0
U
9
0
4

P
0
U
1
1
0
4

N
0
V
C
C

N
0
G
N
D

P0C101

P0C201

P0C401

P0C501

P
0
C
7
0
2

P
0
C
8
0
1

P
0
C
9
0
1

P
0
C
1
0
0
2

P
0
C
1
1
0
1

P
0
C
1
2
0
2

P
0
C
1
3
0
2

P0C1401

P
0
C
1
7
0
1

P
0
C
1
8
0
1

P
0
J
1
0
4

P
0
J
1
0
5

P
0
J
1
0
6

P0P101

P0P103

P0R201

P0R601

P0R701

P0R1301

P0R1402

P0S101

P
0
S
2
0
1

P
0
S
2
0
2

P
0
U
1
0
1

P0U202

P
0
U
3
0
4

P
0
U
4
0
1

P
0
U
4
0
5

P
0
U
4
0
8

P
0
U
4
0
1
2

P
0
U
4
0
1
5

P
0
U
5
0
7

P
0
U
6
0
7

P
0
U
7
0
7

P
0
U
8
0
2

P
0
U
1
0
0
2

P0C202 P0R101

P
0
C
3
0
1

P0P102

P0P104

P
0
C
3
0
2

P
0
U
3
0
2

P0C402

P0R202

P
0
U
3
0
6

P0C502

P
0
J
1
0
1

P
0
U
2
0
1

P0C601

P0C1601

P0C2001

P
0
J
3
0
5

P
0
J
3
0
1
0

P
0
J
3
0
1
1

P
0
U
8
0
3

P
0
U
9
0
2

P
0
U
1
2
0
1

P0C602

P
0
U
1
2
0
6

P
0
C
1
5
0
1

P
0
J
2
0
5

P
0
J
2
0
1
0

P
0
J
2
0
1
1

P
0
U
1
0
0
3

P
0
U
1
1
0
2

P
0
U
1
3
0
1

P
0
C
1
5
0
2
 P
0
J
2
0
1

P
0
U
1
3
0
4

P
0
U
1
3
0
8

P0C1602

P
0
J
3
0
1

P
0
R
9
0
2

P
0
U
1
2
0
4

P
0
U
1
2
0
8

P0C2002

P
0
U
1
2
0
5

P
0
J
1
0
2

P
0
J
1
0
3

P
0
J
2
0
2

P
0
J
2
0
3

P
0
U
1
0
0
4

P
0
J
2
0
4

P
0
J
2
0
6

P
0
J
2
0
7

P
0
J
2
0
8

P
0
J
2
0
9

P
0
U
1
3
0
2

P
0
U
1
3
0
6

P
0
J
3
0
2

P
0
J
3
0
3

P
0
U
8
0
4

P
0
J
3
0
4

P
0
J
3
0
6

P
0
J
3
0
7

P
0
J
3
0
8

P
0
J
3
0
9

P
0
U
1
2
0
2

P0R301

P
0
S
2
0
8

P
0
U
4
0
1
4

P0R302

P0R402

P
0
U
7
0
3

P0R401

P
0
S
2
0
7

P
0
U
4
0
2

P0R602

P
0
S
2
0
5

P
0
U
5
0
1

P0R702

P
0
S
2
0
6

P
0
U
7
0
2

P
0
R
8
0
1

P
0
U
4
0
9

P
0
R
8
0
2

P
0
U
8
0
1

P
0
R
9
0
1

P
0
U
1
2
0
7

P0R1001

P
0
U
1
2
0
3

P0R1002

P
0
U
9
0
1

P0R1101

P
0
U
1
0
0
1

P0R1102

P
0
U
4
0
7

P
0
R
1
2
0
1

P
0
U
1
1
0
1

P
0
R
1
2
0
2

P
0
U
1
3
0
3

P0R1302

P
0
U
4
0
4

P
0
U
9
0
3

P0R1401

P
0
U
4
0
1
1

P
0
U
1
1
0
3

P0S102

P
0
U
1
0
2

P
0
U
1
0
6

P
0
U
1
0
3

P
0
U
4
0
6

P
0
U
4
0
1
0

P
0
U
1
0
5

P
0
U
1
0
7

P
0
U
3
0
1

P
0
U
3
0
3

P
0
U
6
0
2

P
0
U
3
0
5

P
0
U
3
0
7

P
0
U
5
0
2

P
0
U
4
0
3

P
0
U
4
0
1
3

P
0
U
6
0
1

P
0
U
5
0
3

P
0
U
6
0
3

P
0
U
1
3
0
5

P
0
U
1
3
0
7

N
0
V
C
C

P0C102

P
0
C
7
0
1

P
0
C
8
0
2

P
0
C
9
0
2

P
0
C
1
0
0
1

P
0
C
1
1
0
2

P
0
C
1
2
0
1

P
0
C
1
3
0
1

P0C1402

P
0
C
1
7
0
2

P
0
C
1
8
0
2

P0R102

P
0
S
2
0
3

P
0
S
2
0
4

P
0
U
1
0
4

P
0
U
1
0
8

P
0
U
2
0
3

P
0
U
3
0
8

P
0
U
4
0
1
6

P
0
U
5
0
1
4

P
0
U
6
0
1
4

P
0
U
7
0
1

P
0
U
7
0
1
4

P
0
U
9
0
4

P
0
U
1
1
0
4

57

Figure B.2: Bottom Layer of the PCB Layout. In yellow are the top layer
tracks/planes represented, and in red the bottom layer tracks/planes.

Figure B.3: Top Layer of the PCB Layout. In yellow are the top layer
tracks/planes represented, and in red the bottom layer tracks/planes.

58

Bibliography

[1] (2007, September 20th) Arthronav - navegação assistida por com-
putador em cirurgia ortopédica a partir de imagens endoscópi-
cas. Fundação para a Ciência e a Tecnologia. [Online]. Avail-
able: http://www.fct.mctes.pt/projectos/pub/2006/Painel Result/
vglobal projecto.asp?idProjecto=68887&idElemConcurso=891

[2] (2008, August 21th) Arthroscopic acl (surgery) reconstruction. [Online].
Available: http://www.arthroscopy.com/sp05018.htm

[3] M. Hafez, B. Jaramaz, D. Gioia, and M. A. M, “Computer-assisted knee
surgery: An overview,” in Insall and Scott - Surgery of the Knee, 4th
Edition, F. W. Norman Scott, MD, Ed. Elsevier, 2006, vol. 2, pp. 1655
– 1674.

[4] J. B. Stiehl, “Computer-assisted surgery in adult reconstruction,” Tech.
Rep., August 8th 2008. [Online]. Available: http://www.touchbriefings.
com/pdf/1680/Steihl%5B1%5D.pdf

[5] A. J. Chung, P. J. Edwards, F. Deligianni, and G.-Z. Yang, “Freehand
cocalibration of optical and electromagnetic trackers for navigated bron-
choscopy,” in MIAR, 2004, pp. 320–328.

[6] Optotrak Certus User Guide (e-Type), Northern Digital Inc., October
2007, Rev 2.

[7] K. K. Sharma, Optics: Principles and Applications. Academic Press /
Elsevier, London, UK, 2006.

[8] R. L. Galloway, W. A. Bass, and C. E. Hockey, “Task-oriented asym-
metric multiprocessing for interactive image-guided surgery,” Parallel
Comput., vol. 24, no. 9-10, pp. 1323–1343, 1998.

59

http://www.fct.mctes.pt/projectos/pub/2006/Painel_Result/vglobal_projecto.asp?idProjecto=68887&idElemConcurso=891
http://www.fct.mctes.pt/projectos/pub/2006/Painel_Result/vglobal_projecto.asp?idProjecto=68887&idElemConcurso=891
http://www.arthroscopy.com/sp05018.htm
http://www.touchbriefings.com/pdf/1680/Steihl%5B1%5D.pdf
http://www.touchbriefings.com/pdf/1680/Steihl%5B1%5D.pdf

[9] M. R. M., L. Zexiang, and S. S. S., A Mathematical In-
troduction to Robotic Manipulation. CRC, March 1994. [On-
line]. Available: http://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20\&path=ASIN/0849379814

[10] Smith and Nephew 450P and 460P 3-CCD Camera Control Units Op-
erations/Service Manual, Smith amd Nephew, Rev 2.

[11] Flea2 Technical Reference Manual, Point Grey Research, September
2006, Version 1.1.

[12] L. V. Guide, “Interlacing,” May 2002. [Online]. Available: http:
//neuron2.net/LVG/default.htm

[13] (2007, November 11th) Video signal measurement and generation
fundamentals - intermediate analog concepts. National Instruments.
[Online]. Available: http://zone.ni.com/devzone/cda/tut/p/id/5364

[14] S. W. Smith, The scientist and engineer’s guide to digital signal process-
ing. San Diego, CA, USA: California Technical Publishing, 1997.

[15] (2008, July 20th) How television works. Wikipedia. [Online]. Available:
http://en.wikipedia.org/wiki/How Television Works

[16] N. Semicondutor, “Data sheet lm1881 video sync separator,” April 2001.

[17] (2008, July 30th) Building blocks of a video format. sgi. [Online]. Avail-
able: http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=
0650\&db=bks\&fname=/SGI Developer/VFC PG/ch03.html

[18] F. B.Brokken, C++ Annotations. University of Groningen, March 1994-
2008, version 7.2.0.

[19] H. M. Deitel and P. J. Deitel, C How to Program. Prentice Hall, March
2006, 3rd edition.

[20] A. Fog. (2008, August 9th) Calling conventions for different c++
compilers and operating systems. Copenhagen University College
of Engineering. [Online]. Available: http://www.agner.org/optimize/
calling conventions.pdf

[21] (2008, August 9th) Using extern to Specify Linkage. MSDN. [Online].
Available: http://msdn.microsoft.com/en-us/library/0603949d(VS.80)
.aspx

60

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0849379814
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0849379814
http://neuron2.net/LVG/default.htm
http://neuron2.net/LVG/default.htm
http://zone.ni.com/devzone/cda/tut/p/id/5364
http://en.wikipedia.org/wiki/How_Television_Works
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650\&db=bks\&fname=/SGI_Developer/VFC_PG/ch03.html
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650\&db=bks\&fname=/SGI_Developer/VFC_PG/ch03.html
http://www.agner.org/optimize/calling_conventions.pdf
http://www.agner.org/optimize/calling_conventions.pdf
http://msdn.microsoft.com/en-us/library/0603949d(VS.80).aspx
http://msdn.microsoft.com/en-us/library/0603949d(VS.80).aspx

[22] P. Jakubik, “Callback implementations in c++,” in TOOLS ’97: Pro-
ceedings of the Tools-23: Technology of Object-Oriented Languages and
Systems. Washington, DC, USA: IEEE Computer Society, 1997, p. 377.

[23] (2008, June 12th) Intégration de sdl dans qt. Developpez.com. [Online].
Available: http://irmatden.developpez.com/tutoriels/sdl/

[24] NDI 6D Architect User Guide, Northern Digital Inc., March 2004, Rev
4.

[25] Optotrak Certus Rigid Body and Tool Design Guide), Northern Digital
Inc., March 2006, Rev 2.

61

http://irmatden.developpez.com/tutoriels/sdl/

	1 Introduction
	1.1 Surgical Navigation
	1.2 Surgical Navigation in minimal invasive procedures (Arthoscopy)
	1.3 The Project

	2 Equipment Description
	2.1 Opto-tracker
	2.1.1 Position Determination
	2.1.2 Pose Estimation
	2.1.3 API Description

	2.2 Arthroscope
	2.3 FireWire Camera

	3 Hardware for the Synchronization
	3.1 Synchronization's Problem
	3.2 Synchronization's Solution
	3.3 Hardware specification
	3.3.1 Opto-tracker Synchronization
	3.3.2 PointGrey Camera Synchronization
	3.3.3 Arthroscope as Trigger Source
	3.3.4 PushButton Trigger

	3.4 PCB design
	3.4.1 OrCAD for the board design
	3.4.2 Altium Designer for the board design

	3.5 Evaluation of the Final SyncCard

	4 Software
	4.1 General Objective
	4.2 Development environment
	4.3 Requirements
	4.4 Application's Architecture
	4.4.1 Configuration using a XML file
	4.4.2 The devices and their configurations
	4.4.3 Insertion of of user defined modules
	4.4.4 ArthroNavMain
	4.4.5 Acquisition Loop
	4.4.6 How to use the application
	4.4.7 Processors created
	4.4.8 Software results
	4.4.9 Problems during the development

	5 Construction of a Tool with LEDs
	5.1 Rigid Body characterization
	5.2 Tool Constraints

	6 Conclusion
	A Software Documentation
	B Schematic Design and PCB Layout
	Bibliography

