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a b s t r a c t

Insulin-loaded alginate–dextran nanospheres were prepared by nanoemulsion dispersion

followed by triggered in situ gelation. Nanospheres were characterized for mean size

and distribution by laser diffraction spectroscopy and for shape by transmission electron

microscopy. Insulin encapsulation efficiency and in vitro release were determined by Brad-

ford protein assay and bioactivity determined in vitro using a newly developed Western blot

immunoassay and in vivo using Wistar diabetic rats. Nanospheres ranged from 267 nm to
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Alginate–dextran nanospheres

Nanospheres

2.76 �m in diameter and demonstrated a unimodal size distribution. Insulin encapsulation

efficiency was 82.5%. Alginate–dextran particles suppressed insulin release in acidic media

and promoted a sustained release at near neutral conditions. Nanoencapsulated insulin was

bioactive, demonstrated through both in vivo and in vitro bioassays
Insulin bioactivity

1. Introduction

Insulin instability has been regarded as a major obstacle to the
development of an insulin oral dosage device aimed at attain-
ing optimal diabetic control. A promising strategy is the use
of multifunctional polymers exhibiting gastrointestinal (GI)
permeation enhancing and mucoadhesive properties. Interest
in using natural materials as part of drug delivery protocols
has increased in the past two decades. Alginates are naturally
occurring polymers and are known to form a reticulated struc-
ture when in contact with calcium ions. This characteristic
has been used to produce sustained release particulate sys-

tems for a variety of drugs, proteins and even cells (Gombotz
and Wee, 1998).

The aim of this study was to prepare and characterize an
insulin-loaded alginate–dextran nanopolymeric delivery sys-
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tem. A drug carrier for insulin should provide a stable and
biocompatible environment to ensure that the main fraction
of the therapeutic protein will be biologically active follow-
ing encapsulation. The carrier should stabilize and preserve
physiological activity during both particle processing and
insulin release. Once absorbed through the epithelial cell layer
(intestinal barrier), released or particulate insulin can inter-
act with cell-surface receptors or be captured by lymphatic
cells, or pass through or be entrapment in the lymph nodes or
transfer to the blood (Damgé et al., 2007).

An alginate nanopolymeric system is proposed through
nanoemulsion dispersion of alginate/insulin solution, fol-

lowed by triggered in situ gelation through instantaneous
release of Ca2+ from insoluble complex. This technique has
been applied to the formulation of macro- and microspheres
(Vandenberg and Nouè, 2001), but has not been extended or
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emonstrated at the nano-scale. Particles are formed under
ild conditions, using methods which are rapid and readily

caleable with little manipulation (Reis et al., 2006a). However,
hear stress during homogenization and centrifugation, and
rotein adsorption onto matrix polymer, and surface tension
ffects may lead to denaturation, molecular breakdown, fib-
illation and protein aggregation (De Rosa et al., 2000). Thus it
s important to test the biological activity of insulin following
ncapsulation.

Biological insulin activity cannot be quantified from the
nsulin molecular structure itself. Nevertheless, insulin action

ay be characterized by binding at the cell surface receptor
nducing phosphorylation of the kinase receptor followed by

cascade of signaling protein activations. One such protein
s Akt, a downstream effector of the insulin signaling path-
ay (Alessi and Downes, 1998; Elghazi et al., 2006). Antibodies

o activated insulin receptor itself are highly non-specific and
herefore not reliable. However, it is possible to relate acti-
ation status of cell signaling proteins further in the insulin
ctivation pathway to activity of the insulin molecule. The
ntibody for phosphorylated Akt is very specific, with a single
and appearing on Western blots (Patel et al., 2001), providing
strong and reproducible signal. Quantification of bioactive

nsulin following encapsulation and release, was demon-
trated using the developed Western blot immunoassay, and
hrough monitoring blood glucose levels following subcuta-
eous administration of released insulin, in diabetic rats.

Nanospheres were characterized in terms of size distri-
ution, morphology, encapsulation efficiency, in vitro insulin
elease behaviour and biological activity of insulin following
ncapsulation.

. Materials and methods

.1. Materials

odium alginate (supplier’s specifications: viscosity of 2%
olution at 25 ◦C, 250 cps) and dextran sulfate (approximately
W 5 kDa) were purchased from Sigma Chemical Co. (St.

ouis, MO, USA). Setacarb 06 calcium carbonate was obtained
rom Omya (Orgon, France). Paraffin oil was supplied by
az Pereira (Lisbon, Portugal). The emulsifier, Span 80, was
urchased from Fluka, Chemie GmbH (Buchs, Switzerland).

nsulin was kindly donated by Hospitais da Universidade de
oimbra (Actrapid Insulin® from Novo Nordisk, Bagsvaerd,
enmark). Streptozotocin was purchased from Sigma (Stein-
eim, Germany). All other chemicals were of reagent grade or
quivalent.

.2. Preparation of alginate–dextran nanospheres

he preparation method for alginate–dextran nanospheres
as adapted from the emulsification/internal gelation tech-
ique described previously (Poncelet et al., 1992). By
ontrolling the conditions under which the water-in-oil emul-

ion is produced, dispersed droplet size and thus resulting
article size can be controlled. It was the intent of this study
o extend the range of particle sizes from that of macro- and

icrospheres, to that in the nanometer size range. An aque-
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ous solution of low viscosity sodium alginate (2%, w/v) and
dextran sulfate (0.75%, w/v) was prepared by suspending the
polymer and adjuvant, respectively, in distilled water followed
by overnight stirring on an orbital shaker (100 rpm). Low vis-
cosity sodium alginate was used to obtain small particles.
Insulin (100 IU/mL, 10 mL) was mixed into alginate–dextran
solution and the resulting solution held stationary for at
least 1 h to allow deaeration. An aqueous suspension of ultra-
fine calcium carbonate (5%, w/v) was sonicated for 30 min
to break up crystal aggregates, and then dispersed into the
alginate–dextran–insulin solution (calcium–alginate ratio, 7%,
w/w). The resulting mixture was emulsified within paraffin
oil aided by Span 80 (1.5%, v/v) using a mixing impeller at
1600 rpm. After 15 min emulsification, gelation was triggered
by addition of 20 mL paraffin oil containing glacial acetic acid
(acid–calcium molar ratio, 3). The intent was to reduce the pH
of the alginate–calcium solution from 7.8 to 4.5, releasing solu-
ble calcium from carbonate complex. After 60 min, an acetate
buffer solution (70 mL at pH 4.5, United States Pharmacopeia,
USP XXVIII) with dehydrating solvents (acetone, isopropanol
and hexane, 15 mL:10 mL:5 mL, respectively) was added to the
oil-particle suspension and nanospheres were recovered by
centrifugation (12,500 × g during 10 min). Nanospheres were
separated in two fractions. One fraction of nanospheres to be
used for particle characterization was stored in acetate buffer
at pH 4.5, referred to as hydrated nanospheres. A second frac-
tion was frozen in an ethanol bath at −50 ◦C and lyophilized
(Lyph-lock 6, Labconco, Kansas City, MS, USA) at 0 ◦C for 48 h
and stored at 4 ◦C. Insulin-free nanospheres were prepared as
controls.

2.3. Characterization of nanospheres

Size distribution analysis was performed by laser diffraction
spectrometry using a Coulter LS130 granulometer (Beckman
Coulter Inc., Fullerton, CA). Mean diameters of aqueous sus-
pensions were determined in triplicate and size distribution
was represented by number.

Morphology was assessed by transmission electron
microscopy (Zeiss EM 902A, Germany) by placing samples onto
carbon grids, negative staining with uranyl acetate and drying
at room temperature.

2.4. Determination of encapsulation efficiency

The encapsulation efficiency was measured by incubating
30 mg nanospheres in sodium citrate (55 mM)/phosphate
buffer at pH 7.4 (USPXXVIII) for 1 h (100 rpm). After particle
dissolution, the mixture was centrifuged and protein content
in supernatant analyzed by Bradford method (Coomassie Pro-
tein Assay Reagent from Pierce, USA) at 595 nm. Insulin-free
nanospheres were used as control. Drug content was quan-
tified and encapsulation efficiency (%) determined by insulin
released as percentage of initial amount used in formulation.

2.5. In vitro release of insulin under simulated

gastrointestinal conditions

Drug release studies were focused on the release behaviour
at gastric and intestinal pH conditions. Lyophilized insulin-
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Table 1 – Different treatments used for in vivo
experiments

Animal group Treatment

I Insulin-free nanospheres
II Dispersion medium (PBS)
III Fasting (no treatment)
IV Non-encapsulated insulin at 1 IU/kg
394 e u r o p e a n j o u r n a l o f p h a r m a c e

loaded nanospheres (10 mg) were incubated in 10 mL
hydrochloric acid buffer at pH 1.2 (USP XXVIII), under continu-
ous magnetic stirring (100 rpm, 2 h) at 37 ◦C. Samples (1.5 mL)
at appropriate intervals were withdrawn and assayed for pro-
tein (1 mL). Fresh dissolution medium was added to maintain
a constant volume. To simulate the progress of nanospheres
moving from the stomach into the upper small intestine,
the buffer was changed after 2 h to higher pH. Nanospheres
were centrifuged (12,500 × g, 10 min) then re-suspended into
10 mL phosphate buffer at pH 6.8 (USP XXVIII), under con-
tinuous magnetic stirring (100 rpm) during 6 h. Supernatant
samples at appropriate intervals were withdrawn and assayed
for protein and fresh dissolution medium added to maintain a
constant volume. Insulin-free nanospheres served as negative
control. Experiments were performed in triplicate and cumu-
lative insulin release expressed as percentage of initial insulin
loading.

2.6. In vitro and in vivo bioassay

Nanoencapsulated and released insulin was assayed for bioac-
tivity in vitro by developing a Western blotting technique to
detect the phosphorylation status of a downstream effec-
tor of the insulin signaling pathway, Akt (Patel et al., 2001).
Bioassay was also conducted in vivo by subcutaneous injec-
tion of released insulin to diabetic rats. Released insulin was
dispersed into phosphate buffered saline (PBS, pH 7.4), cen-
trifuged and the supernatant used for in vivo and in vitro
bioassays.

Rat L6 myoblasts were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM) containing 10% fetal bovine serum,
1% glutamine and 1% antimycotic (Gibco, Invitrogen Cor-
poration) on 35 mm culture dishes. Cells were stimulated
with non-encapsulated insulin and with insulin recovered
from nanospheres for different time periods. After stim-
ulation, cells were lysed with RIPA lysis buffer (1%, w/w)
and centrifuged at 4 ◦C (Eppendorf 5417R, 20,000 × g, 15 min).
Lysates were analyzed by Bradford protein assay. Samples
were subsequently analyzed by Western blot for �-Akt (Cell
Signaling Technology, 1:1000), �-phospho-Akt (Ser473) (Cell
Signaling Technology and New England BioLabs, 1:2000), �-
actin (Santa Cruz Biotechnology, 1:500), and �-pY99 (Santa
Cruz Biotechnology, 1:2000). Actin and pY99 antibodies were
used as controls. Immunoblots were developed in a Kodak
M35A X-OMAT processor and exposed to Kodak X-OMAT Blue
XB-1 film. Western blot results were scanned as black and
white transmissive photos at 300 dpi using VistaScan soft-
ware. They were then analyzed by densitometry using Corel
Photo-Paint 11 software. The ratio of intensities of phospho-
Akt/Akt was observed from regression analysis and dilution
factor, and the insulin activity was determined. The per-
cent recovery of activity was determined from difference
between predicted and measured activity as percentage of
predicted.

Male Wistar rats weighing about 250 g were housed in
a 12–12-h light–dark cycle and constant temperature envi-

ronment of 22 ◦C. All animal procedures were reviewed and
approved by the committee for animal research according the
Portuguese Law (DL no. 197/96) and the Institutional European
Guidelines (no. 86/609).
V Non-encapsulated insulin at 4 IU/kg
VI Insulin released from nanospheres at 1 IU/kg
VII Insulin released from nanospheres at 4 IU/kg

Diabetes was induced with single intraperitoneal injection
of 50 mg/kg streptozotocin in citrate buffer at pH 4.5 damag-
ing pancreatic �-cells without reducing exocrine functions.
During the first 24 h, rats were given 5% glucose to prevent
hypoglycemia due to destruction of pancreatic �-cells. After
8–10 days of the streptozotocin treatment, rats with frequent
urination, loss of weight, and blood glucose levels higher than
250 mg/dL were selected and randomly divided into seven
groups as outlined in Table 1. Before testing, animals were
fasted overnight with free access to water. To minimize the
diurnal blood glucose fluctuations, experiments were per-
formed in the morning (Hovgaard et al., 1996).

Insulin-loaded nanospheres were suspended in 20 mL
PBS at 20 ◦C for 2 h under magnetic stirring (100 rpm) to
extract insulin, and supernatant protein quantified. Samples
were passed under vacuum through a 0.45 �m filter, cen-
trifuged (12,500 × g, 10 min), re-filtered, and the supernatant
was re-assayed for insulin content. Suspension medium and
insulin-free nanospheres were treated in the same manner
and the supernatants were used as negative controls. Fasting
effect was also assayed as negative control. Released insulin
in PBS was injected subcutaneously at doses of 1 and 4 IU/kg.
Non-encapsulated insulin was injected at the same doses and
used as positive controls. Blood samples were taken from the
tip of the tail vein and blood glucose levels measured using a
Medisense Precision Xtra glucometer (Abbot, USA).

Data are presented as means ± standard error of mean
(S.E.M.). Statistical evaluation was performed with a one-way
ANOVA followed by a Dunnett multiple comparison test. A
P < 0.05 was taken as the criterion of significance.

The areas under the reduction of blood glucose concentra-
tion versus time after injection were calculated by using the
linear trapezoidal rule.

3. Results and discussion

3.1. Nanosphere characterization

Nanospheres were prepared by emulsion dispersion/in situ
triggered gelation resulting in an unimodal size distribution
as seen in Fig. 1. Approximately 90% of the particles had a
diameter of less than 1 �m (D90) and 50% less than 564 nm
(D50). Particle size was lower than the critical size necessary
to enable GI absorption by M-cells on Peyer’s patches (Norris

et al., 1998; Saez et al., 2000). Some studies cite 5 × 103 nm
while others describe particles well under 10 × 103 nm as crit-
ical for absorption (Eldridge et al., 1990). As seen in Fig. 2,
some nanoaggregates were observed but most nanospheres
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Fig. 3 – Release behaviour of insulin alginate–dextran
ig. 1 – Particle size distribution of insulin nanospheres in
erms of number.

ppeared spherical and discrete. Additional factors contribute
o the nS intestinal uptake, including polymer characteristics
uch as hydrophobicity, bulk properties and charge (Norris et
l., 1998).

.2. Encapsulation efficiency

ncapsulation efficiency was 82.5 ± 3.3% of the initial amount
f insulin formulated. pH can have an important affect on
ncapsulation efficiency. As insulin has an isoelectric point
round 5.3 (Chien, 1996) and alginate has pK values of 3.38
nd 3.65 for M and G residues, respectively (Draget et al.,
994), electrostatic attractions at the final alginate pH 4.5 may
ccur providing high encapsulation efficiency of the oppo-
itely charged protein.

.3. In vitro release of insulin under simulated

astrointestinal conditions

nsulin behaviour through the gastrointestinal tract was sim-
lated in vitro in order to determine if the insulin is being

ig. 2 – Photograph obtained by transmission electron
icroscopy of insulin nanospheres.
nanospheres under physiological conditions. Each value
represents mean ± S.D. (n = 3).

released prematurely in the stomach or if there is insulin to
be absorbed in the intestine. Fig. 3 depicts release profiles of
insulin from nanospheres under simulated gastrointestinal
conditions. At low gastric pH, insulin was fully retained likely
due to alginate polymer forming a compact acid-gel struc-
ture reducing permeability and potentially stabilizing insulin
from acid attack. Up to 89% of the insulin was released almost
immediately after changing the medium to near neutral pH,
and full release was observed after 1 h. The extent of release
in vivo was not determined but it appears that the gel swells,
potentially releasing some of the insulin, as the in vitro assay
was optimized to promote release, in contrast to in vivo con-
ditions. Insulin then may be released into the GI tract, and
some may be retained by nanoparticles. pH-dependent insulin
release as well as high alginate porosity has a significant influ-
ence on the insulin release profile.

Drug release from alginate matrices may be modulated by a
dissolution–erosion process. At low pH, alginates contract due
to alginic acid precipitation as previously described (Almeida
and Almeida, 2004), resulting in a compact and impermeable
polymer matrix, retaining insulin, but potentially excluding
proteases. Ca2+ is released from the acidic gel, potentially
destabilizing the gel at subsequent neutral pH. The alginate
matrix then swells, promoting drug release. Swelling is fur-
ther enhanced by the presence of phosphate ion PO4

3− and by
counter-ions such as Na+ (Ramdas et al., 1999). As well, at neu-
tral pH, both alginate and insulin are negatively charged and
electrostatic repulsion may promote insulin release. Insulin is
rapidly released from nanospheres once in neutral conditions
determined through in vitro conditions, optimized to promote
release. The extension to insulin release in vivo is not clear, but
it appears that the gel swells, potentially releasing some of the
insulin. However, retained insulin would then be absorbed in
a nanoparticulate form.

3.4. In vitro and in vivo bioassay
An in vitro bioassay was developed for detection of pro-
tein kinase B (Akt or PKB), activated by phosphorylation in
response to insulin binding to cell surface receptors. The assay
utilized rat L6 myoblasts stimulated with insulin and ana-
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Table 2 – Percentage recovered activity of alginate
nanospheres

Sample Formulation

Ratio of intensities of phosphoAkt/Akta 0.299
Activity (nM)b 1.25
Predicted activity (nmol/mg) 2.28
Recovery activity (%) 55

a Ratio of intensities of phosphoAkt/Akt = 0.0346 e0.0346concentration

plus dilution factor.

Fig. 5 – Area under curve demonstrating the hypoglycaemic
properties of insulin released from nanospheres: untreated
(WT), suspension medium (phosphate buffered saline,
PBS), free-insulin nanospheres, non-encapsulated insulin
at 1 and 4 IU/kg (NEI) and finally, insulin encapsulated and
then released from nanospheres at 1 and 4 IU/kg (EI). Each
data point represents the mea ± S.E.M. from n=6.
*Significant difference from WT: P < 0.001 and **significant
b Intensities of 0.1 mg stimulation, relative to 100 nM non-
encapsulated insulin.

lyzed by Western immunoblot detecting Akt phosphorylation
conducted on cell lysates. Time course and concentration
studies determined a suitable stimulation of 10 min and
100 nM insulin for quantitation. Akt phosphorylation was not
observed prior to insulin stimulation, and slight stimulation
detected following 1 and 2 min post-stimulation. Standard
curves were linear and increased with increasing concentra-
tions of insulin, with a minimum detection limit of 2% of the
100 nM insulin signal. This linear relationship suggests that
the assay is a suitable method by which insulin bioactivity can
be established. Subsequent assays on insulin released from
nanospheres can be quantified relative to 100 nM insulin stim-
ulation. Activity levels with stimulations equivalent to 0.1 mg
of nanospheres are summarized in Table 2. Bioactivity was
55% of the theoretical value, showing an important fraction of
the released insulin was biologically active.

An in vivo bioassay was conducted by subcutaneously
injecting insulin extracted from nanospheres into diabetic
rats. Results in Fig. 4 indicate an equivalent hypoglycemic

effect with significant glycemia decrease for all insulin solu-
tions. The glycemic profiles indicate that all the insulin forms
display similar biological and biopharmaceutical behaviour

Fig. 4 – Blood glucose levels of SZT-induced diabetic rats
after injection of tested formulations: (�) free-insulin
nanospheres, (�) suspension medium (phosphate buffered
saline), (©) untreated, (�) non-encapsulated insulin at
1 IU/kg, (�) non-encapsulated insulin at 4 IU/kg, (�) insulin
released from nanospheres at 1 IU/kg, and finally (�)
insulin released from nanospheres at 4 IU/kg. Each data
point represents the mean ± S.E.M., from n = 6.
difference from non-encapsulated insulin: P < 0.0535.

either in terms of maximal activity or pharmacological time
course. The hypoglycemic action of both insulin released
from nanospheres and insulin control was rapid with onset
time of 0.5–1 h reaching maximal activity within 2–4 h. The
time of glucose depression lasted for 8 h. Basal blood glu-
cose levels decreased 76 and 89% within 4 h for insulin
released from nanospheres at 1 and 4 IU/kg, respectively. Nei-
ther blank nanospheres in PBS or PBS alone showed any
biological effect. As illustrated in Fig. 5, all insulin formu-
lations (released and controls) significantly decreased blood
glucose levels with statistical differences compared to the
non-treated group (P < 0.001). Area under the blood glucose
curve, decreased with an increase of insulin dose as shown
in Fig. 5. In addition, insulin released from nanospheres
at 4 IU/kg demonstrated statistical differences in compari-
son to non-encapsulated insulin (P < 0.054) possibly due to
the filtration step. Before dosing, all formulations were fil-
tered through a 0.45 �m membrane. Particle sizes varied
from 267 nm to 2.76 �m which means that some particles
may have been collected with released insulin and injected
simultaneously. It is also possible that insulin is strongly asso-
ciated with alginate and consequently is not immediately
released from the alginate matrix. These two reasons may
explain the lasting hypoglycemic effect of insulin released
at 4 IU/kg.

It was previously reported that emulsion-based encap-
sulation methods may promote protein unfolding due to
mechanical shear stress and the oil-water interface (Putney,
1998). As well, acid pH used to solubilize calcium salt during
particle manufacture combined with agitation, can also facili-
tate dissociation of insulin tetramers/dimers into monomers,
and to further cause the monomer to adopt a partially
unfolded intermediate conformation (Ma et al., 2002). None

of these factors led to protein secondary structure modifica-
tion, as previously demonstrated by circular dichroism and by
HPLC-RP/HLPC-mass (Reis et al., 2006b). Several factors may
contribute to this stabilization and explain previous results.
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hen emulsion-dispersions were prepared, the total interfa-
ial area increased as the droplet size decreased. Surfactants
ay provide protection from exposure to the oil–water inter-

ace mainly due to two reasons. One is due to a steric effect
hich blocks aggregation-prone hydrophobic sites on the
rotein surface (Bam et al., 1998) and the other due to a
ompetitive effect with the protein for space at the surface,
hereby avoiding part of the protein from reaching the inter-
ace, which would expose insulin to the oil-water interface and
ubsequent adsorption and structural damage. Additionally,
he probability of dissociation of insulin tetramers/dimers into

onomers was avoided since greatly diluted acid suspensions
ombined with agitation were used during encapsulation to
rigger gelation of the alginate polymer. Finally, this emulsi-
cation methodology was performed under mild conditions
aintaining insulin biological activity.
Presently, studies are underway on the gastrointestinal

ptake and activity of orally dosed insulin nanospheres.

. Conclusions

anospheres obtained by emulsion dispersion/in situ trig-
ered gelation of alginate polymer, may have potential for
n oral dosage system for insulin and potentially other
rotein-based drugs. Insulin-nanospheres demonstrated an

ncorporation efficiency of 80% and unimodal size distribu-
ion. A new in vitro assay to measure the biological activity
f insulin was described and subcutaneous administration of
eleased insulin to diabetic rats demonstrated that bioactiv-
ty was largely retained in the peptide-loaded nanospheres.
anospheres were able to protect and preserve protein stabil-

ty during particle formulation, recovery and insulin release in
BS.
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Damgé, C., Maincent, P., Ubrich, N., 2007. Oral delivery of insulin
associated to polymeric nanoparticles in diabetic rats. J.
Control. Rel. 117, 163–170.

De Rosa, G., Iommelli, R., La Rotonda, M.I., Miro, A., Quaglia, F.,
2000. Influence of the co-encapsulation of different non-ionic
surfactants on the properties of PLGA insulin-loaded
microspheres. J. Control. Rel. 69, 283–295.
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