
 i

 

Universidade de Coimbra 
Faculdade de Ciências e Tecnologia 

Departamento de Engenharia Química 

 

 

Monitorização, Modelação e Melhoria de Processos 

Químicos: Abordagens Multiescala Baseadas em 

Dados 

 

 

Título em Inglês: 

Data-Driven Multiscale Monitoring, Modelling and 

Improvement of Chemical Processes 

 

 

Marco Paulo Seabra dos Reis 

(Licenciado em Engenharia Química) 

 

Dissertação submetida à Universidade de Coimbra para obtenção do Grau de Doutor em Engenharia 

Química, na especialidade de Processos Químicos. 

 

Supervisor: Professor Doutor Pedro Manuel Tavares Lopes de Andrade Saraiva 

 

 

Coimbra, Novembro de 2005 

Portugal



 Marco Reis ©, ver.1 ii

 
(Pasti et al., 1999; Tewfik et al., 1992), (Nounou & Bakshi, 1999), (Bakshi et al., 1997), (Zhang, 1995), (Walter, 1994), (Top & 

Bakshi, 1998), (Kosanovich & Piovoso, 1997), (Bakshi, 1998), (Misra et al., 2000), (Yoon & MacGregor, 2001, 2004), (Bakhtazad 

et al., 2000), (Crouse et al., 1998; Sun et al., 2003), (Doymaz et al., 2001),(Maulud et al., 2005), (Teppola & Minkkinen, 2000), 

(Trygg et al., 2001), (Vogt & Tacke, 2001), (Binder, 2002), (Beylkin et al., 1991), (Mahadevan & Hoo, 2000), (Bassevile et al., 

1992a), (Willsky, 2002), (Stephanopoulos et al., 2000), (Stephanopoulos et al., 1997a), (Dyer, 2000), (Karsligil, 2000), (Krishnan & 

Hoo, 1999), (Chui & Chen, 1999), (Bakshi & Stephanopoulos, 1993; Zhang & Benveniste, 1992), (Pati & Krishnaprasad, 1993), 

(Zhong et al., 2001), (Liu et al., 2000a), (Zhao et al., 1998), (Åström & Eykhoff, 1971), (Carrier & Stephanopoulos, 1998), 

(Tsatsanis & Giannakis, 1993), (Doroslovački & Fan, 1996), (Plavajjhala et al., 1996), (Claus, 1993), (Renaud et al., 2005), 

(Fieguth & Willsky, 1996), (Tewfik, 1992), (Renaud et al., 2003), (Draper & Smith, 1998), (Kresta et al., 1991), (Kessel, 2002; 

Kimothi, 2002; Lira, 2002), (Wentzell et al., 1997a), (Bro et al., 2002), (Faber & Kowalski, 1997), (Kaspar & Ray, 1993a; 

Lakshminarayanan et al., 1997), (Reis, 2000; Soares, 1997), (Goodman & Haberman, 1990), (Wentzell et al., 1997b) ,(Helland, 

1988), (Höskuldsson, 1988; Kaspar & Ray, 1993b), (Goodman & Haberman, 1990), (Wentzell et al., 1997b) ,(Helland, 1988), 

(Höskuldsson, 1988; Kaspar & Ray, 1993b), (Johnson & Wichern, 1992), (Kortschot, 1997), 

 

 



iii 

 

 

 

 

 

 

 

 

 

 

Para a Ivone 

 





 v

Abstract 

Processes going on in modern chemical processing plants are typically very complex, 

and this complexity is also present in collected data, which contain the cumulative effect 

of many underlying phenomena and disturbances, presenting different patterns in the 

time/frequency domain. Such characteristics motivate the development and application 

of data-driven multiscale approaches to process analysis, with the ability of selectively 

analyzing the information contained at different scales, but, even in these cases, there is 

a number of additional complicating features that can make the analysis not being 

completely successful. Missing and multirate data structures are two representatives of 

the difficulties that can be found, to which we can add multiresolution data structures, 

among others. On the other hand, some additional requisites should be considered when 

performing such an analysis, in particular the incorporation of all available knowledge 

about data, namely data uncertainty information. 

In this context, this thesis addresses the problem of developing frameworks that are able 

to perform the required multiscale decomposition analysis while coping with the 

complex features present in industrial data and, simultaneously, considering 

measurement uncertainty information. These frameworks are proven to be useful in 

conducting data analysis in these circumstances, representing conveniently data and the 

associated uncertainties at the different relevant resolution levels, being also 

instrumental for selecting the proper scales for conducting data analysis.  

In line with efforts described in the last paragraph and to further explore the information 

processed by such frameworks, the integration of uncertainty information on common 

single-scale data analysis tasks is also addressed. We propose developments in this 

regard in the fields of multivariate linear regression, multivariate statistical process 

control and process optimization. 

The second part of this thesis is oriented towards the development of intrinsically 

multiscale approaches, where two such methodologies are presented in the field of 

process monitoring, the first aiming to detect changes in the multiscale characteristics of 

profiles, while the second is focused on analysing patterns evolving in the time domain.  
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Preface 

“Need is the mother of all inventions”, and the same applies to the underlying 

motivations of the work presented in this thesis. Several years ago we found ourselves 

very often is situations where we were confronted with industrial data sets composed of 

a relatively high number of variables, rather unstructured, noisy and very sparse, with 

the aim of trying to extract any sort of useful knowledge regarding particular problems 

that were concerning the process engineers at the moment. By that time there was 

hardly any tool available ready to be applied (and in fact the situation is not much 

different now, at least regarding toolboxes commercially available), and, of course, the 

only way out was to develop and apply alternative approaches tailored to those types of 

datasets. At the beginning these approaches were rather focused on the specific data sets 

they were designed to handle, but after some time they evolved to more general data 

analysis structures, that analyse the information content at different time-scales, looking 

for the minimum scale where the problem could be tackled, and see what is also 

contained in the higher scales, using coarser resolution versions of the data sets.  

Step by step, the initial approaches gave rise to more structured and general platforms, 

and some conceptual work began being carried out to provide the necessary theoretical 

insight on their use: what seemed to be initially a “course” (“why don’t we get the same 

nice data sets we see in the tutorial books and literature?”…), turned out to be an 

interesting source of problems still lacking adequate solutions, and, somehow, we now 

realize what Isaac Asimov meant when he said: “The most exciting phrase to hear in 

science, the one that heralds new discoveries, is not 'Eureka!' (I found it!) but 'That’s 

funny …' ”. After some time, the idea of bringing data uncertainty to scene occurred, 

and it turns out to be instrumental in multiscale platforms where it plays an important 

role in handling, in a coherent and unified way, the missing data problem and the 

existence of observations with different qualities.  

After this point, we knew we had a problem and a potential way to work it out, and the 

research work presented in this thesis naturally evolved from them. The multiscale 

decomposition frameworks were refined, single scale approaches that take advantage of 

the information generated by the former were developed, and approaches that consider 

all the scales simultaneously were considered, specially with process monitoring 

purposes. This thesis is the result of such a work. 
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diag  Operator such that, when applied to a square matrix produces a 
vector containing its diagonal elements and that, when applied to 
a vector, produces a square diagonal matrix with the elements of 
the vector along the main diagonal 

decJ  Decomposition depth in the wavelet decomposition 
2 , (or )T Q SPE  Monitoring statistics for MSPC based on PCA 
2 ,w wT Q   Monitoring statistics for MSPC based on HLV 

( )u X    Standard uncertainty of X 

vec    Operator that vectorizes a matrix or higher order tensors 

⊗    Kronecker product operator 

 

Abbreviations 
ARL   Average run length 

ART   Adaptive resonance theory 

ATS   Average time to signal 

BLS   Bivariate least squares 

HLV   Heteroscedastic latent variable model 

IT-net   Input-training neural network 

MLMLS  Maximum likelihood multivariate least squares 

MLPCA  Maximum likelihood principal components analysis 

MLS   Multivariate least squares 

MR   Multiresolution 

MRD    Multiresolution decomposition 

MSPC   Multivariate statistical process control 

PCA   Principal components analysis 

PCR   Principal components regression 

PLS   Partial least squares or projection to latent structures 

rMLMLS  “ridge” MLMLS 

rMLS   “ridge” MLS 

RMSEP  Root mean square error of prediction 
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RMSEPW  Weighted root mean square error of prediction 

SNR   Signal to noise ratio 

SPC   Statistical process control 

uPLS   Uncertainty-based PLS 

USPC   Univariate statistical process control 
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Extended Abstract in Portuguese / 

Resumo Alargado em Português  

Apresenta-se nesta secção, de uma forma resumida, o enquadramento, objectivos e 

contribuições relativas ao trabalho desenvolvido no âmbito desta tese. Na subsecção 

seguinte, introduz-se o âmbito geral do trabalho aqui apresentado, e apresentam-se as 

motivações que lhe estão subjacentes, após o que se definem os respectivos objectivos e 

enumeram as contribuições desenvolvidas na sua persecução. Estas serão descritas com 

maior detalhe nas subsecções seguintes, onde os principais resultados obtidos serão 

também brevemente comentados. Finalmente, resumem-se as principais conclusões 

relativas às contribuições da presente tese e referem-se possíveis linhas para trabalho 

futuro, numa óptica de continuidade dos esforços de investigação já desenvolvidos. 

 

Introdução 

 

Refere-se de seguida o âmbito geral onde os trabalhos aqui reportados podem ser 

enquadrados e as principais motivações subjacentes. Os objectivos que nortearam o 

desenvolvimento das actividades conduzidas, no âmbito desta tese, são também 

apresentados, e enumeram-se as suas principais contribuições. 

 

Âmbito e Motivação 

A natureza dos processos industriais é, actualmente, muito complexa, e o mesmo se 

aplica, naturalmente, aos dados que deles são recolhidos, que contêm o efeito 

cumulativo dos vários fenómenos e perturbações que lhes estão subjacentes, os quais 

possuem diferentes padrões de localização e dispersão no domínio tempo/frequência. 

Adicionalmente, existe um conjunto de características que é usual encontrar em bases 

de dados industriais, e que dificultam a sua análise, nomeadamente: 
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i) Presença de ruído, não raramente com magnitude relativamente elevada (baixo 

SNR1); 

ii) Natureza esparsa (proveniente de variáveis com diferentes taxas de aquisição e 

dados em falha); 

iii) Dados com autocorrelação e comportamento não estacionário; 

iv) Presença de um elevado número de variáveis com correlações cruzadas 

(natureza multivariada ou “giga”-variada); 

v) Presença de dados com diferentes resoluções (variáveis contendo médias 

calculadas com base em janelas temporais de diferentes comprimentos); 

vi) Padrões distribuídos por várias escalas temporais, com diferentes localizações e 

dispersões no domínio tempo/frequência (natureza multiescala). 

Neste contexto, a extracção de conhecimento útil, para as mais diversas actividades 

industriais, com vista à melhoria dos processos, está longe se ser uma tarefa trivial, 

podendo tais dificuldades afectar todos os níveis da hierarquia de tomada de decisão, 

desde o nível da operação do processo, passando pelo nível da gestão local de uma 

determinada unidade fabril, e chegando depois até ao níveis de planeamento estratégico. 

Estes diferentes níveis de tomada de decisão tendem a usar informação com diferentes 

níveis de resolução. Por exemplo, ao nível da operação do processo, é necessário aceder 

a informação “composta” na gama dos minutos a horas, enquanto que o Engenheiro 

responsável pela unidade fabril tipicamente analisa médias horárias ou diárias, a equipa 

de planeamento da produção se preocupa com valores deslocalizados em horizontes de 

tempo que vão do dia ao mês, e os elementos do conselho de administração estão 

essencialmente interessados nas tendências de médias mensais/anuais. 

O desenvolvimento de plataformas de projecção que sejam capazes de representar a 

informação original com diferentes níveis de resolução,2 de acordo com o fim a que se 

                                                 

 

1 Sigla proveniente da língua inglesa, Signal to Noise Ratio, significando uma medida da razão entre a 

magnitude do sinal e a do ruído que o afecta. 

2 O nível de resolução da informação analisada prende-se com o grau detalhe que contém. Se, com base 

num sinal recolhido com uma dada taxa de amostragem, se calcular um outro, contendo as médias de dois 
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destina, num ambiente “hostil”, em que os dados apresentam as estruturas complexas 

anteriormente mencionadas, é pois, a nosso ver, não só conveniente e útil mas também 

oportuno. 

Adicionalmente, uma vez escolhida a resolução a que análise vai ser conduzida, é 

necessário que as ferramentas a empregar estejam não só preparadas para lidar com as 

características intrínsecas dos dados, mas também que integrem toda a informação útil 

disponível sobre os mesmos. Em particular, existe hoje uma tendência crescente no 

sentido de caracterizar os valores recolhidos relativamente à incerteza que têm 

associada (ISO, 1993; Lira, 2002), tendência esta que tem vindo a ser incentivada pelas 

organizações internacionais de normalização.3 Nestas condições, para além da tabela de 

dados a uma dada resolução ou escala, existe também disponível uma outra, contendo as 

incertezas associadas a cada valor, a qual deve ser igualmente incorporada na análise. 

Finalmente, existem tarefas que, perante a complexidade inerente aos fenómenos 

industriais, incorporaram, simultaneamente, as várias escalas na sua análise. Estas 

abordagens, a que designaremos por multiescala, têm a capacidade de estudar as 

diferentes características dos fenómenos distribuídas pelas várias escalas, de uma forma 

integrada e coerente. 

O trabalho realizado no contexto da presente tese, e as abordagens nela propostas, visam 

precisamente atacar os problemas delineados nos parágrafos anteriores, sendo estas 

essencialmente baseadas em dados, por oposição às metodologias baseadas em 

primeiros princípios, que colocam o seu ênfase no conhecimento detalhado dos 

mecanismos activos nos processos em análise, e na sua transcrição matemática. 

 

                                                                                                                                               

 

em dois pontos, perde-se detalhe, e a sua resolução cai neste caso para metade da original; se o horizonte 

sobre o qual a média é calculada envolver quatro observações consecutivas, a resolução cai para um 

quarto da original, e assim sucessivamente. A este processo de decaimento da resolução corresponde um 

outro, inverso, de subida na escala em que a informação é analisada. 

3 Ver por exemplo a resolução número 21 do “CEN Technical Board”, que, em 2003, decidiu dar 

seguimento às sugestões do grupo de trabalho CEN/BT WG 122 “Uncertainty of measurement”, 

reportadas no documento BT N 6831. 
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Objectivos 

Na sequência do exposto na subsecção anterior, assumiram-se os seguintes objectivos 

para a presente tese: 

i) Desenvolver plataformas de projecção de dados a diferentes níveis de 

resolução, que sejam capazes de lidar com dados apresentando estruturas 

complexas (nomeadamente esparsas) e que integrem, de uma forma 

adequada, toda a informação disponível (dados e a sua incerteza), permitindo 

nomeadamente, estender o âmbito de aplicação do conceito de análise 

multiresolução baseada em onduletas4 a estas novas situações; 

ii) Desenvolver metodologias de análise de dados (a uma só resolução, ou 

escala, i.e., monoescala) com particular relevância no âmbito da Engenharia 

de Sistemas em Processos e Produtos (ESPP), que integrem nas suas 

formulações a incerteza associada aos dados; 

iii) Propor novas metodologias multiescala para a monitorização de processos, e 

desenvolver as existentes de forma a melhorar o seu desempenho, em 

determinados contextos de aplicação. 

 

Contribuições 

As principais contribuições originais desta tese, decorrentes do trabalho desenvolvido 

na persecução dos objectivos acima delineados, são as seguintes: 

i) Criação de três plataformas de análise multiresolução (AMR), que integram 

informação relativa à incerteza dos dados e abordam o potencial problema da 

existência de dados em falha, no contexto das quais algumas aplicações 

foram exploradas, incluindo: projecção de dados e respectivas incertezas a 

                                                 

 

4 Adopta-se aqui o termo onduletas como tradução do inglês, wavelets, ou francês, ondelettes, uma vez 

que é aquela que com mais frequência surge em comunicações científicas na língua Portuguesa (Lopes, 

2001; Reis, 2000; Soares, 1997), apesar de outras designações poderem também ser usadas, como por 

exemplo, ôndulas (Crato, 1998). 
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uma dada escala para análise subsequente; selecção da escala de análise; 

filtragem de sinais afectados por ruído. 

ii) Várias metodologias de análise de dados foram analisadas, do ponto de vista 

do uso que fazem relativamente ao conhecimento das características do ruído 

que afecta as diversas variáveis, tendo sido desenvolvidas abordagens que 

integram, explicitamente, informação sobre a incerteza dos dados, nas 

seguintes áreas: 

a. Regressão Linear. Desenvolveram-se modificações a metodologias já 

existentes, com vista a integrar a incerteza dos dados de uma forma mais 

completa: métodos MLMLS (Maximum Likelihood Multivariate Least 

Squares), rMLS (Ridge Multivariate Least Squares), MLPCR2 

(Maximum Likelihood Principal Components Regression) e uPLS1–

uPLS5 (várias metodologias que integram incerteza dos dados na 

abordagem PLS, Partial Least Squares ou Projection to Latent 

Structures). 

b. Optimização de processos. Foram propostas e estudadas 

comparativamente diversas formulações de optimização de processos, 

diferindo no nível de incorporação da informação relativa às incertezas 

que afectam os valores das variáveis medidas. 

c. Controlo Estatístico Multivariado de Processos. Propôs-se um modelo 

estocástico que congrega a incerteza das medições e a variabilidade do 

processo, e apresentou-se uma metodologia para estimar os seus 

parâmetros. Este modelo proporciona o suporte probabilístico para 

implementar sistemas de controlo estatístico multivariado, usando 

estatísticas de monitorização, as quais também foram desenvolvidas.  

iii) Desenvolveram-se duas abordagens multiescala orientadas para a 

monitorização de processos químicos: 

a. A primeira visa a monitorização de perfis, i.e., da relação entre variáveis 

de entrada (também designadas por descritores, preditores ou 

regressores) e saída (ou resposta), em que nas variáveis de entrada 

figuram normalmente descritores da localização espacial ou temporal a 



DATA-DRIVEN MULTISCALE MONITORING, MODELLING AND IMPROVEMENT OF CHEMICAL PROCESSES 

 xxxviii

que cada valor da resposta se refere, em particular aqueles que 

apresentem padrões localizados no domínio da frequência. 

b. A segunda aplicação é dirigida ao caso mais convencional, em que se 

pretendem detectar padrões anormais ao longo do tempo, e consiste em 

desenvolver uma abordagem, com base no método MSSPC (Multiscale 

Statistical Process Control), capaz de lidar adequadamente com a 

presença de dados que apresentam diferentes resoluções, no sentido de 

melhorar o seu desempenho ao nível da definição de regiões onde 

ocorreram falhas e da rápida detecção do regresso do processo a 

condições normais de operação. 

No contexto da contribuição iii.a), ela foi aplicada a um caso de estudo relacionado com 

a monitorização da superfície do papel, onde também se analisou com algum detalhe a 

estrutura multiescala da superfície do papel, usando ferramentas gráficas e séries (ou 

sucessões) cronológicas, bem como se explorou a informação disponibilizada pelo 

equipamento de medição adoptado (perfilómetro) relativamente a um conjunto de 

parâmetros que caracterizam os fenómenos de rugosidade e ondulação. Estes serviram 

de base ao desenvolvimento de modelos de classificação da qualidade da superfície do 

papel no tocante àqueles fenómenos, de uma forma quantitativa e estável, recorrendo a 

espaços de previsão de baixa dimensionalidade efectiva. 

As contribuições aqui enumeradas são descritas com mais detalhe nas subsecções 

seguintes. 

 

Plataformas de Análise Multiresolução Generalizadas 

 

Uma análise multiresolução (AMR) (Mallat, 1989, 1998) decompõe um dado sinal 

numa versão mais grosseira do mesmo (i.e., de baixa resolução), em conjunto com os 

sinais de detalhe relativos a todas as escalas inferiores (que se vão perdendo nas 

aproximações sucessivas a escalas mais elevadas, as quais possuem menor resolução), e 

é instrumental quando se pretende focar a análise numa escala em particular. No 
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entanto, a sua aplicação a dados industriais apresenta frequentemente sérias 

complicações, uma vez que esta é baseada na decomposição de um sinal através da 

aplicação da transformada de onduleta,5 a qual pressupõe, por sua vez, a inexistência de 

dados em falha. Adicionalmente, tal análise não integra explicitamente informação 

relativa à incerteza dos dados, a qual pode ser relevante para a análise posterior dos 

resultados da decomposição, que não estarão de facto completos sem a especificação de 

tal grandeza. 

Neste sentido, propõem-se nesta tese abordagens AMR alternativas que, integrando a 

incertezas dos dados que decompõem, são também capazes de lidar com dados em 

falha, estendendo assim o âmbito de aplicação da abordagem convencional para 

situações mais comuns ao nível da estrutura dos dados com origem industrial. 

Considera-se aqui plataforma de análise multiresolução um algoritmo que proporciona 

modos de calcular coeficientes de expansão do tipo dos obtidos por aplicação da 

transformada de onduleta, em diferentes contextos, conforme a seguir se descreve. 

 

Método 1: Ajustar Coeficientes do Filtro de Acordo com a Incerteza 
dos Dados 

 

A transformada de Haar, talvez a transformada de onduleta mais simples e conhecida, 

consiste na implementação sucessiva do seguinte procedimento: para cada sinal de 

aproximação que sucessivamente se vai obtendo, digamos à escala j (começando pelo 

                                                 

 

5 Para uma introdução à teoria das onduletas em Português, consultar Reis (2000) e Soares (1997). 

Relativamente a textos em Inglês, a literatura disponível é hoje bastante extensa, dela figurando desde 

textos de cariz mais introdutório (Aboufadel & Schlicker, 1999; Burrus et al., 1998; Chan, 1995; 

Hubbard, 1998; Walker, 1999), tratamentos mais completos do assunto (Mallat, 1998; Strang & Nguyen, 

1997) ou que seguem uma linha mais orientada à descrição dos aspectos matemáticos subjacentes (Chui, 

1992; Kaiser, 1994; Walter, 1994), até livros mais aplicados (Chau et al., 2004; Cohen & Ryan, 1995; 

Motard & Joseph, 1994; Percival & Walden, 2000; Starck et al., 1998; Vetterli & Kovačević, 1995) e 

textos com um maior nível de sofisticação técnica (Daubechies, 1992), sem esquecer ainda alguns artigos 

de revisão (Alsberg et al., 1997; Rioul & Vetterli, 1991).  
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sinal original, à escala 0j = ), calculam-se os novos coeficientes de aproximação para a 

escala seguinte, 1j + , através da média sucessiva de blocos não sobrepostos, 

constituídos por pares de valores anexos, enquanto os respectivos coeficientes de 

detalhe são obtidos através da diferença entre esta média (ou coeficiente de 

aproximação) e o elemento de cada bloco:6 

 

 
( )
( )

1
12 2

1
2 2 2

j j j
k kk k

j j j
kk k k

a C a a

d C a a

+
+⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

+
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= ⋅ +

= ⋅ −
 (1) 

onde 

 2 2 2kC⎡ ⎤⎢ ⎥
=  (2) 

 

sendo j
ka  e j

kd  os coeficientes de aproximação e detalhe à escala j , para um índice de 

translação k , respectivamente, C o coeficiente do filtro envolvido no cálculo dos 

coeficientes de aproximação e detalhe, e x⎡ ⎤⎢ ⎥  o menor inteiro, n, tal que n x≥ . Este 

procedimento confere igual peso a ambos os valores de cada bloco no cálculo da sua 

média (coeficiente de aproximação). No entanto, se dispusermos de informação relativa 

à qualidade de cada um destes valores, o processo pode ser modificado, de forma a fazer 

reflectir, no coeficiente de aproximação, a incerteza associada a cada dado, dando maior 

peso àquele que possua menor incerteza associada, o que pode ser feito escolhendo 

valores diferenciados para os coeficientes de cálculo da média (C’s), de acordo com um 

critério apropriado: 

 

 1 1,1 1,2
12 2 2

j j j j j
k kk k ka C a C a+ + +

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
= ⋅ + ⋅  (3) 

                                                 

 

6 Os coeficientes de aproximação e detalhe requerem que as médias e diferenças, respectivamente, sejam 

escalonadas por um factor 1 2 , de forma a conservar a energia do sinal, após a transformação de 

onduleta (relação de Parseval, Kreyszig, 1978; Mallat, 1998). 
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Neste caso, escolheu-se o critério MVUE (Minimum Variance Unbiased Estimator) 

para a estimativa da média (comum), do qual decorre a seguinte fórmula de cálculo para 

os coeficientes de cálculo da média: 

 

 
( )

( ) ( )

2

1,1
2 2 2

1

1

1 1

j
kj

k j j
k k

u a
C

u a u a
+
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+

=
+

 (4) 

 

 1,2 1,1
2 21j j

k kC C+ +
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

= −  (5) 

 

( ( )u x  representa a incerteza associada a x ). A correspondente fórmula para os 

coeficientes de detalhe é a seguinte: 

 

 ( ) ( )1 1,1 1 1,2 1
12 2 2 2 2

j j j j j j j
k kk k k k kd C a a C a a+ + + + +

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
= ⋅ − = ⋅ −  (6) 

 

a qual apresenta uma forte semelhança com a sua congénere correspondente ao caso de 

Haar. A incerteza deve também ser propagada através das escalas, o que se consegue 

aplicando a lei de propagação de incertezas à presente situação (ISO, 1993; Lira, 2002):  

 

 ( ) ( ) ( ) ( ) ( )2 22 21 1,1 1,2
12 2 2

j j j j j
k kk k ku a C u a C u a+ + +

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
= ⋅ + ⋅  (7) 

 

 ( ) ( ) ( ) ( ) ( )( )2 2 2 21 1,1 1,1
12 2 22j j j j j j

k k kk k ku d C u a u a C u a+ + +
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= ⋅ + − ⋅ ⋅  (8) 

 

onde se assume que os erros que afectam observações sucessivas são estatisticamente 

independentes entre si. 
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Método 2: Usar a Transformada de Haar, Acomodar Dados em Falha 
e Propagar Incertezas 

 

Nesta metodologia, ao contrário da anterior, os coeficientes do filtro são mantidos 

constantes, sendo a incerteza dos dados originais propagada para os coeficientes de 

aproximação e detalhe correspondentes a escalas superiores, segundo a equação (9), e os 

dados em falha acomodados mediante a aplicação sucessiva do conjunto de regras 

definido na Tabela 1, durante a fase de decomposição do sinal. 

 

 ( ) ( ) ( ) ( ) ( ) ( )2 22 21 1
12 2 2 2 2 2j j j j

k kk ku a u d u a u a+ +
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= = ⋅ + ⋅  (9) 

 

Tabela 1. Plataformas AMR: regras a aplicar na implementação do Método 2. 

• Regra 1. Ausência de dados em falha ⇒ usar Haar e calcular incertezas segundo (9) 

• Regra 2. { } ( ) ( )1 1
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Método 3: Usar um Filtro Correspondente a uma Onduleta Ortogonal 
e Propagar Incertezas 

 

Apesar de uma certa incerteza afectar sempre os dados observados, particularmente 

quando estes provêm de processos industriais, nem sempre a ausência de dados se 

coloca como um problema, podendo existir situações onde dispomos de tabelas de 

valores completas para análise. Nestas condições, é possível usar os filtros 
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desenvolvidos para as onduletas ortogonais e tirar partido das suas boas propriedades 

(e.g. compactação de energia de sinais irregulares, descorrelação, suporte compacto, 

etc.), fruto de um desenho cuidado e teoricamente orientado dos seus coeficientes. 

Deve-se no entanto complementar este cálculo com a propagação de incertezas para os 

coeficientes calculados, o que pode ser conduzido, mais uma vez, aplicando a fórmula 

de propagação de incertezas. No entanto, para a situação em que a incerteza é constante 

ao longo do tempo e o ruído independente, este cálculo é particularmente simples, uma 

vez que se pode demonstrar que a incerteza dos coeficientes calculados é igual à dos 

dados originais (Jansen, 2001; Mallat, 1998).  

O Método 1, por um lado, e os Métodos 2 e 3, por outro, diferem profundamente na 

forma como incorporam a informação relativa à incerteza dos dados nas suas 

plataformas AMR. Um estudo mais cuidado revela (Reis & Saraiva, 2005b), como 

linhas gerais de orientação para o uso destas metodologias,7 que o Método 1 dever ser 

aplicado quando os sinais subjacentes são constantes (ainda que afectados por ruído) ou 

seccionalmente constantes (até ao nível de decomposição em que o comportamento 

seccionalmente constante seja quebrado). 

Neste mesmo estudo demonstrou-se a utilidade destas plataformas na implementação de 

estratégias de filtragem baseadas na eliminação selectiva de coeficientes de onduleta 

mediante o conhecimento das incertezas que afectam os sinais subjacentes, tendo-se 

verificado que conduzem a melhores resultados do que as suas congéneres mais 

correntes, em situações onde a incerteza não é homogénea ao longo do sinal (como 

acontece, por exemplo, quando o ruído é do tipo proporcional). 

Outra área onde estas abordagens se revelaram úteis foi no desenvolvimento de 

ferramentas que assistem o utilizador na selecção da escala para conduzir uma dada 

tarefa de análise de dados, mediante a indicação da escala mínima, acima da qual é 

adequado efectuar uma tal análise, bem como no fornecimento dos dados representados 

à escala seleccionada, em conjunto com as respectivas incertezas que lhes estão 

associadas. Neste contexto, foram desenvolvidas ferramentas que auxiliam a escolha da 

                                                 

 

7 Em que o critério de qualidade adoptado se baseia na capacidade de aproximação do sinal original 

projectado em cada escala, 0j > . 
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escala tendo por base critérios centrados em: (i) dados em falha; (ii) incertezas dos 

dados; (iii) ambos os critérios. A sua utilidade foi ilustrada em situações concretas, onde 

se analisam dados reais, nomeadamente na identificação da escala mínima para análise 

dos perfis da superfície do papel obtidos por perfilometria (usando um critério baseado 

em incertezas) e na selecção da escala de análise para um conjunto de dados relativos à 

qualidade do papel (critério baseado em dados em falha). 

 

Integração de Informação Relativa à Incerteza dos Dados 
em Metodologias de Regressão 

 

Uma vez seleccionada a escala apropriada para conduzir a análise de dados, 

nomeadamente usando as ferramentas apresentadas na secção anterior, é altura de 

conduzir a referida análise, explorando, se possível, toda a informação disponível sobre 

os dados. Uma importante parte desta informação diz respeito à incerteza que os afecta, 

a qual define, em última instância, a qualidade de cada valor usado na análise (Kimothi, 

2002), devendo por isso ser nela integrada. Na verdade, no seguimento dos esforços 

desenvolvidos no sentido de especificar a incerteza que afecta valores obtidos 

experimentalmente, têm surgido outros, que os tornam consequentes em termos da 

análise que se faz, a qual passa a considerar explicitamente a incerteza dos dados nas 

suas formulações (Bro et al., 2002; De Castro et al., 2004; Faber & Kowalski, 1997; 

Galea-Rojas et al., 2003; Martínez et al., 2000; Martínez et al., 2002a; Martínez et al., 

2002b; Río et al., 2001; Riu & Rius, 1996; Wentzell et al., 1997a; Wentzell et al., 

1997b; Wentzell & Lohnes, 1999). 

Nesta tese foram desenvolvidos esforços neste sentido, nomeadamente no que diz 

respeito à integração da informação relativa à incerteza dos dados no domínio da 

regressão linear multivariada. Neste contexto, forma analisadas, desenvolvidas e 

comparadas várias abordagens para a incorporação explícita de incertezas em 

metodologias clássicas, como OLS (ordinary least squares), PLS, PCR (principal 

components regression) e RR (ridge regression). Em particular, as seguintes técnicas 

foram objecto de estudo (indicando-se com “*” aquelas que constituem contributos 

originais no âmbito desta tese): 
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1) OLS (Draper & Smith, 1998); 

2) MLS (Martínez et al., 2002a; Río et al., 2001); 

3) MLMLS* (Reis & Saraiva, 2004b, 2005c); 

4) RR (Draper & Smith, 1998; Hastie et al., 2001); 

5) rMLS* (Reis & Saraiva, 2004b, 2005c); 

6) rMLMLS* (Reis & Saraiva, 2005c); 

7) PCR (Jackson, 1991; Martens & Naes, 1989); 

8) MLPCR (Wentzell et al., 1997b) 

9) MLPCR1 (Martínez et al., 2002a); 

10) MLPCR2* (Reis & Saraiva, 2005c); 

11) PLS (Geladi & Kowalski, 1986; Haaland & Thomas, 1988; Helland, 

1988, 2001b; Höskuldsson, 1996; Jackson, 1991; Martens & Naes, 1989; 

Wold et al., 2001); 

12) uPLS1* (Reis & Saraiva, 2004b, 2005c); 

13) uPLS2* (Reis & Saraiva, 2005c); 

14) uPLS3* (Reis & Saraiva, 2005c); 

15) uPLS4* (Reis & Saraiva, 2005c); 

16) uPLS5* (Reis & Saraiva, 2005c). 

 

Relativamente às técnicas acima apresentadas, os métodos 1–6 consistem na resolução 

dos problemas de optimização indicados na Tabela 2. Os métodos MLPCR1 e MLPCR2 

baseiam-se na substituição do método OLS no passo de regressão envolvendo os scores 

provenientes do modelo PCA e a resposta, que não incorpora explicitamente a incerteza 

dos dados, pelos métodos MLS e MLMLS, respectivamente, que a levam em conta. 

Relativamente aos métodos alternativos à metodologia algorítmica PLS, uPLS1 e 

uPLS2 consistem essencialmente no uso dos métodos BLS (Bivariate Least Squares, 

versão univariável do método MLS) e MLMLS, respectivamente, em lugar do método 

dos mínimos quadrados clássico (OLS), na resolução dos sucessivos problemas de 

optimização em que o método PLS pode conceptualmente ser subdividido. Por outro 
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lado, os métodos uPLS3–uPLS5 têm por base diferentes combinações de metodologias 

de estimação do subespaço predictivo usado em PLS e cálculos dos scores neste 

subespaço: 

• uPLS3 – estima o subespaço predictivo usando uma metodologia baseada em 

incertezas e calcula os scores usando projecções não ortogonais (também 

baseadas em incertezas); 

• uPLS4 – estima o subespaço predictivo usando a metodologia SIMPLS (de 

Jong et al., 2001) e calcula os scores usando projecções não ortogonais; 

• uPLS5 – estima o subespaço predictivo usando a mesma metodologia usada 

em uPLS3, e calcula os scores usando projecções ortogonais. 

 

Tabela 2. Formulação dos problemas de optimização subjacentes aos métodos OLS, MLS, MLMLS, RR, 

rMLS e rMLMLS. 
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Estas metodologias foram alvo de uma análise comparativa, considerando vários 

cenários relativos à estrutura das variáveis de entrada (níveis de correlação), à natureza 
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do ruído e tipos de relações entre estas e a variável de saída (Reis & Saraiva, 2004b, 

2004c, 2005c), tendo-se verificado que, para dados gerados a partir de modelos com 

variáveis latentes (Burnham et al., 1999; MacGregor & Kourti, 1998), as metodologias 

MLPCR conduzem, em geral, a melhores resultados de previsão (Reis & Saraiva, 

2004c, 2005c), e, em particular, a metodologia MLPCR2 apresenta o melhor 

desempenho. Verificou-se também que os resultados obtidos com o método MLMLS 

são em geral superiores àqueles obtidos com a técnica MLS, e que o método rMLS 

melhora os resultados obtidos com MLS quando os regressores estão correlacionados, o 

que indica uma estabilização efectiva do passo de inversão matricial realizado neste 

método através de uma metodologia análoga à usada em RR. Por outro lado, se os dados 

provêem de modelos de regressão linear, métodos do tipo PLS, e nomeadamente 

uPLS1, já apresentam um melhor desempenho global (Reis & Saraiva, 2004b). 

 

Integração da Incerteza dos Dados na Optimização de 
Processos 

 

Constituindo uma área importante no contexto da Engenharia Química, a optimização 

de processos químicos foi também analisada do ponto de vista de avaliar o impacto 

associado à consideração de diversos tipos de incertezas associadas a fluxos de 

informação de e para o processo, nos resultados de optimização obtidos.  

A avaliação deste impacto foi concretizada através da resolução de três diferentes 

formulações de optimização, as quais traduzem diferentes níveis de incorporação de 

informação relativa às fontes de incerteza presentes no processo. Em termos gerais, o 

problema abordado por estas formulações pode resumir-se através do seguinte 

enunciado: “Calcular os valores óptimos a estipular para as variáveis que constituem o 

vector de entrada (Z) (“óptimos” no sentido de uma dada função objectivo a 

especificar, φ ), para uma dada observação do vector das variáveis de carga (L)”. 

Colocam-se no entanto algumas situações pertinentes, quando se considera a presença 

de incertezas neste contexto, e que interessa detalhar: 
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• As quantidades medidas (i.e., as variáveis de carga, L , e as variáveis de saída, 

Y ) são afectadas por ruído (que aqui se considera do tipo aditivo), cujas 

características estatísticas são definidas pela incerteza que lhes está associada: 

 

 L

Y

L L

Y Y

ε

ε

= +

= +
 (10) 

 

onde as quantidades assinaladas com “~” são relativas aos valores observados, 

enquanto que L e Y se referem aos correspondentes valores “verdadeiros”, os 

quais são, no entanto, desconhecidos (não acessíveis a um observador externo, 

conforme ilustrado na Figura 1). 

• O valor especificado para uma dada variável manipulada, Z , (i.e., o seu set-

point, definido exteriormente), não corresponde exactamente ao valor que de 

facto irá actuar sobre o processo, devido à presença de um outro tipo de 

incerteza, que designaremos por “incerteza de actuação” (aqui também 

considerada do tipo aditivo), e que faz com que a actuação real seja distinta 

daquela definida externamente. 

 

Process 
L 

L  Z Y

Z 

Y 

Zε YεLε

Information as seen by operator 

 

Figura 1. Representação esquemática das quantidades medidas (como são vistas por um operador 

externo, assinaladas com um “~”) e daquelas que de facto interagem com o processo. 

 

Processo 

Informação observada por um operador  
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Considerando que o objectivo da análise passa pela minimização de uma função custo, 

( )φ ⋅ , propõe-se então a seguinte formulação de optimização, que integra as incertezas 

associadas aos valores medidos das variáveis de carga e de saída, bem com as incertezas 

de actuação, a qual consiste na minimização do valor esperado da função custo: 

 

Formulação I 

 

( ){ }
( )

, ,

. . , , 0
Z

L

Z

Y

Min E L Z Y

s t g Y L Z

L L

Z Z

Y Y

φ

ε

ε

ε

Θ

=

= −

= +

= +

 (11) 

 

onde {}Θ ⋅E  é o operador “esperança matemática” e ( ), , 0g Y L Z =  representa o modelo 

do processo, em cujos parâmetros a incerteza se assume desprezável. Nesta formulação, 

assume-se que o valor medido da variável de saída (Y ) é uma das quantidades 

relevantes para o cálculo do custo esperado, o que pode ser justificável nalguns casos, 

mas deve-se manter presente que podem existir outros onde a quantidade relevante 

poderá ser porém o próprio valor real, Y, (Formulação 2), como acontece quando, a 

jusante, uma medição muito mais rigorosa ficará disponível (proveniente, por exemplo 

de uma fonte laboratorial ou do fecho de balanços de massa). A formulação correcta a 

adoptar dependerá por isso da situação particular em causa. 

 

Formulação 2 

 

( ){ }
( )

, ,

. . , , 0
Z

L

Z

Min E L Z Y

s t g Y L Z

L L

Z Z

φ

ε

ε

Θ
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= −

= +

 (12) 
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Foi também estudada, para efeitos de comparação com os resultados decorrentes das 

formulações apresentadas acima, uma terceira formulação, que não considera quaisquer 

efeitos associados à presença de incertezas, para que melhor se possa avaliar dos 

potenciais benefícios associados à sua incorporação: 

 

Formulação 3 

 
( )
( )

, ,

. . , , 0
Z

Min L Z Y

s t g Y L Z

φ

=
 (13) 

 

Estas formulações foram aplicadas a um caso de estudo envolvendo a simulação 

computacional de um digestor piloto descontínuo de pasta para papel (Carvalho et al., 

2003): 

 

 ( ) ( )10 10 10TY=55.2-0.39 EA+324/ EA log S -92.8 log (H)/ EA log S× × × ×  (14) 

 

onde TY representa o rendimento da pasta (Total Yield), EA é o alcali efectivo 

(Effectice Alkali), S é o índice sulfureto e H representa o factor-H usado para o 

cozimento (para mais detalhes sobre a nomenclatura, consultar Carvalho et al., 2003). A 

função custo considerada é apresentada na equação (15), a qual penaliza desvios ao 

valor pretendido para o rendimento ( 52%spTY = ), levando também em linha de conta os 

custos associados às variáveis manipuladas S e H. Neste caso de estudo, EA é tomada 

como sendo a variável de carga, sendo S e H as variáveis manipuladas e TY a variável 

de saída, i.e., EA, [S H]= =L Z  e TY=Y . 
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Aplicadas à presente situação, as formulações I a III podem ser escritas como indicado 

na Tabela 3. 

 

Tabela 3. Formulações I, II e III aplicadas à optimização da operação de um digestor descontínuo. 

Formulação I Formulação II Formulação III 
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Do estudo decorrente da aplicação destas formulações verificou-se, por exemplo, que o 

custo associado à consideração dos valores obtidos pela formulação III, quando 

avaliados à luz da função objectivo para a formulação I, apresenta um agravamento de 

136% relativamente àquele obtido pela optimização desta última, sendo o agravamento 

de 51% quando a formulação II é tomada como referência. A dependência dos 

resultados perante a magnitude das incertezas que afectam as diferentes variáveis foi 

também objecto de estudo, tendo-se constatado que, há medida que esta diminui, os 

resultados (custos) decorrentes das diferentes formulações se aproximam, registando-se 

adicionalmente uma diminuição da função custo, expectável face à diminuição dos 

efeitos associados aos diversos tipos de ruído que, apesar de serem considerados, 

impedem cálculos mais precisos das condições óptimas de operação (Reis & Saraiva, 

2005c). 
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Integração da Incerteza dos Dados em Controlo Estatístico 
Multivariado de Processos 

 

O controlo estatístico multivariado de processos é outra actividade usualmente 

conduzida a uma só escala (monoescala), onde se procurou integrar o conhecimento 

relativo à incerteza das medições. 

Após uma certa predominância inicial de abordagens univariadas, onde se usavam 

cartas de controlo desenhadas para seguir o comportamento de variáveis isoladas, 

constatou-se que tal não constituía uma estratégia eficaz quando aquelas apresentavam 

dependências ou interacções mútuas, uma vez que tais correlações não eram 

incorporadas na análise. De facto, a utilização simultânea de várias cartas de controlo 

univariadas traduz-se numa menor capacidade de detectar acontecimentos especiais, 

nomeadamente aqueles que violem a estrutura de correlação, sem que os limites de 

controlo estabelecidos individualmente para cada carta sejam ultrapassados. Para 

ilustrar esta situação, na Figura 2 encontram-se duas cartas de controlo univariadas, do 

tipo Shewhart, que monitorizam duas variáveis correlacionadas, 1X  e 2X . Como se 

pode constatar, nenhuma causa especial de variabilidade é identificada durante o 

período analisado.  

No entanto, procedendo à representação conjunta dos dados para as duas variáveis 

(Figura 3), facilmente se constata a ocorrência de uma causa especial na décima 

observação, que passa no entanto completamente despercebida na abordagem 

univariada. Trata-se de uma observação atípica por violar a estrutura de correlação das 

variáveis e não devido à variabilidade das suas dispersões marginais. Também se pode 

verificar que a implementação paralela de cartas de controlo univariadas redunda 

tacitamente em regiões normais de operação que, no caso multivariável, consistem em 

hiper-rectângulos, independentemente da forma das funções de densidade de 

probabilidade. 
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Figura 2. Cartas de controlo univariadas (do tipo Shewhart) para as variáveis X1 (a) e X2 (b). UCL (Upper 

Control Limit) e LCL (Lower Control Limit) representam limites de controlo, os quais foram 

especificados para uma região de operação normal correspondente a ±  “três–sigma”.  

 

Para obviar a estas limitações, desenvolveram-se cartas de controlo multivariadas, que 

incorporam as correlações existentes entre as variáveis, e dão origem a regiões normais 

de operação mais adequadas à realidade dos dados, consistindo nomeadamente em 

hiper-elipsóides, como sucede com a abordagem baseada na estatística T2 de Hotelling 

(Montgomery, 2001). 

a) 

b) 
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Figura 3. Ocorrência de uma causa especial que não é detectada na abordagem univariada. 

 

No entanto, quando existe um elevado número de variáveis envolvidas, mesmo estas 

técnicas de controlo estatístico multivariado apresentam problemas, devido ao mau 

condicionamento da matriz de variância–covariância, a qual deve ser invertida durante a 

implementação do método (MacGregor & Kourti, 1995). Para contornar esta 

dificuldade, associada a estruturas de dados mais complexas, surgem as abordagens 

baseadas em variáveis latentes, especialmente desenhadas para lidar com conjuntos de 

dados exibindo elevada redundância (Jackson & Mudholkar, 1979; Kourti & 

MacGregor, 1995; Kresta et al., 1991; MacGregor & Kourti, 1995; Wise & Gallagher, 

1996). A implementação destas técnicas baseia-se normalmente em duas estatísticas, 

através das quais é efectuada a monitorização do estado do processo: 
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• Uma estatística segue a componente da variabilidade dos dados descrita ou 

captada pelo modelo de variáveis latentes (e.g. PCA ou PLS), estimado com 

base em dados históricos relativos a períodos normais de operação (usualmente 

designada por estatística T2 ou D); 

• A outra estatística segue a variabilidade não explicada pelo modelo, i.e., os 

resíduos resultantes da projecção dos dados no subespaço correspondente ao 

modelo de variáveis latentes adoptado (estatística Q ou SPE). 

 

Não obstante a evidente utilidade deste tipo de abordagens em contextos industriais, 

estas baseiam-se em hipóteses relativamente simplificadas relativamente à estrutura dos 

erros que afectam as variáveis, as quais se reduzem usualmente ao pressuposto de 

independência e homogeneidade da variância. 

Perante a crescente disponibilidade de informação correspondente à incerteza dos 

dados, julgamos ser não só oportuno mas também pertinente o desenvolvimento de 

metodologias de monitorização baseadas em variáveis latentes que incorporem a 

incerteza dos dados, no sentido de melhorar o seu desempenho em situações onde as 

variáveis apresentam níveis de incerteza elevados e com variâncias não homogéneas 

(i.e., não constantes). 

Foi neste sentido que se desenvolveu nesta tese uma abordagem para o controlo 

estatístico multivariado de processos, baseada num modelo de variáveis latentes e que 

incorpora a incerteza dos dados, de acordo com o seguinte modelo probabilístico: 

 

 ( ) ( ) ( )X mx k A l k kµ ε= + ⋅ +  (16) 

 

onde x é um vector n×1 contendo as variáveis observadas, Xµ  é o vector das médias de 

x, também n×1, A é a matriz n×p dos coeficientes do modelo, l é o vector p×1 com as 

variáveis latentes e mε  o vector n×1 de erros aditivos, relativos ao ruído de medição 

(através do qual a incerteza é introduzida nas variáveis observadas). As componentes 

aleatórias deste modelo seguem as seguintes distribuições: 
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( )
( )

( ) ~ ,

( ) ~ , ( )
( ) e ( ) são independentes ,

p l

m n m

m

l k iid N

k id N k
l k j k j
ε

ε

∆

∆

∀

0

0  (17) 

 

onde pN  representa a distribuição normal multivariada (p variáveis), l∆  é a matriz de 

variância–covariância das variáveis latentes (l), ( )m k∆  é a matriz de variância–

covariância para o vector do ruído das medições no instante k ( ( )m kε ), a qual é dada 

por 2( ) ( ( ))m mk diag kσ∆ =  (sendo diag(u) a matriz diagonal com os elementos do vector 

u ao longo da diagonal principal e 2 ( )m kσ  o vector contendo as variâncias associadas aos 

erros no instante k), 0  é um vector/matriz de dimensões apropriadas, contendo somente 

zeros nas suas entradas. Este modelo é designado por HLV (Heteroscedastic Latent 

Variable), sendo constituído por dois blocos fundamentais: um dedicado à descrição da 

variabilidade normal do processo ( ( )X A l kµ + ⋅ ), e o outro relativo à interferência do 

ruído de medições ( ( )m kε ), cada qual com as suas características aleatórias próprias, 

aqui tomadas como sendo independentes. 

Para implementar uma estratégia de monitorização multivariada com base no modelo 

HLV (a que designaremos HLV-MSPC, onde MSPC corresponde a Multivariate 

Statistical Process Control), é necessário estimar os parâmetros do modelo (16)–(17), e 

desenvolver estatísticas adequadas, do tipo das atrás referidas para as estratégias 

correntes baseadas em variáveis latentes, passíveis de servirem de base a um tal 

procedimento. 

A estimação dos parâmetros é conseguida através da maximização da função log–

verosimilhança relevante para o presente caso, i.e. 

 

 { }( )1,
ˆ max ( ), ( )

obs
ML m k n

x k k
θ

θ θ σ
=

= Λ  (18) 

 

com: 

 ( ),
TTT

X lvecθ µ⎡ ⎤= Σ⎣ ⎦  (19) 



EXTENDED ABSTRACT IN PORTUGUESE / RESUMO ALARGADO EM PORTUGUÊS 

 lvii

 

 T
l lA AΣ = ∆  (20) 
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−
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⋅ ⎡ ⎤Λ Σ = − − Σ − − Σ −⎣ ⎦

⎡ ⎤= − Σ − − Σ −⎣ ⎦

∑ ∑

∑ ∑
  (21) 

 

 ( ) ( )x l mk kΣ = Σ + ∆  (22) 

 

A situação é na verdade um pouco mais complexa, uma vez que a estimativa da matriz 

lΣ  deve ser simétrica e não-negativa definida (Rao, 1973), o que se consegue através de 

uma estratégia de optimização na qual, partindo duma estimativa inicial para a matriz de 

parâmetros, A0, se procura encontrar a rotação óptima que lhe deve ser aplicada, 

definida pelo vector de ângulos [ ]1 2 1
T

nα α α α −= , por forma a maximizar a função 

(21): 

 

 0
ˆ ˆ( )A R Aα=  (23) 

 

 1 1 2 2 1 1( ) ( ) ( ) ( )n nR R R Rα α α α− −= ⋅ ⋅ ⋅  (24) 

onde 

 

1 1

1 1 2 2

1 1 2 2 2 2

cos sin 0 0 1 0 0 0
sin cos 0 0 0 cos sin 0

( ) , ( ) , .0 0 1 0 0 sin cos 0

0 0 0 1 0 0 0 1

R R etc

α α
α α α α

α α α α

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

  (25) 
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Nesta estratégia assume-se que a matriz de variância–covariância para as variáveis 

latentes é diagonal. 

As estatísticas de monitorização, análogas às adoptadas nas metodologias correntes de 

controlo estatístico multivariado baseadas em variáveis latentes são, na presente 

situação, as seguintes: 

 

 
( ) ( )

( )

2 1( ) ( ) ( ) ( )
( ) ( )

T
w X x X
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l l
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−= ∆
= − − =

 (27) 

 

onde 2 2( ) ( )wT k nχ≈  e 2 ( )wQ n pχ≈ − , sendo n o número de variáveis observadas e p o 

número de variáveis latentes. Os valores de ( )l k  devem ser calculados com base em 

“projecções de máxima–verosimilhança” (não ortogonais), usando a seguinte fórmula 

(Wentzell et al., 1997b):  

 

 ( ) ( )
1

1 1
,

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )T T
ML ML m ML ML m X MLl k A k A A k x k µ

−
− −= ∆ ∆ −  (28) 

 

Esta estratégia é estudada recorrendo a vários cenários, envolvendo diferentes estruturas 

de erros, tendo-se obtido desempenhos de detecção e falsos alarmes, consistentemente 

superiores ao método convencional nos casos estudados (Reis & Saraiva, 2003, 2005a). 

Verificou-se também que a incorporação de incertezas na formulação abre uma ponte 

para a manipulação de dados em falha de uma forma simples, coerente e eficaz, tendo-

se registado, na situação analisada, melhores resultados na detecção de situações 

anómalas relativamente aos obtidos em iguais circunstâncias com a abordagem 

convencional sem dados em falha. O estudo da metodologia HLV-MSPC foi ainda 
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complementado com a análise de dados reais, provenientes de um processo industrial 

(Reis & Saraiva, 2005a), aos quais se fez uma análise retrospectiva do histórico 

disponível, com vista a identificar as principais tendências temporais presentes na 

variabilidade do processo, permitindo assim adquirir um maior conhecimento sobre o 

comportamento dinâmico do mesmo em horizontes de tempo mais alargados. 

 

Monitorização Multiescala de Perfis 

 

O problema da monitorização de perfis, i.e., da relação entre variáveis de entrada e 

saída, em que nas variáveis de entrada figuram normalmente descritores de localização 

espacial ou temporal (Kang & Albin, 2000; Kim et al., 2003; Woodall et al., 2004), tem 

vindo a assumir uma importância crescente no domínio do controlo estatístico de 

processos (Woodall et al., 2004). Neste contexto, desenvolveu-se uma metodologia de 

monitorização multiescala orientada para este tipo de aplicações, em particular para 

aqueles perfis que exibem características multiescala, i.e., cuja estrutura apresenta uma 

dependência da escala onde é analisada, ou, dito de outra forma, cujos fenómenos 

activos na “construção” do perfil observado apresentam características de localização no 

domínio da frequência. 

Na abordagem proposta, não se considera relevante a descrição de qualquer 

comportamento localizado no domínio temporal ou espacial, mas somente no domínio 

que lhes é complementar, da frequência, uma vez que a classe de perfis a que se destina 

não apresenta tais tipos de padrões, designados por isso de perfis estacionários (no 

domínio tempo ou espaço, mas não no domínio frequência). Tal abordagem compreende 

os seguintes passos fundamentais: 

1) Aquisição do perfil; 

2) Decomposição multiescala do perfil corrigido pela remoção da tendência linear, 

obtendo-se os coeficientes de onduleta para cada escala ( 1: decj J= , onde decJ  é 

a profundidade da decomposição efectuada); 

3) Seleccionar as escalas relevantes para cada fenómeno a monitorar; 

4) Utilizando somente as escalas relevantes para cada fenómeno, calcular os 

parâmetros que sumariam os seus aspectos mais relevantes para efeitos de 
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controlo de qualidade (este passo pode requerer uma reconstrução separada da 

parte do perfil correspondente a cada fenómeno no domínio original, através da 

aplicação da transformada inversa de onduleta a vectores de coeficientes 

modificados, onde os únicos elementos não nulos correspondem às escalas 

seleccionadas); 

5) Implementar metodologias de controlo estatístico adequadas sobre os 

parâmetros calculados no passo anterior; 

6) Se um alarme for produzido, analisar a sua validade e, se necessário, identificar 

a suas causas. Caso contrário, regressar ao passo 1 e repetir o procedimento para 

o próximo perfil adquirido. 

Esta abordagem foi testada no âmbito de um caso de estudo que envolveu a 

caracterização, modelação e monitorização da superfície do papel, no decorrer do qual: 

• os fenómenos de rugosidade e ondulação, associados à superfície do papel, 

foram analisados com base em perfis obtidos por perfilometria e no subsequente 

estudo, recorrendo, por exemplo, à teoria das séries cronológicas; 

• os parâmetros que caracterizam estes fenómenos, fornecidos directamente pelo 

aparelho utilizado, serviram de base ao desenvolvimento de modelos de 

classificação que prevêem a classe de qualidade associada a uma determinada 

folha de papel (no tocante a cada um destes fenómenos), usando como referência 

classificações previamente efectuadas por um painel de especialistas; 

• os perfis captados foram usados para testar o procedimento de monitorização 

multiescala proposto, em conjunto com outros gerados computacionalmente a 

partir de modelos realistas da superfície do papel. 

 

Como principais resultados, salienta-se a capacidade de desenvolver modelos de 

classificação da qualidade superficial do papel com base num espaço de previsão de 

baixa dimensionalidade (Reis & Saraiva, 2005f) e o bom desempenho da abordagem 

proposta na monitorização dos fenómenos de rugosidade e ondulação (Reis & Saraiva, 

2005d, 2005e).  
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Controlo Estatístico Multivariado e Multiescala Usando 
Variáveis com Diferentes Resoluções 

 

A estratégia de controlo estatístico multivariado e multiescala usualmente conhecida por 

MSSPC (Multiscale Statistical Process Control), proposta por Bakshi (1998), mostrou-

se adequada para lidar com uma ampla variedade de perturbações que podem afectar os 

processos, com diferentes características de localização e dispersão nos domínios do 

tempo e frequência. No entanto, apesar de ser intrinsecamente multiescala, pois analisa 

separada e simultaneamente a informação distribuída pelas diferentes escalas, esta 

estratégia assume que toda a informação é disponibilizada a uma só resolução (a mais 

fina). No entanto, não raramente diferentes variáveis reportam valores correspondentes 

a médias calculadas em diferentes horizontes do tempo, ou relativos a quantidades de 

produto/matéria-prima recolhidas ao longo de períodos de tempo, após o que são 

misturados e analisados. Estas acções geram valores tabelados cuja localização temporal 

efectiva (resolução) é distinta (estruturas multiresolução, MR), o que levanta 

dificuldades no seu processamento usando técnicas convencionais, baseadas no 

pressuposto de resolução única. 

Assim, propõe-se nesta tese uma abordagem de controlo estatístico multivariado e 

multiescala que processa adequadamente dados multiresolução, designada por MR–

MSSPC, a qual permite melhorar, relativamente à abordagem convencional, a definição 

dos períodos de tempo onde efectivamente se localiza uma anomalia, bem como 

detectar rapidamente o regresso do processo ao estado normal de operação.  

Apesar da abordagem proposta se basear numa implementação da transformada de 

onduleta ortogonal numa janela diádica de comprimento variável, a qual introduz algum 

atraso na disponibilização de coeficientes de onduleta, o desempenho em termos das 

métricas associadas à rapidez de detecção não é normalmente afectado, a menos que a 

falha afecte, única e exclusivamente, a(s) variável(is) de baixa resolução, sendo aliás, 

nas restantes situações, comparativamente melhor, excepto para grandes perturbações, 

onde pode demorar mais um instante de tempo (no máximo) a detectar a perturbação. 

A abordagem proposta foi também aplicada à monitorização de um processo simulado, 

constituído por um CSTR a operar em regime dinâmico sob controlo retroactivo de 

temperatura e nível, onde se ilustram vários aspectos pertinentes na sua implementação 

prática, nomeadamente no que se refere à: selecção da profundidade de decomposição a 
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usar na transformada de onduleta, e do número de componentes principais a considerar 

nos modelos correspondentes às diferentes escalas. 

 

Conclusões 

 

A complexidade dos processos industriais, e dos dados deles recolhidos, requer, cada 

vez mais, plataformas de cálculo adequadas e ferramentas flexíveis na sua análise. Nesta 

tese, analisaram-se e propuseram-se desenvolvimentos neste contexto, visando a criação 

de uma abordagem estruturada de análise da informação contida nos dados industriais 

em várias escalas, capaz de lidar com a presença de dados em falha (uma característica 

intrínseca dos processos industriais) e de integrar informação relativa à incerteza dos 

dados recolhidos. Tais plataformas, ditas plataformas AMR generalizadas, permitem, 

entre outras aplicações, representar a informação a uma escala seleccionada 

(propagando a incerteza dos dados para a escala em causa) e auxiliar o utilizador na 

selecção da escala de análise, por sugestão da escala mais fina onde esta pode ser 

conduzida. 

Uma vez seleccionada a escala de interesse, qualquer análise monoescala deve ser 

conduzida de forma a incorporar toda a informação disponível sobre os dados, 

nomeadamente a incerteza que lhes está associada. Os estudos conduzidos nesta tese 

demonstram a pertinência e os ganhos associados à consideração deste importante 

elemento adicional, nomeadamente nas áreas de regressão linear, optimização de 

processos e controlo estatístico de processos. 

Para as situações em que a complexidade das estruturas de dados ou processos 

envolvidos requer a análise de várias escala simultaneamente, propuseram-se 

desenvolvimentos no domínio das abordagens multiescala, os quais permitem: (i) 

conduzir a monitorização de perfis com características localizadas no domínio da 

frequência de uma forma eficaz, (ii) integrar informação com diferentes níveis de 

resolução no método MSSPC, melhorando o seu desempenho na definição de regiões 

em que ocorrem anomalias e na detecção rápida do regresso ao estado de operação 

normal. 
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Trabalho Futuro 

 

A área da análise multiescala de dados e processos apresenta-se em franco 

desenvolvimento e tem ganho momento em vários domínios do conhecimento. Existem 

por isso inúmeras ramificações futuras para os esforços desenvolvidos no âmbito desta 

tese, enunciando-se aqui algumas notas sobre linhas de investigação pertinentes de 

continuidade ou que representam novos desafios interessantes a considerar: 

• Modelação empírica multiescala. É amplamente reconhecido o papel 

fundamental que os “modelos” assumem na Engenharia Química, os quais 

marcam presença, de uma forma mais ou menos explícita, em praticamente 

todas as tarefas conduzidas (e.g. controlo, optimização, projecto). Existem 

situações em que não existe conhecimento suficiente sobre os processos ou 

fenómenos em curso para que um modelo desenvolvido com base em primeiros 

princípios produza previsões com uma suficiente aderência à realidade. Nestes 

casos, os modelos empíricos, baseados em dados, ou os modelos híbridos, 

baseados na combinação do conhecimento existente com dados recolhidos, 

constituem abordagens alternativas a considerar. No tocante aos modelos 

empíricos, as estratégias convencionais são intrinsecamente monoescala 

(modelos de séries cronológicas, espaço de estados, variáveis latentes), não 

possuindo por isso a flexibilidade de modelar explicitamente os fenómenos 

distribuídos pelas várias escalas ou bandas de frequência. Afigura-se pois como 

pertinente o desenvolvimento de novas estruturas de modelação e métodos de 

estimação, mais adequadas na descrição de fenómenos multiescala, as quais, 

uma vez disponíveis, servirão de suporte ao desenvolvimento de novas versões 

multiescala, congéneres das correspondentes técnicas monoescala (estimação 

óptima, monitorização, controlo). 

• Monitorização multiescala. Existem ainda outras metodologias de 

monitorização multiescala, bem como domínios de aplicação que interessa 

explorar no futuro. Um exemplo concreto consiste na quantificação da energia 

localizada nas diferentes escalas, para todas as variáveis a monitorar, e no seu 

seguimento ao longo do tempo, usando janelas de dados não sobrepostas. A sua 

distribuição conjunta, em condições normais de operação, permite estabelecer os 

limites de controlo para as estatísticas de monitorização. Tal abordagem pode ser 
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aplicada em áreas como a monitorização de processos multivariados ou a 

detecção de falhas em sensores isolados. 

• Modelação de redes estruturadas multiresolução. Os Engenheiros Químicos 

estão, em geral, bem familiarizados com a hierarquia das várias actividades de 

tomada de decisão numa organização ligada ao sector produtivo. Esta é 

normalmente representada por uma pirâmide: na base estão situadas as decisões 

operacionais, relacionadas com a normal laboração dos vários processos 

industriais; nos níveis intermédios encontra-se aquelas que se prendem com o 

desempenho da unidade fabril como um todo, planeamento da produção, gestão 

de disponibilidades de produtos e matérias primas; nos níveis superiores temos 

as decisões estratégicas, onde essencialmente se estabelecem as directrizes 

futuras para a organização (planos de investimento e expansão). É interessante 

notar que, paralelamente a esta pirâmide de tomada de decisão, existe uma outra 

relativa à resolução típica da informação processada nas decisões tomadas a 

cada nível: na base da pirâmide, a informação processada é usualmente mais fina 

(minutos/horas); nos níveis intermédios, trabalha-se com base em médias 

horárias/diárias (supervisão da unidade fabril) ou diárias/mensais (planeamento 

de produção); no nível superior tipicamente são analisadas as tendências de 

indicadores compostos, calculados na base mensal/anual. Constata-se portanto, a 

existência de uma outra estrutura piramidal, na qual a informação é encaminhada 

para os níveis superiores num formato sucessivamente mais compacto (de menor 

resolução), circulando as decisões em sentido oposto, do topo da pirâmide para a 

sua base. Seria pois interessante, no futuro, traduzir estes elementos numa 

abordagem de modelação estruturada, abrangendo todas as partes envolvidas na 

tomada de decisão e incorporando a resolução em que estas de facto operam, por 

forma a descrever de uma forma mais realista o comportamento global das 

organizações industriais, utilizando tal conhecimento no estudo de políticas 

fundamentadas, envolvendo um ou vários níveis da hierarquia, incluindo estudos 

das cadeias de produção/distribuição, impactes ambientais e sociais, cada vez 

mais relevantes nos tempos que correm. 

• Os esforços desenvolvidos nesta tese, no sentido de integrar a informação 

relativa à incerteza das medições em diversas áreas de análise de dados, podem e 

devem ser continuados. Como exemplos de algumas áreas onde tal pode ser 
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efectuado, referem-se a regressão não-paramétrica, classificação (abordagens 

paramétricas e não-paramétricas), controlo e estimação.  
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Chapter 1. Introduction 

In this introductory chapter, a general perspective of the contents and matters treated in 

this thesis is provided. It is divided in four separate sections, where its main elements 

and structure are briefly described. In the first section, motivation to the work carried 

out is addressed, as well as the scientific scope where the thesis contributions may be 

considered to belong. Then, in the second section, the main goals are defined and, in the 

third, the thesis contributions are presented. Finally, in the fourth section, an overview 

of the thesis’ structure is provided.  

 

1.1 Scope and Motivation 

Processes going on in modern chemical processing plants are typically complex, and 

this complexity is also present in collected data, which contain the cumulative effect of 

many underlying phenomena and disturbances, with different location and localization 

patterns in the time/frequency plane, as well as a number of additional complicating 

features that often hinders the analysis of collected data using conventional tools. In 

particular, industrial data bases typically present the following characteristics: 

i) Presence of noise, quite often with low signal to noise ratios (SNR); 

ii) Sparse structure (variables with different acquisition rates and with 

randomly missing blocks); 

iii) Multivariate or “giga”-variate with cross-correlations; 

iv) Autocorrelation and non-stationary behaviour; 
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v) Multiresolution data (variables containing averages computed over 

different time supports); 

vi) Multiscale features (phenomena with different patterns in the 

time/frequency plan); 

vii) Variables are not naturally aligned in time; 

viii) Presence of corrupted data. 

In this context, the extraction of useful knowledge from industrial data has become an 

increasing complex task, and engineers frequently find themselves in a situation of 

being “data-miners” (Wang, 1999) that seek knowledge hidden in an immense (large), 

dirty (corrupted with noise, flaws, irrelevant information, etc.) and hard to handle “data-

mine”. The above issues can be relevant at all different levels of decision-making: from 

the operation level, where one aims to run the process as smoothly as possible 

following the operation schedule and the focus is on detecting promptly process faults 

and special events, passing by the processing unit management where the monitoring 

and control of the overall unit performance take place, and concerns with issues such as 

reducing product’s quality variation arises, moving all the way up to the strategic and 

planning levels, that plan the forthcoming production schedule and define general plant 

policies using data to support their decisions that in this situation also come from other 

sources, other than plant facilities. At all of these layers, information should be made 

available in the adequate format, which typically involves the use of different 

resolutions, reflecting the distinct levels of detail relevant for the analysis undertaken 

and subsequent decision-making. 

Thus, the development of frameworks that are able not only to handle complex features 

but also to represent data conveniently at the different relevant resolution levels, in an 

integrated and consistent way, is highly desirable. The possibility of performing a scale-

dependent analysis can also help in the identification of those scales where most of the 

hidden information or critical relationships are established, and should be 

complemented with adequate single-scale tools, that take the most of the information 

made available at a particular (selected) scale. 

The approaches proposed and analysed in this thesis are directed towards the points 

raised above, falling under the broad class of data-driven methodologies (Saraiva, 1993; 

Saraiva & Stephanopoulos, 1998), as opposed to first principles-based methodologies 
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that rely extensively on the availability of knowledge regarding phenomena going on at 

different scales and how they interact with each other (Braatz et al., 2004; Charpentier 

& McKenna, 2004; Li & Kwauk, 2003; Li & Christofides, 2005). 

 

1.2 Goals 

In the sequel of the motivating considerations presented in the previous section, the 

following general tasks/problems were assumed as targets to be accomplished in this 

thesis: 

i) Develop frameworks that are able to perform multiscale or multiresolution 

decompositions in data structures with complicating features, namely in the 

presence of missing data and taking into consideration their noise structure, 

in order to support subsequent data analysis tasks involving several scales 

(multiscale analysis) or just a particular scale (single-scale8 analysis). 

ii) Develop data analysis tools that are able to take advantage of the type of 

information generated by the above mentioned frameworks, namely values 

and associated uncertainties at a given scale. 

iii) Propose new and/or improve existent multiscale approaches for process 

monitoring. 

 

1.3 Contributions 

We consider the following as being the main contributions associated with this thesis, 

relative to the research goals defined previously: 

i) Three uncertainty-based multiresolution decomposition methodologies 

(MRD) are proposed: Methods 1 and 2 handle the presence of missing data 

                                                 

 

8 We will refer in this thesis as “single-scale”, those approaches that only deal with data at a single 

resolution, i.e., without considering either as inputs or in the core of their algorithms any analysis of data 

segregated according to scale, resolution or frequency. 
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and any structure of data uncertainties, the former being especially devoted 

to piecewise constant signals; Method 3 handles those cases where no 

missing data is present, incorporating data uncertainty in the computation of 

detail and approximation coefficients. The problems of scale selection and 

de-noising are also addressed from the perspective of using the information 

generated by these frameworks. 

ii) Regarding uncertainty-based data analysis tools, the following single-scale 

methodologies are proposed and compared with others already developed: 

a. Linear regression: Maximum Likelihood Multivariate Least Squares 

(MLMLS), ridge Multivariate Least Squares (rMLS), ridge Maximum 

Likelihood Multivariate Least Squares (rMLMLS), a modification of 

maximum likelihood principal components regression (MLPCR2), and 

five uncertainty-based modifications of partial least squares9 (uPLS1, 

uPLS2, uPLS3, uPLS4, uPLS5); 

b. Process optimization: several possible optimization formulations were 

proposed and analysed, differing on the levels of incorporation of 

uncertainty information; 

c. Multivariate statistical process control: a statistical model was proposed 

(the heteroscedastic latent variable model, HLV) that provides the 

probabilistic backbone for integrating uncertainty information in 

multivariate statistical process control (MSPC), as well as an algorithm 

for estimating its parameters. Associated monitoring statistics were also 

put forward; 

iii) Two multiscale process monitoring approaches were developed 

a. The first methodology regards the multiscale monitoring of profiles, and 

is built around a wavelet-based multiscale decomposition framework that 

essentially conducts a multiscale filtering of the raw profile, effectively 

separating the relevant phenomena under analysis located at different 

                                                 

 

9 Also referred to as projection to latent structures (PLS). 
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scales, allowing also for the incorporation of available engineering 

knowledge; 

b. The second methodology provides a way of conducting MSSPC by 

adequately integrating data with different resolutions (multiresolution 

data), in order to improve the definition of the regions where significant 

events occur under these circumstances, and leads to a more sensitive 

response when the process is brought back to normal operation. 

In the context of contribution iii.a), and, in particular, the case study analyzed to 

illustrate its application, the monitoring of paper surface, the multiscale structure of 

paper surface was also carefully analyzed using specialized plots and time series theory, 

and parameters provided by the measurement device adopted were also used for 

predicting paper surface quality regarding waviness and smoothness, by developing 

classification models that adequately explain assessments made by a panel of experts. 

In the Future Work chapter, some developments are also proposed and preliminary 

results presented that demonstrate their potential usefulness, namely regarding another 

multiscale approach for process monitoring and the integration of uncertainty 

information in non-parametric regression tasks, which are not included in the body of 

the thesis, as further testing and analysis must be devoted to them, in order to establish 

their properties more thoroughly. 

 

1.4 Thesis overview 

The present thesis is divided into five distinct parts (Figure 1.1). 

Part I provides the necessary motivation and defines the general scope of the work 

reported in the thesis, as well as establishes the goals and summarizes the main 

contributions achieved in their persecution. 

In Part II a state of the art review regarding multiscale approaches in Chemical 

Engineering (and closely related fields) is presented. 

Part III contains background material necessary to follow the methodologies proposed 

here, covering subjects like statistical process control, latent variable models, 

measurement uncertainty, and, in particular, wavelet theory, all of them playing an 

important role on several parts of the thesis. 
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Part I
Introduction and 

Goals

Part II
State of the Art

Part III
Background 

Material

Part IV-A
Single-scale 

Data Analysis

Part IV-B
Multiscale 

Data Analysis

Part V
Conclusions and 

Future Work

 

Figure 1.1. The five different parts that compose the thesis. 

 

The original thesis contributions are presented in Part IV-A and Part IV-B. These 

contributions are divided in two parts, the first (A) devoted to single-scale 

methodologies, while the second (B) regards inherently multiscale approaches. The first 

chapter of Part IV-A (Chapter 4) addresses the development of uncertainty-based 

multiresolution decomposition frameworks that can serve the purposes of both single-

scale or multiscale approaches. However, they were presented in this first part, as for 

some single-scale applications one may find adequate the previous use of one of such 

frameworks. The following chapters (Chapters 5 to 7) address developments regarding 

the incorporation of data uncertainty information into several single-scale data analysis 

tasks, such as: linear regression modelling (Chapter 5), process optimization (Chapter 6) 

and multivariate statistical process control (Chapter 7). 

Part IV-B presents a multiscale approach for monitoring profiles (Chapter 8) and a 

modification of multiscale statistical process control (Bakshi, 1998), in order to allow 

for its extension to the situation where multiresolution data is available (Chapter 9). 

Finally, in Part V the main conclusions of the present thesis are summarized (Chapter 

10) and future work is addressed (Chapter 11). 
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If I have seen further it is by standing on ye shoulders of Giants. 

Sir Isaac Newton (1642-1727), English mathematician and physicist. 

 

 

I can't see any farther. Giants are standing on my shoulders! 

Unknown 
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Chapter 2. Applications of Multiscale 

Approaches in Chemical 

Engineering and Related Fields: a 

Review 

The multiscale features generated by complex phenomena going on in chemical 

processing plants, and also present in collected data, call for adequate approaches with 

the potential for extracting and analysing in effective ways, the information content 

distributed across the relevant scales. In this context, wavelet theory provides a rich 

source of tools for supporting multiscale data analysis tasks, when there is a certain lack 

of fundamental knowledge regarding the underlying phenomena (a situation often found 

in industrial applications) required to implement first principles-based multiscale 

modelling and analysis approaches. Therefore, a review of relevant publications in the 

field of data-driven multiscale analysis is necessarily almost coincident with the one 

regarding the application of wavelets in chemical engineering, as these are, almost 

invariably, the workhorse for any of such analysis. 

In the following sections of this chapter, a review of relevant publications regarding 

data-driven multiscale approaches in several research areas from Chemical Engineering 

and related fields is presented. The approaches to be presented essentially explore some 

of the properties that make wavelets transforms particularly useful for several data 

processing and analysis tasks, namely:  
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1. Wavelet transforms can easily detect and efficiently describe localized features 

in the time/frequency plane, being by these reasons promising tools for 

analysing data arising from non-stationary processes or that exhibit localized 

regularity patterns; 

2. They are able to extract the deterministic features in a few wavelet coefficients 

(energy compaction). On the other hand, stochastic processes spread their energy 

through all the coefficients and are approximately decorrelated, i.e., the 

autocorrelation matrices of such signals are approximately diagonalized 

(decorrelation ability) (Bakshi, 1999; Dijkerman & Mazumdar, 1994; Vetterli & 

Kovačević, 1995); 

3. Wavelet theory provides a framework for analysing signals at different 

resolutions (the multiresolution decomposition analysis), with different levels of 

detail (Mallat, 1989); 

4. Wavelets provide an efficient representation of both smooth functions and 

singularities (Burrus et al., 1998); 

5. Computations involved are inexpensive (complexity of ( )O N ). 

 

2.1 Signal and Image De-Noising 

In spite of not belonging to what is traditionally considered its core, the applications 

referred in this section and in the next one found many applications in Chemical 

Engineering, and are furthermore relative to areas where wavelets have become quite 

popular, owing to the achieved results and simplicity of the methodologies involved. 

These applications also allow one to develop an intuitive understanding about the 

reasons why they work so well in some situations, and how we can take advantage of 

that by extending the successful methodologies to other applications. 

In general terms, de-noising concerns uncovering the true signal from noisy data where 

it is immersed,10 and is one of the classical application fields where wavelets have found 

                                                 

 

10 A more formal interpretation of the term “de-noising” is provided elsewhere (Donoho, 1995). 
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wide application. The success arises mainly from their ability to concentrate 

deterministic features in a few high magnitude coefficients while the energy associated 

with stochastic phenomena is spread over all coefficients. This property is instrumental 

for the implementation of thresholding strategies in the wavelet domain. Donoho and 

Johnstone pioneered this field and proposed a simple and effective de-noising scheme 

for estimating a signal with additive i.i.d. zero-mean Gaussian white noise (Donoho & 

Johnstone, 1992): 

 ( ) ( ), ~ 0,1 1, ,
iid

i i i iy x N i Nσ ε ε= + ⋅ = …  (2.1) 

consisting of the following three steps: 

1. Compute the Wavelet Transform of the sequence { } 1:i i n
y

=
 (the boundary 

corrected or interval adapted filters developed by Cohen, Daubechies, Jawerth 

and Vial were suggested by the authors); 

2. Apply a thresholding policy to the detail wavelet coefficients (the authors 

suggested soft-thresholding), with ˆ 2 ln( )T Nσ= , where σ̂  is an estimator of 

the noise standard deviation – usually a robust approach is applied to the wavelet 

coefficients at the finest scale, such as { }( )1

1,..., 2
ˆ 0.6745k k N

Med dσ
=

= : 

“Hard-Thresholding”: ( )
0
x x T

HT x
x T

⎧ ⇐ >⎪= ⎨ ⇐ ≤⎪⎩
   (2.2) 

“Soft-Thresholding”:
( )( )

( )
0

sign x x T x T
ST x

x T

⎧ ⋅ − ⇐ >⎪= ⎨
⇐ ≤⎪⎩

 (2.3) 

3. Compute the inverse Wavelet Transform, thus obtaining the de-noised signal. 

 

This simple scheme is called “VisuShrink”, since it provides better visual quality than 

other procedures based on mean-squared-error alone. As an illustration, Figure 2.1 

depicts the de-noising of an NMR spectrum using a Symmlet-8 filter, for a 

decomposition depth of 5j = . 
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Figure 2.1. De-noising of an NMR spectrum: a) original NMR spectrum; b) de-noised NMR spectrum 

(WaveLab package, version 8.02, was used in the computations, carried out in the Matlab environment, 

from MathWorks, Inc.). 

 

This task constitutes in fact a non-linear estimation procedure, since the wavelet 

thresholding scheme is both adaptive and signal dependent, in opposition to what 

happens, for instance, with optimal linear Wiener filtering (Mallat, 1998) or to 

thresholding policies that tacitly eliminate all the high frequency coefficients, 

sometimes also referred to as smoothing techniques (Chau et al., 2004; Depczynsky et 

al., 1999).  

Since the first results published by Donoho and Johnstone, there have been numerous 

contributions regarding modifications and extensions of the above procedure, in order to 

improve its performance for a variety of application scenarios. Orthogonal wavelet 

transforms lack the translation-invariant property and this often causes the appearance 

of artefacts (also known as pseudo-Gibbs phenomena) in the neighbourhood of 

discontinuities. Coifman and Donoho proposed a translation invariant procedure that 

essentially consists of averaging out several de-noised versions of the signal (using 

orthogonal wavelets), obtained for several shifts, after un-shifting (Coifman & Donoho, 

1995). In simple terms, the procedure consists of performing the sequence of operations 

“Average[Shift – De-noise – Unshift]”, a scheme named as “Cycle Spinning” by 

Coifman. With such a procedure, not only the pseudo-Gibbs phenomenon near the 

vicinities of discontinuities is greatly reduced, but also the results are often so good that 

lower sampling rates can be employed. 

The choice of a proper thresholding criterion was also the target of various 

contributions, and several alternative approaches have been proposed, such as those 

based on cross-validation (Nason, 1996), minimum description length (Cohen et al., 

a) b) 
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1999), minimization of Bayes risk (Ruggeri & Vidakovic, 1999) and on level-adaptive 

Baysean modelling in the wavelet domain (Vidakovic & Ruggeri, 2001). More 

elaborate discussions regarding this topic can be found elsewhere (Jansen, 2001; Nason, 

1995a). The simultaneous choice of the decomposition level and/or wavelet filter was 

addressed by Pasti et al. (1999) and Tewfik, Sinha & Jorgensen (1992). 

Image de-noising does not encompass any fundamental difference from 1D signal de-

noising, apart from the fact that a 2D wavelet transform is now required. The 

computation of the 2D wavelet transform can be implemented by successively applying 

1D orthogonal wavelets to the rows and columns of the matrix of pixel intensities, in an 

alternate fashion, implicitly giving rise to separable 2D wavelet basis (tensor products 

of the 1D basis functions). Non-separable 2D functions are also available (Jansen, 2001; 

Mallat, 1998; Vetterli & Kovačević, 1995). 

Both in the context of 1D or 2D data analysis, an extension of the wavelet transform is 

often used, called Wavelet Packets. Wavelet packets provide a library or dictionary of 

basis sets for a given wavelet transform, built by successively decomposing not only the 

approximation signals at increasingly coarser scales using the high-pass and low-pass 

filtering operations followed by dyadic downsampling (as happens with the orthogonal 

wavelet transform), but also the details signals that are obtained along with them. As a 

result, there are now 22N  different basis sets for a signal of length N (Mallat, 1998), 

whose basis functions cover the whole time/frequency plane in a much more flexible 

way, from which derives the potential for generating more efficient representations for 

signals with complex behaviours in this plane, than those obtained with orthogonal 

wavelets: not only do we have more freedom in how to cover the time/frequency plane 

using different arrangements of “tiles”,11 but, furthermore, we are now able to select the 

best “tiling” for a specific application. Therefore, in order to choose an adequate basis 

set for a given application, efficient algorithms were developed to find the one that 

optimizes given quality criteria, such as entropy minimization (Coifman & 

                                                 

 

11 By a “tile” we mean the area in the time/frequency space where a function of the basis set concentrates 

a significant fraction of its energy. It is also often called an “Heisenberg box” (Hubbard, 1998; Mallat, 

1998). 
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Wickerhauser, 1992; Walczak & Massart, 1997b). This added flexibility does not come 

however without a cost, since the computational complexity is no longer of ( )O N , as 

happens with the orthogonal wavelet transforms, but of ( )( )2logO N N  (Burrus et al., 

1998; Coifman & Wickerhauser, 1992; Mallat, 1998, 1999). 

The approaches referred so far consist of implementing de-noising schemes through off-

line data processing. Within the scope of on-line data rectification, where the goal is 

also the accommodation of errors present in measurements in order to improve data 

quality for accomplish other tasks, such as process control, process monitoring and fault 

diagnosis, Nounou and Bakshi (1999) proposed a multiscale approach for situations 

where no knowledge regarding the underlying process model is available. It basically 

consists of implementing the classical de-noising algorithm with a boundary corrected 

filter in a sliding window of dyadic length, retaining only the last point of the 

reconstructed signal for on-line use (On-Line Multiscale rectification, OLMS). When 

there is some degree of correlation between the different variables acquired, Bakshi, 

Bansal & Nounou (1997) presented a methodology where PCA (Appendix D) is used to 

build up an empirical model for handling such redundancies, and, finally, for the 

situation where our knowledge about the systems structure is deep enough such that a 

linear dynamical state-space model can be advocated for the finest scale behaviour, a 

multiscale data rectification approach was also proposed, using a Baysean error-in-

variables formalism (Ungarala & Bakshi, 2000). 

Other examples regarding applications of wavelets de-noising procedures in Chemical 

Engineering and related fields, include noise removal from industrial data (Nesic et al., 

1997), spectra (Chau et al., 2004; Leung et al., 1998a) such as near-infrared (NIR) 

(Depczynsky et al., 1999; Walczak & Massart, 1997a), as well as from data generated in 

other analytical devices, namely, in electrochemistry, chromatography and capillary 

electrophoresis (Chau et al., 2004). Doymaz et al. (2001) have addressed the issue of 

filtering process signals also corrupted with outliers besides noise, proposing a wavelet 

based robust methodology. 
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2.2 Signal and Image Compression 

The main goal in data compression is to represent the original signal (audio, image or 

even a sequence of images, i.e., a film) with as few bits as possible without 

compromising its end use. The usual steps involved in a (“lossy”) compression scheme 

are as follows: 

Signal Transformation → Quantization → Entropy Coding 

First the signal is expanded into a suitable basis set (i.e., transformed); then, the 

expansion coefficients (i.e., the transform) are mapped into a countable discrete 

alphabet; finally, another map is used, where a new arrangement of coefficients is built 

up, such that the average number of bits/symbol is minimized. The first and the last 

steps are reversible, so that we can move forward and backward without losing any 

information, but the second stage (quantization) involves approximation, and, therefore, 

once we have gone through it, we can no longer recover the original coefficients (during 

decompression). It is precisely in this second step that many of the small wavelet 

coefficients are usually set to zero, and a high percentage of the compression arises 

from dropping out many wavelet coefficients in this way (Strang & Nguyen, 1997; 

Vetterli & Kovačević, 1995). This approach is being currently used, for instance, by the 

FBI services to store fingerprints with compression ratios of the order of 15:1, using 

wavelet transformation (linear phase 9/7 filter) together with scalar quantization (Strang 

& Nguyen, 1997). A wavelet based compression scheme is also adopted in the JPEG 

2000 compression spec, with compression levels up to 200:1 being obtained for images 

in the “lossy” mode (where the potential of using wavelets can be fully used; a 9/7 

wavelet filter is adopted) while the typical 2:1 compression ratio is achieved in the 

“lossless” mode (i.e., without the quantization step, using a 5/3 wavelet filter).  

To get some practical insight into the compressing potential underlying wavelet-based 

compression, a fingerprint digitized image is presented in Figure 2.2 (a), as well as 

another version of it where only 5% of the original wavelet packet coefficients were 

retained (b), with all the remaining ones set equal to zero (a basis was selected using the 

best-basis algorithm of Coifman and Wickerhauser, as implemented in the WaveLab 

toolbox). As can be verified by comparing the two images, even though a high 

percentage of coefficients is being eliminated, the quality of the image remains quite 

satisfactory and close to the original. 
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Figure 2.2. Original digitized fingerprint image (a) and a compressed version of it where 95% of the 

wavelet packet coefficients were set equal to zero (b). 

 

Some examples of data compression applications in Chemical Engineering and related 

fields include the issue of on-line (Bakshi & Stephanopoulos, 1996; Misra et al., 2001; 

Misra et al., 2000; Trygg et al., 2001) and off-line (Nesic et al., 1997) industrial data 

compression. More examples can be found elsewhere (Chau et al., 2004; Depczynsky et 

al., 1999; Leung et al., 1998b; Staszewski, 1998; Walczak & Massart, 1997a, 1997b; 

Walczak & Massart, 2001). 

 

2.3 Regression Analysis 

Wavelets have been applied both in parametric as well as in non-parametric regression 

analysis. Applications in parametric regression analysis usually involve compression of 

the predictor space when it presents serial redundancy, i.e., when there is a functional 

relationship linking the values of successive variables, as is the case when these are 

relative to wavelengths from digitized spectra, a common situation in multivariate 

calibration. By eliminating components with low predictive power, it is possible to 

reduce the variability of predictions (Alsberg et al., 1998; Cocchi et al., 2003; 

Depczynsky et al., 1999; Eriksson et al., 2000; Jouan-Rimbaud et al., 1997) and 

construct more parsimonious models (Alsberg et al., 1998; Trygg, 2001; Trygg & 

Wold, 1998), i.e., models encompassing a lower number of predictor variables, without 

compromising prediction ability. Furthermore, the use of the wavelet transform brings 

to the analysis the concept of scale and characteristic frequency bands, adding a new 

dimension to the regression models: interpretation. Therefore, not only the estimated 

a) b) 
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models may become lighter and equally or even more effective, but also easier to 

interpret, a feature explored by different authors (Alsberg et al., 1998; Teppola & 

Minkkinen, 2000, 2001). Several strategies were proposed for selecting the number of 

transformed predictors (i.e., wavelet coefficients) to be included in the model, such as 

those based upon the variance spectra of the coefficients, where the ones with largest 

variance are selected (Trygg & Wold, 1998), leave-one-out cross-validation (Cocchi et 

al., 2003), root mean square error (RMS), truncation of elements in the PLS weight 

vector followed by re-orthogonalization and mutual information (Alsberg et al., 1998). 

Alsberg et al. (1998) also refer the interesting relationship between the regression vector 

for the linear model involving the original variables, b , and that for the wavelet 

transformed variables, wb , which, for the situation where only input spectra are wavelet 

transformed, is simply wb Wb=  (meaning that wb  is the wavelet transform of b ). This 

result also holds for PLS, but the equivalency is destroyed if the wavelet coefficients are 

processed (e.g. subject to some thresholding operation), as is often the case. 

Multiscale PLS, a modelling framework consisting of estimating PLS models at each 

scale to capture the relationship between wavelet coefficients of predictors and response 

(the final prediction is obtained upon application of the wavelet reconstruction formula), 

is briefly addressed by Teppola & Minkkinen (2001), who also report some unsolved 

problems in this field. 

Wavelet non-parametric regression methodologies present many resemblances to 

wavelet thresholding de-noising methodologies (Nason, 1994, 1995a, 1995b). Zhang 

(1995) presented an approach that combines elements from non-parametric and 

parametric regression for addressing the situation of moderately large input 

dimensionality. 

A related topic regards the estimation of probability density functions, and several 

wavelet density estimators have been developed (Herrick, 2000; Safavi et al., 1997), 

some of them also applied in Chemical Engineering applications, namely for process 

monitoring (Safavi et al., 1997). Walter (1994) points out that a density estimator also 

leads to an estimator of the non-parametric regression function, ( )( ) |r x E Y X x= = . 

 



DATA-DRIVEN MULTISCALE MONITORING, MODELLING AND IMPROVEMENT OF CHEMICAL PROCESSES 

 20 

2.4 Classification and Clustering 

Classification and clustering constitute a final stage in the implementation of pattern 

recognition. Pattern recognition can be briefly described as a succession of 

transformations from the measurement space, M, to the feature space, F, and, finally to 

the decision space, D, through which an object is classified or clustered, after being 

properly measured and its relevant features for decision retained (Pal & Mitra, 2004): 

 M F D→ →   

In a classification problem, the information regarding class labels, d D∈ , for the 

objects belonging to the training set is available, and is used to develop a classifier 

(decision function) that predicts class memberships for new objects, which is 

symbolically represented by the application, : F Dδ → . On the other hand, in 

clustering no such a priori knowledge exists, and the goal is to unravel the underlying 

similarities between the objects, grouping those whose features are similar in some 

sense (Theodoridis & Koutroumbas, 2003). For these reasons, classification is also 

sometimes referred to as supervised (machine) learning and clustering as unsupervised 

(machine) learning. 

The feature selection/extraction stage, : M Fφ → , plays a key role in the success of a 

classification or clustering methodology (Pal & Mitra, 2004), as it is during this phase 

that the most relevant features for decision purposes are retained, usually along with a 

significant dimensionality reduction (Pal & Mitra, 2004; Walczak et al., 1996), as quite 

often a large portion of the information contained in raw measurements does not bring 

added value for the final decision to be made through mapping δ . In this context, 

wavelet transforms can be quite useful, given their ability to concentrate the underlying 

deterministic features immersed in the signal into a few high magnitude coefficients 

(energy compaction property), whereas uninformative stochastic disturbances are spread 

over all coefficients, which set the conditions for developing effective coefficient 

selection methodologies, such as, for instance, those based on cross-validation, 

prediction power of signals reconstructed at a given scale (Alsberg, 2000) and on 

discrimination measures regarding wavelet packet coefficients (Cocchi et al., 2004; 

Cocchi et al., 2001).  

Therefore, wavelets have been integrated in the feature extraction stage of classification 

pattern recognition problems in Chemical Engineering and related fields, namely in 
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problems with NIR data (Vannucci et al., 2005; Walczak et al., 1996), HS-SPME/GC 

signals (Cocchi et al., 2004), X-ray diffractograms (Cocchi et al., 2001), vibration 

analysis (Staszewski, 1998) and images (Theodoridis & Koutroumbas, 2003), as well as 

in clustering approaches involving spectra data from various sources (Alsberg, 1999; 

Donald et al., 2005) and industrial data (Wang, 1999). In process operations, they have 

been applied to process operating region recognition (Zhao et al., 2000) and to identify 

patterns in control charts (Al-Assaf, 2004).  

 

2.5 Process Monitoring 

The energy compaction and decorrelation properties associated with the wavelet-based 

multiscale representation of data provide an adequate way for effectively detecting 

undesirable events with a wide range of time/frequency location and localization 

patterns, as well as to incorporate the natural complexity of the underlying phenomena 

in process monitoring reference models. Therefore, a considerable number of 

approaches were already developed to explore such a potential (Ganesan et al., 2004), 

as the following paragraphs attest. In this section we present a number of such works, 

beginning with MSSPC and related approaches in the following section, and then 

moving on to other monitoring methodologies based on alternative modelling 

formalisms, and finalizing with developments regarding the important case of profile 

monitoring. 

2.5.1 Multiscale Statistical Process Control (MSSPC)  

Addressing univariate SPC (USPC), Top and Bakshi (1998) proposed the idea of 

following the trends of wavelet coefficients at different scales using separate control 

charts. The state of the process is confirmed by reconstructing the signal back to the 

time domain, using only coefficients from scales where control limits were exceeded, 

and checking against a detection limit calculated from such scales (where significant 

events were detected). The approximate decorrelation ability of the wavelet transform 

makes this approach suitable even for autocorrelated processes, the signal power 

spectrum being accommodated by the scale-dependent nature of statistical limits. 

Furthermore, energy compaction enables the effective detection and extraction of 

underlying deterministic events. The multiscale nature of this framework lead the 
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authors to point out that it unifies Shewart, CUMSUM and EWMA procedures, as these 

control charts essentially differ in the scale at which they represent data (Bakshi, 1999). 

Regarding multivariate applications, Kosanovich and Piovoso (1997) presented an 

approach where the Haar wavelet transform coefficients from filtered data (using a 

finite impulse response median hybrid filter) were used for estimating a PCA model, 

which is then applied for monitoring purposes, but it was with Bakshi (1998) that the 

first structured multivariate MSSPC methodology was established in the Chemical 

Engineering field. It is based on the so called multiscale principle components analysis 

(MSPCA), which combines the wavelet transform ability to approximately decorrelate 

autocorrelated processes and enable the detection of deterministic features present in the 

signal, together with the PCA ability to model the variables correlation structure 

(Appendix D). In MSPCA, PCA models are estimated for the wavelet coefficients at 

each scale, followed by a thresholding operation that separates the deterministic features 

from stochastic components of the signal, after which a PCA model in the original 

domain is estimated from the covariance matrix that combines the contributions from 

those scales where thresholding limits were violated (Figure 2.3). 
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Figure 2.3. Schematic representation of the multiscale principal components analysis (MSPCA) 

methodology (Bakshi, 1998). 

 

This methodology was applied to process monitoring, with the PCA models computed 

independently at each scale being used to implement separate PCA-MSPC control 
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charts (Bakshi, 1998). Once again, the scales where significant activity is detected are 

those that will be used to reconstruct the combined covariance matrix at the finest scale, 

through a scale-recursive procedure, in order to perform the final test that confirms or 

refutes the occurrence of abnormal perturbations detected at any scale(s). Following the 

denomination established by the author, this method will be here referred as multiscale 

statistical process control (MSSPC). A theoretical analysis of the properties underlying 

MSSPC can be found elsewhere (Aradhye et al., 2003). 

Several other works report improvements or modifications made to the original base 

procedure. In Kano et al. (2002), the monitoring procedure based upon MSPCA is 

integrated with methodologies designed for detecting changes in the correlation 

structure of data and in their distribution. 

Misra et al. (2002) propose using MSPCA with variable grouping and the analysis of 

contribution plots whenever a significant event is detected in the control charts at any 

scale, in order to monitor the process, and, simultaneously, perform early fault 

diagnosis. 

Yoon & Macgregor (2001, 2004), on the other hand, developed an approach based on a 

multiscale representation of data in the original time domain (i.e., not in the wavelet 

transform domain) that encompasses the successive extraction of principal components 

for an “extended set” (all variables represented at all scales), according to the decreasing 

magnitude of eigenvalues for the associated covariance matrix. It turns out that, owing 

to the orthogonal properties of the wavelet transform, the loadings obtained through this 

procedure only contain non-zero entries for variables represented at the same scale, and, 

therefore, each extracted component strictly conveys information regarding a specific 

scale. As such, results are not very different from what can be achieved with the 

classical MSSPC for the same number of principal components. However, this approach 

allows for ranking the relevant structures underlying overall data variability, in terms of 

the contributions from the variables covariance at different scales, and provides an 

hierarchic way of performing fault diagnosis, by first identifying the most relevant 

scales for a given fault detected by the MSSPC statistics ( 2T  or the squared prediction 

error, SPE ) and then looking to the variable contributions at that scale. 

Rosen (2001) presented a methodology, also based on a multiscale representation in the 

original time domain, where the components from different scales are combined using 
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background knowledge available about the process, in order to reduce the number of 

monitoring statistics available when all the scales are monitored separately, and to 

provide physical insight to the scales under analysis. In this approach, there is no 

reconstruction stage, as happens in Bakshi’s (1998) MSSPC, and the coarser scale 

coefficients are omitted from the monitoring procedure, to allow for adaptation (in the 

mean) to non-stationary data. 

State space modelling based on Canonical Variate Analysis (CVA) was also adopted 

instead of PCA to handle variable cross-correlation, as well as dynamics (Alawi et al., 

2005). As the states and residuals still present autocorrelation, the authors used MSPCA 

to monitor them, leading to improved performance from the standpoint of the detection 

delay/false alarm rate balance, regarding alternative approaches based on CVA without 

using the wavelet based methodology, but based on theoretical control limits derived 

under the assumption of serially independent residuals, and the one where limits are 

calculated from the Empirical Reference Distribution (ERD). However, no comparison 

regarding the base MSSPC methodology is provided by the authors. 

2.5.2 Alternative Multiscale Monitoring Approaches 

Other multiscale approaches to process monitoring have also been developed, whose 

nature is quite distinct from MSSPC, and therefore referred in this separate subsection. 

They are related with alternative modelling paradigms, such as non-linear black-box 

modelling or hidden Markov trees. 

Multiscale monitoring approaches using non-linear black-box modelling for building a 

reference process model were developed, such as those based on non-linear PCA, where 

an IT-net (input-training neural network) was adopted for establishing the non-linear 

mapping (Fourie & de Vaal, 2000; Li & Qian, 2004; Shao et al., 1999). 

The wavelet figure extraction ability has also been integrated with ART (adaptive 

resonance theory) frameworks in approaches for identifying operational states (Chen et 

al., 1999; Li et al., 2004; Wang, 1999; Wang et al., 1999) and Maulud et al. (2005) 

proposed a bi-scale monitoring approach applied to the original domain, where an 

orthogonal non-linear PCA mapping is adopted for following the low frequency scales, 

and linear PCA to monitor the highest frequency bands. The authors also presented a 

graphical method for selecting the decomposition depth, based on the explained 
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variance captured by the PCA models derived upon neglecting successively detail 

coefficients below an increasing scale index. 

Aradhye et al. proposed a multiscale fault detection strategy based on the ART-2 

framework, where this clustering mechanism is used at each scale to select the 

significant wavelet coefficients for reconstruction (in the scale selection layer), and also 

after the reconstruction stage, where the cluster prototypes generated in the training 

phase are employed to classify new incoming observations (diagnosis layer) (Aradhye 

et al., 2004; Aradhye et al., 2002). The diagnosis layer is composed by 12 decJ +  ART-2 

networks ( decJ  is the decomposition depth of the wavelet transform), i.e., one per each 

scale combination that can be obtained in the reconstruction stage, so that there is 

always an adequate prototype for each reconstructed signal (i.e., relative to the same 

selected scales). Despite the difference in the tools involved, there is a certain structural 

similarity between this approach and Bakshi’s (1998) MSSPC, namely the existence of 

a figure extraction phase in the wavelet domain (scale selection layer), with the final 

decision being made on the reconstructed domain, based only upon those scales where 

significant events were detected (diagnosis layer). 

Wavelets were also integrated in neural networks frameworks as activation functions, to 

perform fault diagnosis in dynamical systems (Zhao et al., 1998). 

Bakhtazad et al. (2000) developed a framework for the detection and classification of 

abnormal situations using the so called multidimensional wavelet domain hidden 

Markov trees (a multidimensional hidden Markov tree built over the wavelet 

coefficients calculated from the scores of a PCA model estimated from pre-processed 

raw data). More examples of related approaches can be found in Crouse et al. (1998) 

and Sun et al. (2003). 

Luo et al. developed methods for detecting faults in isolated sensors, by analysing the 

intermediate frequency band obtained by applying the wavelet transformation with a 

decomposition depth of three on non-overlapping moving data windows, using 

parametric (Luo et al., 1999) and non-parametric (Luo et al., 1998) statistical tests.  

Teppola & Minkkinen (2000) have also employed the multiresolution decomposition in 

order to remove seasonal and low-frequency trends from signals, which are often 

detrimental for the prompt detection of small and moderate-level transient phenomena. 
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Further applications of wavelets in process monitoring and fault detection can be found 

elsewhere (Alexander & Gor, 1998; Daiguji et al., 1997; Jiang et al., 2000; Jiao et al., 

2004; Tsuge et al., 2000; Watson et al., 1999). 

2.5.3 Multiscale Monitoring of Profiles 

With the development of instrumentation technology, one has now frequently to deal 

with situations where data is organized is such a way that the object of monitoring 

consists of a whole array of values (e.g. spectra, images, batch profiles) or a relationship 

between the response and the explanatory variables instead of their univariate or 

multivariate distributions (Kang & Albin, 2000; Kim et al., 2003; Woodall et al., 2004). 

We will refer to this type of applications as profile monitoring problems, and in this 

section we focus on the first type of scenario (monitoring arrays of values), where 

multiscale approaches based on wavelets have also been proposed.  

Trygg et al. (2001) applied a 2D wavelet transformation to compress data from NIR 

(near-infrared) spectra collected over time and estimated a PCA model for this 2D 

compressed matrix, which was then used to check whether new incoming spectra 

deviate from those collected during normal operation. 

Wavelet applications can also be found in the context of image analysis to monitor 

paper quality issues, such as paper formation, i.e., the degree of uniformity in the fibre 

network that constitutes paper (Bouydain et al., 1999) and printing quality (Bernié et 

al., 2004). 

Other applications to process monitoring of profiles based on wavelet coefficients and 

metrics derived from them, can be found in: quadropole mass spectrometry data from 

rapid thermal chemical vapour deposition process (Lada et al., 2002), tonnage signals 

from a stamping process (Jin & Shi, 1999; Jin & Shi, 2001), analysis of the central 

azimuth curve of antenna signals (Jeong et al., 2004), data acquired from a semi-batch 

copolymerization process (Zhao et al., 2000) and electrochemical noise data (fluctuation 

in potential) to characterize localized corrosion processes (Dai et al., 2000). 
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2.6 System Identification, Optimal Estimation and Control 

 

2.6.1 System Identification and Optimal Estimation 

System identification is “(…) the determination, on the basis of input and output, of a 

system within a specified class of systems, to which the system under test is equivalent.” 

(L. A. Zadeh, in Åstrom & Eykhoff, 1971). It plays a central role in any application that 

requires adequate representations for input/output relationships (Ljung, 1999), namely 

optimal estimation, where the goal is now to figure what the true underlying value of a 

variable at a given time would be, using the information contained in a noisy realization 

(measurement corrupted with noise), over a finite time interval, say [ ]0,T . “Estimation” 

encompasses several problems – prediction, filtering and smoothing – according to the 

time instant where the value is to be estimated (Jazwinsky, 1970). Considering that we 

want to estimate ( )x t  and are currently at time T, then we have the following kinds of 

problems, according to the location of t: 

• t T> : prediction;  

• t T= : filtering; 

• t T< : smoothing. 

There are many ways in which wavelets can be used for system identification and their 

application scenarios range from time-invariant systems (Kosanovich et al., 1995; Pati 

et al., 1993) to non-linear black-box modelling, for instance in the identification of 

Hammerstein model structures (Hasiewicz, 1999) or in neural networks, as activation 

functions (Section 2.6.2).  

Noticing that all standard linear-in-parameter system identification methods can be 

understood as projections onto a given basis set, Carrier & Stephanopoulos (1998) 

applied wavelets basis sets in order to develop a system identification procedure with 

improved performance in estimating reduced-order models and non-linear systems, as 

well as systems corrupted with noise and disturbances, by focusing on the open-loop 

cross-over frequency region. Plavajjhala et al. (1996) used wavelet-based prefilters for 

system identification, proposing the parameter estimates computed at the scale 

(frequency band) where S/N ratio is maximal. The use of wavelets as basis functions is 
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also adopted by Tsatsanis & Giannakis (1993) in the identification of time-varying 

systems and a similar approach was followed by Doroslovački & Fan (1996) for 

adaptive filtering purposes, with the robustness issues being treated elsewhere 

(Doroslovački et al., 1998). 

Nikolaou et al. presented a methodology for estimating finite impulse response models 

(FIR) by compressing the Kernel (sequence of coefficients in the FIR model) using a 

wavelet expansion (Nikolaou & Vuthandam, 1998), and applied the same reasoning to 

nonlinear model structures, namely to quadratic discrete Volterra models (Nikolaou & 

Mantha, 1998).  

Dijkerman & Mazumdar (1994) analysed the correlation structure of the wavelet 

coefficients computed for stochastic processes (see also Tewfik, 1992), and proposed 

multiresolution stochastic models as approximations to these original processes, 

motivated by the tree-based models (Bassevile et al., 1992a), to be referred in Section 

2.6.3. 

Regarding multiscale optimal estimation, Chui & Chen (1999) implemented an on-line 

Kalman filtering approach that estimates the wavelet coefficients at each scale, and 

claimed evidence that it conducts to improved performance over the classical way of 

implementing it, when applied to a Brownian random walk process. 

Renaud et al. (2005) proposed a procedure for multiscale autoregressive time series 

prediction (see also Renaud et al., 2003), based on the redundant à trous wavelet 

transform (non-decimated Haar filter bank), and also developed a filtering scheme that 

takes advantage of such a decomposition, which is similar to Kalman filtering. 

Other applications of wavelets have also been proposed in the field of time-series 

analyses, such as: estimation of parameters that define long range dependency (Abry et 

al., 1998; Percival & Walden, 2000; Veitch & Abry, 1999; Whitcher, 2004); analysis of 

1/f processes (Percival & Walden, 2000; Wornell, 1990; Wornell & Oppenheim, 1992), 

including fractional Brownian motion (Flandrin, 1989, 1992; Masry, 1993; Ramanathan 

& Zeitouni, 1991) as well the detection of 1/f noise in the presence of analytical signals 

(Mittermayr et al., 1999); scale-wise decomposition of the sample variance of a time 

series (wavelet-based analysis of variance; Percival & Walden, 2000); analysis of 

electrochemical noise measurements in corrosion processes (Wharton et al., 2003). 
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2.6.2 Wavelets and Neural Networks 

Wavelets have also been used together with neural networks, in order to allow for a 

good description of the relationship between inputs and outputs in terms of both local 

and global approximation properties, by learning at multiple resolutions. Learning at 

multiple resolutions is a very useful feature, as data is often nonuniformly distributed in 

the input space, with some sparse regions where only a coarse description can be 

estimated, and with other more dense regions, where higher resolution mappings can be 

established (Bakshi & Stephanopoulos, 1993). It was in this context that the Wavelet 

Network, or Wave-Net was developed (Bakshi & Stephanopoulos, 1993; Zhang & 

Benveniste, 1992), were the role of the activation functions in the neural networks is 

played by wavelets. These networks retain all the advantages presented in those with 

localized learning (such as the Radial Basis Function Networks, RBFN), and add some 

more, namely regarding the ability to learn at multiple resolutions in an hierarchical 

way, from coarse to fine approximations, until the desired level of trade-off between 

accuracy and generalization has been reached, as well as enabling some interpretation of 

the mapping, estimating prediction errors and efficient training and adaptation (Bakshi 

& Stephanopoulos, 1993). More details on these approaches can be found elsewhere 

(Bakshi et al., 1994; Juditsky et al., 1994; Sjöberg et al., 1995), as well as applications 

to modelling and optimization of an experimental distillation column (Safavi & 

Romagnoli, 1997), approximating single-input-single-output (SISO) and nonlinear 

second order processes (Oussar et al., 1998). 

Pati & Krishnaprasad (1993) have also proposed a wavelet network structure related to 

the ones referred in the previous paragraph, which was later applied in the field of 

analytical chemistry by Zhong et al. (2001), and Liu et al. (2000a) developed a wavelet-

based network identification scheme for nonlinear dynamical systems.  

Zhao et al. (1998) proposed an approach for dealing with the multidimensional case, 

where the wavelet networks approaches run into difficulties, given the high number of 

wavelet basis that must be considered, which grows exponentially with the number of 

dimensions, being 2 1d −  for the case where there are d  inputs (Bakshi et al., 1994) and 

also due to the associated numerical convergence issues. To overcome such limitations, 

the authors introduced a new multidimensional non-product wavelet function and 

proved its approximation ability. 
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2.6.3 Multiscale Modelling, Control and Optimal Estimation on Trees 

Bassevile et al. (1992) established the foundations of a new theory for multiresolution 

stochastic modelling, along with developments regarding the associated techniques of 

optimal multiscale statistical signal/image processing. This topic will be described here 

in some detail, as it is on the basis of, and provided motivation to, other posterior 

developments. It is therefore important to get some insight into its methodology and 

underlying reasoning, in order to better understand subsequent applications in rather 

different fields. The methodology basically consists on studying stochastic processes 

indexed by nodes on homogeneous trees, in which different depths in the tree 

correspond to different scales in the signal or image representation.12 In this approach, 

more than just an analytical tool, the wavelet transform does suggest the mechanism 

according to which the system evolves across the scales, occupying, in this sense, a 

similar position to the Fourier transform regarding stationary stochastic processes in the 

time domain, which made it so important in the analysis of such a class of systems, 

since it greatly simplifies their description, by providing, in particular, a way of 

transforming the process in a set of statistically uncorrelated frequency components 

(whitening the signal).13  

The reasoning behind consists essentially in looking to the wavelet reconstruction 

procedure as defining a dynamic relationship that evolves across the scales, and where 

successive details, ( )jd ⋅ , are added to a coarser representation at scale j  in order to 

produce another with higher resolution at scale 1j −  (the scale index 1j −  indicates a 

signal representation with a finer resolution than the one indexed by j , as it integrates 

the additional detail information): 

 ( ) ( ) ( ) ( ) ( )1 2 2j j j

k k

a n h n k a k g n k d k− = − + −∑ ∑  (2.4) 

                                                 

 

12 Homogeneous trees are an infinite, acyclic, undirected, connected graph that has exactly 1q +  branches 

to other neighbouring nodes if its multiplicity is q. 

13 In fact, the Karhunen-Loève expansion for the covariance function of the multiscale process at a given 

scale consists of the wavelet transform (Chou, 1991), which clearly indicates the adequacy of the wavelet 

framework in the description of such systems. 
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For instance, if ( )jd ⋅  can be considered a white noise sequence, than equation (2.4) 

constitutes a first-order autoregressive model in scale, driven by white noise, but higher 

order models can be established, to describe a broader class of multiscale stochastic 

processes that found application in fields such as sensor data fusion. The tree-based 

topology, where these systems evolve, can be rather involved, but in the simplest case it 

reduces to a dyadic tree (an homogeneous tree with multiplicity 2q = ), which is 

naturally associated with the Haar wavelet transform. Figure 2.4 presents such a tree, T, 

that comprises all nodes, t, indexed by the ordered pair (scale index, shift index) along 

with the operators that define moves on T, necessary to specify the local dynamics, 

namely: 

α – Left forward shift; 

β – Right forward shift; 

δ – Interchange operator (move to the nearest point in the same horocycle14); 

γ  - Backward shift. 

The 0 operator should also be added to this set, representing the identity operator (no 

move). The convention is that the left-most operator is applied first, e.g. αγ βγ=t t t= , 

(where t is a node). 

                                                 

 

14 Nodes at the same distance from the boundary point are said to belong to the same horocycle (in other 

words, they consist of points at the same horizontal level). A boundary point (denoted by -∞) must be 

selected in a dyadic tree, and, in practical applications, corresponds to the root node (Figure 2.4). The 

distance between two nodes, 1t  and 2t , ( )1 2,d t t  is defined in this context as the number of nodes in the 

shortest path linking them (Bassevile et al., 1992a; Stephanopoulos et al., 1997b). 
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Figure 2.4. Dyadic tree, in which to each horizontal level (or horocycle) corresponds a scale index (j-1, 

j,…), with the nodes being completely defined by adding another index relative to their horizontal 

position (the shift index). Therefore, the pair (scale index, shift index), given by ( ),j n , completely 

defines the node signalled by a circle in the figure. Also presented are the translation operators that are 

used to move from one node to another one located in its neighbourhood, and are instrumental to write 

down the equations for the dynamical recursions in scale, that define multiscale systems. 

 

After adapting the necessary fundamental theoretical notions to establish a systems 

theory on trees, such as the distance between two nodes, the authors developed rational 

system functions that would also be causal in scale and present an equivalent property, 

in scale, to the shift-invariance or stationarity, in time. The theory resulted in the 

parameterization of multiscale autoregressive models, such as γt t ty ay Wσ= +  (first-

order autoregressive model in scale), as well as to the estimation of stationary processes 

and state models on dyadic trees. The topic of multiscale modelling and optimal 

estimation was further explored by the research group lead by Professor Alan S. 

Willsky at MIT (Bassevile et al., 1992b, 1992c; Benveniste et al., 1994; Chou, 1991; 

Chou et al., 1993; Chou et al., 1994a; Chou et al., 1994b; Daoudi et al., 1999; Golden, 

1991; Ho, 1998; Luettgen et al., 1993), and was revised in Willsky (2002), where an 

extended list of applications is presented.  

Claus (1993) analysed the identification of multiscale autoregressive models (MAR) 

from a sample signal. Fieguth & Willsky (1996) used multiscale models on trees to 
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estimate the Hurst parameter of fractional Brownian motion, using a maximum 

likelihood approach. 

Stephanopoulos et al. (1997b) also explored models defined on dyadic or higher-order 

homogeneous trees, whose nodes are used to index the values of any variable associated 

with the state and output equations (states, inputs, ouputs, modelling errors and 

measurement errors). These multiscale models on trees are entirely consistent with their 

time domain counterparts, since the equations linking the nodes were derived from 

linear, time-invariant models in the time domain, but their values now carry information 

localized in the hybrid domain of time/scale (or range of frequencies). For instance, the 

following homogeneous linear system 

 ( ) ( )1x k x k+ = A  (2.5) 

which, using the double indexing scheme can be written at the finest scale ( 0j = ) as  

 ( ) ( )0, 1 0,x k x k+ = A  (2.6) 

gives rise to the following multiscale description, based upon the Haar wavelet 

transform 

 ( ) ( ) ( )( ) ( )m mx t x t x tα βα β= +A A  (2.7) 

where  

 
( )
( )

1
( ) 2

1
( ) 2 2

2

2

m

m m

m

m

α

β

−

−

= +

= +

A I A

A I A A
 (2.8) 

with α and β  being redefinitions of the backward shift (γ ), that specify the type of 

upward movement to do, if allowed (α  indicates a move to the parent node through a 

left-up shift, while β  does the same through a right-up shift, as illustrated in Figure 

2.5).  
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Figure 2.5. Illustration of operators for the upward moves: α  and β . 

 

The equations were written for the approximation coefficients, but analogous equations 

can be derived for the detail coefficients. Furthermore, forced linear systems (i.e., 

systems with inputs) can also be adequately described under this framework, giving rise 

to the following type of model structures: 

 
( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )

m m

m m

x t x t B u t

x t x t B u t
α

β

α α

β α

= −

= +

A

A
 (2.9) 

Stephanopoulos et al. (1997b) also pointed out that, as a consequence of the “closure 

requirement”, according to which, “The values of the states and inputs on a 

homogeneous tree, evolving by [equation (2.9)], must achieve “closure”, i.e., be equal, 

with the values of the states and inputs on the discrete-time domain, evolving by 

[equation (2.10)]” 

( ) ( ) ( )( ) ( ) ( )1 22 2 2, 1 , ,2 2 2
m m m

m m m
k k kx m A x m I A I A I A Bu m

− −

+ = + + + +  (2.10) 

the following two-scale model structure,  

 
( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )

m m

m m

x t x t B u t

x t x t B u t
α α

β β

α α

β β

= +

= +

A

A
 (2.11) 

cannot give rise to a discrete-time, causal model at the finest scale of the form: 

 ( ) ( ) ( )1x k x k u k+ = +A B  (2.12) 

at any resolution. Therefore, such a model structure can not be used to adequately 

describe the behaviour of causal systems, a class that encompasses many (if not most) 

of the relevant phenomena in Chemical Engineering. 

s

w s tα β= =

t sαβ=
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The authors have also analysed stability conditions defined for the multiscale 

representation, proving that (2.9) is ℓp-stable in the Lyapunov sense when its discrete-

time domain counterpart representation, that was in its origin, is also ℓp-stable in the 

Lyapunov sense, and the same type of conclusions hold for system’s controllability and 

observability. These types of models were then applied to several process systems 

engineering tasks, such as simulation of linear dynamical systems, multiscale optimal 

control and model predictive control (MPC), as well as state estimation with optimal 

fusion of measurements (further addressed in Dyer, 2000). The parallelizable nature of 

the computations performed by the algorithms developed was also highlighted by the 

authors. The issue of estimating the multiscale model structure is referred in 

Stephanopoulos et al. (1997a). 

The topic of multiscale MPC is further detailed in Stephanopoulos et al. (2000) and 

Karsligil (2000). Krishnan & Hoo (1999) also presented a multiscale MPC strategy 

based on dyadic homogeneous trees and applied it to a continuous process and to a 

batch reactor. 

Ungarala & Bakshi (2000) also proposed a multiscale approach for linear dynamic data 

rectification that explores a tree-based model structure similar to that proposed by 

Stephanopoulos et al. (1997b). 

 

2.7 Numerical Analysis 

Within the scope of numerical analysis, wavelets have been used for the solution of 

systems of equations and differential equations (Louis et al., 1997; Nikolaou & You, 

1994; Santos et al., 2003), namely regarding applications to chromatography (Liu et al., 

2000b), combustion (Prosser & Cant, 1998) and cooled reverse flow reactors (Bindal et 

al., 2003). Mahadevan & Hoo (2000) proposed a wavelet-based model reduction 

strategy for distributed parameter systems that give rise to a finite low-order model still 

representing the systems multiscale behaviour. 

Beylkin et al. (1991) address the issue of fast application of dense matrices (or integral 

operators) to vectors, using a class of numerical algorithms based upon wavelets. 

Binder (2002) proposed a wavelet-based multiscale methodology for on-line scalable 

dynamic optimization, which strives to use all the available time allocated for 
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computation in order to come up with the best possible solution at the moment where it 

is required. It belongs to the class of algorithms known as “any time algorithms”, that 

typically progress by refining an initial solution approximation, improving its quality 

along the iterations, so that they can provide the user with a solution at any time, the 

solution approximation being better and better, the longer the procedure is allowed to 

proceed. In this case, the initial solution is based on a coarse problem approximation, 

and improved by successively adding details.  

Regarding the implementation of PCA and PCR over large data sets composed of 

spectra data or hyperspectral images, Vogt & Tacke (2001) proposed a preliminary step 

of wavelet based compression in order to reduce computation time during SVD 

decomposition. A similar strategy was proposed before by Walczak & Massart (1997b), 

but focused on the optimization of data compression, rather than on the minimization of 

overall computation time.  
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Background Material 
 

 

 

 

 

The ideal engineer is a composite ... He is not a scientist, he is not a 

mathematician, he is not a sociologist or a writer; but he may use the 

knowledge and techniques of any or all of these disciplines in solving 

engineering problems. 

N.W. Dougherty (Civil Engineer), 1955 
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Chapter 3. Mathematical and 

Statistical Background 

Some classes of tools are adopted more frequently throughout this thesis, to explore, 

analyse and unravel the potential useful structure present on industrial data. They may 

be either applied separately, under simplified contexts, or combined into integrated 

frameworks, in order to take advantage of their complementary strengths under more 

complex scenarios. In this chapter, we analyse those presenting special relevance within 

the scope of our work. In particular, we address the basic concepts underlying statistical 

process control, to which some developments in this thesis will be directed to (within 

the scope of process monitoring), and the specification of measurement uncertainties 

information, that plays an important role in the techniques to be presented in Part IV-A 

(namely regarding regression and monitoring in noisy environments). 

Furthermore, latent variable models and wavelet theory are also presented, as they often 

provide the basis for developing adequate methodologies to handle the multivariate and 

multiscale nature of data. In this context, we will present the motivation and general 

structure of latent variable models, as well as some current approaches for estimating 

their parameters, and introduce wavelet theory basics and nomenclature, to facilitate the 

understanding of its application in the multiscale approaches to be addressed, in 

particular, in Part IV-B. 

Additional details concerning particular tools inside these classes will be presented in 

the forthcoming chapters, whenever appropriate, and more elaborate discussions 

regarding the techniques are referred to the relevant published literature. 



DATA-DRIVEN MULTISCALE MONITORING, MODELLING AND IMPROVEMENT OF CHEMICAL PROCESSES 

 40 

 

3.1 Statistical Process Control (SPC) 

Statistical Process Control (SPC) strives for achieving process stability and improving 

capability through the reduction of variability (Montgomery, 2001). It comprises a 

collection of several problem-solving tools, the major representatives of which are 

known as the “magnificent seven”, as follows: 

• Histogram or steam-and-leaf display 

• Pareto chart 

• Cause-and-effect diagram 

• Defect-concentration diagram 

• Scatter diagram 

• Check sheet 

• Control chart 

The control chart, in particular, is probably the most sophisticated and eventually the 

most powerful of them (Montgomery & Runger, 1999). It enables the verification, at 

each data acquisition time, of whether the process is operating where it is expectable to 

be under a given reference scenario, where only chance or common causes of variation 

are occurring in the process (i.e., it is in statistical control), or if some assignable or 

special cause has taken place, which needs to be promptly detected, so that its root 

cause can be found and corrective actions undertaken, in order to prevent more losses 

due to poor quality. Control charts essentially consist of plots where the values for one 

more quality characteristics (or statistics calculated from them) are plotted, and where 

reference lines are also drawn, delimiting normal operation condition (NOC) regions 

(Kresta et al., 1991), where only common causes are active (sometimes additional 

reference lines may appear, such as the centre line, that represents the average value of 

the statistic under normal operation conditions). The parameters that define the NOC 

region are set by analysing historical data collected under normal operating conditions, 

and specifying a significance level or a multiplicative constant to be applied to the 

normal operation variability parameter. An example of a control chart is the celebrated 

Shewhart control chart, proposed by Walter S. Shewhart, while working at the Bell 
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Telephone Laboratories, in the early 1920s (Kenett & Zacks, 1998; Shewhart, 1931), 

which basically consists of a time series plot of the quality characteristic, along with a 

centre reference line (given by the mean of data collected under normal operation 

conditions, ˆXCenter Line µ= ) and two control limits, an upper control limit 

( ˆ ˆX XUCL kµ σ= + ), and a lower control limit ( ˆ ˆX XLCL kµ σ= − ), that define the NOC 

region ( k  can be set directly, for instance equal to three, as in Figure 3.1, or by 

specifying the significance level to be associated with the control chart).  
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Figure 3.1. Example of a Shewhart control chart, with “three-sigma” control limits.  

 

Other examples of control charts, with special sensitivity for detecting special events 

involving small shifts or slowly drifting processes, are the EWMA (Hunter, 1986) and 

the CUSUM control charts (Montgomery, 2001).  

Until recently, there was a certain tradition of using control charts in the supervision of 

single isolated variables, usually referred to as univariate SPC (USPC) charts. However, 

it is well known that this procedure presents difficulties when dealing with multivariate 

data exhibiting correlated behaviour (Jackson, 1959; Kourti & MacGregor, 1995; 

MacGregor & Kourti, 1995; Montgomery, 2001; Tracy et al., 1992). In fact, 

implementing several univariate SPC charts in parallel not only brings problems in the 

definition of the true overall significance level for the combined performance of the 

tests, but also erroneously makes the tacit assumption that a multivariate NOC region is 

an “hiper-rectangle”, when, in fact, its shape is usually more similar to a 



DATA-DRIVEN MULTISCALE MONITORING, MODELLING AND IMPROVEMENT OF CHEMICAL PROCESSES 

 42 

multidimensional ellipsoid. Therefore, there are sectors in the assumed NOC region that 

do not belong to the actual NOC region, which means that such a procedure will not 

detect certain special events. Thus, for those situations where a certain degree of 

correlation is present among the variables, Multivariate Statistical Process Control 

(MSPC) procedures were developed, and found to be more adequate for implementing 

SPC control chart procedures.15 One example of such a procedure is the Hotelling 2T  

control chart, for i.i.d. processes (independent and identical distributed) following a 

multivariate normal distribution (MacGregor & Kourti, 1995; Montgomery, 2001). 

Multivariate extensions for the CUSUM and EWMA control charts were also developed 

(MacGregor & Kourti, 1995).  

As the number of variables increases, even the MSPC control chart methodology begins 

facing some difficulties: the effect of any change over any individual variable is diluted 

in the overall consideration of all variables contributing to the calculation of the 

statistic, considerably augmenting the time period required to detect a meaningful 

change in any one of them (Montgomery, 2001). Furthermore, the covariance matrix 

becomes nearly singular (MacGregor & Kourti, 1995), as more and more redundant 

information is conveyed by the set of correlated variables. The proposed approach to 

circumvent this problem is based on a latent variable description of the data structure, 

where the few underlying components, driving the variability exhibited by all the 

variables, are first extracted, and then focusing monitoring efforts over this reduced set 

of latent variables (or statistics calculated from them), as well as in the distance between 

each observation and its projection onto the lower dimensional subspace where such a 

reduced set lies (Jackson & Mudholkar, 1979; Kourti & MacGregor, 1995; Kresta et al., 

1991; MacGregor & Kourti, 1995; Wise & Gallagher, 1996). A more detailed 

description of this procedure will be provided in Section 3.3. 

 

                                                 

 

15 In the remainder text, control chart SPC procedures will be simply referred to as SPC procedures, 

provided no confusion arises to other SPC tools. 
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3.2 Measurement Uncertainty 

The quality of data is a key factor in data-driven analysis frameworks. On one hand, it 

depends on the data generating mechanism, that should be appropriate, according to the 

end use of collected data. For instance, it should be maximally informative when 

designing experiments for system identification purposes (Ljung, 1999), or faithfully 

represent normal operation when collecting data for process monitoring applications. 

On the other hand, it also depends on the signal to noise ratio (SNR) of the collected 

signals. In fact, any measured value has associated with it a certain uncertainty level, 

which should be specified in order to enable a sound use of data in the subsequent 

analysis. Establishing an analogy, the measurement value/measurement uncertainty pair 

acts like the two faces of a coin: both of them are necessary in order to have a valuable 

coin, otherwise it has very little value. If one face is lacking (measurement uncertainty), 

we may have a lot of numbers, being numbers rich, but of a limited value, as we do not 

really know what those numbers are really worth, and are therefore information poor. 

Measurement noise features can adequately be specified within the scope of 

measurement uncertainty, which is a key concept in metrology, defined as a 

“parameter, associated with the result of a measurement, that characterizes the 

dispersion of the values that could reasonably be attributed to the measurand ”16 (ISO, 

1993). Recommendations regarding the correct terminology and procedures to adopt in 

order to compute and specify measurement uncertainties can also be found in the text 

(ISO, 1993) “Guide to the Expression of Uncertainty in Measurement” (GUM), which 

was written following an initiative of the Comité International des Poids et Mesures 

(CIPM), that requested its executive body, the Bureau International des Poids et 

Mesures (BIPM), to address the problem of the expression of uncertainty in 

measurement, in conjunction with the national standard laboratories (see also Kessel, 

2002; Kimothi, 2002; Lira, 2002). 

According to GUM, the standard uncertainty, ( )iu x  (to which we will often refer 

simply as uncertainty), is expressed in terms of a standard deviation of the values 

                                                 

 

16 Measurand is the “particular quantity subject to measurement” (ISO, 1993). 
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collected from a series of observations (the so called Type A evaluation), or through 

other adequate means (Type B evaluation), namely relying on an assumed probability 

density function based on the degree of belief that an event will occur. Numerical 

quantities, y , calculated from uncertain measurements, { } 1:i i N
x

=
, according to a 

functional relationship of the type 

 ( )1 2, , Ny f x x x=  (3.1) 

turn out to be also uncertain quantities, and therefore should have associated an 

uncertainty value, the combined standard uncertainty, ( )cu y , which is calculated 

according to a propagation formula, such as the following: 

 
2 1

2 2

1 1 1 1 1

( ) ( , ) ( ) 2 ( , )
N N N N N

c i j i i j
i j i i j ii j i i j

f f f f fu y u x x u x u x x
x x x x x

−

= = = = = +

⎛ ⎞∂ ∂ ∂ ∂ ∂
= = +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∑∑ ∑ ∑∑  (3.2) 

Equation (3.2) is based on a Taylor series expansion neglecting second and higher order 

terms (Herrador et al., 2005), which should be added when non-linearity becomes 

important. When the uncertainty is required to express an “interval about the 

measurement result of a measurement that may be expected to encompass a large 

fraction of the distribution of values that could reasonably be attributed to the 

measurand” (ISO; 1993), an adequate factor (the coverage factor) is chosen to multiply 

the standard uncertainty, in order to obtain the expanded uncertainty, ( )c cU k u y= . 

Acknowledging the importance of taking into account uncertainty information in data 

analysis, some authors have already directed their efforts towards the development of 

uncertainty-based approaches. Wentzell et al. (1997a) developed the so called 

maximum likelihood principal components analysis (MLPCA), which estimates a PCA 

model (Appendix D) in an optimal maximum likelihood sense, when data are affected 

by measurement errors exhibiting complex structures, such as cross-correlations along 

sample or variable dimensions. The reasoning underlying MLPCA was then applied to 

multivariate calibration (Wentzell et al., 1997b), extending the consideration of 

measurement uncertainties to some input/output modelling approaches closely related to 

PCA. Bro et al. (2002) presented a general framework for integrating data uncertainties 

in the scope of (maximum likelihood) model estimation, comprehending MLPCA as a 

special case. The issue of (least squares) model estimation is also referred by Lira 

(2002), along with the presentation of general expressions for uncertainty propagation 
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in several input/output model structures. Both multivariate least-squares (MLS), and its 

univariate version, bivariate least-squares, (BLS), were applied in several contexts of 

linear regression modelling, when all variables are subject to measurement errors with 

known uncertainties (Martínez et al., 2000; Río et al., 2001; Riu & Rius, 1996). The 

issue of detecting analytical bias using a functional EIV model that incorporates 

uncertainty information was also addressed (De Castro et al., 2004; Galea-Rojas et al., 

2003). On the other hand, Faber & Kowalski (1997) explicitly considered the influence 

of measurement errors in the calculation of confidence intervals for the parameters and 

predictions in PCR and PLS, and similar efforts can be found elsewhere (Faber, 2000; 

Faber & Bro, 2002; Phatak et al., 1993; Pierna et al., 2003). 

 

3.3 Latent Variable Modelling 

The increasing number of variables acquired in chemical processing units, associated 

with higher sampling rates, soon led to databases of considerable sizes, which gather 

huge amounts of records originated from several sources in the plant. Even the sole idea 

of what is a “large” data set have evolved during the last 40 years, at a rate of an order 

of magnitude per decade: if in the 70’s a “large” data set was considered as such if it 

had more than 20 variables, nowadays a data set is considered to be “large” if it 

exceeds, 100 000 – 1 000 000 variables (Wold et al., 2002). Therefore, techniques 

tailored to handle problems raised by the high dimensionality of data sets, along with 

the extensive use of computation power, are playing an increasingly important role in 

data analysis, and terms like “multivariate analysis” are being up-dated to “megavariate 

analysis” (Eriksson et al., 2001). It is in this context that latent variable models gained 

considerable relevance, since they provide an adequate setting for developing 

approaches that can be very effective in different tasks, being furthermore quite often 

computationally efficient. 

Large data sets usually contain redundancies (covariance) among different groups of 

variables. In other words, this means that the dimensionality of data sets (number of 

variables) is large when compared to the “true” dimensionality of the underlying 

process generating overall variability, i.e., the number of independent sources of 

variability that structures the overall dispersion of observed values. These independent 

sources of variability in industrial data are usually related to raw material variability, 



DATA-DRIVEN MULTISCALE MONITORING, MODELLING AND IMPROVEMENT OF CHEMICAL PROCESSES 

 46 

process-related disturbances and other perturbations that might be introduced through 

other means, like operators interventions, and are usually of the order of magnitude of a 

dozen. Covariance between variables may have different origins: 

• Dependencies caused by the underlying phenomena, such as conservation laws 

(mass and energy); 

• Presence of control loops; 

• Use of redundant instrumentation; 

• The nature of the measuring devices employed. For instance, if the measurement 

devise is a spectrometer, the variables will be something like the “absorbance” 

or “reflectance” at a set of frequencies or wavelengths. In such a situation, the 

variables have a natural ordering (the frequency or wavelength), and the 

correlation arises from the spectral characteristics of the samples. 

In these circumstances, a useful picture is provided by the latent variable model, that 

considers the process as being driven by a few, not observable ( p ) latent variables, t, 

with the m ( m p≥ ) measured variables, x, being the visible “outer” part of such an 

“inner” set of variation sources. Their mutual relationship is given by: 

 x t ε= +P  (3.3) 

where x and t are 1 m×  and 1 p×  row vectors, respectively, P  is a p m×  matrix of 

coefficients and ε  is the 1 m×  row vector of random errors, that encompasses 

unstructured sources of variability such as measurement error, sampling error and 

unknown process disturbances (Burnham et al., 1999). For n observations, the n m×  

data table, X , that consists of n rows for the m different variables, can be written as, 

 = +X TP E  (3.4) 

where T  is the n p×  matrix of latent variables (each row corresponds to a different 

vector t, representing an observation of the p latent variables) and E  is the n m×  matrix 

that also results from stacking up the rows ε  for each (multivariate) observation. 

Sometimes it is useful to separate the variables into two groups, X  and Y, for instance 

in order to use the model in future situations where the Y variables are not available or 

its prediction is required, under the knowledge of only the values for the variables from 

the X -block. In such circumstances we can write (3.4) in the following form 



CHAPTER 3. MATHEMATICAL AND STATISTICAL BACKGROUND 

 47

 
X = TP + E
Y = TQ + G

 (3.5) 

which can be directly obtained from (3.4), after a rearrangement with the variable 

grouping: [ ] [ ] [ ]XY = T PQ + EF . From (3.5) it is clear that there is no causality 

assumed between the variables belonging to the two blocks in the latent variable model. 

In fact, non-causality is also a characteristic of historical databases and normal 

operation data, situations where this model is often applied (MacGregor & Kourti, 

1998). Blocks X  and Y share a symmetrical role regarding the underlying latent 

variables, and their separation is only decided on the basis of the intended final use for 

the model. 

Model (3.4) can be estimated using Factor Analysis and Principal Components Analysis 

(PCA, Appendix D), whereas (3.5) is often estimated using Principal Components 

Regression, PCR (Jackson, 1991; Martens & Naes, 1989) or Partial Least Squares, also 

known as Projection to Latent Structures, PLS (Geladi & Kowalski, 1986; Haaland & 

Thomas, 1988; Helland, 1988, 2001b; Höskuldsson, 1996; Jackson, 1991; Martens & 

Naes, 1989; Wold et al., 2001). When the error structures are more complex, other 

techniques, like Maximum Likelihood Principal Components Analysis (MLPCA) for 

model (3.4), can be used (Wentzell et al., 1997a). 

Some useful features of these estimation techniques, besides handling the presence of 

collinearity in a natural and coherent way, are their ability to handle the presence of 

moderate amounts of missing data, by taking advantage of the existent correlation 

among variables (Kresta et al., 1994; Nelson et al., 1996; Walczak & Massart, 2001), 

their flexibility to cope with situations where there are more variables than observations, 

and the availability of diagnostic tools that portray information regarding the suitability 

of the models to explain the behaviour of new incoming data. For instance, in PLS it is 

possible to calculate the distance between the new observation in the X-space and its 

projection onto the latent variable space (space spanned by the latent variables, as 

defined by the P matrix), as well as to see whether this projection falls inside the 

domain where the model was estimated. These features enable checking whether a new 

observation is adequately described by the estimated latent variable model, and, 

furthermore, if it falls within the region used to build the model, therefore avoiding 

extrapolation problems in the prediction of variables belonging to the Y block. Another 

useful characteristic of these approaches is that several variables in the Y block can be 
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handled simultaneously. The flexibility and potential utility of the approaches based 

upon latent variables is illustrated in the following paragraphs, by mentioning several 

different application scenarios. 

3.3.1 Process Monitoring 

Process monitoring is a field where latent variable models have found generalized 

acceptance. Both PCA and PLS techniques have been extensively used as estimators of 

the structure underlying normal operation data. SPC based on PCA consists of using 

two statistics: 

• T2 statistic – to monitor variability within the PCA subspace, checking whether 

projections of new observations onto this subspace fall inside or outside the 

normal operation conditions region (NOC)  

 2 1 T
i i iT t t−= Λ  (3.6) 

where ti is the ith row of the score matrix, T, and Λ-1 is the inverse of the diagonal 

matrix with the p largest eigenvalues in descendent order of magnitude along the 

main diagonal; 

• Q statistic (also referred as SPE) – to assess the adequacy of the principal 

components model in describing each new observation, by calculating the square 

distance for each new incoming observation to the principal components 

subspace 

 T
i i iQ e e=  (3.7) 

where ei is the ith row of the residual matrix, E . 

Basically, Q is a “lack of model fit” statistic, while the Hotelling’s 2T  is a measure of 

the variation within the PCA model. These two general monitoring features are 

normally present in any monitoring procedure based on a latent variable framework 

(Figure 3.2). 
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Figure 3.2. Illustration of a multivariate PCA monitoring scheme based on the Hotelling’s 2T  and Q 

statistics: observation 1 falls outside the control limits of the Q statistic (the PCA model is not valid for 

this observation), despite its projection on the PC subspace falling inside the NOC region; observation 2, 

on the other hand, corresponds to an abnormal event in terms of its Mahalanobis distance to the centre of 

the reference data, but it still complies with the correlation structure of the variables, i.e., with the 

estimated model; observation 3 illustrates an abnormal event from the standpoint of both criteria. 

 

Control limits for these statistics have been derived for the case of data following a 

multivariate normal distribution. The (upper) critical value for the T2 statistic is: 

 ( ) ( )
( ) ( )2

lim

1
, , , ,

p n
T p n F p n p

n p
α α

−
= −

−
 (3.8) 

where ( )1 2, ,F ν ν α  is the upper α×100% percentage point for the F distribution with 1ν  

and 2ν  degrees of freedom (α is the chosen significance level). As for the Q statistic, 

the (upper) control limit is given by: 
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and cα is the upper α×100% percentage point for the standard normal distribution. 

Individual scores can also be monitored using univariate SPC charts. Assuming that 

each score is i.i.d. with a zero mean normal distribution (which requires the data matrix 

to be previously centred at the mean vector calculated from reference data), the control 

limits for the ith score are then given by: 

 ( ) ( )lim , 1, 2 it i T nα α λ= ± −  (3.12) 

where ( )1, 2T n α−  is the upper α/2×100% percentage point for the student’s-t 

distribution with ( 1)n −  degrees of freedom. 

In practice, some departure from the multivariate normal distribution is tolerated as the 

scores are themselves linear combinations of several variables, and thus shall conform 

more to the assumed Gaussian behaviour than individual variables, due to the Central 

Limit Theorem (CLT). As for the Q statistic, it is found in practice to be even more 

robust to departures from normality than the previous ones, because it is a “residual” 

statistic, measuring the unstructured variability present in data, after removal of the 

deterministic part through a PCA model. 

Using only the 2T  and Q  statistics, processes with dozens or hundreds of variables can 

be easily and effectively monitored (MacGregor & Kourti, 1995; Wise & Gallagher, 

1996). Underlying this monitoring scheme is latent variable model (3.4), but we can 

also monitor processes using the latent variable model structure (3.5), estimated by PLS. 

In this case, the statistics adopted are usually the Hotelling’s 2T  statistic applied to the 

latent variables and ( )
2

, ,1
ˆym

y new i new ii
SPE y y

=
= −∑ , where ,ˆnew iy  are the predicted values 

for the ym  Y-block variables in the ith observation. When these variables are measured 

infrequently relatively to the acquisition rate for the X-block variables (as often happens 

with quality variables, with regard to process variables), then the statistic 

( )
2

, ,1
ˆn

x new i new ii
SPE x x

=
= −∑  is used instead (or a modified version of it, that weights the 

variables according to their modelling power for Y, ( )
2

, ,1
ˆn

x i new i new ii
SPE w x x

=
= −∑ ), 

where ,ˆnew ix  is the projection of observation i in the latent variable subspace (Kresta et 
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al., 1991). The upper control limit for the Hotelling’s 2T  statistic is calculated as in the 

case of SPC based on PCA, while the SPE  statistic is based on a 2χ  approximation, 

with parameters determined by matching the moments of this distribution with those of 

the reference “in-control” data (Kourti & MacGregor, 1995; MacGregor et al., 1994; 

Nomikos & MacGregor, 1995). 

One important feature of latent variable frameworks in the context of process 

monitoring is the availability of informative diagnostic tools. The above referred 

statistics do detect abnormal situations effectively but do not provide any clue about 

what may have caused such behaviour. However, with the assistance of these diagnostic 

tools, one can give a step further towards reducing the number of potential root causes 

or even track down the source of the abnormal behaviour. This can be done through the 

use of contribution plots (Eriksson et al., 2001; Kourti & MacGregor, 1996; MacGregor 

et al., 1994; Westerhuis et al., 2000), which basically are tools that “ask” the underlying 

latent variable model (estimated through PCA or PLS) about which are the variables 

that mostly contribute to unusual values of the monitoring statistics. For instance, in the 

case of SPC based on PCA, there are contribution plots available for each individual 

score, for the overall contribution of each variable to the Hotelling’s 2T  statistic and for 

the contribution of each variable to the Q statistic. A hierarchical diagnostic procedure 

was also proposed by Kourti & MacGregor (1996), consisting of following first the 

behaviour of the Hotelling’s 2T  statistic and, if an out-of-limit value is detected, 

checking the score plots for high values and then the variable contributions for each 

significant score.  

The procedures mentioned so far are specially suited for continuous processes, where 

the assumption of a stationary mean and covariance structure holds as a good 

approximation of reality. If dynamics or autocorrelation are present in the variables, we 

can still adopt these procedures by expanding the original data matrix with time-lagged 

variables, in order to model both the cross-covariance and autocorrelation structures (Ku 

et al., 1995; Ricker, 1988). Lakshminarayanan et al. (1997) describe an approach where 

dynamic modelling is introduced in the inner relationship of PLS using ARX or 

Hammerstein model structures, while Kaspar and Ray (1993) present an alternative 

procedure where a dynamic transformation is applied to the X-block time series, before 

applying PLS. 
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A special case of intrinsically dynamic processes are the so called batch processes, 

which have gained importance over the last decades, given their higher operation 

flexibility. Batch processes typically generate data structures with the following three 

components: a table with the initial conditions of each batch (batch recipe, charge 

conditions), Z; a three-way table of process operating conditions across time at each 

batch, for all batches, with dimensions [batch run × variable × time], X; and another 

table of product quality measurements, Y. Techniques such as multi-way PCA and PLS 

were developed in order to accommodate this type of structures for process monitoring 

and prediction proposes (Nomikos & MacGregor, 1995; Westerhuis et al., 1999). 

When the number of variables becomes very large, the monitoring and diagnosis 

procedures can become quite cumbersome and difficult to interpret. Under these 

conditions, if the variables have some natural grouping, like belonging to different 

production sections or product streams, the analysis can be carried out by retaining this 

natural blocking in order to make the interpretation of results easier. For that purpose, 

one may apply multiblock and hierarchical PLS or PCA techniques (MacGregor et al., 

1994; Smilde et al., 2003; Westerhuis et al., 1998). 

3.3.2 Image Analysis 

With the growing availability of inexpensive digital imaging systems (Bharati & 

MacGregor, 1998), new approaches were developed to take advantage of the 

information provided by this particular type of sensors. For instance, one can monitor 

the performance of an industrial boiler by taking successive digital images (RGB) of the 

turbulent flame, and using them to access operation status (Yu & MacGregor, 2004a; 

Yu & MacGregor, 2004b). Even though the images change rapidly, their projection onto 

the latent variable space (using PCA) is quite stable at a given operating condition. 

However, the projections do change significantly if the feed or operating conditions 

suffer modifications. The success of PCA in the extraction of a stable pattern for a given 

operating condition, is compatible with a view of the variation in the RGB intensities 

for all the pixels (usually forming a 256×256 array) as a latent variable process of the 

type (3.4), whose number of latent variables is indeed quite low (the monitoring scheme 

is essentially based on the first two latent variables). This kind of approach is also being 

used for on-line product quality control in the food industry and others where visual 

inspection plays a key role. 
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3.3.3 Multivariate Calibration 

In multivariate calibration, one aims to build a model based on multivariate spectral data 

(X block) and concentrations of the solutions used to produce such spectra (Y block), in 

order to predict what the concentration of the specimens (analytes) will be when new 

samples become available, based only on quick measurements made by a spectrometer, 

and thus avoiding lengthy laboratory analytical procedures. The fact that spectrometer 

data usually follow Beer’s law (the resulting spectrum is a linear combination of the 

pure component chemical spectra, appropriately weighted by their composition), 

provides a strong theoretical motivation for the use of model (3.5), and therefore, both 

PCR and PLS algorithms are extensively used in this context (Estienne et al., 2001; 

Martens & Naes, 1989). 

3.3.4 Soft Sensors 

Soft sensors consist of inferential models that provide on-line estimates for the values of 

interesting properties, based on readily available measurements, such as temperatures, 

pressures and flow rates. This is particularly appealing in situations where the 

equipment required to measure those properties is expensive and difficult to implement 

on-line, but they can also be used in parallel, providing a redundant mechanism to 

monitor the measurement devices performance (Kresta et al., 1994; MacGregor & 

Kourti, 1998).  

3.3.5 Experimental Design 

Experimental design procedures using latent variables, instead of the original ones, can 

reduce the number of experiments needed to cover the whole space of interest. This 

happens because, by moving together groups of variables in the latent variable 

modelling frameworks, the effective number of independent variables becomes greatly 

reduced, while the operation constraints that motivate such groupings are implicitly 

taken into account (Gabrielsson et al., 2002; Wold et al., 1986). 

3.3.6 Quantitative Structure Activity Relationships (QSAR) 

The goal in this field is to relate the structure and physico-chemical properties of the 

compounds (X-block) with their macroscopic functional, biologic or pharmaceutical 

properties, such as carcinogenicity, toxicity, degradability, response to treatment, 

among others (Y-block). The X-block variables may be melting points, densities or 
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parameters derived from the underlying molecular structures. Therefore, the goal here is 

to build simple models relating the two groups of variables for prediction of the biologic 

activity or pharmaceutical properties for a wider set of compounds (whose structure and 

physico-chemical properties are known, i.e., the X-block properties) from the 

knowledge of a limited number of fully characterized representatives (where both 

blocks of variables are known), or to optimize the structure in order to improve, in some 

sense, the activity variables. For instance, it may be required to predict the performance 

of a drug candidate, or just to know which properties regulate the response of the Y-

block variables, so that we can modify compounds or search for others that match the 

required goal (Eriksson et al., 2001). This is another field where latent variable models, 

and in particular PLS, have found great success, given the presence of strong 

relationships among variables belonging to each block and between the two blocks (see 

also Burhnam et al., 1999, and references therein). 

3.3.7 Product Design, Model Inversion and Optimization 

In this context, latent variable models estimated using historical data from a given 

process, where process constraints and operating policies are already implicitly 

incorporated in the data correlation structure, are used to address different tasks. In 

product design, the model is used to find an operating window where a product can be 

manufactured with a desired set of properties (Jaeckle & MacGregor, 2000; MacGregor 

& Kourti, 1998). Such operating windows are derived from a definition of the desired 

quality specifications for the new product and an inversion over the latent variable 

model, from the Y to the X space. The solution thus found will not only comply with 

these properties, but also be compatible with past operating policies (Jaeckle & 

MacGregor, 1998). Such a model can also be used for optimization purposes, in 

particular to find the “best” operating conditions (Yacoub & MacGregor, 2004) and the 

“best” policies for batch process control (Flores-Cerrilo & MacGregor, 2004). 

 

3.4 Wavelet Theory 

3.4.1 Brief Historical Note 

Although distinct roots regarding research lines linked to wavelets can be traced back to 

earlier times, the starting point for their modern developments is usually set in the early 
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80’s, under the efforts pursued by the French geophysicist Jean Morlet, in connection 

with his work on the analysis of echo signals (direct reflections or backscattering) in oil 

prospecting (Hubbard, 1998). Morlet’s empirical approach was brought to the attention 

of theoretical physicist Alex Grossman, who began collaborating with Morlet in the 

interpretation of the good results obtained, publishing the first paper where the word 

“wavelet” appears (Soares, 1997). The French mathematician Yves Meyer quickly 

acknowledged the connections between Morlet and Grossman’s developments and a 

classic result from harmonic analysis (Calderón identity), getting into the field also in 

collaboration with the French mathematician Stéphan Mallat, who later on established 

the connection between the pure mathematical role of wavelets (wavelets series 

expansions) and a class of algorithms already developed in some applied fields, under 

different names, such as multiresolution signal processing from computer vision, 

pyramid algorithms from image processing, subband coding and filter banks from 

signal processing and quadrature mirror filters from digital speech processing (Bruce et 

al., 1996; Burrus et al., 1998; Hubbard, 1998; Rioul & Vetterli, 1991), giving 

mathematical depth to all of them, while providing, at the same time, strong and 

intuitive concepts, such as the notion of approximations and details as projections to 

particular subspaces of ( )2L . Important contributions were also made in this context 

by the Belgian mathematical physicist Ingrid Daubechies, namely in developing a 

family of orthogonal wavelet transforms with compact support, that found wide 

application in many different fields, strongly contributing to the boost of activity in the 

development of multiscale approaches in connection with Mallat’s multiresolution 

decomposition analysis framework. More historical details can be found elsewhere 

(Hubbard, 1998; Meyer & Ryan, 1993; Soares, 1997). 

The list of books dedicated to the subject of wavelet theory is already quite extensive, 

ranging from basic level introductions (Aboufadel & Schlicker, 1999; Burrus et al., 

1998; Chan, 1995; Hubbard, 1998; Walker, 1999), encompassing more thorough 

treatments (Mallat, 1998; Strang & Nguyen, 1997), texts that follow a more 

mathematical-oriented approach (Chui, 1992; Kaiser, 1994; Walter, 1994), applications 

(Chau et al., 2004; Cohen & Ryan, 1995; Motard & Joseph, 1994; Percival & Walden, 

2000; Starck et al., 1998; Vetterli & Kovačević, 1995), and more technically advanced 

presentations (Daubechies, 1992), as well as review articles (Alsberg et al., 1997; Rioul 
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& Vetterli, 1991). Reference is made to these sources for more elaborate discussions 

(see also Reis, 2000 and Soares, 1997, for introductory texts written in Portuguese). 

In the next subsections a brief presentation is provided for the purposes of following 

later sections of this thesis, mainly centred on orthogonal wavelet transforms17 and 

practical implementation issues, along with some motivations regarding the success of 

applying wavelets in data analysis tasks.  

3.4.2 Motivation  

Data acquired from natural phenomena, economic activities or industrial plants, usually 

do present complex patterns with features appearing at different locations and with 

different localizations either in time or frequency (Bakshi, 1999). To illustrate this 

point, let us consider Figure 3.3, where an artificial signal is presented, composed by 

superimposing several deterministic and stochastic features, each one with its own 

characteristic time/frequency pattern. The signal deterministic features consist of a 

ramp, that begins right from the start, a step perturbation at sample 513, a permanent 

oscillatory component, and a spike at observation number 256. The stochastic feature 

consist of additive Gaussian white noise, whose variance increases after sample number 

768. Clearly these events have different time/frequency locations and localizations: for 

instance, the spike is completely localized in the time axis, but fully delocalized in the 

frequency domain; on the other hand, the sinusoidal component is very well localized in 

the frequency domain but spreads over the whole time axis. White noise contains 

contributions from all the frequencies and its energy is uniformly distributed in the 

time/frequency plane, but the linear trend is essentially a low frequency perturbation, 

and its energy is almost entirely concentrated in the lower frequency bands. All these 

patterns appear simultaneously in the signal, and, therefore, one should be able to deal 

with them, without compromising one kind of features over the others. This can only be 

done, however, if we adopt the suitable “mathematical language” for efficiently 

describing data with such multiscale characteristics. 

                                                 

 

17 For information regarding topics involving other types of wavelet basis, such as biorthogonal basis and 

overcomplete expansions, reference is made to the relevant literature (Daubechies, 1992; Kaiser, 1994; 

Mallat, 1998; Vetterli & Kovačević, 1995). 



CHAPTER 3. MATHEMATICAL AND STATISTICAL BACKGROUND 

 57

 

0 100 200 300 400 500 600 700 800 900 1000

   
V

al
ue

   An artificial signal with multiscale features

 

Figure 3.3. An artificial signal containing multiscale features, which results from the sum of a linear 

trend, a sinusoid, a step perturbation, a spike (deterministic features with different frequency localization 

characteristics) and white noise (a stochastic feature whose energy is uniformly distributed in the 

time/frequency plane). 

 

Transforms, like the Fourier transform, provide alternative ways of representing raw 

data (i.e., playing the role of alternative “mathematical languages”), as an expansion of 

basis functions multiplied by the transform coefficients. These coefficients constitute 

the “transform”, and, if the methodology is properly chosen, data analysis becomes 

much more efficient and effective when it is conducted over them, instead of over the 

original raw data. For instance, Fourier transform is the adequate mathematical 

“language” for describing periodic phenomena or smooth signals, since the nature of its 

basis functions allows for compact representations of such trends, meaning that only a 

few coefficients are needed in order to provide a good representation of the signal. The 

same applies, in other contexts, to other classical single-scale linear transforms (Bakshi, 

1999; Kaiser, 1994; Mallat, 1998), such as the one based on the discrete Dirac-δ 

function or the windowed Fourier transform. However, none of these single-scale linear 

transforms are able to cope effectively with the diversity of features present in signals 

such as the one illustrated in Figure 3.3. A proper analysis of this signal, using these 

techniques, would require a large number of coefficients, indicating that they are not 

“adequate” languages for a compact translation of its key features in the transform 

domain. This happens because the form of the time/frequency windows (Mallat, 1998; 

Vetterli & Kovačević, 1995), associated with their basis functions (Figure 3.4), does not 
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change across the time/frequency plane, in order to effectively cover the localized high 

energy zones of the several features present in the signal. 

 

Figure 3.4. Schematic illustration of the time/frequency windows associated with the basis function for 

the following linear transforms: (a) Dirac-δ transform, (b) Fourier transform and (c) windowed Fourier 

transform. 

 

Therefore, in order to cope with such multiscale features, a more flexible tiling of the 

time/frequency space is required, which can be found by adopting wavelets as basis 

functions (Figure 3.5), whose expansion coefficients are called wavelet transform. In 

practice, it is often the case that signals are composed of short duration events of high 

frequency and low frequency events of long duration. This is exactly the kind of tilling 

that a wavelet basis does provide, since the relative frequency bandwidth of these basis 

functions is a constant (i.e., the ratio between a measure of the size of the frequency 

band and the mean frequency,18 ω ω∆ , is constant for each wavelet function), a 

property also referred to as a “constant-Q” scheme (Rioul & Vetterli, 1991). 

                                                 

 

18 The location and localization of the time and frequency bands, for a given basis function, can be 

calculated from the first moment (the mean, a measure of location) and the second centred moment (the 

standard deviation, a measure of localization), of the basis function and its Fourier transform. The 

localization measures define the form of the boxes that tiles the time/frequency plane in Figure 3.4 and 

Figure 3.5. However, the time and frequency widths (i.e., localization) of these boxes do always conform 

to the lower bound provided by the Heisenberg principle ( ˆ( ) ( ) 1 2g gσ σ⋅ ≥ , where ĝ  represents the 

Fourier transform of g; Kaiser, 1994; Mallat, 1998). These boxes are often referred to as “Heisenberg 

boxes”. 

t t t 

ω ω 

a) b) c) 

ω 
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Figure 3.5. Schematic representation of the tiling of the time-frequency plane provided by the wavelet 

basis functions (a), and an illustration of how wavelets divide the frequency domain (b), where we can see 

that they work as bandpass filters. The shape of the windows and frequency bands, for a given wavelet 

function, depend upon the scale index value: for low values of the scale index, the windows have good 

time localizations and cover a long frequency band; windows with high values of the scale index have 

large time coverage with good frequency localization. 

 

Wavelets are a particular type of functions whose location and localization 

characteristics in time/frequency are ruled by two parameters: both the localization in 

this plane and location in the frequency domain are determined by the scale parameter, 

s; the location in the time domain is controlled by the time translation parameter, b. 

Each wavelet, ( ),s b tψ , can be obtained from the so called “mother wavelet”, ( )tψ , 

through a scaling operation (that “stretches” or “compresses” the original function, 

establishing its form), and a translation operation (that controls its positioning in the 

time axis): 

 ( ),
1

s b
t bt

ss
ψ ψ −⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (3.13) 

The shape of the mother wavelet is such that it does have an equal area above and below 

the time axis, which means that, besides having a compact localization in this axis, they 

should also oscillate around it, features from which derives the name of “wavelets” 

(small waves). In the Continuous Wavelet Transform (CWT), scale and translation 

Scale 1 
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Scale 4 
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parameters can vary continuously, leading to a redundant transform19 (a 1D signal is 

being mapped onto a 2D function). Therefore, in order to construct a basis set, it is 

sometimes possible to sample them appropriately, so that the set of wavelet functions 

parameterized by the new indices (scale index, j, and translation or shift index, k) covers 

the time-frequency plane in a non-redundant way. This sampling consists of applying a 

dyadic grid in which b is sampled more frequently for lower values of s, and s grows 

exponentially with the power of 2: 

 

 , , / 2 / 22

2

1 2 1( ) ( )
2 2 2 2j

j

j

j k s b j j j js

b k

t k tt t kψ ψ ψ ψ
=

= ⋅

⎛ ⎞− ⋅ ⎛ ⎞= = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (3.14) 

 

The set of wavelet functions in (3.14) forms a basis for the space of all square integrable 

functions (Kreyszig, 1978), ( )2L R , which are infinite dimensional entities (functions). 

However, in data analysis, we almost always deal with vectors and matrices (data tables, 

images), which are dimensionally finite, but we still can use the above concepts with 

finite dimension entities, as explained in Section 3.4.4. 

3.4.3 Multiresolution Decomposition Analysis 

Working in a hierarchical framework for consistently representing images with different 

levels of resolution, i.e., containing different amounts of information regarding what is 

being portrayed, Stephane Mallat developed the unifying concept of Multiresolution 

Approximation (Mallat, 1989, 1998). A Multiresolution Approximation is a sequence, 

{ }j j
V

∈Z
, of closed subspaces of ( )2L R , with the following 6 properties: 

1. ( ) 2, , ( ) ( 2 ) ;j
j jj k f t V f t k V∀ ∈ ∈ ⇔ − ∈Z      (3.15) 

2. 1, ;j jj V V+∀ ∈ ⊂Z          (3.16) 

                                                 

 

19 The redundancy of CWT is not necessarily undesirable, as it is translation-invariant (a property that is 

not shared by orthogonal wavelet transforms) and the coefficients do not have to be calculated very 

precisely in order to still obtain good reconstructions (Daubechies, 1992; Hubbard, 1998). 
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3. 1, ( ) ( ) ;
2j j
tj f t V f V +∀ ∈ ∈ ⇔ ∈Z        (3.17) 

4. { };0lim ==
+∞

−∞=+∞→ j
j

jj
VV ∩         (3.18) 

5. ( )2lim ;j jj j
V Closure V L

+∞

→−∞ =−∞
= =∪ R        (3.19) 

6. There exists φ  such that ( ){ }k
t kφ

∈
−

Z
 is a Riesz basis of V0.   (3.20) 

The first property states that any translation applied to a function belonging to the 

subspace jV , proportional to its scale ( 2 j ), generates another function still belonging to 

the same subspace. The second one refers that any entity in 1jV +  also belongs to jV , i.e., 

{ }j j
V

∈Z
 is a sequence of nested subspaces: ( )2

1 1j j jV V V L+ −⊂ ⊂ ⊂ ⊂ ⊂ R . In 

practice this means that projections to approximation functions with higher scale indices 

should originate coarser versions of the original function (or a lower resolution, coarser 

version of the original image), whereas projections to the richer approximation spaces, 

with lower scale indices, should result in finer versions of the projected function (or a 

finer version of the original image, i.e., with higher resolution). Property 3 requires that 

any dilation (“stretching”) by a factor of two, applied to a function belonging to 

subspace jV , results in a function belonging to the next coarser subspace 1jV + . However, 

if we keep “stretching” it, in the limit, when j→+∞, this function becomes a constant. 

This means that, in order for this limiting case still belong to ( )2L R , it must coincide 

with the constant zero function, { }0 . This is the only function that belongs to all the 

approximation spaces, from the finest (lower scale indices) to the coarsest (higher scale 

indices), as stated by property 4. We can also conclude from this property that the 

projection to coarser approximation spaces successively originates both coarser and 

residual approximations of the original functions: 

 2lim Pr 0 ( ) lim Pr 0
j jV Vj j

f in L f
→+∞ →+∞

= ⇔ =R  (3.21) 

On the other hand, following from property 5, any function in ( )2L R  can successively 

be better approximated by a sequence of projections onto increasingly finer subspaces, 

i.e.: 
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 2lim Pr ( ) lim Pr 0
j jV Vj j

f f in L R f f
→−∞ →−∞

= ⇔ − =  (3.22) 

The last property concerns the existence of a Riesz basis for the space 0V , that consists 

of the so called scaling function, ( )tφ , along with its integer translations. In what 

follows this basis is an orthonormal one, which, according to properties 1 and 3, means 

that the set { } ( )2
, 2 2

j
j

j k t kφ φ
− −⎧ ⎫

= −⎨ ⎬
⎩ ⎭

 is an orthonormal basis for jV . Therefore, we have 

at this point a well characterized sequence of nested subspaces, with basis functions that 

result from translation/scaling operations applied to the scaling function. 

Let us now introduce a complementary concept to the approximation subspaces: the 

detail subspaces, { }j j
W

∈Z
. As 1jV +  is a proper subspace of jV  ( 1 1,j j j jV V V V+ +⊂ ≠ ), we 

will call to the orthogonal complement of 1jV +  in jV , 1jW + . Therefore, we can write 

1 1j j jV V W
⊥

+ += ⊕ , which means that any function in jV  can univocally be given by a sum 

of elements belonging to the approximation space 1jV +  and to the detail space 1jW + . 

These elements are just the projections onto these subspaces. As 1j jV V −⊂ , we can also 

state that 1 1 1j j j j j jV V W V W W
⊥ ⊥ ⊥

− + += ⊕ = ⊕ ⊕ . This means that, if we have a function, a 

signal or an image belonging to 0V , 0f , we can represent it as a projection into the 

approximation level at scale j, jf , plus all the details relative to the scales in between 

({ } 1, ,i i j
w

= … ), since 

 0 2 1j jV V W W W
⊥ ⊥ ⊥ ⊥

= ⊕ ⊕ ⊕ ⊕  (3.23) 

In terms of projection operations: 

 
1

0 0 0 0
1

Pr Pr
j i

j

j i V W
i i j

f f w f f f
= =

= + ⇔ = +∑ ∑  (3.24) 

It can be shown that an orthonormal basis for the details space jW  can be given by the 

set of wavelet functions, { },j k k
ψ

∈Z
. These basis sets (for different scales) are mutually 

orthogonal, as they span orthogonal subspaces of ( )2L R . By extending decomposition 

(3.23) in order to incorporate all the scales, and considering properties 4 and 5, we can 
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conclude that ( )2
i

i
L W

+∞

=−∞

⊥=⊕R , meaning that the wavelets functions with the discrete 

parameterization do indeed form a basis of this space. The projections, jf  and 

{ } 1, ,i i j
w

= …  in (3.24), can adequately be written in terms of the linear combination of 

basis functions (3.25) multiplied by the expansion coefficients, calculated as inner 

products of the signal and basis functions (3.26):  

• Approximation coefficients: ( )j
ka k∈Z ; 

• Details coefficients: ( 1, , ; )i
kd i j k= ∈… Z . 

These are usually referred to as the (discrete) wavelet transform or wavelet coefficients: 

 0 , ,
1

j
j i

k j k k i k
k i k

f a dφ ψ
=

= +∑ ∑∑  (3.25) 

where 

 , ,, , ,j i
k j j k k j i ka f d fφ ψ= =  (3.26) 

Still within the scope of the multiresolution approximation framework, Mallat (1989) 

proposed a very efficient recursive scheme for the computation of wavelet coefficients, 

equations (3.27) and (3.28), as well as for signal reconstruction, equation (3.29), that 

basically consists of implementing a pyramidal algorithm, based upon convolution with 

quadrature mirror filters, a well known technique in the engineering discrete signal 

processing community: 

• Signal analysis or decomposition 

 1
2

j j
k n k n

n
a h a+

−= ⋅∑  (3.27) 

 1
2

j j
k n k n

n
d g a+

−= ⋅∑  (3.28) 

• Signal synthesis or reconstruction 

 1 1
2 2

j j j
k k n n k n n

n n
a h a g d+ +

− −= ⋅ + ⋅∑ ∑  (3.29) 
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where { }i i
h

∈Z  and { }i i
g

∈Z  are the low-pass and high-pass filter coefficients, 

respectively, whose values are intimately connected (Aboufadel & Schlicker, 1999; 

Daubechies, 1992; Mallat, 1998; Strang & Nguyen, 1997). 

The recursive nature of the computation scheme underlying equations (3.27)-(3.29) is 

illustrated in Figure 3.6 (for the analysis or decomposition algorithm) and Figure 3.7 

(for the synthesis or reconstruction algorithm). 

 

Figure 3.6. Schematic representation of recursive scheme for the computation of wavelet coefficients 

(analysis algorithm). It is equivalent to performing convolution with an analysis filter followed by dyadic 

downsampling. 

 

Figure 3.7. Schematic representation of recursive scheme for reconstruction of the signal from the 

wavelet coefficients (synthesis algorithm). Each stage consists of an upsampling operation followed by 

convolution with the synthesis filter and adding of outputs. 

 

The above operations can also be formulated in matrix terms, where the analysis and 

synthesis procedures are the result of applying certain transformation matrices to raw 

data or wavelet coefficients, respectively (Bakshi, 1998; Reis, 2000; Yoon & 

MacGregor, 2004). For instance, the analysis process can be represented by: 

j
ka  

1j
ka +  2j

ka +  j N
ka +  

1j
kd +  2j

kd +  j N
kd +  

( )  

(3.27) (3.27) (3.27) 

(3.28) (3.28) (3.28) 

j N
ka +  2j

ka +  1j
ka +  j

ka  

j N
kd +  2j

kd +  1j
kd +  

( )  
(3.29) (3.29) (3.29) 
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 AY W X=  (3.30) 

where 

 [ ]0

1 1

AWY

J J
X

J J

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

a H
d G

a

d G

 (3.31) 

with ja  and jd  ( )2 1jn ×  being vectors of wavelet coefficients ( j  is the scale index, 

1:j J= ), jH  and jG  ( )2 jn n×  matrices of coefficients entirely defined by the 

wavelet filter coefficients, { }i i
h

∈Z  and { }i i
g

∈Z , and 0a  the original raw signal, under the 

form of a ( )1n×  vector. 

For an orthogonal wavelet transform, the analysis matrix, AW , is orthogonal (unitary, in 

the more general, complex case), which means that the synthesis matrix, SW , which is 

such that  

 Sf W Y=  (3.32) 

can be simply defined by the transpose (real case): T
S AW W=  (in the complex case, the 

hermitian transpose should be used instead, i.e., T
S AW W= , where W  is the complex 

conjugate of W ; the presentation that follows is centred around the real case, as this is 

the one encountered in most of the applications found in Chemical Engineering). Thus, 

 1
T T T

S J JW ⎡ ⎤= ⎣ ⎦H G G  (3.33) 

from which follows that 

 

1

1

1

1 1

J J

J

JT T T
S A J J

T T T
J J J J

wf w

X W W X

X X X

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= = =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

= + + +

H
G

H G G
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 (3.34) 
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where Jf , Jw  and 1w  are ( )1n×  vectors, representing the contribution for X  arising 

from the projection to the approximation space JV  and from the projections to the detail 

spaces at different scales { }
1:j j J

W
=

. 

As an illustration, we can decompose the signal in Figure 3.3, that contains 102  points at 

scale 0j = , into a coarser, lower resolution version at scale 5j =  with 52  

approximation coefficients appearing in the expansion (
52 1 5

5 5,0 k kk
f a φ−

=
=∑ ) plus all the 

detail signals from scale 1j =  (with 92  detail coefficients, 
92 1 1

1 1,0 k kk
w d ψ−

=
=∑ ) until scale 

5j =  (with 52  detail coefficients, 
52 1 1

5 5,0 k kk
w d ψ−

=
=∑ ). The total number of wavelet 

coefficients is equal to the cardinality of the original signal, thus no information is 

“created” or “disregarded”, but simply transformed ( 10 5 5 6 92 2 2 2 2= + + + + ). The 

projections onto the approximation and detail spaces are presented in Figure 13.7, 

where we can see that the deterministic and stochastic features appear quite clearly 

separated, according to their time/frequency location and localization: coarser 

deterministic features (ramp and step perturbation) appear in the coarser version of the 

signal (containing the lower frequency contributions), the sinusoid is captured in the 

detail at scale 5j = , noise features appear quite clearly at high frequency bands (details 

for 1, 2j = ), where the increase of variance is noticeable, as well as the spike at 

observation 256 (another high frequency perturbation.) This illustrates the ability of 

wavelet transforms to separate deterministic and stochastic contributions present in a 

signal, according to their time/frequency locations. 
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Figure 3.8. The signal in Figure 3.3 decomposed into its coarser version at scale 5j =  plus all the details 

lost across the scales ranging from 1j =  to 5j = . The filter used here is the Daubechies’s compactly 

supported filter with 3 vanishing moments.20 

 

3.4.4 Practical Issues on the Use of Wavelet Transforms 

In practice, for finite dimensional elements (data arrays), it is usually assumed that the 

available data is already the projection onto space 0V  (Bakshi, 1998), 0f , and the 

computation of the wavelet coefficients proceeds through Mallat’s efficient recursive 

                                                 

 

20 A wavelet has p vanishing moments if ( ) 0kt t dtψ
+∞

−∞
=∫  for 0 k p≤ < . This is an important property in 

the fields of signal and image compression, since it can induce a higher number of low magnitude detail 

coefficients, if the signal does have local regularity characteristics. 

92 1 1
1 1,0 k kk

w d ψ−

=
= ∑

82 1 2
2 2,0 k kk

w d ψ−

=
= ∑
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w d ψ−

=
=∑
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w d ψ−

=
= ∑
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analysis algorithm given by equations (3.27)-(3.28). More elaborate initialization 

strategies are discussed elsewhere (Daubechies, 1992; Mallat, 1998; Strang & Nguyen, 

1997). Therefore, we essentially apply the analysis and reconstruction quadrature mirror 

filters associated to a given wavelet, without using any wavelet function explicitly. In 

fact, very often wavelets do not even have a closed formula in the time domain, even 

though they can be plotted as accurately as required, by iterating over such filters 

(Strang & Nguyen, 1997). 

When transforming finite length signals using filters other than the Haar filter or a 

family of boundary corrected wavelet filters (Depczynsky et al., 1999; Mallat, 1998), 

one has to deal with the boundary problem issue, derived from the lack of data for 

applying the filters near the signal boundaries. Therefore, the signal should be somehow 

expanded, and several strategies are available for doing such, as for instance: “zero-

padding” (extend by adding zeros), “wraparound” (extend by periodicity), symmetric 

extension (extend by reflection) (Strang & Nguyen, 1997), linear padding (Trygg et al., 

2001; Trygg & Wold, 1998) and level padding (Teppola & Minkkinen, 2000). Trygg et 

al. (2001) proposed a different approach, that does not require extending the original 

signal (with the subsequent increase in computation load), called the “set-aside” 

approach, which consists of setting aside the last low-pass coefficient, adding it to the 

details coefficients vector of that scale, whenever the signal at this scale is not of even 

length. This strategy allows the computations to pursue to higher scales, as the vector 

with the remaining low-pass filters has now even length. 

Another issue always present is the choice of the wavelet filter. Teppola & Minkkinen 

(2001) used the Symmlet-10 wavelet in their work, and referred, as a rule of thumb, that 

“smooth wavelet functions should be used with smooth data”. Trygg et al. (2001) 

referred another rule of thumb, according to which one should “selected a wavelet with 

more vanishing moments than twice the polynomial order of the interesting signal to 

analyze”. Staszewski (1998) points out that the selection procedure is usually a trade-off 

between smoothness (differentiability) and compact support of the wavelet. In general 

terms, the author refers that “ (…) more compactly supported, and therefore less smooth 

wavelet functions, are better for non-stationary data with discontinuities, impulses or 

transients. (…) Less compactly supported, and therefore more smooth wavelet 

functions, are better for stationary, regular data or in cases where low level of 

compression error is required. (…) For regular, smooth, stationary data, more 
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vanishing moments lead to smaller wavelet coefficients. However, for non-stationary, 

[irregular] data more vanishing moments lead to more large wavelet coefficients.” 

Trygg & Wold (1998) used the Daubechies wavelet with four vanishing moments 

because of its relatively short filter length (which means less computational load, as the 

overall number of calculations is roughly proportional to 2 C K⋅ ⋅ , where C is the 

number of coefficients in the filter and K the signal length; for more details on the 

quantification of computational load see Vogt & Tacke, 2001), and because other 

smoother wavelets, like the Symmlet-8 (Symmlet with eight vanishing moments), 

provided similar results. Teppola & Minkkinen (2000), on the other hand, used 

Symmlets-10 instead of wavelets from the Daubechies family, because the former are 

more symmetric, enabling better interpretation of the resulting coefficients. Alsberg et 

al. (1998) used the Symmlet-8, as it has a suitable shape for the kind of peaks founded 

on the spectra under analysis (infrared spectra), considering as “unsuitable” those 

wavelet forms that require more scales to be included in the reconstruction in order to 

achieve a similar performance. 

Alsberg (2000) applied an optimal compression-related criterion to the mean spectrum 

of the data set, and identified the Symmlet-9 wavelet as the one that resulted in best 

performance. Pasti et al. (1999) also presented a systematic approach for selecting both 

the best wavelet filter and depth of decomposition for signal de-noising in the wavelet 

domain, using a cross-validation procedure. 

The design of the wavelet filter can also be oriented towards the optimization of its 

predictive performance in wavelet regression applications (Coelho et al., 2003; Galvão 

et al., 2004). 
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Part IV-A 

Single-Scale Data Analysis 
 

 

 

 

So, a result without reliability (uncertainty) statement cannot be published 

or communicated because it is not (yet) a result. I am appealing to my 

colleagues of all analytical journals not to accept papers anymore which 

do not respect this simple logic. 

P. de Bièvre , Accredit. Qual. Assur. (Editorial), 2 (1997) 269 
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Chapter 4. Generalized 

Multiresolution Decomposition 

Frameworks 

Multiresolution decomposition (MRD) frameworks are instrumental when one needs to 

focus data analysis at a particular scale, or to separate the several contributions to the 

overall phenomenon, arising from different scales either in time or length. However, its 

implementation with real world industrial data does not constitute always a 

straightforward procedure, namely in situations where a fraction of data is missing 

(either at random, or when variables have different acquisition rates, i.e., multirate data). 

Furthermore, the wavelet-based MRD frameworks do not integrate explicitly 

measurement uncertainty information in their calculations, therefore leaving aside a 

piece of information that might be relevant for the posterior analysis goals, and that 

furthermore is becoming increasingly available for a wide range of measurement 

devices, following the recent developments on measurement methods and metrology, as 

well as the increasing enforcement driven by standardization organizations.21 

                                                 

 

21 See e.g. resolution number 21 of CEN Technical Board in 2003, that resolves following the suggestions 

made by working group CEN/BT WG 122 “Uncertainty of Measurement”, laid down in report BT N 

6831. 
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Therefore, it is desirable to develop MRD strategies that could still be easily 

implemented under sparse data structures contexts, and that are able to integrate 

uncertainty information in order to make it available at each scale, allowing one to 

explore its potential in subsequent tasks. This research effort is also aligned with the 

current trend of “up-dating” classical data analysis approaches, formerly strictly based 

only upon raw data, to their uncertainty-based counterparts (Section 3.2). 

In this chapter, we address the development of multiresolution decomposition 

methodologies that are able to cope with difficult data/uncertainty structures, often met 

in industrial practice, like missing data and heteroscedastic uncertainties. Furthermore, 

guidelines are provided regarding an adequate use of the proposed methodologies and 

several examples, from simulated situations to real world, industrial and laboratorial 

case studies, are used to illustrate their operation and practical utility under several 

application contexts, with rather different goals, such as scale selection and signal de-

noising. 

 

4.1 Uncertainty-Based MRD Frameworks 

For the present purposes, a “multiresolution decomposition framework” is considered to 

be an algorithm developed in order to provide expansion coefficients of the type 

obtained with the wavelet decomposition procedure (see Section 3.4.3), that contain 

localized information in a certain region of the time/scale plane. For the classical 

situation, where no data is missing and uncertainty information is not explicitly 

considered, it reduces itself to the wavelet transform, where the basis functions of the 

expansion have well defined properties, established by design, and for which there is 

available a very efficient algorithm for computing the coefficients, as well as for 

reconstructing the signal back into the original domain (Mallat, 1989, 1998). However, 

this classical procedure can not be straightforwardly applied in less conventional 

situations, like those with missing data, something that occurs quite often in industrial 

scenarios, and, furthermore, does not explicitly take into account data uncertainties, 

when these are available. 

Therefore, in the next subsections, three categories of methodologies are presented, 

devoted to situations with missing data and homoscedastic (constant) or heteroscedastic 

(varying) uncertainties (Method 1 and Method 2), and to situations where there is no 
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missing data and uncertainties can be either homoscedastic or heteroscedastic (Method 

3). These are referred to as “generalized” (Haar) MRD frameworks, as they reduce to 

this particular type of wavelet transform in the case of homoscedastic noise whose 

uncertainty is known a priori, without missing data, but are also able to handle the more 

complex situations where one or both of these complicating features do arise.22 

4.1.1 Method 1: Adjusting Filter Weights According to Data 

Uncertainties 

The Haar wavelet transform, perhaps the simplest and one of the most well known 

among the wavelet transforms, attributes a very clear meaning to its coefficients: 

approximation coefficients are averages over non-overlapping blocks of two successive 

elements, and detail coefficients correspond to the difference between this average and 

the first element of the block.23 Cascading this procedure across the successive sets of 

approximation coefficients thus obtained, results in the Haar wavelet transform, which 

can be written simply as: 

 
( )
( )

1
12 2

1
2 2 2

j j j
k kk k

j j j
kk k k

a C a a

d C a a

+
+⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

+
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= ⋅ +

= ⋅ −
 (4.1) 

where  

 2 2 2kC⎡ ⎤⎢ ⎥
=  (4.2) 

with j
ka  and j

kd  being the approximation and detail coefficients relative to the scale 

indexed by j  and shift indexed by k , respectively, and x⎡ ⎤⎢ ⎥  the smallest integer n x≥ . 

Such a computation procedure gives equal weight to both values participating in the 

calculation of the average (coarser approximation coefficient). However, in case there is 

uncertainty information available, regarding data under analysis, the averaging process 

                                                 

 

22 The third methodology (Method 3), in fact, does not concern only the Haar transform, but any 

orthogonal wavelet transform. 

23 The averages and differences are scaled by a factor of 1 2 , in order to preserve the signal’s energy 

after transformation (Parseval relation; Kreyszig, 1978; Mallat, 1998). 
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can be modified in order to increase the weight given to the datum with less 

uncertainty, in the calculation of the coarser approximation coefficient. This can be 

achieved by using different and properly chosen averaging coefficients, to be applied to 

each datum, referred as 1,1
2

j
kC +
⎡ ⎤⎢ ⎥

 and 1,2
2

j
kC +
⎡ ⎤⎢ ⎥

, in order to reflect their varying nature along 

the scale and shift indices: 

 

 1 1,1 1,2
12 2 2

j j j j j
k kk k ka C a C a+ + +

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
= ⋅ + ⋅  (4.3) 

 

Adequate weights can be set by adopting the MVUE (minimum variance unbiased 

estimator) equations for the (common) average, that define the following averaging 

coefficients, associated to each datum (Guimarães & Cabral, 1997; Montgomery & 

Runger, 1999):  
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 (4.4) 

 1,2 1,1
2 21j j

k kC C+ +
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

= −  (4.5) 

 

where ( )u x  represents the uncertainty associated with x . Detail coefficients are 

computed through: 

 

 ( ) ( )1 1,1 1 1,2 1
12 2 2 2 2

j j j j j j j
k kk k k k kd C a a C a a+ + + + +

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
= ⋅ − = ⋅ −  (4.6) 

 

where we can see that these coefficients are such that the equality preserves some 

resemblance relatively to the Haar case, namely regarding the terms inside brackets (i.e., 

the only difference in equation (4.6), with regard to the Haar case, relies on the varying 

coefficients and the scaling factor). 

Data uncertainty associated with the approximation coefficients at scale j should also be 

propagated to the approximation and detail coefficients computed at the next coarser 
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scale, j+1, to allow for the specification of uncertainties associated with the coefficients 

computed at these scales, therefore enabling the averaging procedure to continue. This 

can be done by applying the general law of propagation of uncertainties to the present 

situation (ISO, 1993; Lira, 2002): 

 

 ( ) ( ) ( ) ( ) ( )2 22 21 1,1 1,2
12 2 2

j j j j j
k kk k ku a C u a C u a+ + +

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
= ⋅ + ⋅  (4.7) 

 ( ) ( ) ( ) ( ) ( )( )2 2 2 21 1,1 1,1
12 2 22j j j j j j

k k kk k ku d C u a u a C u a+ + +
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= ⋅ + − ⋅ ⋅  (4.8) 

 

where it is assumed that errors affecting two successive observations are statistically 

independent from each other, although more complex error structures can also be 

considered under this framework. By conducting a multiresolution decomposition, using 

this procedure, more weight is given to the values with less associated uncertainties 

during the calculation of the approximation coefficients. In the limit, if a datum at scale 

j has a very high uncertainty associated with it, then this value will not contribute 

significantly to the calculation of the next approximation coefficient at scale j+1, and 

the correspondent detail coefficient will also have a very low magnitude, in agreement 

with the intuitive reasoning that, in fact, very little detail is lost in the replacement of the 

two values by their uncertainty-based weighted average (4.4), when one of them is not 

reliable at all. 

Extending this reasoning even further, we can verify that this computation scheme 

offers an easy and coherent way to integrate missing data in the analysis, as a missing 

datum can be considered to be any finite number with an infinite uncertainty associated 

with it, which effectively removes it from equations (4.3)-(4.8). In this situation, the 

coarser approximation coefficient assumes the same value as the non-missing datum 

and the coarser detail coefficient is zero. Therefore, there is no need for any additional 

formal modification of Method 1, in order to accommodate for the presence of missing 

data. 

When no missing data are present, and the uncertainties are homoscedastic, this 

multiresolution decomposition framework provides the same results as the Haar 

transform (up to a scaling factor of 22 j , for the coefficients at scale j ). 
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4.1.2 Method 2: Use Haar Wavelet Filter, Accommodate Missing 

Data and Propagate Data Uncertainties to Coarser 

Coefficients 

In this second approach for incorporating data uncertainties in MRD, the averaging and 

differencing coefficients are kept constant and equal to the ones suggested by the Haar 

wavelet transform filters.  

When there are no missing data, the uncertainties of the finer approximation coefficients 

are propagated to the coarser approximation and detail coefficients, using the law of 

propagation of uncertainties: 

 

 ( ) ( ) ( ) ( ) ( ) ( )2 22 21 1
12 2 2 2 2 2j j j j

k kk ku a u d u a u a+ +
+⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

= = ⋅ + ⋅  (4.9) 

 

where, as before, serial statistical independency is assumed for the errors. If there are 

missing data, we calculate the next coarser coefficients by successively applying the 

following rules to each new pair of approximation coefficients at scale j, { }1,j j
k ka a + : 

Table 4.1. Uncertainty-based MRD frameworks: table of rules for Method 2. 

• Rule 1. No missing data ⇒ use Haar and calculate uncertainties through (4.9); 

• Rule 2. { } ( ) ( )1 1
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From the rules above we can see that, when there are no missing data, the procedure 

consists of applying the Haar wavelet with uncertainty propagation. But, when we have 

some missing data, it can also happen that it remains missing at coarser scales (Rule 4). 
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This fact is instrumental for analysing the information content at different scales, as 

described in the scale selection methodology referred further ahead (Section 4.4). 

4.1.3 Method 3: Use Any Orthogonal Wavelet Filter and Propagate 

Data Uncertainties to Coarser Coefficients 

Although noise is almost always present in industrial data sets, missing data is not 

always an issue. Therefore, for those situations where complete data sets are available, 

we would like to explore the benefits of using wavelet filter coefficients that were 

designed in some optimal sense, so that their good multiscale decomposition properties 

can be brought to the analysis. However, data uncertainties, if known, should also be 

incorporated as a way to allocate the available knowledge regarding raw data 

uncertainty to the approximation and detail coefficients computed. There is a situation 

where this task is particularly simple, that occurs when the uncertainties across the 

observations of each variable are homoscedastic and noise realizations are independent. 

In this case, it can be shown that all the approximation and detail coefficients at coarser 

scales have the same uncertainty as raw data at the finest scale (Jansen, 2001; Mallat, 

1998). This can easily be checked by analysing equation (4.9) for the case of the Haar 

wavelet, but still holds for any other orthogonal wavelet family, as a consequence of the 

following theorem: 

Theorem 4.1. For zero mean i.i.d. noise and orthogonal wavelet transforms (with the 

necessary boundary corrections), the covariance of noise affecting wavelet coefficients 

is the same as the covariance of the noise affecting raw data. 

Proof. Consider the following ( )1n×  vector of noisy observations, y , of the true signal, 

x , corrupted with noise, ε , both being also ( )1n×  vectors: 

 y x ε= +  (4.10) 

Applying the wavelet transformation corresponds to pre-multiplying these vectors by 

the transform matrix, AW , leading to:  

 ( )
y x

A A A A AW y W x W y W x W y x
ε

ε ε ε= + ⇔ = + ⇔ = +  (4.11) 

The covariance of the noise affecting the wavelet coefficients, ε , is given by: 
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 ( ) ( ) ( )( ){ } { } ( )cov cov covT T T T
A A A A A A AW E W W W E W W Wε ε ε ε εε ε= = = =  (4.12) 

(note that A AW Wε εµ µ= = =0 0 ). As the noise is i.i.d., ( )cov nε σ= I , and noting that 

the wavelet transform matrix is unitary for orthogonal wavelet transforms, i.e., 
T T

A A A A nW W W W= = I , it follows that: 

 ( ) ( )cov covT
A A nW Wε σ σ ε= = =I  (4.13) 

■ 

For heteroscedastic situations, the law of propagation of uncertainties should be applied 

in order to calculate the uncertainties associated with the coefficients at coarser scales. 

When implemented with the Haar filter, this method coincides with Method 2 for 

situations with no missing data, but, as opposed to Method 2, it also holds for other 

wavelet filters as well. 

 

4.2 Guidelines on the Use of Generalized MRD 

Frameworks 

Method 1, on one hand, and Methods 2 and 3, on the other, differ deeply on how they 

implement the incorporation of uncertainty information in their respective MRD 

frameworks. In this section we provide a general guideline about which type of 

approach to use and when. We introduce it through an illustrative example, which helps 

to clarify the underlying reasoning.  

Let us consider an artificial, piecewise constant signal, where values are held constant in 

windows of 42 16=  successive values (Figure 4.1-a), to which proportional noise with 

uncertainties assumedly known is added. Using the noisy signal (Figure 4.1-b) it is 

possible to compute its approximations at coarser scales ( 1,2,...j = ), according to the 

two types of approaches (Method 1 and Methods 2-3), and then to see which method 

performs better in the task of approximating the true signal when projected at the same 

scale, say j. The performance index used here is the mean square error between the 

approximation at scale j, calculated for the noisy signal and that for the true signal, 

MSE(j). Figure 4.1-c summarizes the results obtained for 100 of such simulations. 
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Figure 4.1. Illustrative example used for introducing a guideline regarding selection of the type of 

generalized MRD framework to adopt: (a) true signal used in the simulation; (b) a realization of the noisy 

signal and (c) box plots for the difference in MSE at each scale (j) obtained for the two types of methods, 

i.e. Method 1 (M1) and Methods 2-3 (M2,3), over 100 simulations. 

 

These results illustrate a general guideline, according to which, from the strict point of 

view of the approximation ability at coarser scales, Method 1 is more adequate then 

Methods 2-3 for constant signals and for piecewise constant signals until we reach the 

scale where the true values begin to vary from (coarser) observation to (coarser) 

observation, i.e., after which the piecewise constant behaviour stops. As the original 

signal has constant values along windows of 16 values, the piecewise constant pattern 

breaks down after scale 4j = . 

This occurs because Method 1 is based on the MVUE estimator of an underlying 

constant (or common) mean for two successive values, therefore leading to improved 

results when this assumption holds, at least approximately, as happens in the case of 

piecewise constant signals, being overtaken by the second type of methods (Methods 2-

3) when such an assumption is no longer valid. 

 

a) 

b) 

c) 
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4.3 Uncertainty-Based De-Noising 

In this section and the next one, two tasks where the generalized MRD frameworks can 

be used, with advantage over their classical counterparts, are addressed: uncertainty-

based de-noising (this section) and “scale selection” (next section). 

As already referred in Section 2.1, wavelets found great success in the task of “cleaning 

signals” from undesirable components of stochastic nature, often called in a general 

sense as “noise”. If we are in such a position that we know the main noise features, 

namely measurement uncertainties, then we can use this additional piece of information 

to come up with simple but effective de-noising schemes. As an illustration, we will 

consider a smoothed version of a NIR spectrum as the “true” signal, to which 

heteroscedastic proportional noise was added. The standard de-noising procedure was 

then applied to the noisy signal, according to the following sequence of steps: 

1. Decomposition of the signal into its wavelet coefficients; 

2. Application of a thresholding technique to the calculated coefficients; 

3. Reconstruction of the signal using the coefficients processed in stage 2. 

This general procedure was tested with a classical implementation of the Haar wavelet 

transformation, using the threshold suggested by Donoho and Johnstone (1992), 

ˆ 2 ln( )T Nσ= , where σ̂  is a robust estimator of noise (constant) standard deviation, 

along with a “Translation Invariant” extension of it, based on Coifman’s “Cycle 

Spinning” concept (Coifman and Donoho, 1995):  

“Average[Shift – De-noise – Unshift]” 

 where all possible shifts were used. We will call this alternative as “TI Haar”. 

These methods are to be compared with their counterpart procedures, that have the 

advantage of using available uncertainty information, referred as “Haar+uncertainty 

propagation” (i.e., Methods 2 or 3, because they coincide when there is no missing 

data), and “TI Haar+uncertainty propagation” (only 10 rotations were used for this 

methodology). 

For all of the alternatives we used the same wavelet (Haar), threshold constant 

( 2 ln( )N ) and thresholding policy (“Hard Threshold”). Figure 4.2 presents the results 

obtained regarding MSE scores of the reconstructed signal (scale 0j = ), relatively to 
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the true one, obtained after 100 realizations of additive noise. A clear improvement in 

MSE is found for the uncertainty-based methods. Figure 4.3 illustrates the de-noising 

effect for one of such realizations, where the more effective de-noising action provided 

by the uncertainty-based methods can be seen graphically. The smoothing action, due to 

the averaging scheme over several shifts, enhances the discontinuous nature of the de-

noised signal obtained with the Haar wavelet filter. 
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Figure 4.2. De-noising results associated with the four alternative methodologies (“Haar”, “TI Haar”, 

“Haar+uncertainty propagation” and “TI Haar+uncertainty propagation”), for 100 noise realizations. 
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Figure 4.3. Examples of de-noising using the four methods referred in the text (“Haar”, “TI Haar”, 

“Haar+uncertainty propagation” and “TI Haar+uncertainty propagation” ), for a realization of additive 

heteroscedastic proportional noise. 
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4.4 Scale Selection for Data Analysis 

When dealing with industrial databases, where hundreds of variables from different 

points in the plant are being collected, together with product quality variables obtained 

from the laboratory, it often happens that data sets containing information from all these 

sources turn out to be quite sparse. This means that they have a lot of “holes”, due to 

variables having different acquisition rates and/or arising from missing data randomly 

scattered throughout records for each variable, owing to process, instrumentation, 

communications or data storage related problems. Any efforts directed towards 

conducting a data analysis task at a very fine time scale (e.g. of minutes), may therefore 

become useless, for instance, when most of the variables are collected at a coarser time 

scale (e.g. hours). It would therefore be very appealing, from a practical point of view, 

to have at our disposal a tool that could suggest what is the finest time scale at which 

data analysis can be carried out, leaving up to the analyst a final decision about which 

coarser scale to be in fact adopted. 

Method 2 is able to cope both with missing data and data uncertainty, and therefore 

provides a MRD framework that is instrumental in deciding about a minimum scale for 

analysis on the basis of either the amount of missing data present or on the uncertainty 

information available, or even both. After introducing the general methodologies for 

scale selection in the next subsections (Sections 4.4.1–4.4.3), a real case study is 

presented, where the proposed approach is applied in on order to select an appropriate 

scale for conducting data analysis, considering only the presence of missing data 

(Section 4.4.4), and then another case study is also presented, where the decision is 

made based upon available uncertainty information (Section 4.4.5). 

4.4.1 Scale Selection Based on Missing Data 

The four rules underlying implementation of a MRD framework according to Method 2 

(Section 4.1.2) lead to detail and approximation coefficients that can also contain 

missing data. Let us now define the “reconstruction” procedure that, starting from the 

coarser approximation coefficients, and using the sets of finer detail coefficients, 

successively “reconstructs” the finer approximation signals for all the scales below the 

coarser one, based upon the following pair of rules: 
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Table 4.2. Rules to be adopted during the reconstruction procedure for the generalized MRD framework 

(Method 2), within the scope of scale selection. 

• Rule 1. No value missing ⇒  use Haar reconstruction procedure; 

• Rule 2. { }1 1
2 2,j j

k ka d+ +
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

 missing ⇒  missing, missing.j j
k ka d= =  

 

By using this “reconstruction” procedure, we come up with a succession of 

“reconstructed” approximation signals for all scales, which differ from the ones that 

were obtained during the decomposition phase in the presence of missing data. This 

happens because when one datum was missing, the decomposition procedure applied 

rules 2 and 3, introducing a non-missing datum for the coarser approximation 

coefficient and a zero in the coarser detail coefficient. Then, during the “reconstruction” 

phase, rule 1 results in two equal non-missing values, where originally we had only one. 

Therefore, when there is missing data, the “reconstruction” process “creates” more data 

(or energy) through a scheme closely related to wavelet interpolation.24 It is this 

increase in the energy of the approximation signals at the finest scales, when missing 

data is present (energy is here defined as the sum of the squares of non-missing values), 

that allows one to quickly diagnose the scale up to which missing data do play a 

significant role (interfering with the reconstruction phase), and after which such a 

behaviour is attenuated. 

By plotting the energy of the approximation signals at all scales obtained in the 

decomposition procedure, and that for their counterparts obtained after the 

“reconstruction” stage, along with their difference, to better extract the point where 

their behaviour stops diverging significantly, a minimum scale to be considered for 

conducting data analysis can usually be quickly suggested. 

                                                 

 

24 This is why the term “reconstruction” is kept between quotation marks, as this scheme does not only 

reconstruct but also interpolates in the presence of missing data. 
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4.4.2 Scale Selection Based on Data Uncertainties 

Excessive noise may also hinder the analysis at finer scales, because any fine structure 

that might be present is almost completely immersed under the superimposed 

unstructured noise component. Basically this means that the true signal’s and noise’s 

spectra not only overlap in the higher frequency ranges, but also that the magnitude of 

the power spectrum for the noise source is sufficiently high in these frequency ranges, 

so that it disturbs the extraction of accurate frequency information contained in these 

bands for the true underlying signal.  

Therefore, such frequency bands do not convey useful information about the underlying 

true signal, and should not be used for data analysis. A simple way for identifying 

uninformative frequency bands consists of applying an uncertainty-based coefficient 

thresholding methodology, similar to the one presented in Section 4.3, and check 

whether there is any scale where the detail coefficients are massively thresholded (note 

that detail coefficients, for a given scale, contain localized information regarding 

frequency bands, Alsberg et al., 1997). MRD following Method 3, that incorporates 

uncertainty propagation, is adopted for this purpose, and a plot of the energy associated 

with the original detail coefficients and that for the thresholded ones (or for the 

difference between them), as well as an additional plot of the percentage of the original 

energy in that scale that is eliminated by the thresholding operation, will highlight those 

scales dominated by noise, and therefore not meaningful for performing data analysis. 

4.4.3 Scale Selection Based on Missing Data and Data 

Uncertainties 

The suggested procedure for supporting scale selection considering both missing data 

and data uncertainty results from applying, simultaneously, the two methodologies just 

presented. Thus, it consists of decomposing data using Method 2, after which 

thresholding is applied to non-missing detail coefficients. The simultaneous analysis of 

the plots relative to the (differential) distribution of energy contained in the detail 

coefficients (thresholded according to data uncertainty information) and approximation 

coefficients (that consider the presence of missing data), as described in Sections 4.4.1–

4.4.2, provides the information required to support a decision that considers both 

missing data as well as data uncertainty. 
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4.4.4 Case study 1: Scale selection in the Context of Data 

Analysis Regarding a Pulp and Paper Data Set 

A subgroup of nine key quality variables, relative to the pulp produced in an integrated 

pulp and paper Portuguese mill (Portucel, SA), related to paper structure, strength and 

optical properties, was collected during four and a half years. These data are to be 

analysed in order to identify any relevant variation patterns along time, as well as 

process upsets and disturbances, so that potential root causes can be found and 

analyzed, leading to process improvement in future operation. 

The associated uncertainties were initially estimated using a priori knowledge available, 

regarding measurement devices and the number of significant digits employed in the 

records (following a Type B procedure for evaluating measurement uncertainty, and 

assuming constant distributions in ranges defined by the last significant digit; ISO, 

1993). However, this approach usually tends to provide rather optimistic estimates for 

uncertainty figures in industrial settings, since additional noise sources come into the 

scene when one is not under standard and well controlled conditions. Therefore, these 

estimates were corrected by also analyzing noise characteristics of the signals using a 

wavelet-based approach (noise standard deviation was estimated from the details 

obtained in the first decomposition; Mallat, 1998). 

The finest resolution ( 0j = ) present in the data is relative to a daily basis, and the first 

decision that one has to make concerns a choice of the scale where the analysis should 

be conducted. This decision was based on a criterion that considers only the presence of 

missing data, because we knew in advance that this was the major problem with this 

data set. Therefore, we adopted the methodology described in Section 4.4.1, and 

analysed all variables in order to decide about the finest scale where such an analysis 

could be undertaken. 

Since the measurement frequencies for all of the nine variables in the plant laboratory 

are approximately the same, it was not difficult to come up with a single scale that 

would be valid for all variables. Figure 4.4 illustrates some of the plots thus obtained, 

relative to variable 8X , where we can clearly see that after scale 3j =  (i.e., 32 8=  

days), the effects of the presence of missing data significantly decrease (the energy 

associated with the approximation coefficients obtained in the decomposition phase gets 

close to the one obtained after the “reconstruction” phase). Therefore, the scale selected 
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for conducting data analysis in this case was 3j = . This is consistent with the fact that 

during a period of about one year these variables were measured once a week.  
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Figure 4.4. (a) Plot of energy contained in the approximation signals after decomposition and 

reconstruction, at several scales, and (b) semi-log plot of the difference between both of these energies, 

for each scale. 

 

In order to get insight into the way our MRD framework operates over the data set and 

the structure of information underlying Figure 4.4, in the next two figures the plots 

regarding detail coefficients (Figure 4.5) and their associated uncertainties (Figure 4.6) 

are also presented. As can be clearly seen by the pattern of zero/non-zero detail 

coefficients, the missing data problem affecting the finer scales is mainly located in a 

first period of data collection, after which the data acquisition rates were increased. 
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Figure 4.5. Detail coefficients at each scale ( 1: 3j = ) obtained by applying our MRD framework 

(Method 2) to the pulp and paper data set. 

 

After selecting the proper scale of analysis ( 3j = ), a modification of the multivariate 

process monitoring scheme based on PCA is applied. This procedure was designed to 

take into account the uncertainty information available, along with the approximation 

coefficients, therefore explicitly considering all available information (raw values and 

associated uncertainty). Such an approach will be described in Chapter 7, where this 

example will be completed by performing data analysis at scale 3j = . 
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Figure 4.6. Uncertainties associated with the detail coefficients at each scale ( 1: 3j = ) obtained by 

applying our MRD framework (Method 2) to the pulp and paper data set. 

 

4.4.5 Case study 2: Analysis of Profilometry Measurements 

Taken From the Paper Surface 

Paper surface plays a key role in its quality, as it is directly connected to a number of 

important paper properties from the end user’s perspective, such as general appearance 

(optical properties, flatness), printability (e.g. the absorption of ink) and friction. Figure 

4.7 presents an accurate surface profile obtained with a mechanical stylus profilometer, 

where it is quite clear that different surface phenomena are located at different scales: at 

a coarser scale the presence of waves indicates a problem known as “waviness” or 

“piping streaks”, which have a characteristic wavelength of about 15mm, while at finer 

scales, paper micro- and macro-roughness (relative to variations in the cross direction, 

X, over the ranges of 1 100m mµ µ−  and 100 1000m mµ µ− , respectively) dominate 

variability. However, there is also an additional contribution to the observed profile that 

should be considered, due to measurement noise, which is a consequence of the limited 

Time index 

Time index 

Time index 

U
nc

er
ta

in
ty

 a
ss

oc
ia

te
d 

w
ith

 d
et

ai
l c

oe
ff

ic
ie

nt
s a

t s
ca

le
 j 



CHAPTER 4. GENERALIZED MULTIRESOLUTION DECOMPOSITION FRAMEWORKS 

 91

resolution of the measuring device employed for detecting oscillations in the thickness 

direction (Z) below a certain level, in this case of 8nm . 
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Figure 4.7. Surface profile in the transversal direction, for a paper sample exhibiting waviness 

phenomena. 

 

The MRD framework based on data uncertainties (Method 3) allows for the 

incorporation of this type of knowledge, and provides important clues about the 

minimum scale that can be used, as well as scales where the dominant phenomena are 

located. Figure 4.8 presents the distribution of energy contained in the detail 

coefficients obtained by decomposing the original profile using a Symmlet-8 wavelet 

filter (a), and also information regarding the coefficients that are eliminated after 

applying a thresholding operation that eliminates details below the (propagated) 

measurement resolution level: the percentage of the energy originally contained in each 

scale that is removed by the thresholding operation (b) and the percentage of eliminated 

coefficients at each scale (c). 

From Figure 4.8 we can see that the dominating phenomena are located at scale 11, 

corresponding to 118.93 2 m 18.3 mmµ× ≅  (the separation between two successive 

samples in the X direction is of about 8.93 mµ ), i.e., quite close to the characteristic 

wavelength of the waviness phenomena, and that the profile is almost unaffected by 

measurement noise at all scales, as only very few coefficients are discarded at the finest 

scales as a consequence of the limited resolution of the measuring device. 

Therefore, the high resolution profilometer is indeed suitable to assess the fine details of 

paper surface (minimum scale for analysis is 1j = ), and one may also conclude that, in 

this particular case, all the scales do contain potentially relevant information regarding 
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the characterization of underlying phenomena. Furthermore, efforts for analysing and 

monitoring waviness should focus mainly around scales 10j =  and 11j = . 
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Figure 4.8. Plots of (a) distribution of energy in detail coefficients across scales, (b) percentage of energy 

originally contained in each scale that is removed by the thresholding operation (relatively to the original 

energy content of that scale) and (c) percentage of eliminated coefficients in each scale (relatively to the 

original number of coefficients in that scale). 

 

4.5 Conclusions 

MRD frameworks play an essential role when one needs to focus data analysis at a 

particular scale or to identify the several contributions to overall phenomenon, arising 

from different scales in time or length. However, the presence of missing data raises 

serious difficulties in implementing classical MRD based on wavelets. The 

incorporation of data uncertainty in the analysis is also desirable from the standpoint of 

using all the available information right from the beginning. Therefore, in this chapter, 

three MRD frameworks were proposed that provide a basis for handling such issues, 

and guidelines about their use were also put forward.  

c) 

b) 

a) 
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Methods 1 and 2 handle the presence of missing data and any structure of data 

uncertainties, the former being especially devoted to piecewise constant signals. Method 

3 handles those cases where no missing data is present, incorporating data uncertainty in 

the computation of detail and approximation coefficients. 

It should be stressed that Methods 1 and 2 are not extensions of the wavelet transform in 

a strict sense, as some of their fundamental properties do not always hold, such as the 

energy conservation property in Method 2 (in the sense of Parseval formula, Mallat, 

1998). However, they allow one to extend the wavelet multiresolution decomposition to 

contexts where it could not be applied otherwise (at least without some serious data pre-

processing efforts), namely when we have missing data. Furthermore, such methods 

provide new tools for addressing other types of problems in data analysis, such as that 

of selecting a proper scale for analysis. Several simulated and real world problems 

illustrate the use of the various methodologies suggested here and their practical 

potential value. 
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Chapter 5. Integrating Data 

Uncertainty Information in 

Regression Methodologies 

The MRD frameworks presented in the previous chapter generate new data sets, with 

detail and approximation coefficients, together with their associated uncertainties. On 

the other hand, the availability of uncertainty information for data arising from many 

different sources is increasing rapidly, as a consequence of the efforts undertaken in the 

fields of metrology and standardization, namely regarding the characterization and 

quantification of measurement uncertainty, in a rigorous and normalized way (ISO, 

1993). This implies that there is not only one data table to be explored, but rather two 

tables: the usual raw data table, and another one with the associated uncertainties. 

Therefore, in order to take full advantage of all the available information, data analysis 

tools should also explicitly consider data uncertainty information in their formulations, 

in order to become more flexible, in the sense of being adequate for application in 

situations encompassing a wider diversity of measurement error structures, including 

those whose measurement error structures are not covered by more conventional 

techniques. 

In fact, the majority of conventional techniques commonly applied to chemical 

processes, do rely on simplified assumptions regarding the nature of errors included in 

their general statistical model structures, not taking explicitly and quantitatively into 

account data quality, or only doing so in an implicit or tacit way. More specifically, the 

error term is normally considered as arising from several different sources, such as 
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modelling mismatch (inadequate model structure assumed), uncontrolled interferences 

(Martens & Naes, 1989) and measurement noise, and their statistical descriptions are 

based on an assumed homoscedastic behaviour (i.e., with constant variance). This may 

be a reasonable assumption for the two first error sources (modelling mismatch and 

uncontrolled interferences), for which we are not usually able to provide additional a 

priori knowledge regarding their behaviour along time, but that is not necessarily so for 

measurement noise, for which, furthermore, the increasing availability of measurement 

uncertainty information can be explored. 

Some examples of application contexts where uncertainty-based methods can become 

quite useful, include the analysis of spectra (that often present noise, not rarely of an 

heteroscedastic nature, and in the presence of strong correlations in the predictors), 

microarray data (where heteroscedasticity is mainly due to different levels of colour 

definition in the spotted arrays), laboratorial data (where measurements of quality 

variables are often correlated and affected by different levels of uncertainties) and 

industrial data. 

Therefore, it is quite appropriate and timely to develop and apply methods that take into 

account explicitly and consistently this important piece of information, and in this 

chapter we address this issue within the scope of regression methodologies, given their 

importance and generalized use in the analysis of industrial data. Then, in the next 

chapter, we also refer how this type of information can be used in process optimization, 

to come up with better operation policies, and in Chapter 7 we address its integration in 

multivariate statistical process control. 

In the next section, we refer several linear regression methodologies, ranging from 

conventional techniques to those designed to take into account data uncertainties 

(multivariate least squares, maximum likelihood principal components regression), and 

others whose potential to deal with noisy data is well known (partial least squares, 

principal components regression and ridge regression), as well as modifications of these 

methods that were developed in the context of this thesis. Then, in the following section 

we present two case studies, that provide the ground for comparing all the methods 

considered. In the third section, main results and some computational issues are 

discussed, with final conclusions drawn in the fourth section. 

 



CHAPTER 5. INTEGRATING DATA UNCERTAINTY INFORMATION IN REGRESSION METHODOLOGIES 

 97

5.1 Multivariate Linear Regression Methods 

This section is devoted to the description of four groups of multivariate linear regression 

methods that have the potential to accommodate measurement noise information, either 

explicitly or implicitly. As already referred, our focus on multivariate linear regression 

arises from the quite widespread use for this type of approaches in the development of 

input/output models for industrial and/or laboratorial applications. The several 

methodologies here addressed are clustered under four separate groups, according to 

their affinity: ordinary least squares (OLS), ridge regression (RR), principal components 

regression (PCR) and partial least squares (PLS). Besides these four basic methods, that 

do not explicitly incorporate measurement uncertainty information, several alternatives 

already developed are also presented, as well as other modifications proposed here, that 

do take uncertainty information explicitly into consideration. 

5.1.1 OLS Group 

The Ordinary Least Squares (OLS) (Draper & Smith, 1998) and Multivariate Least 

Squares (MLS) (Martínez et al., 2002a; Río et al., 2001) parameter estimates for a 

linear regression model are given by the solutions of the optimization problems 

formulated in equations (5.1)-(5.2) of Table 5.1. 

 

Table 5.1. Formulation of optimization problems underlying OLS, MLS and MLMLS methods.25 
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25 0ˆ( ) ( ,:)y i b X i b= + , where X(i,:) is the ith row (observation) of the matrix containing all predictor 

variables in its columns, X. 
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OLS tacitly assumes a homoscedastic behaviour (i.e., with constant variance) for the 

noise error term in the standard linear regression model: 

 

 0 1 1( ) ( ) .. ( ) ( )p py i b b X i b X i iε= + + + +  (5.4) 

 

On the other hand, MLS is built upon an Error in Variables (EIV) functional 

relationship, relating true values of both the input and output variables, which are then 

affected by zero mean random errors ( ( )η∆ i  and ( )ξ∆ j i ), with a given covariance 

structure (assumedly known): 

 

 0 1 1( ) ( ) .. ( )p pi b b i b iη ξ ξ= + + +  (5.5) 
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( ) ( ) ( )j j j
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 (5.6) 

 

 In the denominator of equation (5.2) we can find a term, 2 ( )es i , that results from the 

summation of the uncertainties associated with the response to the ones arising from the 

propagation of uncertainties of the predictors to the response, according to a formula 

derived from error propagation theory (Lira, 2002; Martínez et al., 2002a): 

 

 ( )2 2 2 2
1 2 1

ˆ ˆ ˆ( ) ( ) ( , ) 2 cov ( ), ( )p p p
e j j k j kj j k j

s i uy i b uX i j b b i iξ ξ
= = = +

= + + ∆ ∆∑ ∑ ∑  (5.7) 

 

where ( , )uX i j  and ( )uy i  are the uncertainties associated with the ith observation of the 

jth input and output variables, respectively, and ( )j iξ∆  is the random error affecting the 

ith measurement of variable j; ˆ
jb  represents the coefficient of the linear regression 

model associated with variable j. By imposing the necessary optimality conditions for 

local optima to (5.2), it is possible to set up an algorithmic procedure for the numerical 
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solution of the optimization problem underlying MLS, such that, at each iteration, a new 

estimate for parameter vector b is provided, through the solution of a system of 1m +  

linear equations of the type Rb=g (Lisý et al., 1990; Martínez et al., 2002a): 
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where ˆ( ) ( ) ( )e i y i y i= − . 

The method whose objective function is presented in Table 5.1 through equation (5.3) is 

derived from the analysis of the Berkson case (“controlled regressors with error”), 

within the scope of EIV models (Mandel, 1964; Seber & Wild, 1989), and under the 

assumption of Gaussian errors. The objective function arises from the maximization of 

the likelihood function thus obtained, and this approach was included in our present 

study given the similarity between the quadratic functional part of its objective function 

and the one underlying MLS, as well as due to its simplicity. As the solution for the 

Berkson case formulation is in some sense similar to MLS (Seber & Wild, 1989), we 

call to the above formulation Maximum Likelihood Multivariate Least Squares 

(MLMLS), to stress the statistical motivation of the underlying objective function. More 

information regarding this method can be found in Appendix A. 
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5.1.2 RR Group 

A well known characteristic of the OLS method is the fact that the variance of its 

parameter estimates increases when the input variables get correlated. Computational 

simulations showed us that the same applies to MLS. One possible way to address this 

issue consists of enforcing an effective shrinkage in the coefficients under estimation, 

following a ridge regression (RR) regularization approach. It basically consists of 

adding an extra term to the objective function that penalizes large solutions (in a square 

norm sense). Optimization formulations underlying RR estimates (Draper & Smith, 

1998; Hastie et al., 2001), as well as those proposed for its counterparts based on MLS 

and MLMLS, rMLS and rMLMLS, respectively (standing for “ridge MLS” and “ridge 

MLMLS”), are presented in Table 5.2. 

 

Table 5.2. Formulation of optimization problems underlying RR, rMLS and rMLMLS. 
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It can be shown that, just as the shrinkage term, 2
1

( )λ
=∑ p

j
b j , stabilizes the inversion 

step of OLS in RR (improving the condition of matrix XTX by adding a positive 

constant, λ, to the diagonal elements), it also stabilizes MLS’ R matrix in a similar way 

(except for the first row, where no constant λ is added in the first entry).  

5.1.3 PCR Group 

PCR (Jackson, 1991; Martens & Naes, 1989) is another methodology for handling 

collinearity among predictor variables. It uses those uncorrelated linear combinations of 

the input variables that explain most of the input space variability (from PCA, Appendix 

D) as the new set of predictors, where the response is to be regressed onto. These 

predictors are orthogonal, and therefore the collinearity problem is overcome if we 
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disregard the linear combinations with small variability explanation power (Martens & 

Mevik, 2001). 

After developing MLPCA, which estimates the PCA subspace in an optimal maximum 

likelihood sense, when data are affected by measurement errors with a known 

uncertainty structure (Wentzell et al., 1997a), Wentzell et al. (1997b) applied it in the 

context of developing a PCR methodology that incorporates measurement uncertainties 

(MLPCR). As in PCR, MLPCR consists of first estimating a PCA model, now using 

MLPCA, in order to calculate the scores through non-orthogonal (maximum likelihood) 

projections to the estimated MLPCA subspace (instead of the PCA’s orthogonal 

projections), and then applying OLS to develop a final predictive model. This technique 

makes use of the available uncertainty information in the former phases (estimation of a 

MLPCA model and calculation of its scores), but not during the stage at which OLS is 

applied. Therefore, Martínez et al. (2002) proposed a modification to the regression 

phase, in order to make it consistent with the efforts of integrating uncertainty 

information carried out in the initial stages, that consists of replacing OLS by MLS (we 

will call this modification as MLPCR1). In order to implement MLS in the second 

phase, estimated score uncertainties for the ith observation need to be calculated, given 

by the diagonal elements of the following matrix (Martínez et al., 2002a): 

 

 ( ){ } 11
( ,:)T

iZ P diag uX i P
−−

= ⎡ ⎤⎣ ⎦  (5.12) 

 

where diag is an operator that converts a vector into a diagonal matrix, and P is the 

matrix of maximum likelihood loadings. 

In the present work, these algorithms based on OLS and MLS (MLPCR and MLPCR1, 

respectively), are also compared with the one obtained using the MLMLS algorithm, 

instead of OLS, during the second phase of MLPCR (MLPCR2). 

5.1.4 PLS Group 

PLS (Geladi & Kowalski, 1986; Haaland & Thomas, 1988; Helland, 1988, 2001b; 

Höskuldsson, 1996; Jackson, 1991; Martens & Naes, 1989; Wold et al., 2001) is a 

widely used algorithm in the chemometrics community, that also adequately handles 
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noisy data with correlated predictors in the estimation of a linear multivariate model. As 

in PCR, PLS finds a set of uncorrelated linear combinations of the predictors, belonging 

to some lower dimensional subspace in the X-variables space, where y is to be regressed 

onto. However, in PLS this subspace is the one that, while still covering well the X-

variability, provides a good description of the variability exhibited by the Y-variable(s). 

Here we will make reference to a pair of classes of PLS algorithms, one implemented 

from raw data, and another based upon covariance matrices. 

PLS algorithms implemented directly from raw data 

The algorithmic nature of PLS (Geladi & Kowalski, 1986; Höskuldsson, 1996) can be 

translated into the solutions of a succession of optimization sub-problems (Haaland & 

Thomas, 1988; Jackson, 1991; Martens & Naes, 1989), as presented in the first column 

of Table 5.3 for one of its common versions, relative to the case of a single response 

variable. However, if besides having available raw data, [ ]|X y , we also know their 

respective uncertainties, [ ]|uX uy , then one way to incorporate this additional 

information into a PLS algorithm is through an adequate reformulation of the 

optimization sub-tasks. Therefore, we have modified the objective functions underlying 

each optimization sub-problem in order to incorporate measurement uncertainties, but 

still preserving the successful algorithmic structure of PLS. Such a sequence of 

optimization sub-problems is presented in the second and third columns of Table 5.3, 

where MLS and MLMLS replace OLS in the algorithmic stages, giving rise to the 

uncertainty-based counterparts, uPLS1 and uPLS2, respectively. More details regarding 

these methods are presented below. 

i) Computation of the X-scores vector (t) 

Computation of the X-scores vector, for each dimension, involves solving the 

optimization problem formulated in step 3 of Table 5.3. Its analytic solution can be 

derived using multivariate calculus (Magnus & Neudecker, 1988), leading to equation 

(5.13), but it provides the same numerical results as the maximum likelihood projection 

formula for computing the X-scores in MLPCA presented in (Wentzell et al., 1997b): 

 

 ( ) ( ) ( )
1

( ) T
n n nt vec X w I w I w I

−
⎡ ⎤= ⋅Ω⋅ ⊗ ⋅ ⊗ ⋅Ω⋅ ⊗⎣ ⎦  (5.13) 
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where Ω  is a diagonal matrix with the inverses of the elements of the vectorized matrix 

uX along the diagonal, In is the identity matrix of dimension n×n, ⊗ is the Kronecker 

product operator and vec is the operator that vectorizes higher order tensors [21].  

Another issue in the calculation of the X-scores is related with the computation of the 

associated uncertainties. In uPLS1 and uPLS2 uncertainties were propagated to the 

scores under the assumption of negligible uncertainties in the weights or loadings (a 

more complete treatment can be built around the results of Goodman and Haberman, 

1990). As the scores can be given as maximum likelihood projections onto the subspace 

spanned by the weight vector, we can use an expression similar to (5.12) in order to 

calculate uncertainty propagated to the ath X-scores. Furthermore, measurement errors 

affecting variables are also assumed to be statistically independent. 

ii) Computation of X-weights (w) and X-loadings (p) vectors 

In the computation of the X-weights vector, our optimization problem can be seen as a 

succession of univariate regression problems of the y-score, u, onto X(:,j) (the jth 

column of X), with zero intercept. However, as both u and X(:,j) have associated 

uncertainties, the adequate way to estimate the w(j) coefficient, in the sense of the 

optimization sub-task formulated in step 2, is by means of BLS or MLMLS (without 

intercept). The same applies to the calculation of the X-loadings, where BLS/MLMLS 

are now applied to the regression of t onto X(:,j), with the score uncertainties calculated 

as referred above and the X uncertainties provided as inputs or calculated for the 

residual matrices, obtained after deflation, as shown below. 

iii) Computation of uncertainties for the X and y residual matrices 

After deflation, in order to carry on with uPLS1 and uPLS2, we need to update the 

uncertainties associated with residual matrices Ea and Fa, which play, for a>1, the same 

role that X and Y have played during the calculations for a=1. This can be done by 

applying error propagation theory (once again, we have assumed that only the scores do 

carry significant uncertainties). 

PLS algorithms implemented from covariance matrices 

There are several alternative ways for developing a PLS model, most of them leading to 

very similar or even exactly the same results. In fact, Helland (1988) has shown the 
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equivalence between two of such algorithms (one based on orthogonal scores and 

another using orthogonal loadings instead), both of them based on available raw data 

matrices for the predictors and response variables. Another class of PLS methods, that 

encompasses the so called SIMPLS, developed by Sijmen de Jong (see Table 5.4), or 

the approach presented by Kaspar & Ray (1993) built upon previous work from 

Höskuldsson (1988), consists of algorithms entirely based on data covariance or cross-

product matrices. For the single response case, a SIMPLS solution provides exactly the 

same results as Svant Wold’s orthogonalized PLS algorithm, leading to only minor 

differences when several outputs are considered. Matrices S and s in Table 5.4 do play a 

central role in PLS. A theoretical analysis of this algorithm (Helland, 1988; Phatak, 

1993) leads to the conclusion that the calculated vector of coefficients, when a latent 

variables are considered, ˆ a
PLSβ , is given by: 

 

 ( ) 1ˆ a T T
PLS a a a aV V SV V sβ

−
=  (5.14) 

 

where [ ]1 2, , ,a aV v v v=  is any (m×a) matrix whose columns span the Krylov subspace 

( );a s Sℜ , i.e., the subspace generated by the first a columns of the Krylov sequence, 

{ }1, , , as Ss S s− . Thus, matrices S and s define the structure of the relevant Krylov 

subspace where a PLS solution lies. In fact, the columns of the PLS weighting matrix, 

W, that define the subspace of the full predictor space with maximal covariance with the 

response, do form an orthogonal base of ( );a s Sℜ . 
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Table 5.3. PLS as a succession of optimization sub-problems (first column), and its counterparts, that make use of information regarding measurement uncertainty. 

PLS uPLS1 uPLS2 
Step 1. Pre-treatment 
  Center X and y; 
  Scale X and y. 

Step 1. Pre-treatment 
  Center X and y ; 
  Scale X and y. Scale X and y uncertainties. 

Step 1. Pre-treatment 
  Center X and y; 
  Scale X and y. Scale X and y uncertainties. 

Begin For Cycle a=1 : # latent variables Begin For Cycle a=1 : # latent variables Begin For Cycle a=1 : # latent variables 
Step 2. Calculate the ath X-weights vector (w) 

( )
2

1 1
arg min ( , ) ( ) ( )

= =
= − ×∑ ∑n m

i j
w

w X i j u i w j

←new old oldw w w  
Note: for a=1, the Y-scores, u, are equal to y. 

Step 2. Calculate the ath X-weights vector (w) 
( )2

2 2 21 1

( , ) ( ) ( )
arg min

( , ) ( ) ( )= =

− ×
=

+ ×
∑ ∑n m

i j
w

X i j u i w j
w

uX i j w j uy i

←new old oldw w w  

Step 2. Calculate the ath X-weights vector (w) 

( ) ( ) ( )
,

,

2

21 1
( )

ˆ( , ) ( , )1 1( ) arg min ln 2 ln
2 2i j

i j

n n

i i
w j

X i j X i j
w j n ε

ε

π σ
σ= =

⎧ ⎫⎛ ⎞−⎪ ⎪⎜ ⎟= − − −⎨ ⎬⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑ , 

where, ( ) ( )
,

2 22 2( , ) ( ) ( )
i j

uX i j uu i w jεσ = + ; ←new old oldw w w  
Step 3. Calculate ath X-scores vector (t) 

( )
2

1 1
arg min ( , ) ( ) ( )

= =
= − ×∑ ∑n m

i j
t

t X i j t i w j  
Step 3. Calculate ath X-scores vector (t) 

( )2

21 1

( , ) ( ) ( )
arg min

( , )
n m

i j
t

X i j t i w j
t

uX i j= =

− ×
= ∑ ∑  

Step 3. Calculate ath X-scores vector (t) 

( )2

21 1

( , ) ( ) ( )
arg min

( , )= =

− ×
= ∑ ∑n m

i j
t

X i j t i w j
t

uX i j
 

Step 4. Calculate ath X-loadings vector (p) 

( )
2

1 1
arg min ( , ) ( ) ( )

= =
= − ×∑ ∑n m

i j
p

p X i j t i p j  
Step 4. Calculate ath X-loadings vector (p) 

( )2

2 2 21 1

( , ) ( ) ( )
arg min

( , ) ( ) ( )= =

− ×
=

+ ×
∑ ∑n m

i j
p

X i j t i p j
p

uX i j p j ut i
 

Step 4. Calculate ath X-loadings vector (p) 

( ) ( ) ( )
,

,

2

21 1
( )

ˆ( , ) ( , )1 1( ) arg min ln 2 ln
2 2i j

i j

n n

i i
p j

X i j X i j
p j n ε

ε

π σ
σ= =

⎧ ⎫⎛ ⎞−⎪ ⎪⎜ ⎟= − − −⎨ ⎬⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑ , 

where ( ) ( )
,

2 22 2( , ) ( ) ( )
i j

uX i j ut i p jεσ = +  
Step 5. Re-scale X-loadings, X-scores and X-
weights 

;;← ←

←

×

×
new old old new old old

new old old

p p p t t p

w w p
 

Step 5. Re-scale X-loadings, X-scores and X-weights 
;;← ← ←× ×new old old new old old new old oldp p p t t p w w p

Step 5.1. Update ut(i), i=1:n. 

Step 5. Re-scale X-loadings, X-scores and X-weights 
;;← ← ←× ×new old old new old old new old oldp p p t t p w w p  

Step 5.1. Update ut(i), i=1:n. 

Step 6. Regression of u on t (b) 

( )2

1
arg min ( ) ( )

=
= − ×∑ n

i
b

b u i t i b . 
Step 6. Regression of u on t (b) 

( )2

2 2 21

( ) ( )
arg min

( ) ( )=

− ×
=

+ ×
∑ n

i
b

u i b t i
b

uu i b ut i
 

Step 6. Regression of u on t (b) 

( ) ( ) ( )
,

,

2

21 1

ˆ( ) ( )1 1arg min ln 2 ln
2 2i j

i j

n n

i i
b

u i u i
b n ε

ε

π σ
σ= =

⎧ ⎫⎛ ⎞−⎪ ⎪⎜ ⎟= − − −⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑ ,  

where ( ) ( )
,

2 22 2( ) ( )
i j

uu i ut i bεσ = +  
Step 7.Calculation of X and Y residuals 

1 0

1 0

( )

( )
−

−

= − =

= − =

T

a a a a

a a a a

E E t p X E

F F b t y F
 

Note: Continue the calculations with Ea playing 
the role of X and Fa the one of y(u). 

Step 7.Calculation of X and Y residuals 

1 0

1 0

( )

( )
−

−

= − =

= − =

T

a a a a

a a a a

E E t p X E

F F b t y F
 

Step 7.1. Up-date { } 1, ; 1,( , ), ( ) i n j muE i j uF i = = . 

Step 7.Calculation of X and Y residuals 

1 0

1 0

( )

( )
−

−

= − =

= − =

T

a a a a

a a a a

E E t p X E

F F b t y F
 

Step 7.1. Up-date { } 1, ; 1,( , ), ( ) i n j muE i j uF i = = . 

End For Cycle End For Cycle End For Cycle 
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Table 5.4. SIMPLS algorithm (de Jong et al., 2001). 

[ ]
[ ]

( )

st

1/ 2

1

for a=1,...,A
=1 left singular vector of 

( )
,

,

end

−

=

=

=

=

=

⎡ ⎤= −⎢ ⎥⎣ ⎦

=

T

T

T

T T

S X X
s X y

r s
r r r Sr
R R r

P P Sr

s I P P P P s

T XR

 

 

The relevancy of S and s for PLS provided the necessary motivation to direct some 

efforts towards the incorporation of uncertainty information in the computation of better 

estimates for both of these matrices. The reason why we have not called them estimates 

until now is due to the lack of a consistent statistical population model underlying PLS 

(Helland, 2001a, 2001b, 2002). However, when we now say that our goal is to calculate 

“better” covariance matrices, this implies that some goodness criteria must be assumed. 

Therefore, in order to give a step forward, towards the integration of measurement 

uncertainties in our analysis, one should postulate a statistical model, in order to provide 

an estimation setting for the covariance matrices S and s. For the sake of the present 

work, we consider the following latent variable multivariate linear relationship for 

|
TTZ x y⎡ ⎤= ⎣ ⎦ , that has the ability of incorporating heteroscedastic measurement errors 

with known uncertainties (these uncertainties are considered by now to be independent 

of the true levels for the noiseless measurands): 

 

 ( ) ( ) ( )Z mZ k A l k kµ ε= + ⋅ +  (5.15) 

 

where Z is the (m+1)×1 vector of measurements, Zµ  is the (m+1)×1 mean vector of x, 

A is the (m+1)×a matrix of model coefficients, l is the a×1 vector of latent variables 

and mε  is the (m+1)×1 vector of measurement noise. The probability density functions 

assumed for each random component are: 
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( )

( )1

( ) ~ 0,

( ) ~ 0, ( )

( ) and ( ) are independent ,

a l

m m m

m

l k iid MN

k id MN k

l k j k j

ε

ε
+

∆

∆

∀

 (5.16) 

 

where MN stands for multivariate normal distribution, l∆  is the covariance matrix of the 

latent variables, ( )m k∆  is the covariance matrix of the measurement noise at time k, 

given by ( )2( ) ( )m mk diag kσ∆ = . 

Thus, for estimating the covariance matrix, we assume a multivariate behaviour for Z 

that can be adequately described by propagation of the underlying variation of p latent 

variables, plus added noise in the full variable space. This model, and the calculation 

details associated with the estimation of the unknown parameters, will be described in 

more detail in Chapter 7. 

Under the conditions stated above, the probability density function of Z is a multivariate 

normal distribution with the following form: 

 

 ( )1( ) ~ , ( )m Z ZZ k id MN kµ+ Σ  (5.17) 

where 

 
( ) ( )Z l m

T
l l

k k

A A

Σ = Σ + ∆

Σ = ∆
 (5.18) 

 

With the raw measurements (Z) and the associated uncertainties (from which we can 

calculate ( )m k∆ ), it is possible to estimate Zµ  and lΣ  through the maximization of the 

associated likelihood function (Chapter 7). Matrix ( ) ( )Z l mk kΣ = Σ + ∆  is the estimate of 

the covariance matrix for noisy measurements at time step k, but as PLS is based on S 

and s, it requires single estimates for the population parameters (and not one per time 

step k). Thus, we keep the estimate of the covariance for noiseless data, ˆ
lΣ , but average 
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out the heteroscedastic square uncertainties, in order to come up with a single term, ˆ
m∆ , 

leading to: 

 ˆˆ ˆ
Z l mΣ ≅ Σ + ∆  (5.19) 

 

With the estimate of ZΣ , we can finally calculate the estimates for S and s: 

ˆ (1: ,1: )ZS m m= Σ , ˆ (1: , 1)Zs m m= Σ + . The algorithm that consists of implementing the 

SIMPLS algorithm, with these matrices as inputs, will be here referred to as uPLS3. 

In the present context, the full measurement space is used in order to estimate ZΣ  

( a m= ), so that the PLS algorithm can be used to compute the relevant subspace for 

prediction, instead of doing so at an earlier estimation stage. In the prediction phase, 

when new values for the predictors become available along with their measurement 

uncertainties, and the goal is to predict what the value of the response variable would 

be, we add an additional calculation step before applying the uPLS3 regression vector 

(calculated in the estimation phase). This step consists of projecting the new 

multivariate observation in the full X-space onto the subspace that is relevant for 

predictions (i.e., the one spanned by the columns of the weighting matrix, W in PLS or 

R in SIMPLS). The availability of the associated uncertainties leads to a generally non-

orthogonal projection methodology that consists of estimating the projected points using 

a maximum likelihood approach, just as the one adopted in MLPCA (Wentzell et al., 

1997b). 

In the present work, another algorithm was also developed and tested, that implements 

the same non-orthogonal projection operation, but using the weighting matrix provided 

by PLS (an hybrid version of classic PLS, since it contains a projection step that 

incorporates measurement uncertainty), here referred to as uPLS4. For the sake of 

completeness, we also introduced another methodology, based on the same weighting 

matrix as uPLS3, but that bypasses the non-orthogonal projection step, designated as 

uPLS5. 
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5.2 Monte Carlo Simulation Comparative Study 

In this section we present the results reached from a comparative analysis encompassing 

all the methods mentioned above (PLS, uPLS1, uPLS2, uPLS3, uPLS4, uPLS5, RR, 

rMLS, rMLMLS, PCR, MLPCR, MLPCR1, MLPCR2, OLS, MLS and MLMLS). 

Case studies 1 and 2 provide different contexts to set the ground for comparing 

multivariate linear regression methods. In both of them, a latent variable model structure 

is adopted to generate simulated data, since this kind of model structure is quite 

representative of data collected from many real industrial processes, because the number 

of inner sources of variability that drives process behaviour is usually of a much smaller 

dimensionality than the number of measured variables (Burnham et al., 1999; 

MacGregor & Kourti, 1998). The latent variable model employed has the following 

form: 

 
T

n X
T

n Y

X TP E

Y TQ F

µ

µ

= ⋅ + +

= ⋅ + +

1

1
 (5.20) 

 

where Xµ  and Yµ are the 1m×  and 1k ×  vectors with the column averages of X and Y, 

n1  is a 1n×  vector of ones, X is the n m×  matrix of input data, Y is the n k×  matrix of 

output data, T is the n a×  matrix of latent variables that constitute the inner variability 

source, structuring both the input and output data matrices, E and F are n m×  and n k×  

matrices of random errors, P and Q are a m×  and a k×  matrices of coefficients. 

The model used in the simulations consists of five latent variables ( 5a = ) that follow a 

multivariate normal distribution with zero means and a diagonal covariance ( aI , i.e., the 

identity matrix of dimension a). The dimension of the input space is set equal to 10 and 

that of the output space equal to 1 ( 10, 1m k= = ). Rows of the P matrix form an a-

orthonormal set of vectors with dimension m. The same applies to matrix Q, that 

consists of an a-orthonormal set of vectors with dimension k. 

Each element of matrices E and F, of random errors, is drawn from a normal 

distribution with zero mean and standard deviation given by the uncertainty level 

associated with that specific variable (column of X or Y) for a particular observation 

(row). These uncertainties where allowed to vary, and this variation is characterized by 
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the “heterogeneity level” (HLEV), that measures the degree of variation or 

heterogeneity of uncertainties from observation to observation: HLEV=1 means a low 

variation of noise uncertainty or standard deviation from observation to observation, 

while HLEV=2 stands for a highly heteroscedastic behaviour for the noise uncertainties. 

More specifically, for variable Xi, uncertainties along the observation index are 

randomly generated from a uniform distribution centred at ( )iu X  (average uncertainty 

for a given variable), with range given by ( )2( ) ( ) iR HLEV K HLEV u X= × , where 

K2=0.01 (if HLEV=1; low heterogeneity level) or K2=1 (if HLEV=2; high heterogeneity 

level), i.e.:  

 

 ( ) ( ) ( )( ) ( )( ) ~ ,
2 2i i i

R HLEV R HLEVu X k U u X u X⎡ ⎤− +⎢ ⎥⎣ ⎦
 (5.21) 

 

In the present study, ( )iu X  was kept constant at 0.5 times the theoretical standard 

deviation calculated for each noiseless variable. 

5.2.1 Case Study 1: Complete Heteroscedastic Noise 

With the goal of evaluating overall performance of the methods under different 

uncertainty structures for the measurements errors, the following sequence of steps was 

adopted: 

i. Set the tuning parameters for each method and for each set of conditions 

(number of latent dimensions for PLS and PCR methods, and ridge parameter 

for RR methods). For PLS and PCR methods, 5a = . Regarding ridge methods, 

the ridge parameter was selected using cross-validation and the generation of a 

logarithmic grid in the range of plausible values (the criterion used in cross-

validation is based upon the RMSEPW measure). This procedure is repeated 10 

times, and the median of the best values is chosen as the tuning parameter to be 

used in the simulations. Variables are “auto-scaled” in all methods, except for 

OLS, MLS and MLMLS. 

ii. For each scenario of HLEV (1 or 2), two noiseless data sets are generated 

according to the latent variable model presented above: a training or reference 
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noiseless data set and a test noiseless data set, both with 100 multivariate 

observations. Furthermore, a random sequence of uncertainties (noise standard 

deviations) for all the observations, belonging to each variable, is generated 

according to HLEV. 

iii. Zero-mean Gaussian noise, with standard deviation given by the uncertainties 

calculated in ii., is generated and added to the noiseless training and testing data 

sets, after which a model is estimated according to each linear regression method 

(using the training data set) and its prediction performance evaluated (using the 

test data set). This process of noise addition, followed by parameter estimation 

and prediction, is repeated 100 times, and the corresponding performance 

metrics saved for future analysis. 

Performance metrics used for prediction assessment are the square root of the weighted 

mean square error of prediction in the test set (RMSEPW), where the weights are the 

result of combining the predictor and response uncertainties, and the more familiar root 

mean square error of prediction (RMSEP): 

 

 ( )
( )

2

1 2 *2 *2

ˆ( ) ( )1( ) , 1,100
( ) ( ,:)

n
Tk

y k y k
RMSEPW i i

n uy k uX k B=

−
= =

+
∑  (5.22) 

 

 ( )2

1

1 ˆ( ) ( ) ( ) , 1,100n

k
RMSEP i y k y k i

n =
= − =∑  (5.23) 

 

where n is the number of observations in the test set. 

At the end of the simulations, we do have 100 values for the above metrics available for 

comparing the performances achieved by the different methods, under a given noise 

structure scenario. In order to take into account both the individual variability of the 

performance metrics for the different methods, as well as their mutual correlations, we 

based our comparison strategy in paired t-tests among all the different combinations of 

methods. Therefore, for each simulation scenario, paired t-tests were used to determine 

whether method A is better than method B (a “Win” for method A), performs worse (a 



DATA-DRIVEN MULTISCALE MONITORING, MODELLING AND IMPROVEMENT OF CHEMICAL PROCESSES 

 112 

“Loose”), or if there is no statistical significant difference between both of methods A 

and B (a “tie”), for a given significance level (we used 0.01α = ). For the sake of 

simplicity, only the table with t-statistics and the corresponding plots with number of 

“Wins”, “Looses” and “Ties” are presented here, for each simulation scenario studied. 

Alternatively, multiple comparison methods (Kendall et al., 1983; Scheffé, 1959) could 

also have been adopted, especially if one wants to have tight control over the overall 

significance level of the test performed. However, these types of methods are usually 

quite conservative, getting less sensitive to differences as the number of methods under 

comparison increases. For instance, a study where six methods were involved and 

significant differences apparently did exist, resulted in no difference being detected 

between any of the methods at a reasonable level of significance, using a Tukey’s Test 

based multiple comparison approach (Indahl & Naes, 1998). Since we are comparing 

sixteen methods all together, the sensitivity of such a test would be even more affected, 

and therefore the choice went towards the adoption of an alternative, more sensitive 

approach. This comes at the cost of incurring in higher overall Type I errors rates than 

the significance level used for each method, but as long as this limitation is kept in 

mind, our results still provide a sound basis for establishing the kind of general 

guidelines we are interested in identifying. 

Table 5.5 and Figure 5.1 present the comparison results obtained for scenario HLEV=1, 

using RMSEP as performance metric (since the trends for RMSEP and RMSEPW do 

not differ significantly, only those for the more familiar RMSEP are presented here). 

 

Table 5.5. Results for the t-values obtained for the paired t-tests conducted to assess the statistical 

significance of the difference between RMSEP values obtained with method corresponding to line i and 

that for column j, i.e., RMSEP(method i) – RMSEP(method j) (* indicates a non-significant t value at 

0.01α = ), using 100 replications under a simulation scenario with HLEV=1 (without missing data). 

PLS uPLS1 uPLS2 uPLS3 uPLS4 uPLS5 RR rMLS rMLMLS PCR MLPCR MLPCR1 MLPCR2 OLS MLS MLMLS
PLS 0 -11,106 -4,397 10,546 1,633* 11,292 -3,597 8,271 9,627 9,967 10,55 -3,57 10,801 -4,968 -11,907 5,53

uPLS1 11,106 0 9,463 15,529 11,03 15,636 10,989 13,22 14,216 16,003 16,117 9,302 16,079 10,917 -10,929 11,858

uPLS2 4,397 -9,463 0 11,228 4,475 11,959 4,543 8,564 9,468 12,243 12,478 0,923* 12,416 4,395 -11,639 6,134

uPLS3 -10,546 -15,529 -11,228 0 -10,564 -0,102* -11,822 -7,799 -5,841 0,891* 1,807* -11,539 2,306* -11,911 -12,147 -10,166

uPLS4 -1,633* -11,03 -4,475 10,564 0 10,6 -2,743 6,481 8,366 9,322 9,807 -4,012 10,244 -3,301 -11,933 3,719

uPLS5 -11,292 -15,636 -11,959 0,102* -10,6 0 -12,856 -9,62 -7,596 1,051* 1,813* -11,466 2,72 -12,922 -12,143 -11,299

RR 3,597 -10,989 -4,543 11,822 2,743 12,856 0 9,689 11,15 10,918 11,452 -3,507 12,007 -15,598 -11,844 7,214

rMLS -8,271 -13,22 -8,564 7,799 -6,481 9,62 -9,689 0 7,789 7,712 8,004 -6,892 9,058 -9,844 -11,98 -7,104

rMLMLS -9,627 -14,216 -9,468 5,841 -8,366 7,596 -11,15 -7,789 0 5,291 5,786 -7,805 6,888 -11,248 -12,074 -9,574

PCR -9,967 -16,003 -12,243 -0,891* -9,322 -1,051* -10,918 -7,712 -5,291 0 1,744* -13,521 2,559* -11,003 -12,147 -8,88

MLPCR -10,55 -16,117 -12,478 -1,807* -9,807 -1,813* -11,452 -8,004 -5,786 -1,744* 0 -14,096 1,935* -11,533 -12,09 -9,499

MLPCR1 3,57 -9,302 -0,923* 11,539 4,012 11,466 3,507 6,892 7,805 13,521 14,096 0 13,698 3,364 -11,832 5,279

MLPCR2 -10,801 -16,079 -12,416 -2,306* -10,244 -2,72 -12,007 -9,058 -6,888 -2,559* -1,935* -13,698 0 -12,081 -12,157 -10,185

OLS 4,968 -10,917 -4,395 11,911 3,301 12,922 15,598 9,844 11,248 11,003 11,533 -3,364 12,081 0 -11,84 7,604

MLS 11,907 10,929 11,639 12,147 11,933 12,143 11,844 11,98 12,074 12,147 12,09 11,832 12,157 11,84 0 11,972

MLMLS -5,53 -11,858 -6,134 10,166 -3,719 11,299 -7,214 7,104 9,574 8,88 9,499 -5,279 10,185 -7,604 -11,972 0  
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Figure 5.1. Number of “Looses”, “Ties” and “Wins” for each method, under simulation scenario with 

HLEV=1 (using RMSEP). 

 

Examining first the performance of methods belonging to the same group, it is possible 

to extract the following remarks from this simulation scenario: 

• OLS group. MLS performs worse than OLS and MLMLS shows the best 

performance among the three methods. In general terms, comparing all the 

methods where MLS and MLMLS have similar roles (e.g. uPLS1/uPLS2, 

rMLS/rMLMLS, MLPCR1/MLPCR2), the second version never resulted in 

worse results and, as a matter of fact, almost always significantly improved 

them; 

• RR group. Both rMLS and rMLMLS conducted to improved results relatively to 

those obtained by RR; 

• PCR group. MLPCR does not improve over PCR predictive results, but 

MLPCR2 leads to an improvement; 

• PLS group. Methods uPLS3 and uPLS5, both using uncertainty-based estimation 

of the relevant covariance matrices for PLS, present the best performance. Their 

similar performance results can be explained by the fact that, under mild 
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homoscedastic situations and if the variables present approximately equal 

uncertainties associated with their values, the orthogonal and non-orthogonal 

projections almost coincide. The same applies for the comparison of PLS and 

uPLS4, both using PLS weighting vectors but different projection strategies. 

Comparing the results obtained for all the methods against each other, it is possible to 

note that MLPCR2 is the one that presented the best overall performance, followed by 

PCR, MLPCR, uPLS3 and uPLS5. 

Figure 5.2 summarizes the results obtained for condition HLEV=2 (Table 5.6). A 

comparison of performances regarding methods within the PLS group shows that those 

methods that estimate the covariance matrices using uncertainty information (uPLS3, 

uPLS5) present better performance then their counterparts that use the same projection 

strategies (uPLS4, PLS, respectively). However, looking now to the methods that differ 

only on the projection methodology, it is possible to see that those that are based on 

orthogonal projections achieve better results that the ones based upon non-orthogonal 

maximum likelihood projections. This result is quite interesting, and will be further 

commented in the discussion section. In the PCR group it can observed that all methods 

perform quite well. As for the remaining groups of methods, the trends mentioned for 

HLEV=1 remain roughly valid. MLPCR2 continues to be the method with the best 

overall performance, followed by MLPCR and a group of methods that includes 

MLPCR1, PCR, and uPLS5. 

 

Table 5.6. Results for the t-values obtained for the paired t-tests conducted to assess the statistical 

significance of the difference between RMSEP values obtained with method corresponding to line i and 

that for column j, i.e., RMSEP(method i) – RMSEP(method j) (* indicates a non-significant t value at 

0.01α = ), using 100 replications under a simulation scenario with HLEV=2 (without missing data). 

PLS uPLS1 uPLS2 uPLS3 uPLS4 uPLS5 RR rMLS rMLMLS PCR MLPCR MLPCR1 MLPCR2 OLS MLS MLMLS
PLS 0 -11,063 -4,383 -0,977* -11,394 13,343 -4,516 8,769 9,764 12,347 18,754 10,306 21,196 -5,599 -10,11 7,063

uPLS1 11,063 0 9,348 10,669 7,197 14,01 10,869 13,37 13,55 13,779 16,349 13,608 17,2 10,805 -9,602 12,624

uPLS2 4,383 -9,348 0 2,946 -3,951 10,486 3,965 9,957 10,108 11,809 16,817 11,09 19,194 3,831 -10,138 7,735

uPLS3 0,977* -10,669 -2,946 0 -11,288 11,281 0,483* 5,433 6,096 10,379 17,466 11,033 19,43 0,337* -10,108 4,195

uPLS4 11,394 -7,197 3,951 11,288 0 17,043 11,091 13,169 13,697 16,359 22,182 17,407 24,258 10,943 -9,959 12,283

uPLS5 -13,343 -14,01 -10,486 -11,281 -17,043 0 -13,335 -4,693 -4,909 -0,043* 10,33 2,386* 14,104 -13,384 -10,362 -6,898

RR 4,516 -10,869 -3,965 -0,483* -11,091 13,335 0 9,417 10,337 12,42 18,885 10,631 21,465 -13,467 -10,102 7,985

rMLS -8,769 -13,37 -9,957 -5,433 -13,169 4,693 -9,417 0 1,836* 4,852 11,898 4,864 16,878 -9,557 -9,889 -4,35

rMLMLS -9,764 -13,55 -10,108 -6,096 -13,697 4,909 -10,337 -1,836* 0 4,646 12,715 4,575 18,665 -10,447 -10,114 -5,724

PCR -12,347 -13,779 -11,809 -10,379 -16,359 0,043* -12,42 -4,852 -4,646 0 13,239 2,526* 14,165 -12,467 -10,273 -6,366

MLPCR -18,754 -16,349 -16,817 -17,466 -22,182 -10,33 -18,885 -11,898 -12,715 -13,239 0 -4,492 5,339 -18,892 -10,265 -13,014

MLPCR1 -10,306 -13,608 -11,09 -11,033 -17,407 -2,386* -10,631 -4,864 -4,575 -2,526* 4,492 0 7,958 -10,745 -10,248 -6,649

MLPCR2 -21,196 -17,2 -19,194 -19,43 -24,258 -14,104 -21,465 -16,878 -18,665 -14,165 -5,339 -7,958 0 -21,468 -10,568 -17,806

OLS 5,599 -10,805 -3,831 -0,337* -10,943 13,384 13,467 9,557 10,447 12,467 18,892 10,745 21,468 0 -10,098 8,199

MLS 10,11 9,602 10,138 10,108 9,959 10,362 10,102 9,889 10,114 10,273 10,265 10,248 10,568 10,098 0 9,866

MLMLS -7,063 -12,624 -7,735 -4,195 -12,283 6,898 -7,985 4,35 5,724 6,366 13,014 6,649 17,806 -8,199 -9,866 0  

 



CHAPTER 5. INTEGRATING DATA UNCERTAINTY INFORMATION IN REGRESSION METHODOLOGIES 

 115

0

2

4

6

8

10

12

14

16

OLS
MLS

MLMLS RR
rM

LS

rM
LMLS PCR

MLPCR

MLPCR1

MLPCR2
PLS

uPLS1

uPLS2

uPLS3

uPLS4

uPLS5

Sc
or

es
Lose Tie Win

 

Figure 5.2. Number of “Looses”, “Ties” and “Wins” for each method, under simulation scenario with 

HLEV=2 (using RMSEP). 

 

5.2.2 Case Study 2: Handling Missing Data 

In this second case study, the prediction performance of the several methods is analysed 

when a fraction of data is missing (both in the model estimation and prediction stages), 

and a very simple strategy for handling missing data is adopted: mean substitution. For 

uncertainty based methods, one also has to specify the uncertainty values associated 

with these inputted values, for which the standard deviations of the respective variables 

during normal operation were adopted. Other more sophisticated methodologies for 

missing data imputation during model estimation are also available for regression 

methods, specially PLS and PCR (Walczak & Massart, 2001), as well as methods for 

handling missing data once we have already an estimated model at our disposal (Nelson 

et al., 1996). Analogous approaches can also be developed for the uncertainty based 

techniques, that only require the estimated values to fill in existing blanks and their 

associated uncertainties. However, the aim of this study is to assess the extent to which 

one can easily handle missing data in model estimation and prediction (i.e., with 

minimum assumptions regarding missing values and with the least modification over 

standard procedures), taking advantage of the possibility of using uncertainty 

information. That being the case, it was decided to keep the same replacement strategy 
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amongst all the tested methods, so that the real advantage of handling such an additional 

piece of information, provided by measurement uncertainties, can be easily evaluated 

and compared with the current alternatives. 

As our focus here is related with an evaluation of the methods regarding prediction 

when missing data is present, we adopted a simulation structure which is now different 

from that of case study 1. For each simulation, the following steps are repeated and the 

corresponding results saved: 

i. Generate a new latent variable model (matrices Q and P) and noiseless data to be 

used for model estimation and prediction assessment. Generate also 

measurement uncertainties to be associated with each non-missing value, 

according to the value of HLEV  used in each simulation study; 

ii. Generate a new “missing data mask” that removes (on average) a chosen 

percentage of the data matrix [X|Y]. We used a target percentage of 20%, both 

for the reference and test data sets; 

iii. Generate and add noise to the noiseless data that were not removed, according to 

the measurement uncertainties generated in i.; 

iv. Replace missing data with column means for the data set used to estimate the 

model, and calculate the associated uncertainties using the columns standard 

deviations, for the same data set; 

v. Estimate models using the data set constructed in iv.; 

vi. For the test data set, do the same operation as in iv. (using the same values for 

the input values and uncertainties) and calculate the predicted value for the 

output variable. Calculate overall performance metrics (RMSEPW and 

RMSEP). 

The results obtained with HLEV=1 are presented in Table 5.7 and Figure 5.3, where it 

can be seen that within the PLS group methods uPLS5 and uPLS3 lead to improved 

predictive performances, but now with uPLS3 presenting better results that uPLS5, i.e., 

the non-orthogonal projection seems to bring some added value when missing data is 

present, under homoscedastic scenarios. In the PCR group, all MLPCR methods 

outperform conventional PCR. As for the other groups, results obtained follow the same 
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trends verified when no missing data were present. In global terms, MLPCR2 presents 

the best overall performance, followed by MLPCR1, MLPCR and uPLS3. 

 

Table 5.7. Results for the t-values obtained for the paired t-tests conducted to assess the statistical 

significance of the difference between RMSEP values obtained with method corresponding to line i and 

that for column j, i.e., RMSEP(method i) – RMSEP(method j) (* indicates a non-significant t value at 

0.01α = ), using 100 replications under a simulation scenario with HLEV=1 (with 20% of missing data). 

PLS uPLS1 uPLS2 uPLS3 uPLS4 uPLS5 RR rMLS rMLMLS PCR MLPCR MLPCR1 MLPCR2 OLS MLS MLMLS
PLS 0 -9,107 0,853* 12,039 2,681 8,244 -1,618* 10,728 12,484 8,437 20,856 12,416 23,111 -2,042* -12,128 10,653

uPLS1 9,107 0 9,588 15,103 9,488 12,035 9,032 13,484 13,595 12,337 17,258 15,052 20,786 9,009 -11,689 12,79

uPLS2 -0,853* -9,588 0 10,392 1,288* 5,611 -0,954* 9,939 9,994 6,305 16,561 12,589 25,237 -0,983* -12,203 8,761

uPLS3 -12,039 -15,103 -10,392 0 -8,71 -9,281 -12,126 -4,146 -4,214 -7,42 7,129 7,271 17,345 -12,133 -12,42 -3,703

uPLS4 -2,681 -9,488 -1,288* 8,71 0 2,097* -2,798 4,474 4,769 2,59* 12,169 10,532 17,821 -2,836 -12,08 4,873

uPLS5 -8,244 -12,035 -5,611 9,281 -2,097* 0 -8,276 4,498 6,584 1,945* 19,405 10,571 24,402 -8,266 -12,311 4,402

RR 1,618* -9,032 0,954* 12,126 2,798 8,276 0 10,835 12,514 8,493 20,957 12,462 23,148 -4,416 -12,125 10,786

rMLS -10,728 -13,484 -9,939 4,146 -4,474 -4,498 -10,835 0 0,747* -2,983 10,428 9,606 22,91 -10,854 -12,363 0,689*

rMLMLS -12,484 -13,595 -9,994 4,214 -4,769 -6,584 -12,514 -0,747* 0 -3,825 11,306 9,118 22,558 -12,508 -12,367 -0,055*

PCR -8,437 -12,337 -6,305 7,42 -2,59* -1,945* -8,493 2,983 3,825 0 20,771 10,26 23,838 -8,486 -12,349 2,864

MLPCR -20,856 -17,258 -16,561 -7,129 -12,169 -19,405 -20,957 -10,428 -11,306 -20,771 0 3,194 11,822 -20,911 -12,606 -9,264

MLPCR1 -12,416 -15,052 -12,589 -7,271 -10,532 -10,571 -12,462 -9,606 -9,118 -10,26 -3,194 0 4,623 -12,477 -12,581 -9,655

MLPCR2 -23,111 -20,786 -25,237 -17,345 -17,821 -24,402 -23,148 -22,91 -22,558 -23,838 -11,822 -4,623 0 -23,15 -12,843 -21,715

OLS 2,042* -9,009 0,983* 12,133 2,836 8,266 4,416 10,854 12,508 8,486 20,911 12,477 23,15 0 -12,123 10,816

MLS 12,128 11,689 12,203 12,42 12,08 12,311 12,125 12,363 12,367 12,349 12,606 12,581 12,843 12,123 0 12,521

MLMLS -10,653 -12,79 -8,761 3,703 -4,873 -4,402 -10,786 -0,689* 0,055* -2,864 9,264 9,655 21,715 -10,816 -12,521 0  
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Figure 5.3. Number of “Looses”, “Ties” and “Wins” for each method, under simulation scenario with 

HLEV=1 and 20% of missing data (using RMSEP). 

 

Analysing now the results for HLEV=2 (Table 5.8 and Figure 5.4), it is also possible to 

verify that uPLS3 and uPLS5 still show the best predictive performance within the PLS 
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group, but now with uPLS3 presenting lower scores relatively to the previous scenario 

(HLEV=1), a result that is consistent with what was verified in case study 1. In the 

global comparison, after MLPCR2 we can find methods MLPCR1 and MLPCR. 

Therefore, under the conditions adopted for this simulation study, it can be concluded 

that MLPCR methods tend to have the best overall performance in the presence of 

missing data. 

 

Table 5.8. Results for the t-values obtained for the paired t-tests conducted to assess the statistical 

significance of the difference between RMSEP values obtained with method corresponding to line i and 

that for column j, i.e., RMSEP(method i) – RMSEP(method j) (* indicates a non-significant t value at 

0.01α = ), using 100 replications under a simulation scenario with HLEV=2 (with 20% of missing data). 

PLS uPLS1 uPLS2 uPLS3 uPLS4 uPLS5 RR rMLS rMLMLS PCR MLPCR MLPCR1 MLPCR2 OLS MLS MLMLS
PLS 0 -11,458 -7,485 5,177 -1,256* 4,559 -1,923* 9,239 10,813 5,688 21,39 14,706 25,185 -2,336* -12,401 9,747

uPLS1 11,458 0 7,207 14,849 9,666 12,836 11,444 14,699 15,601 13,512 22,982 21,503 27,794 11,426 -11,874 14,843

uPLS2 7,485 -7,207 0 11,833 4,938 10,239 7,474 13,792 15,253 11,044 24,851 20,846 32,192 7,447 -12,362 13,787

uPLS3 -5,177 -14,849 -11,833 0 -6,065 -2,771 -5,281 0,733* 1,342* -1,927* 13,954 13,773 25,351 -5,292 -12,457 1,13*

uPLS4 1,256* -9,666 -4,938 6,065 0 3,328 1,175* 6,482 6,944 3,989 15,797 15,269 22,57 1,158* -12,474 6,923

uPLS5 -4,559 -12,836 -10,239 2,771 -3,328 0 -4,708 3,79 6,157 0,848* 20,199 14,027 27,23 -4,712 -12,135 4,61

RR 1,923* -11,444 -7,474 5,281 -1,175* 4,708 0 9,495 11,118 5,913 21,718 14,868 25,552 -3,926 -12,398 10,002

rMLS -9,239 -14,699 -13,792 -0,733* -6,482 -3,79 -9,495 0 2,956 -3,782 12,673 12,837 24,41 -9,512 -12,734 1,849*

rMLMLS -10,813 -15,601 -15,253 -1,342* -6,944 -6,157 -11,118 -2,956 0 -5,535 12,82 12,539 25,805 -11,117 -12,37 -1,26*

PCR -5,688 -13,512 -11,044 1,927* -3,989 -0,848* -5,913 3,782 5,535 0 22,047 14,569 28,148 -5,915 -12,431 4,114

MLPCR -21,39 -22,982 -24,851 -13,954 -15,797 -20,199 -21,718 -12,673 -12,82 -22,047 0 2,112* 11,978 -21,665 -13,114 -11,605

MLPCR1 -14,706 -21,503 -20,846 -13,773 -15,269 -14,027 -14,868 -12,837 -12,539 -14,569 -2,112* 0 8,448 -14,876 -13,204 -12,396

MLPCR2 -25,185 -27,794 -32,192 -25,351 -22,57 -27,23 -25,552 -24,41 -25,805 -28,148 -11,978 -8,448 0 -25,531 -13,416 -23,146

OLS 2,336* -11,426 -7,447 5,292 -1,158* 4,712 3,926 9,512 11,117 5,915 21,665 14,876 25,531 0 -12,397 10,02
MLS 12,401 11,874 12,362 12,457 12,474 12,135 12,398 12,734 12,37 12,431 13,114 13,204 13,416 12,397 0 12,537

MLMLS -9,747 -14,843 -13,787 -1,13* -6,923 -4,61 -10,002 -1,849* 1,26* -4,114 11,605 12,396 23,146 -10,02 -12,537 0  
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Figure 5.4. Number of “Looses”, “Ties” and “Wins” for each method, under simulation scenario with 

HLEV=2 and 20% of missing data (using RMSEP). 
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It is important to point out that when adopting a methodology that integrates data 

uncertainty one follows the same calculation procedure adopted for the situation where 

no data is missing, simply replacing the missing elements with rough estimates that will 

be properly weighted by the algorithms, according to their associated uncertainties. 

However, if there are better estimates available, for instance arising from more 

sophisticated imputation techniques, one can also integrate them as well, without any 

further changes, as long as these are provided along with their associated uncertainties. 

 

5.3 Discussion 

Results presented in the previous section highlight not only the potential of using all the 

information that is available (data and associated uncertainties), but also the difficulty 

that such a task may encompass regarding model estimation. In fact, there were some 

unexpected results and relevant issues have been identified and deserve being discussed 

here. 

First of all, we would like to stress that, even though simulation results are strictly valid 

within the conditions established, they can provide useful guidelines for real processes 

that present structural similarities with them. Then, it is also important to bear in mind 

that the fact classical methods do not make explicit use of uncertainty information may 

not be very relevant if it represents just a small part of the global variability exhibited 

by variables. These are however tacit assumptions, made by conventional approaches, 

quite often not verified or clearly stated, and the main purposes of the work presented in 

this chapter were precisely to bring the issue of data uncertainty into the priorities for 

the analyst, who should explicitly address it in a preliminary stage of data analysis, as 

well as to present, develop and test procedures that do exploit and take advantage of 

data uncertainty information. In general, uncertainty-based methods presented here are 

only expected to bring potentially more added value under contexts where uncertainty is 

quite high (noisy environments) or experiment large variations. In other words, these 

methods should complement their classical counterparts, depending on the noise 

characteristics that prevail in measured data. 
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Still regarding model estimation, some convergence problems were found in MLMLS, 

something that is not unusual in approaches based upon numerical optimization of a 

non-linear objective function. However, problems in MLPCR2 due to the non 

convergence of MLMLS were found to be quite rare. From the experience that we have 

gathered so far, no limitations were found regarding the implementation of MLPCR2 in 

the analysis of real industrial data. 

The poor performance of MLS under the scenarios considered here, where predictors 

are strongly correlated, may indicate that the inversion operation undertaken at each 

iteration is interfering with its performance (the matrix to be inverted in this method 

becomes quite ill-conditioned under collinear situations of the predictors). Results 

obtained for the ridge regularization of MLS (rMLS) show an effective stabilization of 

this operation. 

As for PLS methods, the extensive solution of small optimization problems can make 

uPLS1 and uPLS2 more prone to numerical convergence problems than the original 

PLS method, something that does not occur with the remaining uncertainty-based PLS 

methods (uPLS3, uPLS4 and uPLS5), since they are based upon the estimation of 

covariance matrices and projection operations. In spite of the fact that uPLS1 and 

uPLS2 represent efforts towards the explicit integration of uncertainty information into 

the algorithmic structure of PLS, some simplifications were introduced into it. Namely, 

the uncertainty of loading vectors and weights was neglected. Future developments 

should consider these issues, with the same concerns applying also to MLPCR methods, 

where uncertainty in the loadings is also neglected when the propagation of 

uncertainties to the scores is carried out. The assumed independence of uncertainties in 

the scores for the regression step in MLPCR1 and MLPCR2 may also deserve more 

attention in future studies. The relatively poor performance of uPLS1 under the 

simulations conditions studied here, where a latent variable model is adopted for 

generating data, in comparison to the good results obtained under situations where a 

multivariate linear regression model was adopted (with regressors having several 

degrees of correlation), as presented elsewhere (Reis & Saraiva, 2004b), is worthwhile 

noticing. It is therefore advisable to, whenever possible, take advantage of current 

availability of computation power and conduct exploratory simulation studies under 

conditions close to the intended application (e.g., similar predictors’ correlations, noise 
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structures), in order to get more insight into the problem, as well as regarding the most 

adequate approaches to handle it. 

When comparing, under heteroscedastic situations (Figure 5.2), PLS methods that adopt 

the same estimation procedure for the covariance matrices but differ in the projection 

phase (as happens with pairs PLS/uPLS4, uPLS3/uPLS5), one can see that the use of 

uncertainty-based maximum-likelihood non-orthogonal projections seems to be 

detrimental for prediction relatively to orthogonal projections. In fact, a separate 

simulation study showed evidence towards a reduced variance of the orthogonal 

projection scores, when compared to the one exhibited by maximum likelihood 

projection scores. Apparently, for heteroscedastic scenarios, oscillations in the non-

orthogonal projection line may also bring some added variability to the scores, other 

than the one strictly arising from variability due to noise sources. This increased 

dispersion in the reduced space of the scores, usually the one relevant for prediction 

purposes, can increase prediction uncertainty due to poorly estimated models, 

something that is in line with the results presented in Figure 5.2.  

Finally, although we have focused here on steady-state applications, the above 

mentioned approaches can also be used under the context of dynamic models, namely 

through the consideration of lagged variables (Ku et al., 1995; Ricker, 1988; Shi & 

MacGregor, 2000).26 

 

5.4 Conclusions 

In this chapter the importance of specifying measurement uncertainties, and how this 

information can be used in the estimation of linear regression models, was addressed. 

Under the conditions covered in this study, method MLPCR2 presented the best overall 

predictive performance. In general, those methods based on MLMLS present 

improvements over their counterparts based on MLS. 

                                                 

 

26 However, PLS methods based upon uncertainty-based estimation of covariance matrices do need some 

modifications in order to cope with noise correlations appearing now, with the use of lagged variables. 
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Several real world applications are associated with contexts where uncertainty-based 

methods can be used with potential benefits. These methods can also be applied with 

added value to the analysis of the approximation coefficients for a given selected scale, 

arising from MRD frameworks (Chapter 4). 
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Chapter 6. Integrating data 

uncertainty information in 

process optimization 

In this chapter, a complementary situation regarding the use of data uncertainties, is 

addressed. In particular, we are now concerned with its application when a process 

model is assumedly available, as well as information regarding measurement and 

actuation uncertainties, and the main purpose is to derive an optimal operation policy, in 

the sense of achieving a certain, pre-defined, production goal. 

6.1 Problem Formulation 

The problem can be formulated as one where one aims to find optimal settings 

regarding a manipulated variables vector (Z), given a certain objective function (e.g., 

maximize some profit metric or minimize a cost function), for a given measurement of 

the vector of load variables (L). However, due to the presence of uncertainties, the 

following relevant issues do arise: 

• Measured quantities (i.e., the loads, L , and the outputs, Y ) are affected by 

measurement noise, with statistical characteristics defined by their associated 

uncertainty 

 L

Y

L L

Y Y

ε

ε

= +

= +
 (6.1) 
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with quantities marked with “~” being the values actually available, while L and Y 

are the corresponding true, but unknown, values for these quantities (Figure 6.1). 

• Similarly, the set-point that we specify for the manipulated variables ( Z ) does not 

correspond to the exact true value of the manipulation action over the process. In 

fact, due to actuation noise, there is also here another source of uncertainty to be 

taken into account. 

 

Process 
L 

L  Z Y

Z 

Y 

Zε YεLε

Information as seen by operator 

 

Figure 6.1. Schematic representation of measured quantities (as seen by an external operator and marked 

with “~”) and the quantities that are actually interacting with the process. 

 

Considering that our goal is to drive the process in such a way as to minimize some 

relevant cost function, ( )φ ⋅ , the following formulation is proposed, incorporating 

measurement and actuation uncertainties in the calculation of the adequate values for 

the manipulated variables to be specified externally, when a given measurement for the 

load is acquired ( L ). As often happens in the formulation of optimization problems 

under uncertainty, the objective function comprises an expected value for the 

performance metric, taken over the space of uncertain parameters: 
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Formulation I 

 

 

( ){ }
( )

, ,

. . , , 0
Z

L

Z

Y

Min E L Z Y

s t g Y L Z

L L

Z Z

Y Y

φ

ε

ε

ε

Θ

=

= −

= +

= +

 (6.2) 

 

where {}Θ ⋅E  is the expectation operator 

 

 { } ( ) ( )E j dφ φ θ θ θΘ Θ
= ∫  (6.3) 

 

with [ , , ]θ ε ε ε= T T T T
L Z Y  and ( )θj  providing the joint probability density function for the 

uncertain quantities θ . The available model is represented by ( ), , 0g Y L Z = , and we 

will assume here that the uncertainty associated with its parameters is negligible.27  

In Formulation I, it is assumed that the relevant quantities for evaluation of the 

performance metric are the values of L and Z that really affect the process, as well as the 

measured value of the output. It is important to point out that these assumptions do not 

necessarily hold for all situations. For instance, sometimes the performance metric 

should be calculated with the “true” value of the output, Y, instead of Y  (Formulation 

II, see below), as is the case when output measurements become available with much 

less uncertainty in a subsequent stage (e.g., from off-line laboratory tests). Other times, 

only measured values should be used, because no better measurements or reconciliation 

                                                 

 

27 If not, such uncertainties can also be incorporated in the problem formulation (Rooney & Biegler, 

2001). 
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procedures can be adopted. The correct formulation is therefore case dependent, and 

should be tailored to each particular situation. 

 

Formulation 2 

 

( ){ }
( )

, ,

. . , , 0
Z

L

Z

Min E L Z Y

s t g Y L Z

L L

Z Z

φ

ε

ε

Θ

=

= −

= +

 (6.4) 

 

In the example presented in this chapter, we also report the results obtained for the 

situation where uncertainties are not taken into account at all, and thus where the 

manipulated variable values are found by solving the following problem: 

 

Formulation 3 

 
( )
( )

, ,

. . , , 0
Z

Min L Z Y

s t g Y L Z

φ

=
 (6.5) 

 

6.2 Illustrative Example 

This example illustrates the integration of measurement uncertainties in process 

optimization decision-making. As referred before, the problem being addressed consists 

of calculating the values for the manipulated variables to be specified ( Z ) in order to 

minimize a cost function, when measurements for the loads become available ( L ). This 

particular case study is based on the following model, developed for a batch paper pulp 

pilot digester (Carvalho et al., 2003): 

 

 ( ) ( )10 10 10TY=55.2-0.39 EA+324/ EA log S -92.8 log (H)/ EA log S× × × ×  (6.6) 
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This model relates pulp total yield (TY, %) with effective alkali (EA, a measure for the 

joint concentration of Na2OH and Na2S, the active elements in the cooking liquor, %), 

sulfidity (S, the percentage of Na2S in the cooking liquor, %) and H factor (H, a 

function of the temperature profile across the batch). 

Let us consider the situation where a cost function (L) penalizes deviations from a target 

value for TY (52%): penalty for lower values is due to fibre loss and that for higher 

values due to deterioration in other pulp properties. The cost function also takes into 

account the costs of S and H (proportional to their respective magnitudes): 

 

 2
2

100
100 100 4 500

75
100 100 4 500

sp
sp

sp
sp

TY TY S H TY TY

L
TY TY S H TY TY

⎧ ⎛ ⎞
− + + ⇐ ≤⎪ ⎜ ⎟

⎝ ⎠⎪= ⎨
⎛ ⎞⎪ − + + ⇐ >⎜ ⎟⎪
⎝ ⎠⎩

 (6.7) 

 

As an example, Figure 6.2 illustrates the shape of the assumed cost function for 20S =  

and 1000H = . 

In this example, EA is assumed to be a load variable, and thus our optimization goal 

consists of calculating the S and H values that minimize expected cost in the presence of 

uncertainties for both measurements and process actuations. Formulations I, II and III 

hold for this example, with EA, [S H]= =L Z  and TY=Y  (Table 6.1). 

 

Table 6.1. Optimization formulations I, II and III, as applied to the present example. 

Formulation I Formulation II Formulation III 
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Figure 6.2. Cost function for deviations of TY from its target value (52%), for S=20 and H=1000. 

 

We further assume that the vector of uncertain quantities, [ , , , ]θ ε ε ε ε= T
EA S H TY , follows 

a multivariate normal distribution with zero mean and diagonal covariance given by: 

 

 22 2 2([2 2 50 4 ])diagΘΣ =  (6.8) 

 

where diag stands for the operator that converts a vector into a diagonal matrix with its 

elements along the main diagonal. 

To illustrate the implementation of the formulations referred above, let us consider that 

the observed value for EA is 15% (
~

15EA = ). Table 6.2 summarizes the results obtained 

for the manipulated variables ( S  and H ) and the average cost obtained with the 

objective function assumed under formulations I and II, with a third degree specialized 

cubature being used for estimation of expected values (Bernardo et al., 1999). 
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Table 6.2. Solutions obtained under formulations I, II and III, and their associated average costs. 

Solutions: Average cost (formulation I) 
($) 

Average cost (formulation II) 
($) 

I.  S =7.16 
    H =1602.0 

 10.80 5.93 

II. S =7.83 
    H =1184.2 

11.16 5.40 

III. S =5.38 
    H =1274.6 

25.46 8.17 

 

From Table 6.2 we can see that under the simulation conditions considered here, and 

assuming that the relevant objective function is the one associated with formulation I, 

the optimal solution obtained when one disregards measurement and actuation 

uncertainties (formulation III) corresponds to an average cost increased by 136%. If the 

relevant objective function were the one corresponding to problem formulation II, the 

average cost increase would be 51%. It should also be noticed that the location of the 

optimal solution in the ( , )S H  decision space, found if one ignores uncertainties, is 

quite distant from the optimal one. 

The cost associated with the non consideration of these types of uncertainties decreases 

when their magnitude gets smaller. Figure 6.3 presents the results obtained for the three 

alternative problem formulations, when the covariance matrix for uncertain quantities is 

multiplied by a monotonically decreasing shrinkage factor, 0.9i . As expected, the 

differences arising from the solutions associated with such three optimization 

formulations tend to vanish when measurement and actuation uncertainties decrease. 

Furthermore, average cost also decreases, because of the improved quality of 

information obtained from measurement devices and the better performance of final 

control elements, as one moves across the several simulation scenarios considered here. 

 



DATA-DRIVEN MULTISCALE MONITORING, MODELLING AND IMPROVEMENT OF CHEMICAL PROCESSES 

 130 

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

 Index of shrinkage factor ( i )

 A
ve

ra
ge

 C
os

t (
 fo

rm
ul

at
io

n 
I )

  sol. form. I
  sol. form. II
  sol. form. III

 

Figure 6.3. Behaviour of average cost (formulation I), corresponding to solutions for the three alternative 

problem formulations, using 0.9i
ΘΣ ⋅ . 

 

6.3 Conclusions 

In this chapter we have addressed the integration of measurement and actuation 

uncertainties in process optimization problems. Several possible formulations were 

proposed, and the study carried out points the relevance of not neglecting 

measurement/manipulation uncertainties when addressing both on-line and off-line 

process optimization. In fact, the cost of performing process optimization under such 

circumstances (i.e., not considering uncertainty information) can lead to a significant 

increase in the cost function, in a situation such as the one illustrated in the example 

presented. 
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Chapter 7. Integrating Data 

Uncertainty Information in 

Multivariate Statistical Process 

Control 

Current SPC methodologies (Section 3.1), based upon latent variables, do not take 

explicitly into consideration information regarding measurement uncertainty. As such, 

they do not directly explore this valuable piece of knowledge that, furthermore, is 

becoming increasingly available, given the recent developments on instrumentation 

technology and metrology. In this chapter we present a single-scale approach for 

conducting multivariate statistical process control (MSPC) that incorporates data 

uncertainty information. It is specially suited to perform process monitoring under noisy 

environments, i.e., when the signal to noise ratio is low, and, furthermore, the noise 

standard deviation (uncertainty), affecting each collected value, can vary over time, and 

is assumingly known. 

Our approach is based upon a latent variable model structure, HLV (standing for 

heteroscedastic latent variable model), that explicitly integrates information regarding 

data uncertainty. Moderate amounts of missing data can also be handled in a coherent 

and fully integrated way through the HLV model. Several examples illustrate the added 

value achieved under noisy conditions by adopting such an approach, and an additional 

case study illustrates its application to a real industrial context, regarding pulp and paper 

product quality data analysis. 
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The statistical model based upon which the approach for integrating data uncertainties 

was built is presented in the next section. Then, a discussion about its relationship with 

other latent variable models is provided. The description of the proposed MSPC 

procedure, based on latent variables when measurements have heteroscedastic Gaussian 

behaviour, can be found in the third section, where we also show how the proposed 

approach can easily handle the presence of missing data. In the following section, 

several examples are presented in order to illustrate the various features of the 

methodology, including a continuation of the case study initiated in Section 4.4.4., 

based upon real industrial quality data collected from a pulp and paper mill. 

 

7.1 Underlying Statistical Model 

The underlying statistical model adopted28 addresses the fairly common situation where 

a large number of measurements are being collected and stored, arising from many 

different devices and sources within an industrial process, that carry important pieces of 

information about the current state of operation. Quite often the underlying process 

phenomena, along with existing process constraints, induce a significantly smaller 

dimensionality being needed to adequately describe collected industrial data, than that 

given by the entire set of measured variables. In fact, for monitoring purposes, we are 

only interested in following what happens around the subspace where the overall 

normal process variability is concentrated. In this context, latent variable models do 

provide useful frameworks for modelling the relationships linking the whole set of 

measurements, arising from different sources, in terms of a fewer inner variability 

sources (Burnham et al., 1999). 

Therefore, let us consider the following latent variable multivariate linear relationship: 

 

 ( ) ( ) ( )X mx k A l k kµ ε= + ⋅ +  (7.1) 

                                                 

 

28 Parts of this model were already briefly introduced in Section 5.1.4, but we present the whole model in 

the present chapter in order to facilitate the exposition and to make it comprehensive and self-contained. 
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where x is the n×1 vector of measurements, Xµ  is the n×1 mean vector of x, A is the 

n×p matrix of model coefficients, l is the p×1 vector of latent variables and mε  is the 

n×1 vector of measurement noise. This model is completed by specifying the 

probability density functions associated with each random component: 

 

 

( )
( )

( ) ~ ,

( ) ~ , ( )
( ) and ( ) are independent ,

p l

m n m

m

l k iid N

k id N k
l k j k j
ε

ε

∆

∆

∀

0

0  (7.2) 

 

where pN  stands for the p-dimensional multivariate normal distribution, l∆  is the 

covariance matrix for the latent variables (l), ( )m k∆  is the covariance matrix of the 

measurement noise at time k ( ( )m kε ), given by 2( ) ( ( ))m mk diag kσ∆ =  (diag(u), 

represents a diagonal matrix with the elements of vector u along the main diagonal and 
2 ( )m kσ  is the vector of error variances for all the measurements at time k), 0  is an array 

of appropriate dimension, with only zeros in its entries. Thus, equations (7.1) and (7.2) 

basically consider that the multivariate variability of x can be adequately described by 

the underlying behaviour of a smaller number of p latent variables, plus noise added in 

the full variable space. We can also see that such a model essentially consists of two 

parts: one that captures the variability due to normal process sources ( ( )X A l kµ + ⋅ ), and 

the other that explicitly describes the characteristics of measurement noise or 

uncertainties ( ( )m kε ), each of them having its own independent randomness. In the 

sequel, we will refer to this model as Heteroscedastic Latent Variable (HLV) model, to 

differentiate it from classical latent variable models, where measurement uncertainties 

features are not explicitly accounted for. 

Given the above model structure, parameter estimation is conducted from the 

probability density function for x under the conditions outlined above, which is a 

multivariate normal distribution with the following form: 
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 ( )( ) ~ , ( )n X xx k N kµ Σ  (7.3) 

with 

 
( ) ( )x l m

T
l l

k k

A A

Σ = Σ + ∆

Σ = ∆
 (7.4) 

 

The likelihood function for a reference data set, composed by nobs multivariate 

observations, is then given by: 
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∏  (7.5) 

 

Therefore, the log-likelihood function, in terms of which calculations are actually 

conducted, is (C stands for a constant): 
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  (7.6) 

 

Parameter estimates are then found from those elements of the parameter vector 

( ),
TTT

X lvecθ µ⎡ ⎤= Σ⎣ ⎦  that maximize the log-likelihood function: 

 

 { }( )1,
ˆ max ( ), ( )

obs
ML m k n

x k k
θ

θ θ σ
=

= Λ  (7.7) 
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In fact, the situation is more involved, as lΣ  has certain a priori properties that should 

be satisfied also by its estimate, ˆ
lΣ , namely that it should be both symmetric and non-

negative definite (Rao, 1973). During the course of our work, several approaches to 

solve (7.7) were tried out, with different degrees of enforcement of the restrictions 

arising from symmetry and non-negative definiteness. The one that provided more 

consistent performance is based upon the (usual) assumption that latent variables have a 

diagonal covariance matrix, l∆ , the coefficient matrix A being estimated according to a 

procedure similar to the one adopted in Wentzell et al. (1997a). In this procedure, we 

start from an initial estimate, A0, and the numerical optimization algorithm proceeds by 

finding the optimal rotation matrix R, defined by angles [ ]1 2 1
T

nα α α α −= , that 

maximizes (along with the reminding parameters, ˆ
l∆  and ˆXµ ) objective function (7.7): 

 

 0
ˆ ˆ( )A R Aα=  (7.8) 

 1 1 2 2 1 1( ) ( ) ( ) ( )n nR R R Rα α α α− −= ⋅ ⋅ ⋅  (7.9) 

where, 

 

1 1

1 1 2 2

1 1 2 2 2 2

cos sin 0 0 1 0 0 0
sin cos 0 0 0 cos sin 0

( ) , ( ) , .0 0 1 0 0 sin cos 0

0 0 0 1 0 0 0 1

R R etc

α α
α α α α

α α α α

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

  (7.10) 

 

As ˆ ˆˆˆ T
l lA AΣ = ∆  (from the invariance property of the maximum likelihood estimators; 

Montgomery & Runger, 1999), the symmetry property is automatically satisfied. The 
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non-negative definiteness property is enforced by indirect calculation of ˆ
l∆ , through29 

*1/ 2 *1/ 2ˆ ˆ ˆ
l l l∆ = ∆ ⋅∆ . Under these considerations, the optimization problem to be solved 

remains an unconstrained one, and we have used a gradient optimization algorithm to 

address it. Gradients are given by the following set of equations, for which the complete 

deduction can be found in Appendix B (see also this Appendix for nomenclature 

details): 
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  (7.11) 

 

7.2 Relationship with other Latent Variable Models 

Model (7.1)–(7.2) presents some structural similarities with other latent variable 

formulations that deserve closer analysis. In particular, we will look more carefully to 

the statistical models underlying MLPCA (Wentzell et al., 1997a) and the classical 

factor analysis model, FA (Jobson, 1992; Johnson & Wichern, 1992, 2002). 

 

 

                                                 

 

29 The * is to emphasize that *1/ 2ˆ
l∆  is not the usual square root of a symmetrical positive definite matrix 

(see Johnson & Wichern, 1992, p. 53), as it does not necessarily need to be positive definite. 
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PCA models 

Principal components analysis (PCA, see also Appendix D) is commonly used in 

practice as a technique for dimensionality reduction in exploratory data analysis (EDA), 

or as a “pre-processing” step in regression analysis (as in PCR), to handle the 

collinearity problem (Jackson, 1991). Algorithmically, it is the solution of an 

optimization problem, that consists of finding out the set of mutually orthogonal linear 

combinations of original variables (with coefficients constrained to unit norm), that 

maximize the residual variability left in data after the portion explained by the former 

linear combinations has been removed. This task only requires knowledge of the first 

and second order moments for the set of variables (which are usually assumedly 

multivariate iid ), i.e., their mean and covariance matrix (in practice an estimate of them 

is used), and it can be proven that the optimal linear combinations (loading vectors) are 

the normalized eigenvectors of the covariance matrix. Thus, PCA does not necessarily 

have to be considered a model as such in the usual sense, but often as a multivariate 

statistical analysis technique, with the above mentioned properties. Assuming no 

principal components are disregarded, then the covariance matrix can be written in 

terms of the loading vectors and their associated eigenvalues, in the following way: 

 

 TP PΣ = ∆  (7.12) 

 

where Σ  is the covariance matrix, P the matrix with the loading vectors in its columns, 

and ∆  a diagonal matrix with the eigenvalues associated with loading vectors along the 

diagonal. From (7.12) we can see that the “full-dimensional” PCA corresponds to the 

well known spectral decomposition of a symmetric matrix, in this case the covariance 

matrix. 

From a different perspective, Johnson & Wichern (1992) present another optimal result 

for PCA, regarding its approximation capability. According to this result, the PCA 

subspace (i.e., the space spanned by the above referred linear combinations) is the one 

where the projections of all data points minimize the sum of squares of residuals (given 

by the difference of the original data and their projections). Wentzell et al. (1997a) 

follow a similar approach when developing MLPCA (see also Section 5.1.3), by using a 

statistical description for the measured data matrix, say X, based on a PCA-type inner 
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structure to be estimated when all the measured variables are subject to Gaussian errors 

with known uncertainties. Such a description relies on the assumption that the matrix of 

measured data, X (nobs×n), arises directly from the values of the underlying latent 

variables, L (nobs×p), through a coefficient matrix, A (n×p), to which measurement 

noise is added (the entries of E, nobs×n): 

 

 TX LA E= +  (7.13) 

 

The fundamental assumptions made by Wentzell et al. (1997a), regarding the above 

model, are that: (i) there exists a true underlying p-dimensional model, given by (7.13), 

for a data matrix, (ii) deviations from this model come only from measurement random 

errors and (iii) these random errors are normally distributed around the true 

measurement values, with general, but known, standard deviations and covariance. 

When model (7.13) is estimated using a maximum likelihood approach, it redounds in 

the conventional PCA decomposition of X when measurements are uncorrelated with 

equal variances, but provides better estimates when errors have more complex error 

structures (Wentzell et al., 1997b). Considering the particular case where measurement 

errors do not exhibit any correlation structure along rows or columns of E, we can write 

down the model for each row (i.e., for each multivariate observation) and compare it to 

(7.1)–(7.2): 

 

 
( )m

( ) ( ) ( )

( ) ~ 0, ( )
m

n m

x k A l k k

k iid MN k

ε

ε

= ⋅ +

∆
 (7.14) 

 

Comparing (7.14) with (7.1)–(7.2), we can see an apparent structural similarity, the 

most fundamental difference being that (7.14) does not model any underlying statistical 

behaviour for the latent variables, as happens in (7.1)–(7.2). Similarly to Wentzell et al. 

(1997a), a maximum likelihood type of approach for estimating the relevant parameters 

is adopted here, but the likelihood function is necessarily different. The higher number 

of parameters to estimate and the objective function non-linearity for the proposed 
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formulation will naturally have consequences regarding computation time and the 

dimensionality of the problems that one can cope with. 

Another situation where a PCA model often arises is in the scope of MSPC based on a 

latent variable framework (LV-MSPC). Traditionally, such MSPC procedure is 

implemented through a T2 statistic (that measures variation within the PCA model) and 

the Q or SPE statistic (that measures the amount of variation not captured by the PCA 

model) (Jackson & Mudholkar, 1979; MacGregor & Kourti, 1995). What is important to 

point out here, and is frequently overlooked, is the statistical model underlying such a 

procedure. The statistics used in this methodology were derived assuming the set of 

random variables involved [ ]1 2, , T
nx x x x=  to follow a multivariate normal process 

with mean 0  and full rank covariance matrix Σ  (Jackson & Mudholkar, 1979).30 This 

assumption of full rank n for the covariance matrix is used in the derivation of the 

approximate distribution for the Q statistic (although the result still applies when some 

of the latent roots are zero, if we replace the summations up to n by summations until 

the maximum number of non-zero latent roots). When performing LV-MSPC based on 

PCA, only an adequate number of components is retained, which explain the normal 

“structural” variation, say p, and it is considered that, for all practical purposes, the 

variability explained by the reminding factors can be neglected, corresponding to 

“unstructured” variation (Chiang et al., 2001). Therefore, this approach corresponds to 

the following statistical model: 

 

 

( ) ( ) ( )

( ) ( )

( ) ~ (0, )
( ) ~ ( )

X R R

X

p S

n p

x k Al k A l k

Al k R k

l k iid MN
R k iid Mpdf

µ

µ

−

= + +

= + +

∆

⋅

 (7.15) 

 

                                                 

 

30 In fact, this strictly applies to the Q statistic, because the well known T2 statistic can be used in quite 

general contexts, e.g. in MSPC without any latent variable formalism, but also, in particular, in the 

present situation. 
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Thus, as referred by Jackson (1991), the variation of x is the result of the cumulative 

contributions coming from: (i) the multivariate mean (first term on the right side of the 

equation); (ii) structured variation (second term); and (iii) unstructured or unexplained 

variability (third term). Comparing (7.15) with (7.1)–(7.2), it is possible to see again a 

remarkable structural similarity between the models, that is also extensive to some 

degree to the distributional assumptions. This is not surprising, as they appear in the 

same context, but posing different assumptions regarding the unstructured component. 

In particular, in (7.15) a given structure is being implicitly “enforced” to the 

unexplained variability, R(k), namely that it should be orthogonal to the explained 

variability. This seems to be a reasonable assumption, but still brings as a natural 

consequence the conditioning of the nature of the multivariate distribution underlying 

R(k) (here generally referred to as a multivariate probability density function, Mpdf). 

On the other hand, in (7.1)–(7.2), although we assume a given statistical distribution for 

the measurement uncertainty part, this is by no means related to the description adopted 

for the structured part. However, it is also possible to add to our model an additional 

term, say uε , that accounts for the portion of variability regarding modelling mismatch 

and unaccounted disturbances, statistically described in similar terms to R(k). 

 

Factor analysis (FA) models 

Factor analysis (FA) is a multivariate technique with some connections to PCA, but also 

with some fundamental differences (Jackson, 1991). FA was designed to explain the 

cross-correlation structure between all variables, assuming a well specified statistical 

model. This means that the explained structure only holds to the extent that the validity 

of the assumed model is verified. Thus, there are already two important differences 

worth emphasizing: PCA aims to effectively explain variability (not correlation), and 

does not necessarily have to rely on any underlying statistical model. However, it is 

useful to adopt the basic PCA model structure used for conducting LV-MSPC, equation 

(7.16), in order to better understand the assumptions made in FA: 

 

 ( ) ( ) ( )Xx k Al k R kµ= + +  (7.16) 
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As both l(k) and R(k) are random variables, the covariance of x is given by 

 

 
* *

T
x l

T

A A E

A A E

Σ = ∆ +

= +
 (7.17) 

 

with 1/ 2*
lA A= ∆  ( 1/ 2

l∆  is a diagonal matrix with the square root of the elements of l∆ ). 

Now, the FA model begins with a similar structure: 

 

 ( ) ( ) ( )Xx k Al k kµ ε= + +  (7.18) 

 

but inserts additional constraints in the expression for the covariance of x, through the 

specification of the following statistical model for all the random variables: 

 

 

( )
( )

( )
( )

( ) 0

cov ( ) , the identity matrix

( ) 0

cov ( ) , a diagonal matrix
( ) and ( ) are independent

E l k

l k I

E k

k
l k k

ε

ε
ε

=

=

=

= Ψ

 (7.19) 

 

Therefore, the covariance matrix underlying FA models has the following form: 

 

 T
x AAΣ = +Ψ  (7.20) 

 

The most evident difference between (7.17) and (7.20) regards the covariance term 

arising from the statistical behaviour reserved for the residuals, which for FA is now a 

diagonal matrix, representing the unique contributions to the overall covariance arising 

from each variable. Thus, once the relevant latent variables (factors in the FA 

nomenclature) are selected, no residual covariance structure should remain. This leads 
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us to another difference between PCA and FA: while in PCA we keep adding 

components until residual variances are sufficiently low, in FA we do such until the 

residual covariance has been sufficiently reduced. 

Expression (7.20) plays a central role in FA, as it defines the assumed structure for the 

covariance matrix of x, whose explanation is the main goal to be achieved by this 

technique. FA proceeds by estimating the parameters involved in A and Ψ , and there 

are several methods for doing so (Jackson, 1991; Jobson, 1992; Johnson & Wichern, 

1992, 2002). However, the model is still under-defined, as there are still multiple 

possible solutions for (7.20). Thus, in order to eliminate this inherent indeterminacy, 

one has to provide additional constraints to remove degrees of freedom. 

Comparing the FA model to the proposed one, (7.1)–(7.2), and in particular its 

expression for the covariance of x, (7.4), it is possible to verify that the proposed 

approach for estimating the parameters leads to an analogous “common factor” term, 

and in this sense is quite similar to FA, but the residual or unstructured part of the 

model resembles more the one adopted in PCA, although extended to incorporate 

heteroscedasticity. Thus, we might say that our proposed model lies somewhere 

between FA and PCA, with heteroscedastic formulations (hence the designation of our 

model as heteroscedastic latent variable model, HLV). Furthermore, we can say that, 

with some minor modifications to the methodology, a maximum likelihood 

heteroscedastic FA model can also be put forward through the inclusion of an additional 

term, ( )u kε , regarding unique contributions from each variable, 

( ) ( ) ( ) ( )X m ux k A l k k kµ ε ε= + ⋅ + + , which would imply adding a diagonal covariance 

matrix to the expression for the covariance of x, that would then become 

( ) ( )T
x l mk A A kΣ = ∆ + ∆ +Ψ . 

 

7.3 HLV – MSPC Statistics 

In this section we present the monitoring statistics and discuss some issues regarding the 

implementation of MSPC within the scope of the HLV model, formulated and discussed 

in the previous sections. Efforts were directed towards developing statistics that would 

be analogous to their well known counterparts, i.e., to T2 and Q for MSPC based on 

PCA (Wise & Gallagher, 1996). 
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7.3.1 Monitoring Statistics 

Conventional T2 and Q statistics were designed to follow the behaviour of the two 

random components present in a PCA model: one reflecting the structured variation 

arising from latent variables sources, which is “followed” by the T2 statistic, and the 

other relative to the unstructured part, driven by the residuals, followed by the Q 

statistic. Since our proposed model also contains structured and unstructured 

components, the same rational will be pursued. The structured, or “within” latent 

variables subspace variability, will be monitored in the original variable domain, instead 

of the latent variable domain (as done in PCA-MSPC), in order to account for the 

effects of the (known) measurement uncertainties. This leads to the definition of the 

following statistic: 

 

 
( ) ( )

( )

2 1( ) ( ) ( ) ( )
( ) ( )

T
w X x X

x l m

T
l l

T k x k k x k
k k

A A

µ µ−= − Σ −

Σ = Σ + ∆

Σ = ∆

 (7.21) 

 

where x(k) represents the kth measured multivariate observation, and the other quantities 

keep the same meaning as before. It follows a 2 ( )nχ  distribution, n being the number of 

variables. 2 ( )wT k  considers simultaneously the variability arising from both the 

structured (process) and unstructured (measurement noise) variability. Let us now 

define the statistic Qw, that considers only the unstructured part of the HLV model, say 

r(k), associated with measurement noise: 

 

 
1( ) ( ) ( )

( ) ( ) ( ) ( )

T
w m

X m

Q r k k r k
r k x k Al k kµ ε

−= ∆
= − − =

 (7.22) 

 

which follows a 2 ( )n pχ −  distribution, with n and p being the number of variables and 

latent variables (pseudo-rank), respectively. In practice, the true values for the above 

quantities are unknown, and those that maximize the log-likelihood function will be 
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used as their estimates. Furthermore, l(k) values are calculated using non-orthogonal 

(maximum likelihood) projections (Wentzell et al., 1997b), given by:  

 

 ( ) ( )
11 1

,
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )T T
ML ML m ML ML m X MLl k A k A A k x k µ

−
− −= ∆ ∆ −  (7.23) 

 

7.3.2 Missing Data 

The incorporation of uncertainty information regarding each measured value in HLV-

MSPC not only adds a new important dimension to it, but also brings some parallel 

advantages. One of them is the inherent ability to handle reasonable amounts of missing 

data, in a coherent and integrated way. Usually, missing data are replaced by conditional 

estimates obtained under a set of more or less reasonable assumptions, or through 

iterative procedures where, in practical terms, missing values play the role of additional 

parameters to be estimated. In the proposed procedure, when a datum is missing, we 

simply have to assign a value to it, together with its associated uncertainty. This 

assigned datum can be simply the mean of the normal operation data, with the 

corresponding standard deviation as an adequate uncertainty value. Alternatively, we 

can also assign the mean value together with a very large score for its associated 

measurement uncertainty, the rational being that a missing value is virtually given by 

any value with an “infinite uncertainty”. More precise estimates, obtained through data 

imputation techniques, can also be adopted if they are able to provide us also with the 

associated uncertainties (Figure 7.1). 
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Figure 7.1. Three levels of knowledge incorporation with regard to missing data estimation: a) no 

external knowledge; b) knowledge about the mean and standard deviation under normal operation 

conditions; c) imputation of missing data values using a parallel imputation technique. 

 

Alternative procedures for implementing HLV-MSPC, that relax some of the parametric 

assumptions postulated in the proposed model, are referred in Appendix C. 

 

7.4 Illustrative Applications of HLV-MSPC 

In this section the main results obtained from the application of HLV-MSPC to a 

number of different simulated scenarios, where measurement uncertainties were allowed 

to vary (heteroscedastic noise), are presented. The case study initiated in Section 4.4.4 

will also be concluded here, with the main goal of extracting from it knowledge 

regarding process variability trends. 

7.4.1 Application Examples 

The first four examples are based on data generated by the following latent variable 

model: 

 

Normal operation region. 

Value estimated using a parallel 
imputation technique. 

a) No external knowledge: use any 
value + “Infinite” uncertainty 

b) Knowledge of normal operation: 
use mean value + uncertainty 
encompassing normal operation 
region 

c) Knowledge about an estimate of 
the missing value: use estimate 
+ estimate uncertainty 
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x k l k k
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ε
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⎢ ⎥
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⎢ ⎥
⎢ ⎥−⎣ ⎦

⎡ ⎤
Σ Σ = ⎢ ⎥

⎣ ⎦
∆

 (7.24) 

The measurement noise covariance can vary along time in various ways, as explained 

below, and each example covers a different scenario regarding time variation of 

measurement uncertainty. For comparative purposes, the results obtained using classic 

PCA are also presented. The statistics for PCA-MSPC are denoted by 2T  and Q , and 

those for HLV-MSPC as 2
wT  and wQ . All simulations carried out for the different 

scenarios share a common structure: first, in the training phase, 1024 multivariate 

observations are generated using model (7.24) in order to estimate the reference PCA 

and HLV models; then, in the testing phase, 1000 observations of new data are 

generated, half of which are relative to normal operation (from observations 1 to 500), 

while the other half corresponds to an abnormal operation situation (observations 501 to 

1000). For each of these two parts we calculate MSPC statistics, and the percentage of 

significant events identified (events above statistical limits), for the significance level 

adopted ( 0.01α = ). In order to enable for a more sound assessment of results, the 

testing phase was repeated 100 times, and the performance medians over such 

repetitions computed. Furthermore, two abnormal situations (faults) are explored in 

each scenario, as follows: 

F1) A step change of magnitude 10 is introduced in all variables; 

F2) A structural change in the model is simulated, by modifying one of the 

entries in the coefficient matrix 

 

1 0 1 0
0 1 0 1
1 1 1 0.5
1 1 1 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥→
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 (7.25) 
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Example 1: Constant Uncertainty for the Reference Data (at 

Minimum Level) 

In this example, measurement noise standard deviations for the reference data set (used 

to define control limits) were kept constant and at the minimum values that will be used 

during the test phase. For the test data, measurement uncertainties are allowed to vary 

randomly, according to the uniform distribution ( ) ~ (2,6)iX
m k Uσ  (we will refer to this 

situation as “complete heteroscedasticity”). The corresponding results are presented in 

Table 7.1, for the two types of faults mentioned above (F1 and F2). 

 

Table 7.1. Median of the percentages of significant events identified in 100 simulations for Example 1, 

under normal and abnormal operation conditions (Faults F1 and F2). 

Fault Statistic Normal Operation Abnormal operation 
T2 2.40 17.80 
Q 31.40 79.70 

Tw
2 1.20 27.80 

F1 

Qw 1.00 25.20 
T2 2.30 1.40 
Q 31.60 45.20 

Tw
2 1.20 4.80 

F2 

Qw 1.00 6.80 

 

The PCA’s Q statistic detects a very large number of false alarms, whereas 2T  detects 

almost twice the expected rate under the adopted statistical significance level (0.01). 

The apparently good performance of Q under abnormal conditions is a consequence of 

the low statistical limits established, which are related with the low noise reference data 

used. This leads to a sensitive detection of any fault, but at the expense of a very large 

rate of false alarms under normal operation. HLV-MSPC statistics perform consistently 

better, particularly when we compare 2
wT  and 2T  performances. 

 

Example 2: Constant Uncertainty for the Reference Data (at 

Maximum Level) 

Looking now to what happens if uncertainties in the reference data are held constant at 

the maximum levels used in the test data set (Table 7.2), we can see that the opposite 
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detection pattern occurs with the 2T  and Q statistics, as expected. In these examples, as 

the reference data consists of highly noisy measurements, and therefore the control 

limits are set at higher values, the detection ability for false alarms becomes smaller 

when noise characteristics change. This also drastically reduces the capability for 

detecting significant events. Under this situation, HLV-MSPC statistics also outperform 

their classical counterparts. 

 

Table 7.2. Median of the percentages of significant events identified in 100 simulations for Example 2, 

under normal and abnormal operation conditions (Faults F1 and F2). 

Fault Statistic Normal Operation Abnormal operation 
T2 0.40 5.20 
Q 0.00 1.00 

Tw
2 1.00 23.80 F1 

Qw 1.00 24.00 
T2 0.40 0.20 
Q 0.00 0.00 

Tw
2 0.80 3.80 F2 

Qw 1.00 6.00 

 

In the previous results, measurement uncertainties for each value of each variable in the 

test set were allowed to change randomly from observation to observation, according to 

the probability distribution referred. Scenarios were also tested where the values for all 

variables in the same row were assumed to have the same uncertainty, and we found out 

that the same conclusions hold for this situation. For illustrative purposes, Table 7.3 

presents the results obtained for fault F1, when the reference data was generated at 

maximum uncertainty values. 

 

Table 7.3. Median of the percentages of significant events identified in 100 simulations (when the 

uncertainties for all observations in the same row share the same variation pattern), under normal and 

abnormal operation conditions (Fault F1). 

Fault Statistic Normal Operation Abnormal operation 
T2 0.40 4.80 
Q 0.20 1.60 

Tw
2 1.00 28.00 F1 

Qw 1.10 30.20 
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Example 3: Variable Data Uncertainty for Reference and Test Sets 

The examples mentioned so far address situations where the training set variables have 

constant measurement uncertainty, whereas the test set uncertainties have 

heteroscedastic behavior. This mismatch between training and testing situations has 

serious consequences in the performance of PCA-based MSPC. The following examples 

explore situations where both the reference and test data were generated under similar 

conditions of measurement uncertainty heteroscedasticity. First, let us consider the 

already described situation of complete heteroscedasticity. From Table 7.4, it is possible 

to see that HLV-MSPC statistics still seem to present the best performance, although 

PCA-based MSPC counterparts also achieve good scores for normal operation. 

 

Table 7.4. Median of the percentages of significant events identified in 100 simulations (Example 3), 

under normal and abnormal operation conditions (Faults F1 and F2). 

Fault Statistic Normal Operation Abnormal operation 
T2 1.00 8.80 
Q 1.40 15.40 

Tw
2 1.00 25.20 F1 

Qw 1.00 25.00 
T2 1.00 0.80 
Q 1.40 3.40 

Tw
2 1.00 4.60 F2 

Qw 1.00 6.60 

 

Once again, the above conclusions do not change in the situation where uncertainty for 

all of the variables does change together, as shown for fault F1 in Table 7.5. 

 

Table 7.5. Results for fault F1, with variable uncertainty both in the reference and test data (when the 

uncertainties for all observations in the same row share the same variation pattern). 

Fault Statistic Normal Operation Abnormal operation 
T2 0.80 9.90 
Q 1.90 13.40 

Tw
2 1.00 28.50 F1 

Qw 1.00 29.20 
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Example 4: Handling the Presence of Missing Data 

This example explores the capability of the proposed methodology for handling missing 

data randomly scattered through data sets. The underlying model used to generate 

noiseless data sets is the same as before (Example 1), but some data records were now 

removed through an automatic random procedure that approximately eliminates a pre-

specified percentage of values (it removes on average the chosen percentage), here 

fixed at 10%. As for the previous examples, results presented below regard testing data 

performances. For HLV-MSPC, two different simple procedures for replacement of 

missing data were followed: 

i. in the first one (MD I), the mean for each variable was inserted in a missing 

datum position, and a high value associated to it at the corresponding position 

in the uncertainty table ( 10e ); 

ii. in the second procedure (MD II), this estimate was refined, using the available 

reference data to estimate the mean and standard deviations for each variable, 

the former being used to replace missing data and the latter one to specify the 

associated uncertainty. 

 

For PCA-MSPC, missing data estimates were based upon reference data means (MD). 

Table 7.6 presents the results obtained for fault F1, with the values for HLV-MSPC and 

PCA-MSPC for the original data (i.e., without missing data) also being reported. It is 

possible to verify that there is a sensible and expected decrease of detection 

performances for HLV-MSPC statistics under the more pessimistic imputation method, 

MD I, which are improved by using procedure MD II. From these results we can say 

that it is still advisable to continue with the implementation of HLV-MSPC in the 

presence of missing data, as the results with missing data are in general superior to 

those of PCA-MSPC without missing data. 
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Table 7.6. Median of the percentages of significant events identified in 100 simulations (Example 4), 

under normal and abnormal operation conditions (fault F1). 

Statistic Operation PCA 
(orig) 

PCA 
(MD) 

HLV 
(orig) 

HLV 
(MD I) 

HLV 
(MD II) 

Normal 1.10 0.80 1.00 0.80 1.20 
T2 Abnormal (F1) 10.80 8.40 31.90 25.80 27.80 

Normal 2.80 5.70 1.20 0.80 1.20 
Q Abnormal (F1) 18.80 24.10 32.20 24.60 28.00 

 

7.4.2 Analysis of Pulp Quality Data 

In this section we apply our HLV-MSPC procedure to the pulp and paper quality data 

set projected at scale 3j =  (corresponding to “averages” over 32 8=  days), in order to 

take full advantage of the uncertainty information that the proposed MRD framework 

puts at our disposal. These uncertainty profiles, for the approximation coefficients 

regarding the nine variables studied along the time index (at scale 3j = ), are 

represented in Figure 7.2. Since all of these variables are derived from the plant quality 

control laboratory, their acquisition periodicity is almost the same, and therefore their 

profiles do exhibit similar patterns. 

 

0 50 100 150 200 250 300 350

 

Figure 7.2. Patterns of data uncertainty variation along time index for the 9 pulp quality variables 

analyzed (data is aggregated in periods of 8 days, and such time periods are reflected by the time index 

shown here). 

 

A Phase I study was conducted, and the HLV-MSPC statistics computed in order to 

analyze the variability structure across time. For setting the pseudo-rank parameter, a 

first guess can be easily provided by applying classical PCA to our data and then using 
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one of the associated selection procedures available for identification of the proper 

number of PC to retain (Dable & Booksh, 2001; Meloun et al., 2000; Qin & Dunia, 

2000; Thomas, 2003; Valle et al., 1999; Vogt & Mizaikoff, 2003; Wold, 1978). This 

initial guess can then be tested and revised in pilot implementations of the method over 

real data. A final selection should also be validated against the values of the diagonal 

matrix, l∆ , estimated from such implementations, in order to check if they are also 

consistent with such a choice. In the present case study, this parameter was set as 3p = . 

Figure 7.3 illustrates the values obtained for the 2
wT  statistic, where it is possible to 

identify a process shift after time instant 240, occasionally spiked with some rare but 

very significant abnormal events. For comparison purposes, we also present, in Figure 

7.4, the values obtained for the analogous 2T  statistic, obtained by conducting the same 

analysis using PCA-MSPC, where the sustained shift in the last period of time almost 

passes undetected, whereas high data variability present in the beginning (where 

uncertainties have higher values) is not properly down-weighted, leading to an inflated 

variation pattern. 

The 2
wT  profile provides a rough vision over the conjoint time behaviour, but it is 

possible to zoom into it (without having to analyze the variables separately, in which 

case we would be missing any changes in their correlation structure), by looking to what 

happens to the HLV scores provided by equation (7.23), as shown in Figure 7.5. From 

these plots, it is possible to identify several trends affecting the three scores: a long 

range oscillatory pattern for the first score, a decreasing trend with shorter cyclic 

patterns superimposed for the second score, and a stable pattern that begins to oscillate 

in the final periods of time for the third score. 
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Figure 7.3. HLV-MSPC: values for the 2
wT  statistic in the pulp quality data set. 
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Figure 7.4. PCA-MSPC: values for the 2T  statistic in the pulp quality data set. 

 

By looking into the variables that are responsible for such behaviours, namely through 

contribution plots for the scores, we can get more insight into the nature of these 

disturbances, and, eventually, about their root causes. Even though a detailed discussion 

is beyond the scope of this thesis, one should notice that these types of trends are 

common in pulp and paper quality data, and can be attributed to issues ranging from 

seasonal wood variability and harvesting cycles to wood supply policies. 
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Figure 7.5. HLV scores for the pulp quality data set. 

 

7.5 Discussion 

The approach proposed in this chapter was designed to perform SPC under noisy 

environments, i.e., scenarios where the signal to noise ratio (or, more adequately, signal 

to uncertainty ratio) is rather low, and, furthermore, where the magnitude of the 

uncertainty affecting each collected value can vary across time. Not only standard 

measurement systems that conform to the underlying statistical model are covered by 

this approach (e.g. laboratory tests, measurement devices), but also any general 

procedure for obtaining data values with an associated uncertainty (e.g. computational 

calculations, raw material quality specifications, etc.) may be eligible. The added value 

of our proposed approach increases when the signal variation to uncertainty ratio 
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becomes smaller. Therefore, it provides an alternative to PCA-MSPC for applications 

where low signal to noise ratios tend to happen. 

The better capability of the proposed approach to estimate the underlying true data 

subspace was also analyzed through a simulation study. Noiseless data were generated 

using the model described in Example 1, and then corrupted with noise, whose 

measurement uncertainties vary randomly between 2 and 6 (uniform distribution). For 

each trial, 100 multivariate observations were used to estimate the underlying latent 

variable subspace using classical PCA and HLV. The angle that these estimates make 

with the true subspace, as well as the respective distances (Golub & Van Loan, 1989) 

and the Krzanowski similarity factor (Krzanowski, 1979) between the estimated and the 

true subspaces, were calculated: ANG(PCA), ANG(HLV), DIST(PCA), DIST(HLV), 

SIMIL(PCA) and SIMIL(HLV), respectively. The Krzanowski similarity factor is a 

measure of the similarity between two PCA subspaces, ranging from 0 (no similarity) to 

1 (exact similarity). The means and standard deviations for these quantities, derived 

from 100 trials, are presented in Table 7.7, along with the values of the t-statistic for 

paired t-tests between PCA and HLV results, and the respective p-values. A highly 

significant better estimation performance in favour of the HLV procedure was thus 

obtained. 

 

Table 7.7. Mean and standard deviation of the results obtained for the angle, distance and similarity 

factor between the estimated subspace and the true one, using PCA and HLV (first row). Paired t-test 

statistics for each measure, regarding 100 simulations carried out, along with the respective p-values 

(second row). 

 ANG(PCA) 
(º) 

ANG(HLV) 
(º) DIST(PCA) DIST(HLV) SIMIL(PCA) SIMIL(HLV) 

Mean 
(Standard dev.) 

26.62 
(3.58) 

17.23 
(2.63) 

0.42 
(0.06) 

0.30 
(0.04) 

0.91 
(0.02) 

0.95 
(0.01) 

t statistic 
(p-value) 

29.84 
(<< 10-5) 

30.54 
(<< 10-5) 

-25.89 
(<< 10-5) 

 

7.6 Conclusions 

In this chapter, an approach for performing SPC in multivariate processes that explicitly 

incorporates measurement uncertainty information, was presented and discussed. A 

statistical model was defined and statistics analogous to 2T  and Q  derived, that allow 
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for monitoring both the within model variability as well as the variability around the 

estimated model. The proposed approach is also able to handle the presence of moderate 

amounts of missing data in a simple and consistent way. 

Preliminary results point out in the direction of advising the use of this framework when 

measurement uncertainties are available and significant noise affects process 

measurements. So far, this approach was implemented and tested in examples that do 

cover dozens of variables. In even larger scale problems the computational load 

associated with it may become an issue, but we may still apply the same methodology 

over a subset of variables, where heteroscedasticity is believed to be more critical. 
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This is not something imposed by the mathematicians; it came from 

engineering. 

Yves Meyer (1939-), French mathematician (about wavelets). 
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Chapter 8. Multiscale Monitoring of 

Profiles 

In the last three chapters of Part IV-A, attention has been devoted to several data 

analysis tasks conducted at a single scale, that take explicitly into consideration the 

available knowledge regarding noise features, namely data uncertainty. In particular, 

these approaches are suited for implementation over data previously processed by MRD 

frameworks (Chapter 4), even though these ones can also be used in more general 

contexts, namely in multiscale data analysis. We move now to a different application 

context, aimed at extracting and handling the multiscale features present in collected 

data, in order to come up with improved process monitoring procedures. 

Two rather different monitoring contexts will be covered. The first one, to be addressed 

in this chapter, is relative to multiscale monitoring of profiles (Section 2.5.3) whose 

structural (deterministic) and stochastic properties remain stationary (in the length 

domain) within a sample profile obtained under normal operation conditions. These are 

the kind of profiles that are acquired from approximately homogeneous production 

unities, in which stochastic properties, as well as deterministic structures, remain 

constant, in a general sense, throughout the two dimensional space. They will be named 

here as stationary profiles. The main application scenario envisioned for this class of 

approaches regards multiscale monitoring applications in the “length domain”, and 

special attention will be given to its application for monitoring of paper surface. As the 

samples can have different origins and span different portions of surface, the specific 

spatial location of events in the length domain is not relevant, but rather their 
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localization in the frequency domain. This is the essence of the stationary assumption in 

the length domain. 

In the second context, covered in the following chapter (Chapter 9), our focus will rely 

in performing multiscale monitoring in the “time domain”. Such methodologies deal 

with patterns often present in industrial data, as a consequence of a wide range of 

possible process upsets with rather different characteristics of location and localization 

in the time/frequency domain, as well as due to the intrinsically complex nature of 

plants, that are usually convoluted networks of processing elements with quite different 

dynamic characteristics, all of them interfering with variability in quality features of the 

final manufactured product, but at different scales of time. 

In both of these chapters we will assume that no missing data is present and 

homoscedastic uncertainties. To handle the more complex situations where one or both 

of these assumptions are not valid, multiscale monitoring approaches can also be 

developed, for instance, by adequately combining MRD and multivariate data analysis 

frameworks such as MLPCA, that can handle quite well the type of data structures 

provided by uncertainty-based MRD frameworks, but this topic will not be covered in 

the present thesis, being deferred to future work (Chapter 11). 

 

8.1 Description 

The general subject of profile monitoring was already introduced in Section 2.5.3, along 

with a reference to several developments in this field, including some multiscale 

approaches that have already been proposed. However, the general application scenario 

that the present methodology is aimed to deal with, presents some particularities, that 

call for a different monitoring approach. In particular, we are here interested in 

monitoring profiles that can be sampled at random from a product (already finalized or 

still under processing), where the location of a given feature in the length direction (say 

X-axis) is not critical, but only the global behaviour of the profile obtained for the 

relevant scales. Furthermore, flexibility regarding the incorporation of existent 

background engineering knowledge should also be allowed, namely in the selection of 

those scales of interest for each particular phenomenon to be monitored, or in the key 

profile monitoring features to follow. 
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The main steps that compose the proposed approach for conducting Multiscale SPC of 

stationary profiles are summarized in Table 8.1. 

 

Table 8.1. Basic elements of the proposed general methodology for multiscale monitoring of stationary 

profiles. 

1. Acquisition of profile. 

2. Multiscale decomposition of the de-trended profile (i.e., the profile with the 

linear trend removed), obtaining wavelet coefficients at each scale ( 1: decj J= , 

where decJ  is the decomposition depth). 

3. Selection of relevant scales for monitoring relevant profile’s phenomena. 

4. Using only those scales whose indices are relative to phenomena under analysis, 

calculate the parameters that summarize the relevant information for product 

quality control purposes (this may require the separate reconstruction of profiles 

relative to each phenomenon back into the original domain, by applying the 

inverse wavelet transform to a set of processed coefficients, where the only non-

zero elements are those corresponding to the selected scales for each 

phenomenon).  

5. Implementation of SPC procedures for monitoring the parameters calculated in 

step 3. 

6. If an alarm is produced, check its validity and look for root causes when 

appropriate. Otherwise, return to Step 1, and repeat the whole procedure for the 

next profile acquired. 

 

 

Step 3 allows for the incorporation of external knowledge in the process of selecting 

those scales that are relevant for monitoring, as well as on defining the relevant 

monitoring statistics. 
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The overall procedure essentially consists of applying a bank of quadrature mirror filters 

(Strang & Nguyen, 1997; Vetterli & Kovačević, 1995) that basically works as bandpass 

filters (Oppenheim et al., 1999), dividing the frequency domain in octave bands, 31 i.e., 

bands whose ranges increase proportionally to the mean frequency covered, a scheme 

also known as “constant-Q”, or constant relative band in the signal processing 

community (Rioul & Vetterli, 1991).  

This organization of the frequency domain turns out to be very adequate for data 

analysis, since what is usually of interest is the band relative width. For instance, a 10 

Hz width band can be considered as a quite narrow one when located around the 

frequency of 20 000 Hz, but already quite large when centered at 20 Hz. This means 

that its information content can be much more critical at these lower frequencies than at 

the higher frequency bands. Therefore, a sound way for organizing frequency 

information is to pack it into regions of equal relative bandwidth, and not in regions of 

equal bandwidth, as done through the Short Time Fourier Transform (Vetterli & 

Kovačević, 1995) or Windowed Fourier Analysis (Mallat, 1998). As a matter of fact, 

the recognition that such frequency packing could also simplify the analysis of 

contributions arising from the different parts of the spectrum was already referred in the 

literature, namely in profilometry applications (Wågberg & Johansson, 2002), without 

explicitly addressing wavelet transforms. 

Due to the stationary assumption, the location property of the wavelet transform in the 

length domain is not relevant, and therefore the analysis carried out is “global” in this 

domain, but “local” in the frequency domain, where phenomena occurring at different 

scales are analyzed and monitored separately. 

In the next section the case study where this methodology is applied is introduced. It 

concerns monitoring of the paper surface, and the measurement technique adopted to 

provide raw measurements of the paper surface, profilometry, is also presented. The 

                                                 

 

31 This term is borrowed from the musical nomenclature, meaning an entire sequence of eight notes 

(therefore the term “octave”) during which the frequency doubles when going from the first note to the 

last one, i.e., frequency doubles each time we go up an “octave”. Furthermore, not only the frequency 

doubles, but the same happens with the ranges of frequencies covered by each octave.  
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measurement device used has a built-in functionality of providing summary statistics for 

both surface waviness and roughness phenomena (two types of surface irregularities 

occurring at different length scales or frequency bands), which is also explored for 

predicting paper quality from the stand point of the final user. However, the proposed 

monitoring approach is entirely based on the raw profiles, in order to take the most out 

of our multiscale analysis framework. Results regarding its application to simulated 

scenarios, as well as real industrial profiles, are presented in the following section. Final 

conclusions are drawn in the third section. 

 

8.2 Case Study: Multiscale Monitoring of Paper Surface 

8.2.1 Paper Surface Basics 

Paper is a very complex material, exhibiting properties that derive from a structural 

hierarchy of arrangements for different elements (molecules, fibrils, fibres, network of 

fibres, etc.), beginning at a scale of a few nanometres and proceeding all the way up to a 

few dozens centimetres or even meters (Table 8.1; Kortschot, 1997). 

 

Table 8.2. The multiscale structure of paper (based on Kortschot, 1997). 

Scale Structural Component 

1 nm – 10 nm Molecular structure and packing: 
• Cellulose 
• Hemicellulose 
• Lignin 
• Other 

10 nm – 1 µm Internal structure of the fibre: 
• Softwood tracheids 
• Hardwood fibres 
• Hardwood vessels 
• Ray cells 
• Compression wood 
• Tension wood 

1 µm – 10 mm Fibre morphology: 
• For different types of fibres (softwood tracheids, 

hardwood fibres, hardwood vessels, ray cells, fines) 

1 µm – 10 mm Paper microstructure 

1 mm – 10 cm Paper mesostructure 

5 mm – 30 cm Paper macrostructure 
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This complexity is also present at its boundary, the paper surface, which plays a central 

role in many of the relevant properties from the perspective of the end user, such as 

general appearance (optical properties, flatness, etc.), printability (e.g. absorption of ink) 

and friction features, to name a few (Kajanto et al., 1998). Being aware of this 

importance, the Pulp and Paper Industry developed methods to assess and characterize 

paper surface features at different scales, and, in particular, special attention has been 

devoted to surface phenomena known as roughness and waviness. 

Roughness is a fine length-scale phenomenon, that results from the superposition of the 

so called optical roughness (scales up to 1 mµ ), micro-roughness (scales between 

1 100m mµ µ− ) and macro-roughness (scales between 0.1 1mm mm− ), each one with 

their own specific structural elements (Kajanto et al., 1998): 

• Optical roughness is related with individual pigment particles and pulp 

fibres;  

• Micro roughness is mainly concerned with the shapes and positioning of 

fibres and fines in the network structure; 

• Macro roughness is related to paper formation.32 

 

Roughness is usually characterized indirectly by instruments based upon the air-leakage 

principle (Kajanto et al., 1998; Van Eperen, 1991), quite handy and fast for integration 

in production quality control schemes, but also somewhat uninformative regarding the 

nature of the irregularities that drive this phenomenon. 

 

                                                 

 

32 A term related to the degree of uniformity in the fibre network that constitutes paper. 
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Figure 8.1. Schematic representation of the underlying measurement principle for common air-leakage 

equipments (Van Eperen, 1991). 

 

Waviness, on the other hand, refers to those larger scale deviations from a flat shape, an 

example of which are the so called “piping streaks”, that consist of streaks aligned along 

the largest dimension of paper, 1-3 cm wide, that may develop as a consequence of 

different fibre alignment streaks across the paper machine (Sze & Waech, 1997), but 

other representatives do exist as well, including the so called “flutes/fluting” in heavy 

ink coverage areas (Nordström et al., 2002), and cockling, which consists of small 

“bumps”, 5-50 mm in diameter, occurring at random positions in the paper sheet as a 

consequence of hygroexpansivity and structural unevenness of paper (Kajanto et al., 

1998; MacGregor, 2001). Quite often these larger scale waviness phenomena are 

assessed by trained operators through subjective classification schemes based upon 

sensorial analysis using several criteria defined a priori by a panel of experts, but efforts 

have also been carried out towards the development of more systematic and 

instrumental-based methodologies, namely using optical technology (Nordström et al., 

2002) and mechanical stylus profilometry (Costa et al., 2004). 

Profilometry, in particular, is a technique that collects a detailed profile of the paper 

surface. This raw profile can be processed afterwards, in order to calculate several 

parameters that summarize its main features at certain scales or frequency bands, where 

the analysis is to be focused. The complete surface profile contains all the raw 

information necessary to characterize the phenomena located at a relatively wide range 

of scales, ranging from a few micrometers to a few centimetres (Wågberg & Johansson, 

2002).  
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Measurement procedure 

The basic steps for the measurement procedure using profilometry (Costa et al., 2005) 

appear illustrated in Figure 8.2. First, a sample of appropriate dimensions 

(10 14cm cm× ) is cut and positioned in the sheet support unit, especially designed for 

this application, so that the larger dimension of the item is perpendicular to the direction 

along which the measurement is to be carried out (usually paper cross-direction, CD, as 

the type of waviness phenomena we are most concerned with, i.e. “piping streaks”, do 

always occur along a direction that is perpendicular to this one33). Then, a specified 

number of two-dimensional profiles are collected and the average values of the 

parameters recorded.  

The measurement device used is a MahrSurf mechanical stylus profilometer, with a 

Perthometer S2 data processing unit, a drive unit PGK 120, and a MFW – skidless pick-

up set. The profiles to be processed contain the central 6144 measures of surface height, 

separated by approximately 8.93 mµ . 

Parameters are computed internally in the data processing unit, after an intermediate 

step where roughness and waviness components of the original (de-trended) profile are 

separated. This separation is achieved by application of a digital filtering technique 

where a phase-corrected filter, with a selected cutoff frequency, is applied to the profile, 

in order to compute its components relative to roughness, containing the high frequency 

content of the profile, and that for waviness, relative to lower frequency oscillations. 

The value to be set for the cutoff is available in tables (also provided by the 

manufacturer of the equipment), according to certain geometrical characteristics of the 

surface, but irrespectively of the nature of the surface, be it a metal surface, stone or 

paper, for instance. In our application, the cutoff wavelength used was 2.5 mm. The raw 

profiles can also be saved for analysis, and, in fact, these will be used in the paper 

surface monitoring application to be addressed further ahead, in Section 8.2.4. 

                                                 

 

33 The other directions of a sheet of paper are usually designated by “machine direction” or MD (i.e. the 

direction aligned with that regarding the paper sheet movement in the machine where it was produced) 

and thickness direction. 
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Figure 8.2. Steps involved in the measurement procedure using profilometry. 

 

Parameters that can be computed in the data processing unit of the profilometer, 

summarizing the information contained in the entire waviness and roughness 

components, are presented in Table 8.3. For details regarding their precise mathematical 

definition, we refer to the relevant technical literature (ISO, 1996, 1997; Sander, 1991), 

as well as to the equipment’s documentation. 

 

Table 8.3. Waviness and roughness parameters obtained through profilometry. 

Waviness Description Roughness Description 
Wt Total height of profile Ra Arithmetical mean deviation of profile 

Wa Arithmetical mean deviation of profile Rz Maximum height of profile 

W Sm Mean width of profile elements Rq RMS deviation of profile 

Wdq RMS slope of profile Rp Maximum profile peak height 

W Mean height of profile Rt Total height of profile 

W S Mean distance between local peaks R S Mean distance between local peaks 

AW Mean with of waviness motif R Sm Mean width of profile elements 

Wx Maximum height of waviness motif  R Sk Skewness of profile 

Wte Total height of waviness motif  R Ku Kurtosis of profile 

CMP Ratio between non combined roughness 
motifs and combined roughness motifs  

Rv Maximum profile valley depth 

Zeros Number of times that the profile crosses 
zero value 

Rdq RMS slope of profile 

P Sk Skewness of profile   

P Ku Kurtosis of profile   

 

MD 

CD 

CD 

Roughness and/or 
Waviness parameters 

(see Table 8.3) 

1 2 3 

4 
5 
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8.2.2 Application of Profilometry to Predict Paper Surface Quality 

In this sub-section, the built-in profilometer functionality for bi-scale profile analysis is 

explored. We will evaluate the potential of using information contained in the 

parameters relative to waviness and roughness phenomena (in this sub-section we will 

refer to such parameters simply as features) in order to predict quality assessments 

made by panels of experts. 

The evaluations made by experts, regarding paper smoothness quality (related to 

roughness phenomena) and waviness, were carried out through sensorial analysis, and 

are supposed to be, therefore, close to what final consumers “fill” or “perceive” about 

product quality. Classification models developed can therefore provide an alternative 

way for assessing paper surface quality, which is faster, more objective and stable along 

time. The measurement scale used to classify the quality of paper samples is based on 

three levels: 1 – Bad, 2 – Moderate, 3 – Good.34 

Since the problem consists of predicting the class membership of objects (samples) 

based on a set of features (i.e., a classification problem) and, furthermore, labelled 

information regarding a set of objects is available in the training stage, this problem 

falls under the broad scope of supervised machine learning methodologies. Therefore, 

several different approaches belonging to this class of methods were tested, in order to 

gain insight both into the prediction accuracy that can be achieved and the type of 

approaches that are more adequate for each situation. In particular, the following 

classifiers (supervised classification methods) were used (Fukunaga, 1990; Hastie et al., 

2001; Saraiva & Stephanopoulos, 1992; Theodoridis & Koutroumbas, 2003): 

• Linear Classifier (Normal density-based; “Linear”); 

• Quadratic Classifier (Normal density-based; “Quadratic”); 

• Decision Tree Classifier (“Tree”); the classification tree algorithm 

implemented in CART® (Salford Systems) was also tested for the 

waviness classification problem; 

                                                 

 

34 All data sets were collected in the context of a cooperation research project between several elements of 

the GEPSI research group and Portucel, SA. 
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• k – Nearest Neighbour Classifier (“kNN”); 

• Parzen Classifier (“Parzen”); 

• Neural Network Classifier (back-propagation; “NN back-prop.”). 

The following software was used to perform data analysis: Statistica© (Statsoft, Inc.), 

CART® (Salford Systems), PRTools4 (Duin et al., 2004) and Matlab (The MathWorks, 

Inc.). 

 

Predicting paper smoothness quality 

The “paper smoothness” data set contains 22 features (11 roughness parameters for 

profiles taken along the MD and CD paper directions), and there are 36 labelled records 

available for training (6 from class 1, 18 from class 2, and 12 from class 3). Each datum 

in such a table is the result of averaging the parameter values obtained for three 

successive profiles taken over each sample. 

An exploratory data analysis reveals the presence of a significant amount of correlation 

in this data set. This can be verified by examining its correlation map (a graphical 

representation of the correlation matrix, where correlation coefficients are coded as 

colours, Figure 8.3). 
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Figure 8.3. Correlation map for the features present in the paper “smoothness” data set. 
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This redundancy in the data set can also be checked through a “scree” plot (or 

eigenvalue plot), that represents the eigenvalues for the correlation matrix arranged in a 

decreasing order of magnitude (Figure 8.4), where it is also possible to see that a few 

number of components are dominating the entire data set variability. 
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Figure 8.4. “Scree” plot for the “paper smoothness” data set. 

 

The fact that most variables agglomerate after short clustering distances in an 

agglomerative clustering algorithm (Theodoridis & Koutroumbas, 2003) also means 

that they are quite similar (Figure 8.5-a). Furthermore, MD and CD parameter 

counterparts often provide identical roughness information, as they tend to agglomerate 

in pairs, something that can also be found out by analysing the loading plots for the first 

two principal components (Figure 8.5-b). 
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Figure 8.5. “Paper smoothness” data set: a) Tree diagram for the clustering of smoothness features 

(single linkage agglomerative algorithm using an Euclidean proximity measure); b) Loadings for the first 

two principal components. 

 

Such a redundancy in the feature space not only means that not all of the features are 

bringing new relevant information for classification purposes, but it also often happens 

that using the full dimensional space in such circumstances may in fact be detrimental 

to classification performance and lead to unstable classifiers (Chiang et al., 2001; 

Fukunaga, 1990; Naes et al., 2002; Naes & Mevik, 2001; Theodoridis & Koutroumbas, 

2003). Therefore, variables not bringing predictive power to the classification problem 

should be removed or down-weighted. In this study, different strategies were employed 

to reduce the effective dimension of the predictive feature space, i.e., the dimension of 

the subspace that is effectively used for classification purposes. These methodologies 

can be seen as mappings converting observations from the full feature space into 

another lower dimensional space, e.g., through projection-like operations or variable 

selection. The three different mappings strategies used are: 

• Variable selection (VS); 

• Principal Components Analysis (PCA); 

• Fisher Discriminant Analysis (FDA). 
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The former technique maps the original feature space onto a subset preserving the most 

relevant variables for classification (in the sense of a given, previously defined, 

criterion). The second approach maps the features space by projecting it onto a lower 

dimensional one that retains most of the data variability. Finally, the last methodology 

also consists of projecting the original data into a lower dimensional plane, but this time 

estimated in order to provide maximal separation between classes. 

 

Figure 8.6 illustrates the main steps involved in the implementation of classification 

procedures over new samples, after the classifiers and mappings have been estimated 

using training data with known class labels. 

 

 

Figure 8.6. Main steps used in the implementation of classification procedures adopted in this study. 

 

The results obtained for the paper “smoothness” data set are presented in Table 8.4. As 

the number of labelled objects available is not very large, the approach followed 

consists of estimating misclassification rates using a leave-one-out cross-validation 

procedure (LOO-CV). The results show that, in this case, the classification task is 

facilitated by the classes natural separation, and therefore some combinations of 

mapping/classifier, even though of a quite simple structure, such as VS/Tree or 

FDA/Linear, still work quite well (Figure 8.7). It is also apparent, from the results, that 

classifiers tend to perform better after an FDA transformation, followed by “variable 

selection” and finally by PCA. 
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Table 8.4. Misclassification rate estimates (LOO-CV) for the “paper smoothness” data set, using different 

combination of classifiers (first column) and mappings (first row). 

↓ Classifier / Mapping → VS PCA FDA 

Linear 0.1389 0.25 0 
Tree 0 0.1667 0.0556 
kNN 0.0278 0.0833 0 

Quadratic 0.1389 0.1667 0 
Parzen 0 0.0833 0 

NN (back-prop.) 0.0556 0.25 0.0833 
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Figure 8.7. “Smoothness” data set: scatter plots with discriminant boundaries for the combination 

VS/Tree (a) and FDA/Linear (b). 

 

Predicting paper waviness quality 

Moving now to the “waviness” data set, it contains 13 features (waviness parameters for 

profiles taken in the paper CD direction, as the waviness phenomena we are mostly 

concerned with has its axis parallel to the MD direction), and 29 labelled records (9 

from class 1, 12 from class 2 and 8 from class 3). 

The degree of redundancy among features for this data set is less severe than what 

happened with the “smoothness” data set, as can be seen from its “scree” plot (Figure 

8.8), where the eigenvalues magnitude difference is not as large, although some 

correlation is still present.  

 

Rp MD 
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Figure 8.8. “Scree” plot for the “waviness” data set. 

Analysing Figure 8.8, it is also possible to see that, for adequately describing the overall 

features variability, more than two dimensions should be retained, as they only explain a 

percentage of about 40.18% 18.77% 58.95%+ =  of the overall variability (a preferable 

situation would be to retain 6 PC, for instance, which explain around 94%  of 

variability). However, to enable a visual comparison of the results obtained for the 

different techniques, and explore the topology of the feature space, we keep the number 

of features to be used at two (as we did also for the “smoothness” data set). 

Following a procedure similar to the one adopted for analysing the “smoothness” data 

set, the results presented in Table 8.5 were obtained. 

The waviness data is more challenging from the standpoint of classification, being much 

more so when only two dimensional transformed feature spaces are used for 

classification. However, FDA does a quite good separation job (Figure 8.9), setting the 

ground for the achievement of interesting classification performances by some 

classifiers, such as Parzen or CART ® (that performed better than its implementation 

referred as “Tree”, available in the “PRTools4” package). The VS and PCA 

methodologies would eventually require more dimensions in order to enable them to 

achieve a better separation of classes, but VS still performs better (similarly to what 

happened in the analysis of the “smoothness” data set).  
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Table 8.5. Misclassification rate estimates (LOO-CV) for the “waviness” data set, using different 

combination of classifiers (first column) and mappings (first row). 

↓ Classifier / Mapping → VS PCA FDA 

Linear 0.3448 0.3793 0.1724 
Tree 0.2759 0.3793 0.1724 
kNN 0.2069 0.5172 0.1379 

Quadratic 0.3793 0.3793 0.2069 
Parzen 0.3793 0.3793 0.0690 

NN (back-prop.) 0.3103 0.5517 0.1724 
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Figure 8.9. “Waviness” data set: scatter plots with discriminant boundaries for the combinations 

FDA/Parzen (a) and FDA/CART® (b). 

 

Conclusions 

In this sub-section, different supervised classification methodologies were applied to a 

“smoothness” data set and a “waviness” data set, containing labelled quality classes, in 

order to explore the possibility of developing predictive classification schemes, based 

upon profilometry measurements. 

Results show that such classification tasks can be adequately addressed, even with a low 

dimensional predictive space (two dimensions).  

The interesting results obtained for the classification tasks involving smoothness 

(related to roughness) and waviness phenomena, using the built-in bi-scale functionality 

of the profilometer, open good perspectives for a bi-scale monitoring scheme for the 

paper surface, based on raw profiles and a multiscale decomposition and analysis, made 

FDA/ CART® 
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independently of the measurement device’s computations, and therefore more flexible 

in the sense that it can be better tailored to a particular situation. 

 

8.2.3 Multiscale Analysis of the Paper Surface 

In this section we look into the multiscale structure of paper surface, by analysing the 

raw profiles collected using profilometry. Our main goal here is to gain insight about 

the dominating surface phenomena at different scales and which scales can be attributed 

to each phenomenon. The knowledge gathered will then be used to set up a multiscale 

monitoring procedure for paper surface profiles, to be described in a subsequent sub-

section of this chapter. 

 

Graphical Representations of Multiscale Surface Phenomena 

Let us perform a wavelet-based multiscale decomposition for a profile collected from 

paper exhibiting waviness phenomena. Figure 8.10 presents the details signals 

corresponding to several scales, as well as the approximation for the coarsest scale 

considered, along with their approximate wavelength ranges. These plots represent 

reconstructions in the original length domain of the events distributed across different 

frequency bands, according to the scale index. We also include information regarding 

the dominant surface phenomena at different scales, according to the literature (Kajanto 

et al., 1998), and some accumulated engineering background knowledge about the 

subject. It is possible to detect an oscillation phenomenon characteristic of “piping 

streaks”, on scales 10 and 11, which, for the paper under analysis, typically occurs with 

a wavelength around 15mm . However, by looking only at Figure 8.10, it is not 

straightforward to validate that scales relative to all roughness phenomena35 for this 

particular type of paper are those proposed in the published literature. Therefore, to 

better discern where the transition between roughness phenomena and the next coarser 

scale phenomena really lies, other types of plots should be analysed, where the structure 

                                                 

 

35 We analyze here the roughness phenomena all together. 
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of the surface across scales for the particular grade of paper under analysis is adequately 

summarized. 
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Figure 8.10. Plot of reconstructed detail signals at each scale ( , 1:11jw j = ) along with the reconstructed 

approximation at the coarser scale considered, 11j =  ( 11f ). The approximate wavelength bands covered 

at each scale are presented on the left, and the designation of the surface phenomena relative to the scales 

presented, according to information available in the literature, are identified on the right. 

 

One example of such a type of plot is presented in Figure 8.11, where the variance of 

detail coefficients at each scale is represented as a function of the scale index in a log-
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log plot. We found out that, using this type of plot, the profiles for the analysed paper 

are such that there is a remarkable linear behaviour in the finest scales region, relative to 

roughness phenomena,36 therefore facilitating the task of figuring out where the 

transition occurs by looking to the scale where such a smooth behaviour begins to break 

down. In the present case, it is possible to detect a change of pattern occurring slightly 

before scale 6, indicating that the roughness phenomena seem to collapse somewhere 

between scales 4 and 6, rather than between scales 6 and 7 (vertical lines), as suggested 

in the literature (also shown in Figure 8.10). 
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Figure 8.11. Log-log plot of the variance of detail coefficients at each scale (j), for 90 surface profiles 

taken in the paper cross direction. These samples have different levels of waviness magnitude, but similar 

roughness behaviour. Vertical lines indicate a transition region for the roughness phenomena, according 

to the literature (Kajanto et al., 1998). 

 

                                                 

 

36 This feature might very well be a “finger print” of the paper production process, that may be explored 

in other tasks as well, such as the prediction of some surface related quality parameters (e.g. friction or 

printability). 



CHAPTER 8. MULTISCALE MONITORING OF PROFILES 

 179

As opposed to the waviness phenomenon, which is usually easy to describe and identify 

as an oscillatory trend, the characterization of roughness phenomenon for a given paper 

may require a more involved analysis, given its stochastic behaviour. Therefore, the 

issue of portraying roughness phenomena for the paper grade under analysis was further 

pursued here, using a time series analysis approach. 

 

Time Series Analysis of the Paper Surface’s Roughness Phenomena  

An adequate description of roughness for the paper grade under analysis must produce a 

power spectrum compatible with the results presented in Figure 8.11, which renders 

inadequate some descriptions from the field of statistical geometry for random fibre 

networks, leading to simple iid Normal or Poisson models with high mean values 

(Kajanto et al., 1998), as they do not give rise to power spectra with such features.37 On 

the other hand, analysing the surface height distributions in roughness profiles, we have 

often found distributions slightly skewed towards the left, which are also described by 

other authors (Forseth & Helle, 1996). Therefore, in order to develop a model for the 

(cross direction) roughness of the paper grade that we want to describe, an approach 

based on time series theory was adopted (Box et al., 1994; Ljung, 1999), and a suitable 

autoregressive moving average model (ARMA) fitted to data. 

In this context, an ARMA(2,2) was found to be the lowest order model that passes both 

residual autocorrelation (Figure 8.12) and partial-autocorrelation (Figure 8.13) 

validation analysis (Box et al., 1994; Chatfield, 1989).  

 

                                                 

 

37 In particular, they lack autocorrelation modelling, arising from the natural dependencies between 

measurements of surface height in adjacent positions. 
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Figure 8.12. Sample autocorrelation and partial autocorrelation functions of the residuals obtained after 

adjusting an ARMA(2,2) model to a typical roughness profile. No significant autocorrelation structure is 

left to be explained in the residuals. 
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Figure 8.13. Power spectral density for the residuals obtained after adjusting an ARMA(2,2) model to a 

typical profile. Despite its “noisy” behaviour, the power spectrum mean level is fairly constant along the 

frequency bands, meaning that residuals behave like a random white noise sequence. 

 

From all the normal operation roughness profiles, a typical one was chosen to fit the 

ARMA model parameters, thus leading to: 
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where ( )A q  and ( )C q  are polynomials in the shift operator, q, such that 

( ) ( )1 1q W k W k− = − , i.e., ( ) ( ) ( ) ( ) ( ) ( )1 2 1 21 2 1 2W t a W t a W t e t c e t c e t+ − + − = + − + − , 

for an ARMA(2,2) model. Figure 8.14 illustrates the validity of the estimated model 

regarding a description of the true raw profile, in terms of the sample autocorrelation 

and partial-autocorrelation functions. It also reproduces the desired power spectrum 

behaviour within the roughness scales range. 

 

0 2 4 6 8 10

-0.5

0

0.5

1

Lag

Sample Autocorrelation Function (ACF)

0 2 4 6 8 10

-0.5

0

0.5

1

Lag

Sample Partial Autocorrelation Function

0 2 4 6 8 10

-0.5

0

0.5

1

Lag

Sample Autocorrelation Function (ACF)

0 2 4 6 8 10

-0.5

0

0.5

1

Lag

Sample Partial Autocorrelation Function

 

Figure 8.14. Sample autocorrelation and partial autocorrelation functions for a real roughness profile 

(left) and for a simulated profile using the estimated model, equation (8.1) (right). 
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To check that the proposed model is indeed representative of the roughness phenomena 

in the set containing all profiles analysed, Table 8.6 presents the means and standard 

deviation of the distribution of values for the parameters obtained by fitting an 

ARMA(2,2) model to each one of the 90 roughness profiles analyzed. As can be seen, 

the parameters for the model presented in (8.1) are quite typical of what can be found in 

this grade of paper, as they lie clearly inside the intervals established by the sample 

mean plus/minus one standard deviation.38 

 

Table 8.6. Means and standard deviations for the ARMA(2,2) model parameters estimated using each one 

of the 90 profiles. 

Parameter Mean Standard deviation 

1a  -0.6553 0.1772 

2a  -0.0799 0.1491 

1c  0.7618 0.1758 

2c  0.2086 0.0924 
2
eσ  2.4913 0.2343 

 

8.2.4 Multiscale Monitoring of Paper Surface Profiles: Results 

In this section the proposed multiscale monitoring procedure for stationary profiles is 

applied in the scope of the simultaneous monitoring of paper roughness and waviness 

phenomena. In this context, from all the scales available upon the wavelet 

decomposition of profiles, we will be only concerned with two sets of them: one set 

corresponding to roughness phenomena and another one to waviness phenomena. 

Several simulated scenarios, regarding paper surface, as well as real industrial data, are 

used for testing our methodology. In the simulation approach, realistic paper surface 

profiles are generated, representing a variety of situations that go from typical normal 

operating conditions to several degrees of abnormal situations (moderate and high), in 

order to evaluate the sensitivity of the proposed methodology to detect shifts, and 

                                                 

 

38 Other approaches involving the use of time series analysis to characterize paper surface can be found 

elsewhere (Kapoor & Wu, 1978, 1979). 
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therefore its potential adequacy for real world implementations. Then, using real paper 

surface profiles, we tested how the methodology performs in practice through a set of 

approximately one hundred cross direction paper surface profiles, representing mainly 

different levels of waviness magnitude, but where some abnormal roughness behaviour 

can also be found. 

Regarding the basic implementation steps mentioned in Table 8.1, the following 

paragraphs summarize relevant information for application to the present case study. 

 

Acquisition of Profile 

As already referred (Section 8.2.1), profiles are acquired along the CD paper direction, 

using a MahrSurf mechanical stylus profilometer set, with a Perthometer S2 data 

processing unit, a drive unit PGK 120, and a MFW – skidless pick-up set. 

 

Wavelet Decomposition 

The decomposition depth used in step 2 is 11decJ = , so that the frequency ranges where 

“piping streaks” do develop can be adequately covered. An orthogonal Symmlet-8 

wavelet filter (Mallat, 1998) was employed, because: 1) the shape of its associated 

wavelet does resemble that of waviness profiles; 2) it is smooth; 3) does have a compact 

support; and 4) is more symmetric (by design) then filters from the Daubechies 

orthogonal wavelet family.  

 

Selection of Scales Relative to Each Phenomenon 

Step 4 requires a preliminary selection of scales relative to roughness and waviness 

phenomena (conducted in step 3). As already mentioned, engineering knowledge refers 

that roughness scales range up to 1 mm, meaning that the maximum scale index should 

be somewhere between 6 and 7 (because, 3 6 7 610 2 ,2 8.93 10m m− −⎡ ⎤∈ × ×⎣ ⎦ ). On the other 

hand, by carefully analysing the multiscale patterns for different metrics, in several 

profiles with varying waviness magnitudes, but approximately the same roughness 

behaviour, and, in particular, if we analyse the variance of the detail coefficients at each 

scale (Figure 8.1), one can clearly detect a change of pattern occurring slightly before 
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scale 6, indicating that roughness phenomena stop somewhere between scales 4 and 6. 

Therefore, balancing these two pieces of information, the maximum scale index for 

roughness phenomena was set equal to 6, as an adequate compromise between 

engineering knowledge available and the analysis performed over a selected group of 

samples. The scale indices associated with these phenomena are then as follows: 

{ }1, 2,...,6RogJ = . As to those relative to waviness, the maximum scale index is limited 

by the decomposition depth scale (11), and the minimum scale index was set equal to 

10, in order to capture the minimum scale associated with “piping streaks” surface 

irregularities, since 10 62 8.93 10 0.01 (1 )m m cm−× × ≈ . Thus, the scale indices adopted 

for monitoring waviness phenomena are { }10,11WavJ = . 

Another task to be performed in step 4 regards the calculation of parameters that 

summarise relevant characteristics of the two phenomena, to be employed for statistical 

quality control purposes. Many metrics have been proposed to characterize both 

roughness (e.g. arithmetical mean deviation of profile, maximum height of profile, RMS 

deviation of profile, etc.) and waviness profiles (e.g. total height of profile, mean width 

of profile elements, slope of profile, etc.), that can be consulted in the profilometry 

literature (Sander, 1991) and norms (ISO, 1997), to which we can sum up others based 

upon wavelet coefficients (e.g. variance of detail coefficients distributed across selected 

scales for each phenomenon, and its slope in a log-log plot for roughness scales). As 

many of these metrics give rise to highly correlated data sets, when used together, we 

can either use them all and compress the monitoring dimension space, using, for 

instance, PCA, or choose a subset that provides all the important profile information for 

monitoring purposes, and set up control charts only for this subset. Using extended 

simulations and analysing real paper profiles, we found out that often a single, 

adequately chosen, parameter is good enough to detect magnitude changes in the 

roughness and waviness phenomena. This parsimonious solution works quite well, but 

can also be easily extended to incorporate more parameters. Therefore, the parameter 

(statistic, in the usual statistical terminology) chosen for monitoring roughness is the 

sample or empirical variance of the reconstructed roughness profile: 

 

 
( )2

1

1

N
kk

R R
Empirical variance of  roughness profiles

N
=

−
=

−
∑  (8.2) 
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where { } 1:k k N
R R

=
≡  is the roughness profile ( N  stands for the number of points in the 

roughness profile, which is also the same as the length of the original profile), obtained 

by performing an inverse wavelet transformation of the vector of wavelet coefficients 

where the only non-zero elements are those relative to the roughness scales, or, 

equivalently, 
Rog

i
i J

R w
∈

= ∑ ; R  corresponds to its sample average (note that both the 

roughness profile, R , and the projections to the detail spaces, iw , are vectors of the 

same dimension, N ). As for the chosen waviness parameter (once again a statistic 

under the usual statistical terminology), we defined a simple magnitude parameter that 

correlated quite well with the visual assessment of waviness profiles, given by the 

maximum deviation from the mean value, maxD , defined as: 

 

 ( )max max ,p vD C C=  (8.3) 

 

where pC  and vC  represent, respectively, the largest peak height and the largest valley 

depth of the profile centred at its mean value, ( ) ( ) mC x W x Z= − , with mZ  defined as: 

 

 ( )max

minmax min

1 x

m x
Z W x dx

x x
=

− ∫  (8.4) 

 

i.e., ( )( )maxpC C x=  and ( )( )minvC C x=  ( minx  and maxx  represent the initial and 

final X-axis coordinates, to be considered for the purpose of calculating mZ ); W is the 

waviness profile, obtained through the same procedure adopted for R, but using 

waviness scales instead in the reconstruction algorithm, 
Wav

i
i J

W w
∈

= ∑ . 
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SPC Monitoring 

The two parameters referred above are used to monitor multiscale phenomena in step 4, 

through two separate Shewhart control charts for individual observations (Montgomery, 

2001). Their upper control limits were set through a non-parametric approach, using a 

Gaussian kernel density estimation methodology (Silverman, 1986) over reference data 

that correspond to normal operation conditions. As the underlying reference distribution 

depends strongly upon real industrial production conditions, and since no sufficient data 

are available at the moment to describe it thoroughly using a parametric approach, this 

alternative allowed us to assess the potential utility of our methodology. Furthermore, 

other SPC procedures can also be implemented in the future, such as CUSUM or 

EWMA, to enhance sensitivity to small shifts, as extensions of the proposed approach. 

In step 5 we provide the operator with a diagnosis tool that maps each waviness profile 

into a two dimensional plot of maxλ  versus maxD , where maxλ  stands for the finite 

wavelength where power spectra reach a maximum. Since “piping streaks” are well 

localized in the frequency domain (they have a characteristic wavelength typically 

somewhere around 20 mm, although this value depends upon a specific paper machine), 

such a plot allows for the fast identification of those high magnitude samples that may 

be classified into this type of abnormality. Several reference horizontal lines assist 

operators in the classification of the magnitude of the phenomena into three quality 

classes (good, intermediate, bad), which reflect the perception of a panel of experts, 

afterwards translated into values of maxD . Another vertical reference line provides a 

separation between two wavelength ranges, one of which regards the “piping streaks” 

characteristic wavelength domain (Figure 8.18). 

 

Simulation Results 

Our simulation study provides an assessment of the underlying potential for the 

proposed methodology under simulated, though realistic, scenarios. As the behaviour of 

the true underlying industrial process, and therefore that of the monitoring statistics, are 

both rather complex and, to a larger extent, remain unknown at the present stage, the 

results presented here serve the purpose of evaluating its potential, deferring an accurate 

characterization of its Phase 2 performance (e.g., through ARL, ATS metrics) to future 
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work, when sound statistical modelling becomes possible with the availability of larger 

data sets. 

To design a realistic simulation study, both waviness and especially roughness 

phenomena were carefully analysed, in order to estimate adequate models that are 

compatible with the main features present in real world paper surface profiles. Model 

(8.1) was used to generate the roughness component of the overall simulated profile (R). 

As for the waviness component (W), both the type of waveforms typically found when 

“piping streaks” are present, as well as other lower frequency irregularities and normal 

operation conditions profiles, were simulated through the superposition (sum) of several 

sinusoidal waveforms, ( )1
,Wn

i i ii
W W Aλ

=
=∑ , each one with its own wavelength ( iλ ) and 

amplitude ( iA ). We used four of such elementary waves ( 4Wn = ) to synthesize the 

overall waviness profiles, through the sequence of steps presented in Table 8.7. 

 

Table 8.7. Sequence of steps involved in the generation of the waviness component for the overall 

profile. 

1. Definition of simulation parameters, including average wavelength (λ ), 

wavelength half range ( λ∆ ), average maximum amplitude ( maxA ) and amplitude 

range ( maxA∆ ); 

2. Generate wavelengths iλ  for each component wave, iW , where 

( )~ ,i Uλ λ λ λ λ−∆ + ∆ , i=1:4, with ( )U ⋅  representing an uniform distribution 

in the range specified as argument; 

3. Generate amplitude maxA  for the final (overall) waveform W , where 

( )max max max max max~ ,A U A A A A−∆ + ∆ ; 

4. Definition of amplitudes for each component wave, iW , calculating first the 

unscaled amplitude for each component, *
iA , and then scaling the four 

components in order to obtain a final waveform with the amplitude specified in 

step 3, i.e. ( )*
max max max max~ ,iA U A A A A−∆ + ∆ , * *

maxi i iA A A A= ∑ ; 
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5. Generation of individual wave components with the parameters computed in the 

previous steps and using the same sampling spacing and number of points as for 

the real profiles (8.93 mµ  and 6144, respectively); perform summation to 

obtain the resulting waviness profile, ( )4

1
,i i ii

W W Aλ
=

=∑ . 

 

 

Finally, both the roughness and waviness profiles are combined to obtain the simulated 

raw profiles, P ( P R W= + ). The proposed approach was tested under several scenarios, 

in order to assess its potential to detect shifts of different magnitude in the waviness 

profile, as well as shifts in roughness. Figure 8.15 presents the MS-SPC control charts 

for data generated according to the five simulation scenarios described in Table 8.8. 

 

Table 8.8. Simulation parameters associated with different scenarios studied. 

↓ Scenario / Simulation parameter → λ  
(mm) 

λ∆  
(mm) 

maxA  
(µm) 

maxA∆  
(µm) 

Roughness 
model 

1. Normal operation 40 10 30 20 (3.4) 
2. “Piping streaks”, moderate magnitude 17 3 70 20 (3.4) 
3. “Piping streaks”, high magnitude 17 3 110 20 (3.4) 
4. “Cockling”, high magnitude 80 20 100 20 (3.4) 
5. Roughness, high magnitude 40 10 30 20 (3.5) 

 

The first two plots (a and b) refer to control charts for roughness and waviness, 

respectively, with 99% control limits established after a preliminary Gaussian kernel 

density estimation step, where 40 samples representing normal operation conditions 

were used, whereas plot c) combines them into a single plot.39 The non-parametric 

estimation approach was adopted, in order to overcome the difficulties raised by the 

shapes of the distributions found for the monitoring statistics, which do not resemble 

any known probability density function. Under such circumstances, the Gaussian kernel 

                                                 

 

39 Lines in this plot are control limits for each parameter, represented only for reference, not aiming to 

define the combined 99% control region, although this could also be done within the scope of non-

parametric approaches (Martin & Morris, 1996). 
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density method provides an adequate way to estimate the underlying distribution, 

through an adequate fit/smoothness trade-off (Silverman, 1986). 

From Figure 8.15 (a and b), we can verify that all the shifts simulated under conditions 

2-5 are clearly detected in the appropriate control chart, even the one for moderate 

“piping streaks” irregularity. In Figure 8.15-c, one can notice an overlap occurring in 

the region of significant waviness phenomena, where “piping streaks” of different 

magnitude and “cockling” appear superimposed. However, since the former has a quite 

localized behaviour in the frequency domain, these two types of phenomena can be 

quite well resolved under the current simulation conditions, by bringing in an extra 

classifying element, which is the (finite) wavelength where the waviness profile power 

spectra reaches its maximum, maxλ . 
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Figure 8.15. Control charts for monitoring roughness (a) and waviness (b), both with 99% upper control 

limits, and a combined plot that monitors both statistics (c). The five sectors indicated in plots a) and b) 

and the symbols used in plot c) refer to the simulation scenarios described in Table 8.8. 

 

Figure 8.16 presents such a plot, where we can see that a separation is indeed possible 

between these two phenomena (Figure 8.15-c is the orthogonal projection of the points 

in this three-dimensional plot, onto the “variance of roughness profile” versus “ maxD ” 

plane). Since we are particularly concerned with following “piping streaks”, this idea 

a) 

b) 

c) 
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will be pursued a bit further in the next subsection, in order to develop a plot that 

indicates when such phenomena may be occurring. 
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Figure 8.16. A three dimensional plot of the variance of roughness profiles versus maxD  and maxλ . 

Symbols refer to the scenarios described in Table 8.8. Waviness (2-3) and cockling (4) clusters appear 

now quite well separated. 

 

Multiscale Monitoring of Real Paper Surface Profiles Results 

To further test the multiscale profile monitoring approach under conditions even closer 

to those found in real industrial practice, a pilot study was run in the context of a 

collaboration between our research group and Portucel (a major Portuguese pulp and 

paper company). Approximately one hundred profiles were gathered, containing 

samples within the normal operation quality standards, as well as others corresponding 

to several types of abnormal situations. Table 8.9 presents a general description of the 

samples whose profiles were used in this study. 
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Table 8.9. Description of surface phenomena exhibited by real surface profiles. 

Description Samples
Reference set 1-40 
No waviness 41-61 
Moderate waviness  62-82 
High waviness 83-88 
Upward trend on Bendtsen roughness 89-98 

 

Control limits were set based on the variability exhibited by the samples from the 

reference set, following the same approach used with simulated data. The test set 

contains samples with low, moderate and high waviness, as well as samples that 

correspond to an upward trend in roughness magnitude, as measured by the Bendtsen 

tester (Kajanto et al., 1998; Van Eperen, 1991), an instrument based on the air-leakage 

principle that measures the volume of air flowing between a ring and the paper surface. 

As no roughness measurements were available for the former samples, with various 

levels of waviness magnitude, it is not possible to analyse the monitoring performance 

of the roughness chart for such samples. Some moderate and high waviness samples can 

be classified into typical “piping-streaks” and “cockling” representatives by looking at 

their profiles, but for others that is not possible. We will refer to them simply as (high or 

moderate) waviness samples. 
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Figure 8.17. Control charts for monitoring roughness (a) and waviness (b). The first part of the data sets 

(1) regards reference data, the second (2) is relative to waviness phenomena with different magnitudes 

(see Table 8.9 for details) and the third (3) regards an upward trend in roughness, as measured by the 

Bendtsen tester. 
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Figure 8.17 presents our MS-SPC monitoring results for the real profiles. We can see 

that the SPC chart for monitoring waviness does indeed follow the magnitude trends of 

the samples described in Table 8.9. As for the chart relative to roughness, it is also 

possible to verify that it captures the upward trend in the last 10 samples, besides other 

significant events scattered over other samples in the test set. To facilitate the detection 

of samples with “piping streaks” waviness, a two-dimensional plot of maxλ  versus maxD , 

presented in Figure 8.18, was adopted, where the samples appear segregated along the 

vertical direction according to the magnitude of the waviness phenomena, and along the 

horizontal direction, according to their characteristic wavelength. In general, this plot 

enables a correct separation, especially when samples present well defined waviness 

behaviour, such as is usually the case when “piping streaks” occur. The horizontal 

classification boundaries, presented in Figure 8.18, were set by analysing the location 

and localization of the samples classified into three waviness magnitudes classes, 

through a simple procedure that weights the natural upper and lower boundaries for 

each adjacent class, using the number of elements in each class, whereas the vertical 

classification line was drawn using engineering knowledge regarding “piping streaks”. 

From what was presented in these two studies, we can see that the proposed multiscale 

profile monitoring methodology can indeed be used for monitoring simultaneously both 

paper waviness and roughness phenomena. 

 

8.3 Conclusions 

In this chapter, a multiscale profile monitoring approach was presented, discussed and 

applied to the simultaneous monitoring of both roughness and waviness paper surface 

phenomena in an integrated way. Its monitoring performance was analysed through 

simulated realistic scenarios and using real industrial data. The approach is built around 

a wavelet based multiscale decomposition framework, that essentially conducts a 

multiscale filtering of the raw profile, effectively separating the two phenomena under 

analysis, making also use of available engineering knowledge and information derived 

from an analysis of the distributions of different quantities through the scales. 
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Figure 8.18. Plot of maxλ  versus maxD  for the real profiles data set. In this plot, waviness phenomena are 

classified into three levels of magnitude, separated by horizontal lines (low at the bottom, moderate at the 

middle and high at the top), and in two regions of characteristic wavelength, the range at the left being 

characteristic of “piping streaks” phenomena. 

 

The results presented for the case study related with monitoring of paper surface using 

profilometry allow us to conclude in favour of the adequacy of adopting the proposed 

approach for monitoring simultaneously both types of phenomena (roughness and 

waviness), but its thorough characterization in terms of Phase 2 detection performance 

metrics (ARL, ATS) is deferred until more process data can be accumulated. 
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Chapter 9. Multiscale Statistical 

Process Control with 

Multiresolution Data 

In this chapter, we focus on monitoring time domain phenomena, where a multitude of 

features can develop, making wavelet-based multiscale approaches adequate in this 

context, given their well known feature extraction effectiveness. In particular, an 

approach for conducting multiscale statistical process control that adequately integrates 

data at different resolutions (multiresolution data), called MR-MSSPC, is presented. Its 

general structure is based on Bakshi’s (1998) MSSPC framework, designed to handle 

data at a single resolution. Significant modifications were introduced in order to process 

multiresolution information. The main MR-MSSPC features are illustrated through 

three examples, and issues related to real world implementations and with the 

interpretation of the multiscale covariance structure, are addressed in a fourth example, 

where a CSTR system under feedback control is simulated. The proposed approach 

proved to be able to provide a clearer definition of regions where significant events 

occur and a more sensitive response when the process is brought back to normal 

operation, when compared to approaches based on single resolution data. 

 

9.1 Introduction 

Data generated in chemical process plants arise from many sources, such as on-line and 

off-line process sensors, laboratorial tests, readings made by operators or raw materials 
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specifications, to name just a few. To such a variety of origins are usually associated 

complex data structures, due to diversity in time acquisition, missing data patterns, as 

well as in variable resolutions, since the values from different variables may carry 

information that covers different time ranges (multiresolution data). In spite of several 

developments have been proposed to address the sparsity problem created by multirate 

(Izadi et al., 2005; Lu et al., 2004; Tangirala, 2001) and missing data (Arteaga & Ferrer, 

2002; Little & Rubin, 2002; Nelson et al., 1996; Walczak & Massart, 2001), the issue of 

handling multiresolution process data remains, to a large extent, unexplored, with 

developments mainly centred around signal and image processing problems (Bassevile 

et al., 1992a; Chou et al., 1994a; Willsky, 2002). 

In a multiresolution data structure, we can find variables whose values are collected 

punctually (high time resolution) at every node of a fine grid whose spacing is 

established by their (also higher) acquisition rates, and variables that represent averages 

over larger time ranges (i.e. over several nodes of this grid), to which we will refer to as 

“lower resolution variables” (the term averaging support, AS, will also be used to 

address the period of time, or number of nodes, over which averages are computed). 

In industrial applications, multiresolution data structures usually arise when process 

sensor information is combined with data taken from other sources, such as the 

following: averages made by operators from several readings taken from process 

measurement devices during their shifts, which are then annotated in daily operation 

reports or introduced manually in a computer connected to the central data storage unit; 

measurements from pools of raw material or products accumulated during a period of 

time and mixed thoroughly before testing; averages of process variables taken over a 

period of time, which are computed automatically by local DCS computers (e.g. on an 

hourly basis); aggregated measurements from each batch operation. 

On the other hand, processes going on in chemical plants are themselves typically quite 

complex, and this complexity is also reflected in collected data, which contain the 

cumulative effect of many underlying phenomena and disturbances, with different 

location and localization patterns in the time/frequency plane. Not only the overall 

system has a multiscale nature, since it is composed of processing units that span 

different time scales and frequency bands, but also the inputs (manipulation actions, 

disturbances, faults) can present a variety of features with distinct time/frequency 

characteristics. For such reasons, multiscale approaches designed to handle and take 
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advantage of the information contained at different scales have been developed for 

addressing different tasks (Bakshi, 1999; Motard & Joseph, 1994), namely process 

monitoring. 

In this context, multiscale monitoring approaches provide an adequate basis for 

developing a (multiscale) process monitoring framework that integrates information 

with different resolutions, as the concept of resolution (or scale) is already present in 

their algorithmic structures, by design, in particular for those based on the wavelet 

transform as a tool for separating dynamic features, contained at different scales. 

Therefore, the structure underlying Bakshi’s (1998) MSSPC (for data at a single 

resolution, Section 2.5.1) was adopted in this work as an adequate starting point to 

integrate data with different resolutions, a research topic also covered by a number of 

authors, as referred in Section 2.5.1. 

The remaining parts of this chapter are organized as follows. In the next section, 

MSSPC is reviewed, now focusing on some important implementation details rather 

than the more generic presentation of Section 2.5.1. In the third section, the proposed 

MSSPC approach that integrates multiresolution data (MR-MSSPC) is introduced. 

Then, in the following section, several examples illustrate the improved effectiveness 

achieved with our methodology, in identifying the region in the time domain where a 

fault occurs and its promptness in detecting transition points, when compared with other 

alternatives, based on single resolution data structures. A last example addresses the 

case of monitoring a non-linear multivariate dynamic process using MR-MSSPC, where 

several important practical issues, regarding its real world implementation, are referred, 

as well as some extensions, namely the possible definition of an adequate resolution for 

each variable being monitored. A final section summarizes the main results presented 

and conclusions reached. 

 

9.2 MSSPC: Implementation Details 

As already referred in Section 2.5.1., MSSPC is based on multiscale principal 

components analysis (MSPCA), which combines the decorrelation ability of PCA, 

regarding cross-correlations among variables, with that of the wavelet transform for any 

potential autocorrelated behaviour in each variable, and, furthermore the 

deterministic/stochastic separation power associated with this type of transform 
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(Bakshi, 1998). In summary, the MSSPC procedure consists of computing independent 

principal components models and control limits for SPC-PCA control charts, at each 

scale, using data collected from the process operating under normal conditions. Then, as 

new data is acquired, the wavelet coefficients are calculated at each scale, according to 

the chosen discretization procedure (to be described in the next section), and control 

chart procedures implemented separately at each scale. If any significant activity is 

detected at any scale, the signal is reconstructed back to the time domain, using only 

coefficients from the significant scales, a task that can be interpreted as a multiscale 

feature extraction mechanism. The covariance matrix at the finest scale is also 

computed, using information related with the significant scales, in order to implement 

the statistical tests at the finest scale (T2 and Q control charts), that will produce the 

final outcome of the MSSPC method, stating whether the process can be considered to 

be operating under normal conditions, or if a special event has occurred. 

Despite the well established methodological structure underlying MSSPC, described 

above, there are still some degrees of freedom left open on how certain tasks can be 

implemented, leading to different “flavours” regarding its exact algorithmic 

implementation. For instance, looking to the reconstruction stage, where the wavelet 

coefficients at significant scales are collected to reconstruct the signal in the original 

domain (finest scale), certain decisions have to be made, in order to answer questions 

such as: 

• Should we use in the reconstruction the raw coefficients or their projections onto 

the PCA models at each scale? (Rosen, 2001); 

•  Should the projected data onto a PCA model at the finest scale (necessary to 

calculate the monitoring statistics) be obtained directly from the projections at 

each scale, or from a projection made at the finest scale, using the reconstructed 

data and a PCA model calculated from the combined covariance matrix? 

• Regarding the way this combined covariance matrix is obtained, can we adopt, 

instead of the 1/0 weighting scheme proposed by Bakshi (1998), an alternative 

strategy that weights scales according to their relevance from the stand point of 

the events to be detected, in order to increase detection sensitivity and focus the 

method in the correct frequency range, tailoring it, by this way, to better suit its 

final monitoring goals? (Rosen, 2001)  
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Other questions arise at other levels and also need to be answered: 

• During the start-up of the MSSPC methodology, before the full decomposition 

depth is attained since not enough data were collected yet, should the 

information regarding finer approximation coefficients be used for monitoring? 

•  Should an equal number of principal components be adopted at all scales 

(Bakshi, 1998) or not (Rosen, 2001)? 

• If a different number of components is used in the PCA models at each scale, 

which criteria should be adopted to set the number of components after 

reconstruction, when coefficients arise from scales where the PCA models have 

a different number of components? 

• Should we scale the original data, i.e., before applying the wavelet transform, or 

the wavelet coefficients at each scale? 

All these decisions influence the final MSSPC algorithm adopted, and therefore one 

should be aware of them when comparing different MSSPC approaches. However, 

overall performance is not expected to vary quite significantly, as all alternatives share 

the same basic structure, that being the key factor contributing to the success of MSSPC 

methodologies. 

 

9.3 Description of the MSSPC Framework for Handling 

Multiresolution Data (MR-MSSPC) 

9.3.1 Discretization Strategies 

Besides all the degrees of freedom mentioned in the previous section, another 

differentiating feature regarding MSSPC implementations, and an important one, 

regards the type of data windows over which the wavelet transformed is applied, and 

based upon which the subsequent analysis is carried out. 

In one extreme, we have the moving window of constant dyadic length used by Bakshi 

(1998), that consists of translating a time window with length 2 decJ  (where decJ  is the 

decomposition depth of the wavelet transform used in the multiscale analysis), so that 

the last vector of observations is always included in the window, after an initial phase 
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that goes from observation number 1 to observation number 2 decJ , where its length 

increases in such a way that a dyadic window is always used, until it reaches the 

maximum length (Figure 9.1 I-a and II-a). This window can be used in the 

implementation of a fully on-line MSSPC procedure. 

Concerning now procedures that involve a time delay, we have the moving window of 

variable dyadic length, that enables the successive calculation of the coefficients 

regarding an orthonormal wavelet transformation (Figure 9.1 I-b and II-b), in opposition 

to the coefficients of its undecimated counterpart, also known as translation invariant 

wavelet transform, that are calculated using the first type of moving window referred 

above. The former procedure corresponds to a uniform discretization of the wavelet 

translation parameter, while the latter implements a dyadic discretization strategy 

(Aradhye et al., 2003). As can be seen from Figure 9.1 I-b and II-b, the length of the 

window is not constant along time, and therefore not all the wavelet coefficients are 

used for monitoring at each stage. 

Finally, we have the non-overlapping moving windows of constant dyadic length 

( 2 decJ ), over which all the relevant orthogonal wavelet coefficients can be calculated 

using batches of collected data, every ( )2 dec
thJ  observation (Figure 9.1 I,II-c). This 

strategy also corresponds to a dyadic discretization of the wavelet translation parameter, 

but now all the coefficients for the selected decomposition depth (regarding a given data 

window) are calculated simultaneously, and not sequentially, as happens with the 

previous approach. 

Let us now consider the situation where, among the collected data set, there are 

variables whose values regard averages over different time supports (multiresolution 

data). These values become available at the end of these periods, when they are 

recorded in the data storing unit. The traditional way for incorporating them in the 

monitoring procedures designed to analyze data at a single resolution usually consists of 

holding the last available value constant during the time steps corresponding to the 

finest resolution, when no new information is collected, until new average values 

become available (zero-order hold). 
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Figure 9.1. Two representations that illustrate different discretization strategies used in MSSPC, for 

3decJ = . Representation I illustrates which data points are involved in each window considered in the 

computations. Dark circles represent the values analysed at each time, which is represented in the vertical 

axis. The horizontal axis accumulates all the collected observations until the current time is reached 

(shown in the vertical axis). Representation II schematically represents the calculations performed under 

each type of discretization. The discretization methodologies considered are: a) overlapping moving 

windows of constant dyadic length (uniform discretization); b) dyadic moving windows for orthogonal 

wavelet transform calculations (variable window length dyadic discretization); c) non-overlapping 

moving windows of constant dyadic length (constant window length dyadic discretization). 

 

This strategy creates a mismatch between the time support where the averages were 

calculated, and the one attributed to the average values. To illustrate this point, let us 

consider a situation where a variable corresponding to averages over four successive 

observations at the finest resolution is being acquired. Figure 9.2-a) illustrates the time 

ranges across which average values were calculated, while Figure 9.2-b) depicts the 
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ranges where the values are held constant with such a procedure. These are quite 

different, and in fact have only one interception point in the discretization grid at the 

finest resolution. 

 

 
Figure 9.2. Time ranges over which average values are actually calculated (a) and those where the values 

are held constant in a conventional strategy to incorporate multiresolution data in single resolution 

methodologies (b). 

 

From the different discretization approaches described above, the one that was found to 

be more adequate for setting up a multiresolution MSSPC procedure (MR-MSSPC) is 

the variable window length, dyadic discretization. As happens with its constant window 

length dyadic counterpart, this strategy has the important property of allowing for low 

resolution measurements to maintain their effective time supports (as represented in 

Figure 9.2-a), but without introducing as much time delay in the monitoring procedure. 

The uniform procedure was designed to handle on-line MSSPC tasks in situations 

where all variables have the same resolution (single resolution data). It is quite effective 

in such a context, but requires, for this same reason, a data pre-processing stage of the 

type represented in Figure 9.2-b. 

9.3.2 Description of the MR-MSSPC methodology 

The MR-MSSPC methodology begins with a specification of the resolution associated 

with the values collected for each variable. Quite often there is a finest resolution, 

corresponding to variables collected at higher sampling rates, which is used to set the 

finest grid (scale index 0j = ). If variable iX  correspond to averages computed over 

time supports of length 2 iJ  times that of the finest resolution, then its scale index, or 

resolution level, is set to iJ . A variable at resolution iJ  can only be decomposed to 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

a) 

b) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
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scales coarser (i.e., higher) than iJ , and therefore it does not contribute to the 

monitoring procedures implemented at finer scales ( ij J≤ ). This attribution is 

straightforward in situations where the low resolution variables represent averages over 

dyadic supports. In case this does not happen, we propose setting iJ  as the immediately 

next coarser scale, i.e. ( )2logiJ AS= ⎡ ⎤⎢ ⎥ , where AS is the averaging time support, 

( )2log AS⎡ ⎤⎢ ⎥  standing for the smallest integer n such that ( )2logn AS≥ , and project 

data onto this scale using a weighted averaging procedure that will be described further 

ahead in this chapter. 

The decomposition depth to be used in the wavelet transformation phase of standard 

MSSPC, decJ , is another parameter to be set before implementation of the methodology. 

It must be higher than { } 1:
max i i m

J
=

 (usually { } 1:
max 2dec i i m

J J
=

≥ +  for reasons related 

to the ability for reconstructing behaviour of past events). A summary of the whole 

procedure is presented in Table 9.1. 

 

Table 9.1. Summary of MR-MSSPC methodology. 

I. Compute PCA models at each scale using reference data. 

a. For each variable ( , 1:iX i m= ), perform the wavelet decomposition from 

1iJ +  to decJ ; 

b. Calculate the mean vectors and covariance matrices at each scale; 

c. Select the number of PCs and calculate PCA models at each scale. 

II. Implement MR-MSSPC methodology. 

a. For each observation index, k, multiple of 12 minJ +  ( { } 1:
minmin i i m

J J
=

= ); 

i. Get dyadic window corresponding to current observation (length 

equal to ( )2 maxJ k ); 

ii. Decompose those variables iX  for which ( )i maxJ J k< , from 1iJ +  to 

( )maxJ k ; 

iii. Implement PCA-based MSPC at each scale where coefficients are 

available, using Hotelling’s T2 and Q statistics, and select the scales 

where significant events are detected from the standpoint of these 
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statistics (note that detail coefficients for some scales may not be 

available, while the scale of approximation coefficients to be used 

depends exclusively upon ( )maxJ k ); 

iv. Using the scales where significant events are detected, reconstruct 

data at the resolution levels between the coarser scale where a 

significant event was detected, *J , and minJ , and that corresponding 

to the resolution for some variable, i.e. scales j that satisfy the 

condition { } 1:
: *min i i m

j J j J j J
=

< < ∧ ∈ . Do the same for the mean 

vectors and covariance matrices associated with the selected scales. 

v. Using the reconstructed data, recombined covariance matrices and 

mean vectors, calculate T2 and Q statistics at each intermediate 

resolution, and look for significant events in these charts. If none 

detects a significant event, consider the process to be operating under 

normal conditions; if any of them shows an abnormal value, than 

trigger an alarm, and study the contribution plots for the 

reconstructed statistics at the scale where the signal occurs. The plots 

of the tests performed at each scale also contain information about 

the frequency ranges involved in the perturbation, and can be 

checked at a second stage of troubleshooting. 

 

 

The PCA models developed in the initial stage, involving wavelet coefficients 

calculated from reference data (I), are not only for the detail coefficients at each scale 

( 0 decj J< ≤ ) and for the approximation coefficients at scale decJ , as happens with 

MSSPC with uniform discretization, but also for the approximation coefficients at 

scales 0 decj J< < . This is due to the variable length associated with the type of 

windows used, which implies that very often the maximum decomposition depth is 

lower than decJ  ( max decJ J≤ , where maxJ  is the maximum possible decomposition depth 

for the current data window). Thus, we often do have available approximation 

coefficients for decj J< , and, in practice, we found out that they actually can play an 
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important role in the earlier detection of sustained shits. Therefore, we include them in 

the implementation of MR-MSSPC. 

Furthermore, PCA models at different scales may have a different number of variables 

associated with them, the models for the finest scales having fewer variables than those 

for the coarser scales, as these also integrate lower resolution variables. For this reason, 

the number of components for the models at each scale must be chosen individually. A 

rule has also to be defined in order to specify the number of PCs to use in the PCA 

model for reconstructed data at the finest scale, when it has contributions from several 

scales, whose models have different numbers of components. We will use the minimum, 

from all the scales involved in the reconstruction, so that the number of PCs will always 

be smaller than the number of reconstructed variables. 

Stage II.iv corresponds to an extension of the MSSPC’s reconstruction phase, using 

information from scales where significant events were detected, back to the original 

time domain, when multiresolution data are present. As we are now dealing with 

variables having different resolutions, we test the statistics derived from the 

reconstructed data at these intermediate resolutions, besides 0j =  (now converted to 

the more general minJ ), provided that they stay below the coarser scale where significant 

activity was detected (if not, i.e, if the coarsest significant scale lies below the resolution 

of a given variable, then such a behaviour can not be due to its intervention, and 

therefore the reconstruction at those resolutions is not relevant). Therefore, we may end 

up with more than one plot for the reconstructed T2 and Q statistics (one per resolution 

satisfying the conditions mentioned). Thus, in order to maintain the overall significance 

level of the SPC procedure adopted in the confirmation phase for each of the two 

statistics, control limits are adjusted using a correction factor applied over the 

significance level (α ), derived from the Bonferroni inequality: chartsnα , where chartsn  is 

the number of charts used simultaneously for each statistic. 

Another relevant issue regards the wavelet decomposition of variables available at 

coarser resolutions. Filtering operations, followed by dyadic down-sampling at each 

stage of the wavelet decomposition, encompass scaling operations that assure energy 

conservation for the orthonormal transformation (Parseval relation). As the coarser 

resolution variables have fewer decomposition stages than the other finer resolution 

variables, scaling operations that might have been made initially to the whole data set 
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would be now distorted at each scale, if no additional scaling is imposed to the coarser 

resolution variables. This scaling strictly depends on the difference between the finest 

resolution index and the resolution index for such variables, and it was implemented in 

the proposed methodology. 

 

9.4 Illustrative Examples of MR-MSSPC Application 

In this section, the main features of the proposed MR-MSSPC methodology are 

illustrated through its application to several different examples. The good properties of 

MSSPC methodologies in the monitoring of systems exhibiting autocorrelation were 

already widely explored in the literature (Aradhye et al., 2003; Bakshi, 1998; Kano et 

al., 2002; Misra et al., 2002; Rosen & Lennox, 2001), and such properties are inherited 

by the proposed MR-MSSPC. In fact, since the methodology is based upon a dyadic 

discretization strategy, the decorrelation ability of the multiresolution decomposition is 

even higher than that obtained with an uniform discretization scheme. It is therefore 

expected to be even more suited to address highly correlated and nonstationary 

processes (Aradhye et al., 2003). Thus, our focus in these studies is mainly over 

stationary uncorrelated systems, where the main features of the method can be more 

clearly illustrated, but an example is also presented regarding a more complex dynamic 

system (CSTR under feedback control), where several interesting features connected to 

real world implementations of the methodology are addressed. 

The following latent variable model was adopted for data generation in the first three 

studies presented below (Bakshi, 1998), since this kind of model structure is quite 

representative of data collected from many real world industrial processes (Burnham et 

al., 1999; MacGregor & Kourti, 1998): 
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where mI  is the identity matrix with dimension m. 

For the purposes of illustrating the MR-MSSPC framework, variable 4X  contains 

coarser resolution information, given as the successive averages over non-overlapping 

windows of length AS (to be defined for each example), while the remaining variables 

are all available at the finest resolution. Therefore, variable 4X  will only be acquired at 

the end of each period of AS consecutive observations, representing the mean of its 

values over that period of time. 

In the first example, presented next, we illustrate the situation where the averaging 

window length, AS, is a dyadic number ( 2 iJ ), leaving for the third example, a situation 

where such a support is non-dyadic. 

9.4.1 Example 1: MR-MSSPC for Multiresolution Data with Dyadic 

Supports 

A reference set with 4096 observations was generated using latent variable model (9.1). 

Variables { }1 2 3, ,X X X  are available at the finest scale ( 1 2 3 0J J J= = = ), while 

variable 4X  represents averages over windows with length 4 ( 4 2J = ). To test the 

monitoring features of MR-MSSPC, 128 observations are generated and a shift of 

magnitude +1 is imposed in all variables between observations 43 and 83 (included). 

The fact that transition times do not fall in the dyadic grid at a boundary between two 

averaging windows is intentional, in order to see how the method behaves in such less 

favourable conditions. 

Figure 9.3 presents the results obtained regarding control charts for the T2 and Q 

statistics at the two resolutions available in the data set, i.e. at { }0, 2iJ = . In the MR-

MSSPC charts, circles ( ) are used to indicate that the respective statistic’s abscissa 

corresponds to the time where the last value of the method’s analysing dyadic window 
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is acquired, and where calculations are actually made and results plotted.40 For instance, 

in Figure 9.3, circles appear every 2nd observation in the plots for 0iJ = , and every 4th 

observation in the plots for 2iJ = , as only at such time instants new values become 

available for graphical representation at these resolutions. Therefore, a decision about 

the state of the process is only taken at times corresponding to observations signalled 

with circles. In case a statistic (T2 or Q) signalled with a circle falls above control limits, 

its observation number also appears next to it. In such cases, all the values of this 

statistic regarding the same dyadic window are represented (×), as well as the associated 

control limits (–). This plotting feature is important to enable a more accurate 

reconstruction of the time at which a special cause occurred, even if it is detected at a 

later stage. 

It was also decided to represent the points of the statistics and control limits even if the 

last observation is not significant, provided that there is at least one scale where a 

significant event was detected (with no number associated with it in the plots). This 

enables us to see more clearly when the process returns back to normal operation, as 

well as to visualize imminent abnormal situations in their early stages, when some 

unusual patterns become noticeable, prior to their full manifestation. 

When no significant event is detected at any scale, a “zero” point is plotted (•). 

From Figure 9.3, we can see that Q charts are more sensitive to the type of fault 

analysed in this example than T2 charts. The Q statistic at 0iJ =  clearly indicates that 

an abnormal observation has occurred in the immediate past neighbourhood of 

observation 44, and that the process has returned back to normal shortly after 

observation 80. A mild spurious observation is also detected again at time 88, but the 

plot reconstructs quite clearly that the process has returned to normality. 

 

                                                 

 

40 There is some delay during which data is collected and stored; thus, some observations are only plotted 

after some time, not corresponding to “current values”, and therefore not being signalled with a circle. 
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Figure 9.3. Plots of the T2 and Q statistics at the two resolutions available in the data set, { }0, 2iJ = , 

using data reconstructed from significant scales. Control limits are set for a confidence level of 99% 

(horizontal line segments). Legend:  - signals effective plotting times (“current times”); × - appears if 

the statistic is significant at “current time”, in which case its values in the same dyadic window are also 

represented (the “current time” index also appears next to the corresponding circle); – - control limit for 

the statistic, which is represented every time a significant event is detected at some scale relevant for the 

control chart; • - indicates a “common cause” observation (not statistically significant). 

 

Figure 9.4 illustrates the underlying MR-MSSPC monitoring tasks conducted at each 

scale on the detail coefficients for 0 decj J< ≤  and on the approximation coefficients at 

scale decJ , while Figure 9.5 regards the ones involving approximation coefficients for 

scales 0 decj J< < . As can been seen from these plots, detail coefficients play an 

important role in the detection of transition times, while approximation coefficients 

have the complementary role of signalling abnormalities during the duration of a 

sustained shift. 
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Figure 9.4. Plots of the T2 and Q statistics for detail coefficients at each scale ( 0 decj J< ≤ ) and for 

approximation coefficients at scale decJ , with control limits set for a confidence level of 99%. 
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Figure 9.5. Plots of the T2 and Q statistics for the approximation coefficients at scales 0 decj J< < , with 

control limits set for a confidence level of 99%. 

 

We now analyse the same situation, but using techniques designed to handle data at a 

single resolution that adopt the procedure for handling multiresolution data represented 

in Figure 9.2-b. Results regarding the T2 and Q statistics for the MSSPC methodology 

with uniform discretization (Unif.-MSSPC) are presented Figure 9.6. Again, the number 

of the observation appears as a label when it is significant from the stand point of the 

chart statistic. One can see that control charts detect the shift quite promptly, but the 

definition of the region where the shift occurs is distorted, due to the way values for 

lower resolution variable are handled. 
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Figure 9.6. Results for MSSPC with uniform discretization: plots of the T2 and Q statistics for 

reconstructed data. Control limits are set for a confidence level of 99% (represented by symbol x). 

Figure 9.7 presents results regarding the use of PCA-SPC. We can see that in this case 

only the Q statistic detects significant abnormal activity going on during the duration of 

the shift, even though its detection rate is not as high as that exhibited by multiscale 

methods. This difference derives from the increased sensitivity of MSSPC methods, 

which have the ability of zooming into process behaviour at different scales (octave 

frequency bands), looking for changes in normal variability patterns. 
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Figure 9.7. Results for cPCA-SPC: plots of the T2 and Q statistics, with control limits set for a confidence 

level of 99% (cPCA stands for “classical” PCA, to distinguishing it from other related methods such as 

MLPCA; in this thesis, cPCA and PCA have the same meaning and are used interchangeably). 
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To sum up, the main feature of the MR-MSSPC methodology illustrated in this example 

is its ability to define more clearly the duration of the abnormalities when 

multiresolution data are present. It is quite sensitive in detecting its beginning, but, even 

more so, effective in the detection of its end, due to a consistent use of time supports 

regarding low resolution values achieved through the implementation of an orthogonal 

wavelet transformation over a variable dyadic length window. These features can be 

quite clearly seen in Figure 9.8, Figure 9.9 and Figure 9.10, where the time instants 

where significant events were signalled in the T2 and Q control charts are presented as 

1’s, and the reminding non-significant or non-existent observation times, as 0’s. These 

detection plots underline the delayed return to normal operation of the statistics in the 

Unif.-MSSPC method, and the better definition of the shift duration obtained with MR-

MSSPC. 

 

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1 56 646668 72 76 80 88

MR-MSSPC: Location of signifcant events on the T2 chart

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

MR-MSSPC: Location of signifcant events on the Q chart

18 44464850525456586062646668707274767880 88

 

Figure 9.8. MR-MSSPC results: significant events detected in the charts for the T2 and Q statistics (a 

significant event is signalled with “1”). 
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Figure 9.9. Unif.-MSSPC results: significant events detected in the charts for the T2 and Q statistics (a 

significant event is signalled with “1”). Here, Unif.-MSSPC stands for the MSSPC methodology 

implemented with a uniform discretization scheme. 
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Figure 9.10. cPCA-SPC results: significant events detected in the charts for the T2 and Q statistics (a 

significant event is signalled with “1”). 
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9.4.2 Example 2: MR-MSSPC Extended Simulation Study 

In order to consolidate the properties attributed to MR-MSSPC, which were illustrated 

in the previous example, an extended Monte Carlo simulation study was conducted, 

where several shifts were tested, together with different resolution levels associated to 

variable 4X  (or, stated equivalently, with averaging windows of different lengths for 

variable 4X ). Resolution levels tested were { }4 2,3J = , and the shift magnitudes 

analyzed were as follows: { }0,0.5,1, 2,3, 4shifts = . For each resolution level, a reference 

data set composed of 2048 observations was created in order to estimate the models 

underlying each of the tested methodologies, after which a test set with 256 

observations was generated with a shift introduced between observation number in  and 

observation number fn . To avoid biases due to shift location, in  is randomly extracted 

from an uniform distribution, ( )~ 40,50in U , while the duration of the shift was kept 

constant, corresponding to the next 40 observations ( 40f in n= + ). The generation of 

the test set and shift location, was repeated 2000 times for each shift magnitude, and the 

results of the detection metrics saved for posterior calculation of average values. 

The methods tested and compared are the following: MR-MSSPC, Dyadic-MSSPC 

(similar to MR-MSSPC with dyadic discretization strategy, but using data at a single 

resolution – the finest one), Unif.-MSSPC and PCA-SPC. 

The detection metrics that will provide a ground for comparison are: 

• Average run length (ARL), calculated considering the first occurrence of a 

significant event either in the T2 or Q control charts; 

• True Positive Rate (TPR), in this work corresponding to the fraction of 

significance events detected during the duration of the shift (between in  and 

fn ), relatively to the maximum possible amount of detections that could be 

achieved with each methodology (i.e., if all the statistics’ values computed 

during this time interval were significant); 

• False Positive Rate (FPR), here defined as representing the fraction of false 

alarms detected right after the process returns to normality, in a range of time 
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with the same amplitude as the one used for calculating TPR (between 1fn +  

and 41fn + ), once again relatively to the maximum possible amount of 

detections that could be achieved with each technique. 

The number of selected principal components was kept constant at 2, decJ  set equal to 5, 

and the wavelet transform used was the Haar transform. Significance levels adopted for 

each method were adjusted in order to obtain similar ARL(0) performances (average run 

length obtained under the absence of any shift), to enable for a fair comparison of the 

different methods involved. 

Figure 9.11 compares ARL performances obtained for the various methods. The time 

delay associated with MR-MSSPC only becomes an issue for shifts of magnitude 

greater than 2, value after which it stabilizes at around 0.5, which seems acceptable for 

most applications. Thus, even though speed of detection was not a specific goal 

motivating the conception of our framework, it ends up performing well also in this 

regard. 
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Figure 9.11. ARL results for the different methodologies, using shifts of different magnitude and two 

levels of resolution associated with variable 4X . 
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Results regarding TPR are shown in Figure 9.12, where we can see that MR-MSSPC 

performs better than its alternatives. It also does quite well when the process goes back 

to normal operation (Figure 9.13), with a low false alarm rate, which is only sometimes 

overtaken by PCA-SPC. However, in this situation, one must not forget that such a 

technique presents lower true positive detection metrics (TPR), as shown in Figure 9.12. 

Therefore, these results point towards an improved overall performance achieved by 

MR-MSPSC regarding the duration of the fault (higher TPR), quick detection of its 

beginning (low ARL) and effective delimitation of its end (low FPR). 
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Figure 9.12. TPR results for the different methodologies, using shifts of different magnitude and two 

levels of resolution associated with variable 4X . 
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Figure 9.13. FPR results for the different methodologies, using shifts of different magnitude and two 

levels of resolution associated with variable 4X . 

 

9.4.3 Example 3: MR-MSSPC for Multiresolution Data with Non-

Dyadic Supports 

When the values of a lower resolution variable represent the mean values over a non-

dyadic time support, the attribution of its scale index is not straightforward. A simple 

way for handling this issue consists on implementing the steps presented in Table 9.2. 

When the averaging supports have dyadic length, the above procedure provides the 

same values for iX  as the standard procedure. When they do not have such a property, 

it balances the contribution from each value within each sub-region of length 2 iJ , 

giving more weight to those that occupy a higher fraction of the interval. 
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Table 9.2. Selection of resolution index ( iJ ) when the averaging support for a lower resolution variable 

is not dyadic. 

I. Set iJ  as the index for the next coarser scale,  i.e. ( )2logiJ AS= ⎡ ⎤⎢ ⎥ , where 

AS is the averaging time support and ( )2log AS⎡ ⎤⎢ ⎥  stands for the smallest 

integer ( )2logn AS≥ ; 

II. Project data onto scale iJ  using the following weighted averaging 

procedure:  

a. FOR each window of dyadic length under analysis (length ( )2 maxJ k ), 

divide it into sub-regions of length 2 iJ  (K sub-regions); 

1. FOR each sub-region ( 1:l K= ): 

i.  collect lower resolution values ( jx ) and calculate the 

portion of their averaging support contained in the sub-

region l under analysis ( jw ); 

ii. calculate the weighted average of the collected 

values: ( )i j j jj j
X l w x w=∑ ∑ ; 

END 

END 

 

 

To illustrate the application of this strategy, let us consider variable 4X  in model (9.1) 

to represent the average over a window of 5 successive values. Thus, according to step I 

in Table 9.2, ( )4 2log 5 3J = =⎡ ⎤⎢ ⎥ . The data set is also processed in order to be used with 

approaches based on single resolution data, by holding average values constant until a 

new mean value becomes available (Figure 9.2-b). The results obtained for MR-

MSSPC, Unif.-MSSPC and PCA-MSSPC, when a shift of magnitude 1 is introduced 

between observation 43 and 83 (included), are presented in the plots from Figure 9.14  

to Figure 9.19. Comparing Figure 9.14, Figure 9.15 and Figure 9.16 (or Figure 9.17, 

Figure 9.18 and Figure 9.19, that contain basically the same information, but where it is 

easier to identify the regions where significant events occur), we can verify an 
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improvement in the definition of the faulty region as well as in the detection of return to 

normality obtained through MR-MSSPC, even for this situation, where the averaging 

window does not have a dyadic support.  
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Figure 9.14. Plots of the T2 and Q statistics at the two resolutions available in the data set, { }0,3iJ = , 

using data reconstructed from significant scales. Control limits are set for a confidence level of 99%. 
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Figure 9.15. Results of MSSPC with uniform discretization: plots of the T2 and Q statistics for the 

reconstructed data. Control limits are set for a confidence level of 99% (represented by symbol x). 
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Figure 9.16. Results for PCA-SPC: plots of the T2 and Q statistics. Control limits are set for a confidence 

level of 99%. 
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Figure 9.17. Results for MR-MSSPC: significant events detected in the charts for the T2 and Q statistics 

(a significant event is signalled with “1”). 
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Figure 9.18. Results for Unif.-MSSPC: significant events detected in the charts for the T2 and Q statistics 

(a significant event is signalled with “1”). 
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Figure 9.19. Results for PCA-SPC: significant events detected in the charts for the T2 and Q statistics (a 

significant event is signalled with “1”). 
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9.4.4 Example 4: MR-MSSPC Applied to a CSTR with Feedback 

Control 

This final example aims to illustrate several interesting features that may arise in real 

world process monitoring implementations of MR-MSSPC, under the presence of time 

dynamics, non-linearity, besides variable collinearity. The system considered here 

consists of a simulated industrial non-isothermal CSTR, where an irreversible, 

exothermic first order reaction (A→B) takes place (Luyben, 1990). This reactor is 

equipped with a water jacket, that removes excess heat released, and two control loops 

(proportional action) that act upon two manipulated variables, i.e., outlet flow rate (F) 

and flow rate through the jacket (Fcj), in order to control the process variables volume, 

V, and reactor temperature, T, respectively. Figure 9.20 illustrates this system, whereas 

more details about its mathematical model, parameters and operating conditions can be 

found in Appendix E. 

 

 
 

Figure 9.20. Schematic representation of CSTR with level and temperature control. 

 

Normal operating conditions variability was generated by considering randomness 

associated with variables F0, T0, Tcj,0, and CA0. For the first three variables, they were 

LC 

TC 

F0, T0, CA0 

F, T, CA 
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assumed to be of the autoregressive type (first order, equation (9.2)), with parameters 

presented in Table 9.3. 

 

 ( ) ( ) ( ) ( ) ( )21 , ~ 0,X k X k k k N εφ ε ε σ= ⋅ − +  (9.2) 

 

Table 9.3. Parameters of autoregressive models used for simulating normal operation regarding variables 

F0, T0, Tcj,0. 

Variable φ  2
εσ  

F0 0.5 0.750 
T0 0.95 0.878 

Tcj,0 0.9 1.72 

 

As for CA0, it was assumed that the reagent is fed to the reactor from successive tanks, 

with 32 m  each, for which concentration shows little variation (approximately 

homogenous mixture of reagent in each tank), but that changes from tank to tank 

according to ( )2~ 0.5,0.1A0C N . All the measured variables are also subject to i.i.d. 

Gaussian noise. 

A reference data set was generated representing 364 hours of normal operation, during 

which 10 variables, { } { }0 0 0 ,01:10
,  ,  ,  ,  ,  ,  ,  ,  ,   i cj A A cj cji

X V T T C F C T T F F
=

= , were 

collected every 10 s, and analyzed in order to set monitoring parameters, estimate 

models at each scale and gain insight regarding multiscale features (illustrations of the 

time series plots associated with each variable are also presented in Appendix E). 

In this preliminary analysis stage, a decomposition depth of 12decJ =  was chosen, 

which is high enough to characterize all the phenomena going on for this process. 

Figure 9.21 presents the eigenvalues profile for covariance matrices at each scale, and 

Figure 9.22 shows the cumulative percentage of explained variance for each new 

component considered in the PCA model developed at each scale (all variables were 

previously “autoscaled”, i.e., centred at zero and scaled to unit variance). These plots 

clearly illustrate that the dimension of the relevant PCA subspaces for process 

monitoring purposes, in dynamic non-linear systems, is in general a function of scale, 
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according to the power spectra of the variables involved and the correlation they present 

in the frequency bands corresponding to different scales. This is in contrast with what is 

expected to happen with stationary uncorrelated processes, such as (9.1), where the 

covariance structure should be the same at all scales, up to a constant multiplier term 

related to the square gain function of the wavelet filter, since the cross spectral density 

function of the variables (Whitcher, 1998) is, in this case, constant throughout the whole 

frequency spectrum. Using the information conveyed by such plots, we can also choose 

the number of principal components to be adopted for PCA models of the wavelet 

coefficients at each scale, as well as get important clues regarding the decomposition 

depth that should be used in order to capture the system’s main dynamical features. In 

this particular case the decomposition depth was set as 9decJ = , because above this 

scale the behaviour of the correlation structure does not seem to change significantly. 

This means that all relevant dynamic features of the system are expressed at lower 

scales. 

The absolute values of the loading vectors, for the selected principal components at each 

scale, are presented in Figure 9.23 (shadowed plots), where we can deepen the analysis 

of the correlation structure at different scales, looking for the main active relationships 

in each frequency band, and distinguish which variables are more significantly 

involved. This last point can be conducted more effectively by looking at the percentage 

of explained variance for each variable in the PCA model developed at each scale 

(Figure 9.24). From these two figures we can see that, although there is some 

overlapping due to the interception between frequency bands characteristic of some 

variables, in scales 1-3 the variables involved are mainly those with fast dynamics 

(notably flow rates), whereas in the intermediate scales (3-8) we get those variables 

regarding disturbances with slower dynamics (temperatures), as well as the attenuated 

effect of flow rate “filtered” by reactor capacity (volume). Finally, in scales 8-12, the 

slow mode variables (CA0, the majority of the system outputs, and control variables that 

react based upon the measured values of the outputs) become relevant. 
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Figure 9.21. Eigenvalue plots for the covariance matrices regarding variables’ wavelet detail coefficients 

at each scale ( 1:12j = ) and for the wavelet approximation coefficients at the coarsest scale ( 12j = , last 

plot at the bottom). 
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Figure 9.22. Plots of the cumulative percentage of explained variance for each new component 

considered in a PCA model developed at each scale, for the detail coefficients ( 1:12j = ) and 

approximation coefficients at the coarsest scale ( 12j = , last plot at the bottom). 
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Figure 9.23. Absolute values of the coefficients in the loading vectors associated with the principal 

components selected at each scale (shadowed graphs). 

 

After having estimated the MR-MSSPC monitoring parameters, a test data set 

containing about 45 hours of operation data was generated, with a bias of 6 K 

introduced in T0 ( 2σ∆ ≈ ), between times 22h:46m and 34h:09m. The monitoring 

results obtained for the MR-MSSPC Q statistic are presented in Figure 9.25, showing 

that the proposed method successfully detected such a shift. As Figure 9.24 points out, 

variable number 4, CA0, only becomes relevant at coarser scales. This means that we can 

use a lower resolution to represent its behaviour along time, without loosing much detail 

but introducing a time delay in the decision-making process associated with such a 

variable. Figure 9.26 illustrates what happens when we set the resolution of CA0 at 

4 5J = , and conduct MR-MSSPC over the same test data set. The detection results do 

not change significantly, but the location of the faults becomes even more evident in the 

representation at 5iJ = . 
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Figure 9.24. Percentage of explained variance for each variable in the PCA model developed at each 

scale. 

 

In Figure 9.26 we are not only handling existing multiresolution data, but are actually 

creating a multiresolution data structure, after analysing the multiscale characteristics of 

the system operating under normal conditions. The coarser scale selected represents a 

trade-off between the adequate scale to express a certain variable and the time delay 

involved in the computation of its mean values, which may introduce a detection delay 

for the special case where a fault is only present in this particular variable. 
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Figure 9.25. Plot of the Q statistic for MR-MSSPC applied over the test data set, with all variables 

available at the finest scale 0 ( 1:100)iJ i= =  (Control limits defined for a 99% confidence level). 
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Figure 9.26. Plot of the Q statistic for MR-MSSPC applied over the test data set, with all variables 

available at the finest scale, except for CA0, which is now only available at 4 5J =  (control limits defined 

for a 99% confidence level). 
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A delay may also be present when the above situation occurs for a (conventional) 

multiresolution data structure. To illustrate better this issue, let us consider the case 

where a low resolution variable, involving averages over large data windows, suffers a 

fault that only manifests itself in this particular variable and begins almost at the end of 

the last averaging period. Then, this fault may pass unnoticed during the current 

monitoring stage (as it represents very little of the information averaged), which implies 

that it will only be detected after 12 iJ +  time steps (if it is active during a part of this 

period). Even though detection speed is not one of the main features advocated for MR-

MSSPC (although it performs quite well in this regard, as shown in the previous 

examples), this point can be improved by adopting an hybrid approach, between the 

proposed approach for handling multiresolution data and the conventional one, that 

consists on artificially augmenting the sampling rate of this variable, by assuming the 

last average values to be constant in the mean time (just as in Figure 9.2-b), forcing the 

T2 and Q statistics calculations to integrate the low resolution variable more often. This 

will sacrifice a bit the claimed definition ability regarding duration of the fault, in order 

to improve the promptness of detection for unusual events, that only affect a given 

isolated low resolution variable, but should only be implemented if this type of fault is 

really likely to occur. 

 

9.5 Conclusions 

In this chapter, a methodology was presented for conducting MSSPC that adequately 

integrates data with different resolutions (multiresolution data). Such an approach was 

then tested under four different scenarios in order to illustrate its main features. The first 

three examples underline consistent use of the time support regarding lower resolution 

variables, enabling for a clearer definition of the regions where significant events occur 

and a more sensitive response when the process is brought back to normal operation. 

They also show that, as long as the fault does not happen exclusively in the lower 

resolution variables, no significant time delay is introduced by the proposed 

methodology. A final example brings to the discussion both interesting and important 

issues regarding practical applications that involve dynamic systems with non-linear 

behaviour, such as the interpretation of their multiscale covariance structure and the 

selection of monitoring parameters. 
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Part V 

Conclusions and Future Work 
 

 

 

 

We are at the very beginning of time for the human race. It is not 

unreasonable that we grapple with problems. But there are tens of 

thousands of years in the future. Our responsibility is to do what we can, 

learn what we can, improve the solutions, and pass them on. 

Richard P. Feynman (1918-1988), American theoretical physicist and 

educator. 
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Chapter 10. Conclusions 

In this thesis, we have addressed the general problem of exploring information available 

at a given scale, or set of scales, in order to devise improved strategies for performing 

data analysis. Special attention was paid to certain relevant aspects in practical 

applications, like handling sparse data sets and the integration of uncertainty 

information in data analysis. In fact, sparsity (due to missing data or different 

acquisition rates) often hinders conventional analysis of industrial data sets to proceed 

smoothly or, at least, prevents the full exploitation of all information potentially 

contained in such data sets. On the other hand, with the development of measurement 

technology and metrology, we often really know more about data than just their raw 

values, since the associated uncertainty is (or, if that is not the case, “should be”) also 

available. This means that methodologies based strictly on raw values can be now 

improved, through the integration of uncertainty information in their formulations, 

because this piece of information is becoming increasingly available. Another 

complicating feature that calls for attention in the analysis of industrial data sets is the 

presence of data at multiple resolutions (multiresolution data), whose averaging 

supports should be adequately incorporated in data analysis. 

These difficulties and features were considered in the methodologies that were 

presented in this thesis, regarding the development of an industrial data-driven 

multiscale analysis framework. In the following paragraphs, a concluding summary 

reviews the new contributions proposed here, with the main conceptual outputs being 

presented in Table 10.1. On the other hand, Table 10.2 provides a list of application-

oriented contributions and resumes topics where the emphasis lies either in application 

scenarios or in the type of tools used to address them.  
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Table 10.1. Summary of the thesis’ main new conceptual contributions, along with references where they 

are, partially or thoroughly, treated (when applicable). 

Contribution Section Short Description Reference 
MRD: Method 1 4.1.1 A generalized MRD framework (Reis & Saraiva, 2005b) 
MRD: Method 2 4.1.2 A generalized MRD framework (Reis & Saraiva, 2005b) 
MRD: Method 3 4.1.3 A generalized MRD framework (Reis & Saraiva, 2005b) 
Theorem 4.1 4.1.3 Covariance of wavelet-transformed noise   
Method MLMLS 5.1.1 Uncertainty-based linear regression methods  (Reis & Saraiva, 2005c) 
Method rMLS 5.1.2 Uncertainty-based linear regression methods  (Reis & Saraiva, 2004b, 2005c) 
Method rMLMLS 5.1.2 Uncertainty-based linear regression methods  (Reis & Saraiva, 2005c) 
Method MLPCR2 5.1.3 Uncertainty-based linear regression methods  (Reis & Saraiva, 2005c) 
Method uPLS1 5.1.4 Uncertainty-based linear regression methods  (Reis & Saraiva, 2004b, 2005c) 
Method uPLS2 5.1.4 Uncertainty-based linear regression methods  (Reis & Saraiva, 2004b, 2005c) 
Method uPLS3 5.1.4 Uncertainty-based linear regression methods  (Reis & Saraiva, 2005c) 
Method uPLS4 5.1.4 Uncertainty-based linear regression methods  (Reis & Saraiva, 2005c) 
Method uPLS5 5.1.4 Uncertainty-based linear regression methods  (Reis & Saraiva, 2005c) 
uNNR 11.4 Uncertainty-based non-parametric regression (Reis & Saraiva, 2004a) 
Formulation I 6.1 Process optimization using data uncertainty (Reis & Saraiva, 2005c) 
Formulation II 6.1 Process optimization using data uncertainty (Reis & Saraiva, 2005c) 
HLV-MSPC 7.1-7.3  MSPC using data uncertainty (Reis & Saraiva, 2003, 2005a) 
MS monit. profiles  8.1 Multiscale monitoring of profiles (Reis & Saraiva, 2005d, 2005e) 
MR-MSSPC 9.3 MSSPC with multiresolution data  

 

Table 10.2. Summary of the thesis’ main application-oriented contributions. 

Contribution Section Reference 
Uncertainty-based de-noising  4.3 (Reis & Saraiva, 2005b) 
Implementation of scale selection methodologies 4.4  
Process optimization using uncertainty information 6.2 (Reis & Saraiva, 2005c) 
Retrospective analysis of process data using HLV-MSPC 7.4.2 (Reis & Saraiva, 2005a) 
Supervised classification models of paper surface quality 8.2.2 (Reis & Saraiva, 2005f, 2005g) 
Time series modelling of roughness phenomena 8.2.3  
Multiscale monitoring of paper surface profiles 8.2.4 (Reis & Saraiva, 2005e) 
MR-MSSPC applied to a CSTR under feedback control 9.4.4  

 

Several multiresolution decomposition (MRD) frameworks, that play an essential role 

when focusing data analysis at a particular scale, or set of scales, were developed, with 

the ability of incorporating uncertainty information and handling missing data 
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structures, features that are absent from classical MRD approaches based on wavelets 

(Methods 1, 2 and 3, Section 4.1). Guidelines were also provided regarding their 

application in practical contexts (Section 4.2). Besides extending the wavelet-based 

multiresolution decomposition to contexts where it could not be applied otherwise (at 

least without some serious data pre-processing efforts), such methods also provide new 

tools for addressing other classes of problems in data analysis, such as the one of 

selecting a proper scale (Section 4.4). They also provide, in particular, data and 

associated uncertainty tables at a single-scale, that can be adequately handled by the 

methods described in Chapters 5 and 7. 

The integration of uncertainty information in several data analysis tasks was explored in 

Part IV-A of this thesis. Several linear regression models were compared, some of them 

with the ability of incorporating uncertainty information in their formulations, including 

some new proposed methodologies,41 and their performances compared using extended 

Monte Carlo simulations (Chapter 5). Under the conditions covered in the study, 

method MLPCR2 presented the best overall predictive performance and, in general, 

those methods based on MLMLS tend to present improvements over their counterparts 

based on MLS. 

The use of measurement and actuation uncertainties in process optimization problems 

was also explored in Chapter 6, and several possible optimization formulations were 

analysed, differing on the levels of incorporation of uncertainty information. The 

analysis of results points out the relevance of not neglecting measurement and 

manipulation uncertainties when addressing both on-line and off-line process 

optimization.  

Another task where uncertainty information was integrated, and turned out to provide an 

effective and coherent way to approach missing data, was in multivariate statistical 

process control (MSPC). In this context, a suitable statistical model was defined in 

Chapter 7 (HLV) and statistics analogous to 2T  and Q  derived, that allow for 

monitoring both within model variability as well as variability around the estimated 

                                                 

 

41 Namely: MLMLS, rMLS, rMLMLS, MLPCR2, uPLS1, uPLS2, uPLS3, uPLS4, uPLS5. 
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model. Results obtained point out in the direction of using such an approach, when 

noise has low SNR and uncertainties vary across time. 

Two multiscale monitoring approaches were presented in Part IV-B. The first 

methodology, presented in Chapter 8, regards the monitoring of profiles, and is built 

around a wavelet-based multiscale decomposition framework that essentially conducts a 

multiscale filtering of the raw profile, effectively separating the relevant phenomena 

under analysis, located at different scales, allowing also for the incorporation of 

available engineering knowledge and information derived from the analysis of the 

distributions of different related quantities through the scales. The results presented for 

a specific case study, which deals with monitoring of paper surface using profilometry, 

allow us to conclude in favour of the adequacy of adopting the proposed approach for 

monitoring simultaneously the two relevant surface phenomena under study (roughness 

and waviness). Multiscale characteristics of paper surface were also carefully analyzed 

using specialized plots and time series theory. The availability of parameters provided 

by the measurement device was also explored for predicting classification of paper 

surface quality, through adequate classification models that explain assessments made 

by a panel of experts. 

The second methodology, addressed in Chapter 9, provides a way for conducting 

MSSPC by adequately integrating data at different resolutions (multiresolution data). 

The proposed approach was tested under different scenarios, and we verified that the 

consistent use of time supports regarding lower resolution variables made by MR-

MSSPC led to a clearer definition of the regions where significant events occur and a 

more sensitive response when the process is brought back to normal operation, when 

compared to the approaches based on single resolution data at the finest scale. 
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Chapter 11. Future Work 

In this chapter, several research topics are addressed, representing examples of 

interesting areas for future research within the scope of the matters and results presented 

in this thesis. They are organized in different sections, according to the following fields: 

• Multiscale black-box modelling and identification; 

• Multiscale monitoring; 

• Hierarchical modelling of multiresolution networks; 

• Further developments on uncertainty-based methodologies. 

 

11.1 Multiscale Black-Box Modelling and Identification 

A wide variety of model structures is available for modeling the dynamical and 

stochastic behavior of systems, using data collected from industrial plants. Some well 

known examples are state-space, time series (ARMAX, Box-Jenkins), latent variables 

(PLS) and neural networks models. These model structures are however inherently 

single-scale, as they are used to address the modeling task from the stand point of 

developing an adequate description of reality regarding what happens strictly at the time 

scale corresponding to the adopted sampling rate. Information contained at other scales 

is not explicitly considered in these formulations, and therefore is frequently overlooked 

in methodologies based on model structures identified within the scope of such classes 

(e.g. process optimization, optimal estimation, fault detection and diagnosis). Therefore, 

the development of model structures that present the ability of explicitly integrating the 
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concept of “scale” in their core can potentially lead to better descriptions for systems 

that present scale-dependent dynamic behavior.  

In this context, the development of new model structures, that extend the classic arsenal 

for discrete-time models to situations where the aforementioned limitations are relevant, 

provides interesting research challenges. We can look at it as a way of enabling one to 

build and use more flexible models in the context of black box modelling, where the 

added flexibility is indirectly provided by the localization properties of the wavelet 

transform. 

In general terms, the proposed approach is based on the definition of a two-dimensional 

grid of time/scale over which phenomena can conceptually evolve. The observed values 

at the finest resolution can be seen as a result of different (eventually dynamical) 

structures acting on different scales, i.e., along different levels (or horocyles, Section 

2.6.3) of the grid. Such dynamical relationships are established through the 

development of “sub-models”, involving input and output variables, at a correspondent 

resolution (and eventually others from resolutions in the neighbourhood). These “sub-

models”, at each scale, can be selected from the classical arsenal, whose application 

scenarios are, by this way, extended to multiscale modelling situations. Doing so, will 

allow for the integration of the benefits associated with such techniques (accumulated 

experience on their use, already developed efficient algorithms, extensive theoretical 

support, etc.) and those related to the use of different representations of signals 

(multiresolution representation) that have already proven its utility in several related 

contexts (e.g. non-linear filtering of non-stationary signals, data compression and 

decorrelation of serial correlated data). 

The multiscale modelling approach essentially consists on looking to collected data at 

different resolutions and see whether there can be any added benefit on modelling it at 

decomposition depths higher than zero (finest scale). If that happens to be the case, then 

dynamical features localized at different scales should be modelled. 

More specifically, in the proposed approach, besides analysing the data collected from 

the system under consideration at the finest scale (corresponding to the sampling rate 

used for sampling), i.e., along the discrete grid of time (Figure 11.1), we also look at 

what is going on at higher scales, by analysing the wavelet coefficients corresponding to 
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higher decomposition depths, i.e., considering the two-dimensional discrete grid of 

time/space (Figure 11.2). 

 

(⋅⋅⋅)(⋅⋅⋅)  

Figure 11.1. The classic discrete grid of time. 

 

(⋅⋅⋅)(⋅⋅⋅)  

Figure 11.2. The two dimensional time/scale discrete grid, along which a process conceptually evolves in 

the proposed approach (white and grey points, where the white points stand for detail coefficients and the 

grey points for approximation coefficients; black points represents the classical grid of time). The depth 

of decomposition is 2. Note that the total number of points remains the same in both grids, since we are 

using only orthogonal, non-redundant, wavelet transforms. 

 

As can be seen from Figure 11.2, the total number of nodes remains the same as in the 

classical discrete grid of time, which means that no extra information is being used, 

besides the one available at the finest grid, since only a transformation is being applied. 

Thus, at a first stage, wavelet transform coefficients are computed, and then indexed by 

its nodes in the new topological structure where the process evolves (the new grid 

structure). 

In a second stage, the “causal” connectivity structure of the “sub-models” is established, 

i.e., a decision is made regarding which are the nodes whose input and output 

coefficients affect the output coefficient at each “current” node. Such a recursive 

structure can be represented graphically in diagrams such as those in Figure 11.4, with 

the aid of a few conventions (Figure 11.3). 
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τ1 τ2

τ1 τ2

Ouput variables at node τ1
affect output variable at node τ2.

Input variables at node τ1
affect output variable at node τ2.  

Figure 11.3. Convention for graphically representing the relationship between those nodes (where the 

arrow begins, τ1) whose input and output (wavelet transformed) variables affect the (wavelet transformed) 

output variable at another node (where the arrow ends, τ2). 

 

(⋅⋅⋅)

 

Figure 11.4. A possible multiscale dynamic recursive structure, for a decomposition depth of 2, where 

white points stand for detail coefficients and grey points for approximation coefficients. 

 

In a third stage, the specific structure for all the “sub-models” is specified. To facilitate 

this task, we can subdivide them into separate groups, as illustrated below, using three 

groups of “sub-models”:42 

 

                                                 

 

42 The “sub-models” that compose the multiscale global model are grouped into three categories, to avoid 

an excessive use of indexing nomenclature in the equations. The first category stands for the top level 

nodes models, and thus refers only to the (coarsest) detail and scaling coefficients’ input/ouput 

relationships, and naturally does not contain any dependency regarding to other coarser coefficients 

(because they are not calculated); the second category consists of models for the second level of output 

detail coefficients, and is the only one where it is allowed a dependency upon scaling coefficients from a 

coarser scale; this connective topological characteristic distinguishes the second category from the third 

one, where only the relationships between output detail coefficients at each node with other input or 

output detail coefficients at the same or coarser scales are considered. The second and third categories 

could however be fused into a single category, but at the expense of using a more cumbersome 

nomenclature in the description of such more general models. 
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1. “Sub-models” for top level nodes (coarser approximation and detail coefficients 

for decj J= , where decJ  is the decomposition depth) 

 { }( ) ( ) ( ) ( ) ( )
dec dec dec

ay au
J a J J aay f P P V wτ τ τ τ τ, ⎡ ⎤ ⎡ ⎤= , +⎣ ⎦ ⎣ ⎦ay au  (11.1) 

 { }( ) ( ) ( ) ( ) ( )
dec dec dec

dy du
J d J J ddy f P P V wτ τ τ τ τ, ⎡ ⎤ ⎡ ⎤= , +⎣ ⎦ ⎣ ⎦dy du  (11.2) 

 

2. “Sub-models” for second layer nodes (detail coefficients for 1decj J= − ) 

 { }1 ( ) 1 ( ) 1 1( ) ( )] ( ) , ( ) ( ) ( )
dec j j dec

ay dy du
J m m Jdy f P P P V wτ ττ τ τ τ τ τ− − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= , ,... +⎣ ⎦⎣ ⎦ ⎣ ⎦ay dy du (11.3) 

3. “Sub-models” for lower layer nodes (detail coefficients for 1decj J< − ) 

 { }( ) ( ) ( )( ) ( ) ( ) ( ) ( )
j j j

dy du
m m mdy f P P V wτ τ ττ τ τ τ τ⎡ ⎤ ⎡ ⎤= , +⎣ ⎦ ⎣ ⎦dy du  (11.4) 

where, 

( )jm τ  – provides the horocycle or scale index for node (τ );  

( )P τ  – represents those nodes belonging to a (properly defined) past (or causal) 

neighbourhood relatively to node τ  (usually nodes localized in the upper-left 

quadrant, taking as reference for the origin node τ );  

( )jmP τ  – restriction of ( )P τ  to nodes belonging at the same horocycle ( ( )jm τ );  

( )ay τ , ay  – approximation coefficient at node τ  and set of approximation 

coefficients relative to some past horizon;  

( )dy τ , dy  – detail coefficient at node τ  and set of detail coefficients relative to 

some past horizon;  

( )V τ  – noise variance at node τ .  

 

For the particular case where the “sub-models” have linear structures, the above general 

set of “sub-models” gives rise to the following general linear multiscale model 

structure: 
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1. “Sub-models” for top level nodes 

 
( )( )

( ), ( ),
( )( )

( ) ( ) ( ) ( ) ( )
j j

ay au
mm jj

a a
m m a

PP

ay A ay B au V w
ττ

τ γ τ γ
γ τγ τ

τ γ γ τ τ
∈∈

= ⋅ + ⋅ +∑ ∑  (11.5) 

 
( )( )

( ), ( ),
( )( )

( ) ( ) ( ) ( ) ( )
j j

ay au
mm jj

d d
m m d

PP

dy A ay B au V w
ττ

τ γ τ γ
γ τγ τ

τ γ γ τ τ
∈∈

= ⋅ + ⋅ +∑ ∑  (11.6) 

2. “Sub-models” for second layer nodes 

( )( ) ( )

*
( ), ( ), ( ),

( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
j j j

ay dy du
mm m jj j

m m m
PP P

dy A ay A dy B du V w
ττ τ

τ γ τ γ τ γ
γ τγ τ γ τ

τ γ γ γ τ τ
∈∈ ∈

= ⋅ + ⋅ + ⋅ +∑ ∑ ∑

  (11.7) 

3. “Sub-models” for lower layer nodes 

 
( )( )

( ), ( ),
( )( )

( ) ( ) ( ) ( ) ( )
j j

dy du
mm jj

m m
PP

dy A dy B du V w
ττ

τ γ τ γ
γ τγ τ

τ γ γ τ τ
∈∈

= ⋅ + ⋅ +∑ ∑  (11.8) 

 

At depth zero ( 0decJ = ), the above multiscale model structure reduces to its classical 

counterpart, implemented over the discrete grid of time, but, as further decomposition 

depth is introduced in the analysis, the dynamics at different scales begin to be 

explicitly addressed. Future work should involve testing these models in systems where 

multiscale dynamics are known to be present and their comparison with classical 

approaches regarding, for instance, prediction ability. 

Criteria should also be developed to assist in the selection of the relevant scales, i.e., 

those carrying relevant predictive information (for instance, looking at the magnitude of 

correlation coefficients between predictions and observations during the training phase, 

or through other methodologies, such as cross-validation or information theory based 

criteria). Only those scales that are selected during the training phase will be used in the 

subsequent application to fresh data. 

Once the model structure is defined and estimated from available data (multiscale 

system identification), other tasks can be carried out, taking advantage of such a 

modelling formalism, namely regarding (multiscale) optimal estimation and data 

rectification. 
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11.2 Multiscale Monitoring 

Alternative multiscale approaches to process monitoring can also be explored in future 

work, and in this subsection the foundations for another representative of this class of 

methods is presented, and its potential usefulness illustrated. 

The proposed approach is based upon the distribution of some measure of the energy 

contained at the different frequency bands (indexed by the scale index) along successive 

non-overlapping windows of constant dyadic length (as represented in Figure 9.1-c). 

Coefficients from a translation invariant wavelet transformation are used for performing 

the calculations, in order to minimize “oscillations” in the energy contents for the 

different bands that can be strictly attributed to different origins established for data 

used in the analysis.  

The approach can be used for either univariate or monitoring multivariate continuous 

processes operating under stationary conditions, in which case the approximation 

coefficients should be integrated in the analysis, or non-stationary processes, where they 

are discarded, with the method focused on monitoring the higher frequency bands, 

leaving the low frequency mode free to vary according to the non-stationary nature of 

the process (an example where this situation may arise is in data-driven fault detection 

of isolated process sensors).  

The methodology for the multivariate situation is summarized in Table 11.1. 

 

Table 11.1. Summary of the energy-based MSSPC methodology (multivariate case). 

I. Training phase 

b. Select: wavelet filter; decomposition depth ( decJ ); whether approximation 

coefficients should be included in the analysis (we will assume this to be the 

case in what follows). 

c. FOR each non-overlapping moving window of constant dyadic length 

( 2 decJ ), 1: traini nw= , compute: 
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i. The translation invariant wavelet transform coefficients for all 

available variables ( 1:k m= ); 

ii. The median of the energy43 for each variable at each scale 

( 1: 1decj J= + ): , ,i j ke ; 

END 

d. Matricize the tensor , 1,train decnw J mE +  (composed by element , ,i j ke  in the , ,i j k  

entry) by keeping the dimension of time constant: 

( ), 1, , 1train dec train decnw J m nw J mE E+ + ×→ ; 

e. Choose an appropriate transformation to be applied to the columns of 

( ), 1train decnw J mE + × , that makes its multivariate behaviour more amenable for a 

later implementation of SPC procedures based upon parametric probability 

distributions; 

f. Centre and scale data: ( ) ( )
*

, 1 , 1train dec train decnw J m nw J mE E+ × + ×→ ; 

g. Compute a PCA model for ( )
*

, 1train decnw J mE + ×  and the statistical limits for the 2T  

and Q statistics. 

 

 

II. Testing phase 

h. FOR each new non-overlapping moving window ( 1:i = … ) compute: 

i. The translation invariant wavelet transform coefficients for all 

variables; 

ii. The median of the energy for each variable at each scale 

( 1: 1decj J= + ): , ,i j ke ; 

iii. Apply transformation, as defined in the training phase; 

iv. Centre and scale data, using training phase parameters; 

                                                 

 

43 The “energy” of a vector is here defined as the sum of squares of its components. 
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v. Calculate the 2T  and Q statistics and check whether there is any 

violation of their limits, indicating that the process is no longer 

operating under normal operation; 

END 

 

 

To illustrate this methodology, one example is presented below, regarding an univariate 

application. 

11.2.1 An Univariate Example: Monitoring an AR(1) Process 

In this example, a first order auto-regressive process is monitored using the proposed 

energy-based multiscale framework: 

 

 ( ) ( ) ( ) ( ) ( )21 , ~ 0,X k X k k k N εφ ε ε σ= ⋅ − +  (11.9) 

 

with 0.8φ =  and 2 4εσ = ; an additional iid zero-mean Gaussian noise component was 

also added to the data, with a standard deviation of 0.05 Xσ× . 

The reference set is composed by 8192 observations, corresponding to normal operation 

conditions. The test set contains 16384 observations, the first half being relative to 

normal operation conditions, while at the beginning of the second half the 

autoregressive parameter was changed from 0.8 to 0.6, a value that is maintained until 

the final of the test set ( 2
εσ  is modified accordingly, so that the value for 2

Xσ  is 

maintained, in order to make the change harder to be detected). Furthermore, after the 

observation corresponding to ¾ of the test set, another perturbation is introduced into 

the system, now regarding a step change of magnitude +6 (while the former 

perturbation in φ  is maintained). The corresponding time series plot with 3-sigma 

control limits is presented in Figure 11.5, where we can see that the change that 

occurred at the middle of the test set (active during regions 2 and 3) passes undetected, 

while the effect of the set change is clearly noticed in the control chart (region 3). 
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Figure 11.5. Time series plot for the test set with 3-sigma control limits. The vertical lines separate 

regions containing different types of testing data: 1 – normal operation; 2 – change in the autocorrelation 

parameter (0.8 → 0.6) and variance of the random term; 3 – step change (+6) plus the condition initiated 

in region 2. 

 

Implementing the proposed energy-based multiscale approach with 3 PC’s, 6decJ =  and 

a power transformation ( 1/5X ) applied to the energy contents of detail and 

approximation coefficients (monitoring variables), one obtains the results presented in 

Figure 11.6, Figure 11.7 and Figure 11.8. In Figure 11.6 we can see that the change in 

the autoregressive parameter is clearly detected with both 2T  and Q statistics. 

The two events that appear superimposed in region 3 can not be well resolved by the 

plots in Figure 11.6, but this can be appropriately done through an analysis of control 

charts for the principal components scores (Figure 11.7), especially looking at the 

behaviour of the scores for the third PC (PC3) 

1 2 3 



CHAPTER 11. FUTURE WORK 

 247

0 50 100 150 200 250 300
0

10

20

30

time index

T2

0 50 100 150 200 250 300
0

10

20

30

40

time index

Q

0 5 10 15 20 25 30
0

10

20

30

40

T2

Q

 

Figure 11.6. Control charts for the (a) 2T  and (b) Q statistics, plus an additional plot (c) where they are 

combined. Control limits for a confidence level of 95%. 

 

The behaviour presented by the scores can be better understood by looking at the 

loadings for each PC (Figure 11.8), where we can see that PC1 is essentially an average 

of the energy distributed by the detail coefficients (first six variables), without giving 

much weight to the approximation coefficients (variable number 7), while the second 

PC is a contrast between the energy content in the details for the finest scales and 

coarser scales, the same happening to a lesser extent with PC3, where the approximation 

coefficients’ energy shows now a significant importance, making this component quite 

sensitive to both variations in the distribution of energy across the high-medium 

frequency spectrum and to transitions in the operation level of the signal. 

 

a) 

b) 

c) 
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Figure 11.7. Control charts for the principal components scores: (a) PC1, (b) PC2 and (c) PC3. Control 

limits for a confidence level of 95%. 
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Figure 11.8. Loading vectors for the three principal components considered in the energy-based 

multiscale monitoring procedure. 

 

a) 

b) 

c) 
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This example illustrates the potential of the proposed methodology in monitoring even 

subtle dynamic upsets in the process. As future work, its properties should be better 

characterized and its performance assessed against other related methods. 

 

11.3 Hierarchical Modelling of Multiresolution 

Networks 

Chemical engineers tend to look at complex processes as pyramids where the more data 

and process intensive operations are carried out at the bottom of the pyramid and the 

higher level decisions (e.g., strategic) at the top (Saraiva, 1993). Interestingly enough, 

there seems to be a corresponding hierarchical structure regarding the resolution at 

which information is processed at the different levels of the decision-making pyramid 

(Figure 11.9). Operators tend to use frequent high resolution observations (minute/hour 

averages) to drive the process close to the desired operation level, process engineers 

look at summaries involving averages of hours or days to check the stability of the 

process, according to the current production plan, plant directors are interested in the 

day/month reports and administrators are more concerned with month/year figures. 

Each one of these elements represents a level where decisions are taken in order to 

comply with goals established at the higher levels. 

Thus, there is a flux of information being generated at the lower levels44 and going up 

the pyramid in increasingly condensed representations (lower resolutions) and 

decisions/goals going down the structure, affecting the operation regimes across time, as 

systematized in Figure 11.10, where the decision blocks (or multiresolution processing 

elements) receive data from the levels beneath, condense them in a suitable way and 

process such data in order to produce a decision that complies with the decisions/goals 

defined above. 

                                                 

 

44 Information can also arise from outside the pyramid, e.g., social impact data, ecological impact figures, 

information about market trends and economical indicators, among others. 
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Figure 11.9. Levels of decision-making in manufacturing organizations (pyramid at the left) and the 

corresponding hierarchy of resolutions at which information is usually analyzed, across the different 

levels of decision-making (pyramid at the right). 

P P P P P P P P ……

D1 D1 D1 D1

D2 D2

D3
…

In
fo

rm
at

io
n

D
ec

is
io

ns

 

Figure 11.10. A process viewed as a hierarchical structure, where the flow of information proceeds 

upwards (dashed arrows) with decreasing resolution and the flow of decisions downwards (solid arrows). 

Each decision element analyses the condensed information derived from the lower levels, and produces a 

decision also targeted to these levels. Legend: P – process; Di – decision element. 
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11.4 Further Developments on Uncertainty-Based 

Methodologies 

The uncertainty-based methodologies presented in Part IV-A of this thesis provide a 

sound way for incorporating all the available knowledge regarding data quality (values 

plus associated uncertainties) in the corresponding analysis. Regarding the 

methodologies presented here, future work should address the application of 

uncertainty-based regression approaches in real industrial contexts, using the guidelines 

extracted from the results achieved in our comparative study presented in Chapter 5. 

Furthermore, such a study covered a variety of data structures and noisy scenarios, but 

there are others interesting enough to deserve being addressed in future works, as is the 

case of data with correlated noise structures, specially relevant in spectroscopic 

applications (Wentzell & Lohnes, 1999). 

The integration of uncertainty information should also be extended to non-parametric 

regression approaches. For instance, let us consider the case of (univariate) nearest 

neighbour regression (NNR), that consists of using only those k observations from the 

reference (or training) data set that are closest to the new X value (predictor), whose Y 

(response) we want to estimate, with the inference for Y(x) being (Hastie et al., 2001):  

 

 ( )
( )

1ˆ
i k

i
x N x

Y x y
k ∈

= ∑  (11.10) 

where Nk(x) is the set of k-nearest neighbours for x, with closeness expressed in the 

sense of the Euclidean distance metric. When data uncertainties are also available, the 

distance in the X space should reflect them as well. In fact, if x is at the same Euclidean 

distance of xi and xk, but unc(xi) > unc(xk), it is more likely for xi to be further way from 

x than xk. Therefore, we propose the following modification of the Euclidean distance 

metric for the counterpart, uncertainty based approach (uNNR): 

 

 ( ) ( ) ( )2 2 2
1

, ( ) ( )N
w i k i k i ki

D x x x x unc x unc x
=

= − +∑  (11.11) 
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This should be complemented with a modified version of the averaging methodology in 

equation (11.10), that takes also care of the uncertainty information regarding Y, leading 

to: 

 ( ) ,

,

2

( )
2

( )

( )
ˆ

1 ( )
i w k

i w k

i i
x N x

i
x N x

y unc y
Y x

unc y
∈

∈

=
∑

∑
 (11.12) 

 

For testing this methodology, a simulation study was conducted consisting of a non-

linear relationship between Y and X (a sine wave), according to the following steps: 

(i) Generation of 500 samples uniformly distributed in [0,2π]; 

(ii) Addition of heteroscedastic noise to X and Y “true” values. The 

uncertainty values are randomly extracted from a uniform distribution, 

within a range of 0.2; 

(iii) Creation of a test sample with 50 observations, and computation of the 

root mean square error of prediction (RMSEP) obtained for each method 

(NNR, uNNR).  

 

This process was repeated 100 times for each value of the parameter “number of nearest 

neighbours”, and the mean RMSEP values computed. As can be seen in Figure 11.11, 

uNNR leads in general to an improvement of prediction results. Therefore, future 

developments can include extending this type of uncertainty-based approach to other 

non-parametric regression and classification methodologies. 
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Figure 11.11. Mean RMSEP for NNR and uNNR, obtained over 100 simulations for each number of 

“nearest neighbours” considered (k). 

 

Regarding the MRD frameworks presented in Part IV-A (Chapter 4), it is worthwhile 

noticing that they can be applied in rather more general contexts, other than the one 

explored here, where they were used to provide single-scale information (after a step of 

scale selection), to be processed by the tools presented in Chapters 5-7. For instance, 

within the scope of multiscale data analysis under the presence of missing data and 

uncertainty information, the uncertainty-based MRD frameworks can be integrated with 

MLPCA, whose formulation is well aligned with MRD frameworks. 

Other scale selection approaches should also be explored in future developments, 

namely based on the trade-off between fitting and estimation variance of the “true” 

underlying signal, signal to noise ratio (SNR) measures, as well as methodologies 

developed for the multivariate case (e.g. exploring the scores of MLPCA and the 

associated uncertainty, using the tools built for the univariate case). 
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Appendix A. Additional Information 
Regarding MLMLS Method 

 

In this appendix, we provide further information regarding the motivation underlying 

the development of the MLMLS method, and present some results that illustrate its 

relationship with other related methods and its potential. For the sake of simplifying the 

exposition, without compromising rigour and generality, only the univariate case will be 

addressed here.  

 

A.1 EIV Formulation of the Linear Regression Problem 

The classical EIV model consists of the following functional relationship linking the 

“true” values of the predictor (ηi) and response (ξi) variables, 

 

 0 1i iη β β ξ= +  (A.1) 

 

Along with the measurement equations, 

 

 i i i

i i i

x
y

ξ δ
η ε

= +
= +

 (A.2) 
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Let us assume that ( ) ( )2 2~ 0, , ~ 0,i iN Nδ εδ σ ε σ , with iδ  and iε  statistically 

independent. Inserting (A.2) into (A.1), and rearranging terms, the following 

relationship can be obtained, linking the measured quantities: 

 

 ( )0 1 1i i i iy xβ β ε β δ= + + −  (A.3) 

 

As the error term, 1i iε β δ− , is not independent of the quantity 0 1i iy xβ β= + , one can 

not estimate the model parameters using classical least squares (e.g. Draper & Smith, 

1998, p. 90). 

 

A.2 The Berkson Case (Controlled Regressors with Error) 

Berkson pointed out that in many experiments the above referred correlation does not 

exist because there are circumstances where ix  is a “controlled quantity”, i.e., a set-

point or target for the predictor variable that we would like to keep fixed during the 

realization of the trial, but, due to experimental limitations, we can not achieve such a 

goal. Thus, the “observed” value of the predictor variable, ix , is directly controlled by 

the experimenter, while the true values, iξ , are unknown and may experiment some 

variation. In this situation, it can be assumed that the “true” predictor is scattered around 

the target value as follows: 

 

 i i ixξ δ= +  (A.4) 

 

The measured value of the response is subject to random error, according to: 

 

 i i iy η ε= +  (A.5) 
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Once again, we assume ( ) ( )2 2~ 0, , ~ 0,i iN Nδ εδ σ ε σ , with iδ  and iε  statistically 

independent. The true value of the response still depends upon the true value of the 

predictor variable, according to the functional relationship: 0 1i iη β β ξ= + . From (A.4), 

(A.5) and this functional relationship between the true values, the following relationship 

between the “measured” quantities can be derived: 

 

 ( )0 1 1i i i iy xβ β ε β δ= + + +  (A.6) 

 

where the error term, 1i iε β δ+ , is now independent of the quantity 0 1i iy xβ β= + . 

Berkson argues that the requirements of the classical least squares case are now 

fulfilled, and we can use it to estimate the model parameters 0β  and 1β . The 

optimization formulation proposed in Section 2.1.1 results from deriving the log-

likelihood function for the above situation in the heteroscedastic case, under the 

assumption of Gaussian errors. 

 

A.3 Results 

The following results illustrate relationships of the MLMLS approach with related 

methods, such as OLS and MLS. Two versions of MLS are tested, designated as MLS 

and MLS (Rovira), to check the correctness of the first one (written by the author in 

Matlab code) with a version independently developed by the research group from 

Chemometrics and Qualimetrics centre, at the Universitat Rovira i Virgili (Spain, 

available at http://www.quimica.urv.es/quimio/ang/maincat.html). 

We consider a model following the Berkson assumptions with parameters 0 2b =  and 

1 4b = . The model parameters are repeatedly estimated from 100 observations, and the 

errors obtained in 500 of such realizations are presented in the following figures. 

A.3.1 No errors in X, homoscedastic errors in Y 

Let us first consider the situation where the controlled regressors are not affected by any 

sort of error and the response is affected by homoscedastic errors with variance 
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2 0.16Yσ = . In these circumstances, the Berkson model essentially reduces to the 

classical OLS model, and therefore all the methods should have similar performances, 

as all of them can handle this model, at least as a particular situation, and there are no 

numerical issues to be considered in the univariate case, as can be seen in Figure A-1. 
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Figure A-1. Parameter estimates for the case: “no errors in X, homoscedastic errors in Y”. The true 

values for the parameters in the Berkson model are indicated by horizontal lines. 

 

A.3.2 Homoscedastic errors in X and Y 

Considering the situation where both the controlled regressors and response are affected 

by homoscedastic errors with variances 2 2 0.16X Yσ σ= =  and 2 0.16Yσ =  (Figure A-2), it 

is possible to verify that the MLS method provides biased estimates and with higher 

variance relatively to other methods, something that can be attributed to the mismatch 

between the model structure assumed by this method for the data generating process and 

that actually underlying analysed data. OLS is more robust in this regard, in spite of 

presenting a slight tendency towards an increased variance in the estimates. 
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Figure A-2. Parameter estimates for the case: “Homoscedastic errors in X and Y”. 



APPENDIX A. ADDITIONAL INFORMATION REGARDING MLMLS 

 291

 

A.3.3 Heteroscedastic errors in X and Y 

Considering finally the situation where both the controlled regressors are affected by 

heteroscedastic errors of the proportional type (Figure A-3), it is possible to see that the 

MLMLS is now clearly the best method among all the alternatives tested (unbiased 

parameter estimates with lower associated variances).  
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Figure A-3. Parameters estimates for the case: “Heteroscedastic errors in X and Y” (proportional type). 

 

Therefore, we can conclude that under the scope of a data generating process following 

Berkson’s assumptions, the MLMLS method always leads to unbiased estimates with 

variance that is at least as low as that for any other of the tested methods, i.e., never 

performs worse than its counterparts, and in fact can perform significantly better under 

more complex errors structures, thus attesting the suitability of this estimation 

procedure, based on the maximization of the log-likelihood function. 
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Appendix B.  Analytical Derivation 
for the Gradients of Λ 

 

In this section we present a derivation for the gradients of the log-likelihood function, 

Λ , in order to the parameter vectors to be estimated under the maximum likelihood 

approach, namely:45 

• Xµ , the mean vector; 

• *1/ 2( )ldiagλ = ∆ , i.e., the vector of diagonal elements of *1/ 2
l∆  ( *1/ 2

l∆  is a 

diagonal matrix such that *1/ 2 *1/ 2
l l l∆ = ∆ ⋅∆ ); 

• α , the vector of rotation angles to be applied to the initial estimate of A (A0). 

 

Let us first clarify the conventions to be followed during the course of derivations. The 

first convention regards the definition of the derivative of a matrix F(X), m p× , in order 

to another matrix, X, n q×  (Magnus & Neudecker, 1988): 

 

                                                 

 

45 The single underscore used below some of the above quantities has the purpose of highlighting their 

vector nature, to avoid any confusion with scalar quantities with similar notations. 
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 ( )( )
( )X T

vec F XD F X
vec X

∂
=
∂

 (B.1) 

 

where vec is the operator that vectorizes a matrix, by successively stacking its columns, 

one below the others, starting from the first column. 

Thus, ( )XD F X  is a mp nq×  matrix, whose element (i,j) is the partial derivative of the 

function at the ith-entry of ( )vec F X  in order to the variable at the jth entry of vec X . 

Another useful definition regards the extension of the notion of differential to matrix 

quantities: 

 

 ( ) ( )d vec F X A X d vec X=  (B.2) 

 

According to the identification theorem for matrix functions (Magnus & Neudecker, 

1988), the existence of (B.2) implies and is implied by 

 

 ( ) ( )XD F X A X=  (B.3) 

 

Thus, the definition of differential and the identification theorem taken together are 

instrumental in the calculation of derivatives. The basic procedure here adopted, 

following Magnus & Neudecker (1988) guidelines, is as follows: i. compute the 

differential; ii. vectorize the expression obtained in i.; iii. use the identification theorem 

to obtain the derivative. 

 

B.1 Derivation of the Gradients 

For the sake of clarity, the elements or building blocks appearing in the expression of 

the log-likelihood will be isolated. When rewritten in terms of the quantities to be 

estimated by the numerical algorithm, they have the following form: 
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1

1 1

0

*1/ 2 *1/ 2

*1/ 2

1 1( , , ) ln ( ) ( ( ) ) ( ) ( ( ) )
2 2

where,

( ) ( )
( )

( )

obs obsn n
T

X x X x X
k k

T
x l m

l l l

l

C k x k k x k

k A A k
A R A

diag

µ λ α µ µ

α

λ

−

= =

⎡ ⎤Λ = − Σ − − Σ −⎣ ⎦

⎧Σ = ∆ + ∆
⎪ =⎪
⎨
∆ = ∆ ⋅∆⎪
⎪∆ =⎩

∑ ∑
 (B.4) 

 

with C being a constant, diag  the operator that when applied to a square matrix 

produces a vector with its diagonal elements and that, when applied to a vector, 

produces a square diagonal matrix with the elements of the vector along the main 

diagonal. 

The basic elements identified in (B.4) are:  

• ln ( )x kΣ ; 

• 1( ( ) ) ( ) ( ( ) )T
X x Xx k k x kµ µ−− Σ − . 

 

The derivation of the expression for their gradients, in order to the parameter vectors, is 

systematized in the following steps: 

• 1.i. Derivation of differential and gradients for ( )x kΣ ; 

• 1.ii. Derivation of differential and gradients for ln ( )x kΣ ; 

• 2.i. Derivation of differential and gradients for 1( )x k−Σ ; 

• 2.ii. Derivation of differential and gradients for 1( ( ) ) ( ) ( ( ) )T
X x Xx k k x kµ µ−− Σ − ; 

• 3. Derivation of the gradients for Λ . 

 

B.1.1 Derivation of the differential and gradients for ( )x kΣ  (1.i) 

As the sums do not appear in the building blocks, we will drop the sum index, k, 

keeping in mind that these quantities vary with the observation index. 
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From (B.4), 

 

 ( ) ( ) ( )T T
x l m ld d A A d d A AΣ = ∆ + ∆ = ∆  (B.5) 

 

( ( ) 0md ∆ =  because it is a constant matrix). Defining * *1/ 2A A= ∆ , we get from Magnus 

& Neudecker (1988, p.182): 

 

 ( )* * * *2 ( )T
x n nd vec d vec A A N A I d vec AΣ = = ⊗  (B.6) 

 

where ( )2 ,
1
2n n nn

N I K= +  ( ,n nK  the commutation matrix), nI  is the identity matrix with 

the dimension given by the subscript (n in this case) and ⊗  is the Kronecker product. 

Now, as * *1/ 2A A= ∆ , 

 

 * 1/ 2* 1/ 2* 1/ 2*( ) ( ) ( )d A d A d A Ad= ∆ = ∆ + ∆  (B.7) 

 

Vectorzing (B.7), 

 

 
{ } { }

( ) ( )

* 1/ 2* 1/ 2*

* 1/ 2* 1/ 2*

( ) ( )
T

n p

d vec A vec d A vec Ad

d vec A I d vec A I A d vec

= ∆ + ∆

⇔ = ∆ ⊗ + ⊗ ∆
 (B.8) 

 

(cf. Magnus & Neudecker 1988, p.31). 

We see that, introducing (B.8) in (B.6), it is possible to express xd vecΣ  in terms of 

d vec A  and 1/ 2*d vec∆ . Let us now see how we can express these quantities in terms of 

the parameter vectors Xµ , λ , and α , beginning with d vec A . As 0( )A R Aα= , 
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{ }

( )
0

0

( )

( )T
n

dA d R A

d vec A A I d vec R

α

α

=

⇒ = ⊗
 (B.9) 

 

Using Wentzell et al. (1997a) result for ( )d vec R α , and defining matrix G  as:46 

 

 [ ]1 2 1( ) ( ) ( )nG vecG R vecG R vecG Rα α α−=  (B.10) 

 

we find that, 

 

 ( )d vec R dα α= G  (B.11) 

 

On the other hand, 1/ 2* ( )diag λ∆ = , and it is possible to prove that, 

 

 1/ 2*d vec dλ∆ = T  (B.12) 

 

where T is a matrix with a sparse structure, such that 1/ 2*vec λ∆ = T . 

Introducing (B.11) in (B.9), and entering with the result of this substitution, together 

with (B.12), in (B.8), we can now specify entirely the differential xd vecΣ  presented in 

(B.6): 

 

 
( ) ( )
( )

* 1/ 2*
0

*

2 ( )

2 ( )

T T
x n n n n

n n p

d vec N A I I A I d

N A I I A d

α

λ

Σ = ⊗ ∆ ⊗ ⊗ +

+ ⊗ ⊗

G

T
 (B.13) 

                                                 

 

46 See Wentzell et al. (1997a), p.365 for a definition of matrices { } 1, 1i i n
G

= −
. 
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From the identification theorem for matrix functions, we can then calculate the 

gradients, 

 

 ( ) ( )* 1/ 2*
02 ( )

T T
x n n n nD N A I I A IαΣ = ⊗ ∆ ⊗ ⊗ G  (B.14) 

 ( )*2 ( )x n n pD N A I I AλΣ = ⊗ ⊗ T  (B.15) 

 

B.1.2 Derivation of the differential and gradients for ln ( )x kΣ  (1.ii) 

The differential of the natural logarithm of (a positive) scalar variable φ  is, 

 

 1lnd dφ φ
φ

=  (B.16) 

 

In the present case, xφ = Σ , which means that, 

 

 1ln x x
x

d dΣ = Σ
Σ

 (B.17) 

 

Now, in Magnus & Neudecker (1988, p.178) we can find the expression for XD X , 

that leads to the following differential for xΣ : 

 

 ( ){ }1 T
T

x x x xd vec d vec−Σ = Σ Σ Σ  (B.18) 
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Thus, substituting (B.18) in (B.17), 

 

 ( ){ }1ln
T

T
x x xd vec d vec−Σ = Σ Σ  (B.19) 

 

This also leads us to the result that for ln
x xD Σ Σ  (using the identification theorem): 

 

 ( ){ }1ln
x

T
T

x xD vec −
Σ Σ = Σ  (B.20) 

 

Finally, introducing (B.13) in (B.19), we get the fully expanded expression for the 

differential of ln xΣ , in terms of the parameters vectors, 

 

 
( ){ } ( ) ( )
( ){ } ( )

1 * 1/ 2*
0

1 *

ln 2 ( )

2 ( )

T T TT
x x n n n n

T
T

x n n p

d vec N A I I A I d

vec N A I I A d

α

λ

−

−

Σ = Σ ⊗ ∆ ⊗ ⊗ +

+ Σ ⊗ ⊗

G

T
 (B.21) 

 

which means that the respective gradients are: 

 

 
( ){ } ( ) ( )
( ){ } ( )

1 * 1/ 2*
0

1 *

ln 2 ( )

ln 2 ( )

T T TT
x x n n n n

T
T

x x n n p

D vec N A I I A I

D vec N A I I A

α

λ

−

−

Σ = Σ ⊗ ∆ ⊗ ⊗

Σ = Σ ⊗ ⊗

G

T
 (B.22) 

 

B.1.3 Derivation of differential and gradients for 1( )x k−Σ  (2.i) 

From Magnus & Neudecker (1988, p.183): 

 

 ( ) 11 1T
x x x xd vec d vec

−− −⎡ ⎤Σ = − Σ ⊗Σ Σ⎢ ⎥⎣ ⎦
 (B.23) 
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Therefore, from (B.13): 

 

 
( ) ( ) ( )
( ) ( )

11 1 * 1/ 2*
0

1 1 *

2 ( )

2 ( )

TT T
x x x n n n n

T
x x n n p

d vec N A I I A I d

N A I I A d

α

λ

−− −

− −

⎡ ⎤Σ = − Σ ⊗Σ ⊗ ∆ ⊗ ⊗ +⎢ ⎥⎣ ⎦
⎡ ⎤− Σ ⊗Σ ⊗ ⊗⎢ ⎥⎣ ⎦

G

T
 (B.24) 

 

and, 

 

 
( ) ( ) ( )
( ) ( )

11 1 * 1/ 2*
0

11 1 *

2 ( )

2 ( )

TT T
x x x n n n n

T
x x x n n p

D vec N A I I A I

D vec N A I I A

α

λ

−− −

−− −

⎡ ⎤Σ = − Σ ⊗Σ ⊗ ∆ ⊗ ⊗⎢ ⎥⎣ ⎦
⎡ ⎤Σ = − Σ ⊗Σ ⊗ ⊗⎢ ⎥⎣ ⎦

G

T
 (B.25) 

 

B.1.4 Derivation of differential and gradients for 

1( ( ) ) ( ) ( ( ) )T
X x Xx k k x kµ µ−− Σ −  (2.ii) 

Writing 1( ( ) ) ( ) ( ( ) )T
X x Xx k k x kµ µ−− Σ −  as 1T

xx x−∆ Σ ∆ , we can use the well known 

result from derivative of a quadratic expression, Tx Ax , in order to x , to find the term of 

the differential regarding x∆  (cf. Magnus & Neudecker 1988, p.177), as well as the 

result already derived for 1
x
−Σ , for the remaining term,47 

 

 ( ) ( )1 1 1 1( )
TT T T

x x x xd x x x d x x x d vec− − − −∆ Σ ∆ = ∆ Σ + Σ ∆ + ∆ ⊗∆ Σ  (B.26) 

 

                                                 

 

47 Remember that the operator vec when applied to scalar or column vector, leads to the scalar or column 

vector itself. 
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Now, as, 

 

 Xd x d µ∆ = −  (B.27) 

 

and from (B.24), 

 

 

( ) ( )
( ) ( ) ( )
( ) ( )

1 1 1

1 1 * 1/ 2*
0

1 1 *

( )

2 ( )

2 ( )

TT T
x x x X

TT TT
x x n n n n

TT
x x n n p

d x x x d

x x N A I I A I d

x x N A I I A d

µ

α

λ

− − −

− −

− −

∆ Σ ∆ = −∆ Σ + Σ +

⎡ ⎤− ∆ ⊗∆ Σ ⊗Σ ⊗ ∆ ⊗ ⊗ −⎢ ⎥⎣ ⎦
⎡ ⎤− ∆ ⊗∆ Σ ⊗Σ ⊗ ⊗⎢ ⎥⎣ ⎦

G

T

 

  (B.28) 

 

Therefore, 

 

 

( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1

11 1 * 1/ 2*
0

11 1 *

2 ( )

2 ( )

X

TT T
x x x

TT TT T
x x x n n n n

TT T
x x x n n p

D x x x

D x x x x N A I I A I

D x x x x N A I I A

µ

α

λ

− − −

−− −

−− −

∆ Σ ∆ = −∆ Σ + Σ

⎡ ⎤∆ Σ ∆ = − ∆ ⊗∆ Σ ⊗Σ ⊗ ∆ ⊗ ⊗⎢ ⎥⎣ ⎦
⎡ ⎤∆ Σ ∆ = − ∆ ⊗∆ Σ ⊗Σ ⊗ ⊗⎢ ⎥⎣ ⎦

G

T

 

  (B.29) 

 

B.1.5 Derivation of gradients for Λ  (3) 

We are now ready to derive the expressions for the gradients of the log-likelihood 

function Λ . Using the results derived so far, and the linearity of the gradient operators: 
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( )( ){ }
( ){ } ( ){ }

( ) ( ){ }
( ){ } ( )

1 1

1

1 *

1

1 1 *

1

1 * 1/ 2*

1( , , ) ( ) ( ) ( )
2
1( , , ) 2 ( ) ( )
2
1 2 ( ) ( ) ( ) ( ) ( )
2
1( , , ) 2 ( ) ( )
2

obs

X

obs

obs

n TT
X x x

k
n TT

X x n n p
k
n

T T
x x n n p

k

T TT
X x n n

D x k k k

D vec k N A I I A

x k x k k k N A I I A

D vec k N A I

µ

λ

α

µ λ α

µ λ α

µ λ α

− −

=

−

=

− −

=

−

Λ = ∆ Σ + Σ

Λ = − Σ ⊗ ⊗ +

⎡ ⎤+ ∆ ⊗∆ Σ ⊗Σ ⊗ ⊗⎢ ⎥⎣ ⎦

Λ = − Σ ⊗ ∆ ⊗

∑

∑

∑

T

T

( ){ }
( ) ( ) ( ){ }

0
1

1 1 * 1/ 2*
0

1

1 2 ( ) ( ) ( ) ( ) ( )
2

obs

obs

n
T

n n
k
n T TT T

x x n n n n
k

I A I

x k x k k k N A I I A I

=

− −

=

⎡ ⎤ ⊗ +⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤+ ∆ ⊗∆ Σ ⊗Σ ⊗ ∆ ⊗ ⊗⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑

∑

G

G

  (B.30) 
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Appendix C.  Alternative HLV-MSPC 
Monitoring Procedures 

 

The HLV-MSPC statistics presented in Chapter 7 lead to a direct calculation of the 

upper control limits to be used (no lower control limits are necessary), which are, for a 

given significance level (α) : 2 ( )nαχ  for 2
wT  and 2 ( )n pαχ −  for wQ , where 2 ( )αχ ν  

represents the upper α×100% percentiles for the 2χ  distribution with ν degrees of 

freedom. These types of limits are quite convenient, because they remain constant along 

time, despite the possible erratic variation of measurement uncertainties, but rely on 

assumptions regarding the probability density functions describing the behaviour of the 

random variables. In this context, a non-parametric approach for estimating the 

probability density function underlying 2
wT  and wQ  can be adopted as an alternative.  

There are various ways for performing nonparametric density estimation, like those 

falling under the class of Kernel approaches, which estimate the underlying distribution 

using expressions of the form: 

 

 
1

1ˆ ( )
obsn

i

iobs

t xf t K
n h=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  (C.1) 

 

where f̂  represents the estimate of the true density f and K(⋅) is the kernel function 

satisfying, 
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 ( ) 1K t dt
+∞

−∞
=∫  (C.2) 

 

and h is the window width, a design parameter that should be adjusted in order to find 

the best compromise between smoothing and fit. Another class of approaches, 

developed from a quite different perspective, comprises those based on orthogonal 

series estimators. Basically, these techniques estimate f through an orthogonal series 

expansion, properly truncated to achieve a desired smoothing degree: 

 

 
2

1

ˆ ˆ ˆ( ) ( ) ( )
k

i i i i
i i k

f t c t c tθ θ
+∞

=−∞ =

= ≅∑ ∑  (C.3) 

 

where { }i i
θ +∞

=−∞
 is an orthonormal basis of the space under consideration. Some mild a 

priori assumptions are made regarding the nature of f, such as: 

 

 2 ( ) , finitef t dt k k
+∞

−∞
=∫  (C.4) 

 

The ci coefficients are given by, 

 

 ( ) ( )i ic t f t dtθ
+∞

−∞
= ∫  (C.5) 

 

and a natural (unbiased) estimator for ci, is: 

 

 
1

1ˆ ( )
obsn

i i k
kobs

c x
n

θ
=

= ∑  (C.6) 
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There are still other approaches to nonparametric density estimation, like those arising 

from further developments to the kernel density estimation methods, such as the nearest 

neighbour method, or the maximum penalized likelihood estimators (Silverman, 1986). 

We will only mention here the approach based in estimating the probability density 

through an orthogonal polynomial series expansion, orthogonalized with respect to a 

given standard distribution (TØrvi and Hertzberg, 1997), that we will designate as 

“Pugachev” (following the reference provided by these authors): 

 

 
0

ˆ ( ) ( ) ( )s i i
i

f t f t c p t
∞

=

= ∑  (C.7) 

 

where the coefficients can be expressed as functions of the moments of the distribution. 

In order to estimate the underlying distribution for the 2
wT  and wQ  statistics several 

nonparametric methods were tried, including: histograms, gaussian kernel density 

estimators (GKDE) and also, because of its easy implementation, Pugachev’s approach. 

To illustrate their performance, we present some results, obtained when the techniques 

were applied to 2048 data values generated using the model that we will describe for the 

first case study in the next section. Figure C-1 represents the results obtained for 2
wT . In 

this figure, it is possible to see that both the Gaussian kernel density estimator (GKDE) 

and the Pugachev’s method do not seem very adequate, since they provide estimates 

with a considerable coverage in the region of negative values. On the other hand, the 

histogram does provide an acceptable fit. 

Thus, we did develop a methodology belonging to the class of orthogonal series 

estimators, based on wavelet basis functions. This methodology consists of constructing 

a function expansion such as (C.3), using orthogonal wavelet basis functions, and 

selecting the wavelet coefficients, obtained from (C.5), as a way to truncate it. For that 

purpose, we will simply neglect the detail coefficients, retaining only the approximation 

coefficients. We found by visual inspection that this procedure provides estimates with 

an adequate smoothing degree. Applying this methodology to the same data used in the 

generation of Figure C-1, the results presented in Figure C-2 were obtained, where it is 
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possible to see that the previous problems regarding non-zero probability for negative 

values have been overcome. 
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Figure C-1. Application of non-parametric density estimation techniques to simulated data: a) Histogram; 

b) Gaussian kernel density estimate; c) Pugachev’s approach (solid lines). Dashed lines represent the 

expected χ2 distribution of the 2
wT  statistic. 
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Figure C-2. Application of non-parametric wavelet density estimation techniques to simulated data: a) 

estimated probability density function, pdf (solid) and expected χ2 distribution (dashed); b) cumulative 

distribution function, cdf (solid) and respective expected χ2 distribution (dashed). 
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Therefore, we have now available a methodology that allows for a relaxation in the 

usage of parametric distributions for the 2
wT  and wQ  statistics, deriving alternative 

limits from historic data. There are still other alternative procedures for deriving control 

limits, that explore the availability of other types of information, e.g. repeatability and 

reproducibility (R&R) studies for the specification of measurement uncertainty, or noise 

characteristics of sensors. All this information can be used in conjunction with statistical 

and numerical methods, such as those based on re-sampling, noise addition, analytical 

or numerical linearization, in order to derive the NOC regions. The methodologies 

based on re-sampling and noise addition normally encompass a high number of 

evaluations leading to the calculation of the desired statistic. On the other hand, 

techniques based on analytic linearization are quite cumbersome, given the nature of the 

objective function and parameters involved (vectors and matrices). We therefore present 

here a simple approach based on noise addition, that does not require the repetitive 

calculation of an estimate of the model, and still provides a way for establishing control 

limits for the statistics, within a reasonable CPU time (Table C-1). It assumes that a 

HLV model structure is available at the time of implementation, and that information is 

available regarding the underlying random components in this model, i.e., about the 

latent variables and measurement noise random behaviour. As all projections of 

observed x(k) onto the latent variable subspace will be always contaminated with 

(possibly heteroscedastic) noise, the calculation of the homoscedastic latent variable 

values, l(k), is not possible, and therefore we can not rely on empirical probability 

distribution descriptions to characterize the isolated random behaviour attributed to 

latent variables. The same is not true for measurement noise, which can now have any 

probability distribution. Thus, in comparison with the non-parametric approach referred 

above for calculating control limits, this methodology not only allows for a relaxation in 

the usage of parametric distributions for 2
wT  and wQ , but also enables the use of all 

available knowledge regarding the nature of measurement noise. 
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Table C-1. An alternative procedure for setting control limits in HLV-MSPC monitoring. 

 
1. Identify the HLV and retain its structural part, and the distribution of the latent 

variables contained in the stochastic part; 

2. For each new multivariate observation available, k: 

i. For i=1:nsim: simulate the overall random process underlying x(k) nsim times, 

using the identified distribution for the random behaviour of the latent 

variables, and the distributions associated with measurement noise, through 

noise addition, or, if enough data available, using bootstrap, up-dated for 

time k: 

a. Calculate the 2
wT  and wQ  statistics for simulation i 

ii. Estimate the distributions of 2
wT  and wQ  at time k using data from the nsim 

simulations;  

iii. Conduct a non-parametric one-sided hypothesis test to the observed 2 ( )wT k  

and ( )wQ k , using the distributions for these statistics at time k, and decide 

about their statistical significance, for a given α ; 

iv. 1k k→ + , Go To 2; 

3. End 

 

Figure C-3 illustrates the results obtained though the application of the above procedure 

to a model where all the underlying distributions of measurement noises are constant 

distributions (thus, not Gaussian). The limits are calculated both from a parametric 

approach, which assumes that all noise distributions are normal with zero mean and 

standard deviation calculated from the data, as well as from the alternative approach, 

where this assumption was relaxed. As can be seen, parametric statistical limits still do 

a good job in this case, which indicates a certain robustness to deviations from 

normality assumptions. 

 



APPENDIX C. ALTERNATIVE HLV-MSPC MONITORING PROCEDURES 

 309

0 20 40 60 80 100 120 140
0

5

10

15

20

25

time index

T w2

0 20 40 60 80 100 120 140
0

5

10

15

20

25

time index

Q
w

 

Figure C-3. HLV-MSPC results obtained with statistical limits calculated both from parametric 

assumptions (dashed line) and noise addition (solid line). The vertical dashed lines separate the test data 

in two regions: the first one regards normal operation and the second one reflects a step perturbation. 
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Appendix D. Principal Components 
Analysis (PCA) 

 

PCA (Jackson, 1991; Johnson & Wichern, 1992; Martens & Naes, 1989) is a well 

known multivariate data analysis technique that addresses the problem of finding a 

reduced (p-dimensional) set of new variables, the principal components, which are 

linear combinations of the original (m) variables, with the ability of explaining most of 

their variability. Such linear combinations are those that successively present maximal 

(residual) variability (when the coefficients are constrained to unit norm), after the 

portion explained by the former components has been removed. The solution of such an 

optimization formulation can be reduced to an eigenvalue problem (Johnson & 

Wichern, 2002), where the optimal linear combinations (loadings) are given by the 

successive normalized eigenvectors of the data covariance matrix, associated with the 

eigenvalues sorted in a decreasing order of magnitude: the first principal component is 

given by the linear combination of the original variables provided by the eigenvector 

associated with the highest magnitude eigenvalue, etc.. Therefore, by applying PCA to 

the original data matrix, a set of correlated variables is transformed into a smaller, 

decorrelated one (i.e., having a diagonal covariance matrix), that often still explains a 

large part of the structure and variability present in the original data. The loadings are 

usually gathered in the columns of the m p×  loading matrix, L, and the principal 

component values, or scores, appear in the n p×  score matrix (n is the number of 

observations), T, leading to the following decomposition of the original data matrix:  
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 TX TL E= +  (D.1) 

 

where E is a n m×  residual matrix, which is in general a non-zero matrix when p m< , 

being the 0 matrix when p m= . 

Regarding applications, PCA is recognized as being very effective on conducting 

several tasks (Jackson, 1991), such as dimensionality reduction, where the goal is to 

analyse data projected onto a lower dimensional subspace, without disregarding any 

variable or set of variables, being also very useful in developing visualization tools for 

detecting outliers, clusters, and in the interpretation of structural relationships among 

variables (Jolliffe, 2002). It can also be used in the context of regression analysis, where 

the uncorrelated linear combinations of input variables (principal components) become 

the new set of predictors, onto which the response is to be regressed (Jackson, 1991; 

Martens & Mevik, 2001; Martens & Naes, 1989), or in quality control (Jackson, 1959; 

Kresta et al., 1991; MacGregor & Kourti, 1995), where the principal components 

become the relevant variables to monitor, along with the distance from each observation 

to the PCA subspace. 
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Appendix E.  Mathematical Model for 
the Non-Isothermal CSTR under 
Feedback Control 

 

The CSTR mathematical model supporting the simulations carried out in Section 9.4.4 

is shown below (Luyben, 1990), according to the nomenclature, steady state and 

parameter values presented in Table E-1. 

 

Global mass balance to CSTR 

 0
dV F F
dt

= −  (E.1) 

 

Partial mass balance to component A 

 /
0 0 0

E RTA
A A A

dVC F C FC k e C V
dt

−= − −  (E.2) 

 

Global CSTR energy balance  

 /
0 0 0 ( )E RT

A cj
p p

dVT H UAF T FT k e C V T T
dt C Cρ ρ

−∆
= − − − −  (E.3) 
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Global cooling jacket energy balance  

 ,0
,

( ) ( )cj cj
cj cj cj cj

j p cj

dV T UAF T T T T
dt Cρ

= − + −  (E.4) 

 

Control of reacting mixture volume (reactor level) using outlet flow rate 

 ( )2set c setF F K V V= − −  (E.5) 

 

Control of CSTR temperature using cooling water flow rate 

 ( ), 1cj cj set c setF F K T T= − −  (E.6) 

 

Table E-1. Variables used in the mathematical model and their steady state values, along with the model 

parameter values. 

Variable / Parameter 
     Description Steady state value / 

parameter value 
F Outlet flow rate 40 ft3h-1 
V Reacting mixture volume 48 ft3 

CA0 Concentration of reactant A in the inlet stream 0.5 lb⋅mol A ft-3 
CA Concentration of reactant A in the CSTR 0.245 lb⋅mol A ft-3 
T Temperature in the CSTR 600 ºR 
Tcj Temperature in the cooling jacket 594.6 ºR 
Fcj Water flow in the cooling jacket 49.9 ft3 h-1 
T0 Temperature in the inlet stream 530 ºR 
Vcj Cooling jacket volume  3.85 ft3 
k0 Pre-exponential factor 7.08×1010 h-1 
E Activation energy 30 000 Btu lb⋅mol-1 
R Gas constant 1.99 Btu lb⋅mol-1 ºR-1 
U Overall heat transfer coefficient 150 Btu h-1 ft-2 ºR-1 
A Heat transfer area 250 ft2 

Tcj,0 Temperature in the cooling jacket’s inlet stream 530 ºR 
∆H Heat of reaction -30 000 Btu lb⋅mol-1 
Cp Heat capacity of the mixture 0.75 Btu lbm

-1 ºR-1 
ρ Density of the mixture 50 lbm ft-3 

Cp,cj Heat capacity of the cooling liquid (water) 1 Btu lbm
-1 ºR-1 

ρcj Density of the cooling liquid (water) 62.3 lbm ft-3 
Kc1 Tuning constant for the proportional action in the 

temperature control loop 
4 ft3h-1 ºR-1 

Kc2 Tuning constant for the proportional action in the 
level control loop 

10 h-1 

Fset Set point for outlet reactor flow 40 ft3 h-1 
Fcj,set Set point for cooling jacket flow 49.9 ft3 h-1 
Tset Set point for reactor temperature 600 ºR 
Vset Set point for reacting mixture volume 48 ft3 
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Figure E-1 and Figure E-2 present the values for the 10 variables involved in the 

simulation of the CSTR dynamic behaviour, regarding the reference set used in Section 

9.4.4. 
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Figure E-1. Values for { }, , ,A cjC T V T  in the reference data set. 

 



DATA-DRIVEN MULTISCALE MONITORING, MODELLING AND IMPROVEMENT OF CHEMICAL PROCESSES 

 316 

0 50 100 150 200 250 300 350 400
1

1.05

1.1

1.15

1.2

1.25

F 0 /m
3 .h

r- 1

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
A

0 /k
m

ol
e.

m
-3

0 50 100 150 200 250 300 350 400
285

290

295

300

305

T 0 /K

0 50 100 150 200 250 300 350 400
285

290

295

300

305

T cj
0 /K

0 50 100 150 200 250 300 350 400
1

1.1

1.2

1.3

F 
/m

3 .h
r- 1

t /hr
0 50 100 150 200 250 300 350 400

-1

0

1

2

3

4

F cj
 /m

3 .h
r- 1

t /hr

 

Figure E-2. Values for { }0 0 0 ,0,  ,  ,  ,  ,  A cj cjF C T T F F  in the reference data set. 

 

 


