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This work deals with multicomponent complex formation of vinpocetine (VP) with�-cyclodextrin (�CD), sulfobutyl ether�-cyclodextrin
SBE�CD) and tartaric acid (TA), in the presence or absence of water-soluble polymers, in aqueous solution. Complexation was
y phase-solubility and proton nuclear magnetic resonance (1H NMR) studies. TA demonstrated a synergistic effect on VP solubility, a

he complexation efficiency of�CD and SBE�CD. Additionally, water-soluble polymers increased even more the complexation effi
f the CDs that was reflected by a 2.1–2.5 increase onKC values for VP–CD–TA–polymer multicomponent complexes. SBE�CD was more
ffective in VP solubilization, asKC values of VP–SBE�CD–TA multicomponent complexes were notably higher than in corresponding�CD
omplexes. The large chemical shift displacements from protons located in the interior of the hydrophobic CD cavities (i.e., H-3
oupled with significant chemical shift displacements of VP aromatic protons suggested that this moiety was included in the cav
CD and SBE�CD. Two-dimensional rotating frame nuclear Overhauser effect spectroscopy (ROESY) experiments were carried o

o obtain information about the multicomponent complex geometry in solution. Inspection of ROESY spectra allowed the establi
patial proximities between all aromatic protons of VP and the internal protons of the CDs, confirming that the aromatic moiety
ncluded in CD cavities being deeply inserted in SBE�CD multicomponent complexes, since additional interactions with the sulfobuty
hains were evidenced.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Cyclodextrins (CDs) are naturally available water-
oluble cyclic oligosaccharides composed of�-1,4-linkedd-
lucopyranose units. The most commonly used forms of these
ing-shaped molecules are�-, �-, and�-CDs formed by six,
even and eight glucose units, respectively (Szejtli, 1988).
Ds are toroidal molecules with a truncated cone structure
here the secondary hydroxyl groups are located on the wider
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side of the ring, while the primary hydroxyl groups are p
tioned on the opposite, narrower side of the torus. The
groups carrying the H-1, H-2 and H-4 protons are loc
on the exterior of the molecule and the hydroxyl groups
oriented to the cone exterior, making the external face
CDs hydrophilic. The interior of the torus is lined by t
rings of –CH groups (H-3 and H-5) and by a ring of gly
sidic “ether oxygens” (O-4), with H-6 located near the ca
(Uekama and Otagiri, 1987). This low polarity central voi
is able to encapsulate either partially or entirely a grea
riety of guest molecules of suitable size and shape resu
in a stable association without formation of covalent bo
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Fig. 1. Structure of (a) SBE�CD and (b)�CD.

being the resultant entity known as host–guest complex or
inclusion complex (Saenger, 1980). When compared to host
and guest separately, these inclusion complexes often display
very different properties such as altered solubility, reduced
volatitility, reduced or enhanced stability, modified chemical
reactivity and altered bioavailability.

Among the above mentioned CDs,�CD, with an inner
cavity diameter of 6.0–6.5̊A and a depth of 7.9̊A, is the
most widely used. Its internal cavity has an excellent abil-
ity to incorporate hydrophobic aromatic guests in aqueous
solution, provided that the sizes of the host internal cavity
and the entering portion of a guest molecule are suitable
for complexation (Saenger, 1980). However, its anomalous
low aqueous solubility is a serious handicap in its wider
utilization (Szejtli, 1988). To overcome those difficulties,
chemical modifications of the CD torus by substitution at
the hydroxyl groups, at positions 2, 3 and 6 of the�-d-
glucose have been made to enhance and expand the func
tionalities of CDs, leading to derivatives that provide better
solubility. One of the most prominent groups of modified
CDs, as far as pharmaceutical applications are concerned, are
the sulfobutyl-substituted CDs (Fig. 1), among which is the
(sulfobutylether)7M-�-cyclodextrin (SBE�CD). SBE�CD is
a polyanionic CD derivative, with an average degree of sub-
stitution of seven and a much greater solubility in water than
t
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CD can be dramatically improved by addition of a suit-
able third component such as�-hydroxy-acids, and water-
soluble polymers followed by heating the complexation me-
dia (Loftsson et al., 1999; Chiesi et al., 1999).

CD inclusion complexes formed by molecular encapsu-
lation of guest compounds in the cavities of macrocyclic
hosts can yield non-covalent multicomponent associations
with suitable counter ions of guest molecules. Such multi-
component associations are of current interest in the field of
supramolecular systems and are of scientific interest and tech-
nological relevance for their physical, chemical and biologi-
cal properties (Selva et al., 1998). In the field of pharmaceu-
tical preparations, multicomponent associations of drug–CD
inclusion complexes can dramatically enhance the solubility
in water of sparingly soluble drugs (Chiesi et al., 1999).

Previously, we have reported the preparation and physico-
chemical characterization of vinpocetine (VP) multicom-
ponent complexes with�CD, SBE�CD, tartaric acid (TA)
and the water-soluble polymers hydroxypropylmethylcellu-
lose (HPMC) and polyvinylpyrrolidone K30 (PVP), in solid-
state, by scanning electron microscopy, differential scanning
calorimetry, X-ray diffractometry and Fourier-transform in-
frared spectroscopy (Ribeiro et al., 2003a,b). However, these
techniques can hardly suggest if guest molecules form a com-
plex or not and cannot provide a clear answer about the type
o uc-
t
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he parent CD (�CD). The inclusion ability of SBE�CD is
enerally greater than that of�CD due to the hydrophob
utyl side arms that extend the hydrophobic cavity of the
Zia et al., 2001).

Frequently, the complexation efficiency of CDs is ra
ow and consequently a significant amount of CDs is
uently needed to solubilize small amounts of a wa

nsoluble drug. However, drug solubility in the presenc
-

f complex formed (inclusion or adsorption) or the str
ural conformation of the molecules involved (Djedaini and
erly, 1991; Veiga et al., 2001). This information can onl
e provided by high resolution nuclear magnetic reson
pectroscopy (NMR) since this technique allows a clear
inction between inclusion and other possible externa
eraction processes by observing guest and host mole
imultaneously and is capable to differentiate the part o
uest molecule involved in the interaction with the CD ca
Fernandes et al., 2003). Monitoring changes in the1H chem-
cal shifts as the composition of theses complexes is v
an elucidate the stoichiometry of inclusion complexes
he dynamics of their formation. Thus, chemical shift chan
n the1H spectra have been used to monitor the complex

ation process, since if a guest is incorporated into the
avity, the hydrogen atoms located in the interior of the
ty (H-3 and H-5) will be considerably shielded by the gu

olecule, causing a significant upfield shift, whereas the
rogen atoms on the outer surface (H-1, H-2, H-4 and
ill either be unaffected or experience a marginal shift1H
MR can thus provide information about structure and
rogen bonding in CDs; whereas, more detailed informa
bout their conformations is available from a variety of
imensional NMR experiments, including NOESY and ro

ng frame nuclear Overhauser effect spectroscopy (ROE
Szejtli, 1988; Schneider et al., 1998).

In this work, taking into account that the molecular str
ure of VP is characterized by the presence of an arom
oiety that is potentially able to interact with the CD c

ty (Fig. 2), we have employed phase-solubility studies
previous screening of the complex formation between
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Fig. 2. Structure of VP.

�CD, SBE�CD, TA, PVP and HPMC in order to evaluate the
solubilizing power of CDs, in association with an hydroxy-
acid and water-soluble polymers, towards VP, and to deter-
mine the apparent stability constants and stoichiometry of
the complexes. A series of1H NMR experiments were then
undertaken to prove the real inclusion of VP in VP–CD mul-
ticomponent complexes, to confirm the stoichiometry of the
putative inclusion complexes and a reliable structure of those.

2. Materials and methods

2.1. Materials

Hydroxypropylmethylcellulose 4000 cps (HPMC),
polyvinylpyrrolidone K30 (PVP), and tartaric acid (TA)
were purchased from Sigma Chemical Co. (St. Louis, USA).
Vinpocetine (VP) was purchased from Covex (Madrid,
Spain).�-Cyclodextrin (�CD; Kleptose®; MW 1135) and
(sulfobutylether)7M-�-cyclodextrin (SBE�CD; CaptisolTM;
TDS 6.8; MW 2160) were kindly donated by Roquette
(Lestrem, France) and Cydex (Kansas City, USA). The latter
was dried at 40◦C for 12 h before use. Deuterium oxide
(D2O; 99.90%) was purchased from SDS (Peypin, France).
All other chemicals were of analytical reagent grade, and
d
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polymer concentrations and no significant degradation of VP
in acidic medium was found after autoclavation at 120◦C
for 20 min. All suspensions were filtered through a 0.45-
�m membrane filter (Millipore) and VP concentrations an-
alyzed spectrophotometrically (UV-1603, Shimadzu, Japan)
at 316 nm. Each experiment was repeated at least three times
and the results reported are the mean values. The apparent sta-
bility constants (KC), assuming that a 1:1 (VP:CD) complex
was initially formed, were calculated from the straight line
of the phase-solubility diagrams according to the equation of
Higuchi and Connors.

2.3. 1H NMR studies

One-dimensional1H NMR spectra were recorded at 25◦C
on a Varian 500 MHz spectrometer using a 5 mm NMR probe
and a simple pulse-acquire sequence with solvent presatura-
tion. Acquisition parameters consisted of 16K points cover-
ing a sweep width of 5300 Hz, a pulse width of 19�s and a
total repetition time of 13 s. Digital zero filling to 64K and
a 0.5 Hz exponential were applied before Fourier transfor-
mation. The resonance at 4.700 ppm due to residual solvent
(HOD) was used as the internal reference. Samples were pre-
pared by dissolving an appropriate amount of the solid com-
plexes in D2O to achieve a VP concentration of 6.8 mM, di-
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eionized water was used throughout the study.

.2. Phase-solubility studies

Solubility studies were carried out in TA 16.6 mM s
utions at room temperature (22± 1◦C) according to th

ethod of Higuchi and Connors (Higuchi and Connors
965). Excess amounts of VP were weighted into glass fl

o which were added 10 ml of 16.6 mM solutions contain
ncreasing amounts of CDs (0.001–0.025 M) with or w
ut a fixed polymer concentration of 0.10% (w/v) for HPM
nd 0.25% (w/v) for PVP. For systems without polym
lass containers were sealed and mechanically stirred
eaching equilibrium (about 72 h). In the case of systems
olymers, glass containers were sealed and heated in an
lave at 120◦C for 20 min and then allowed to equilibrate
2 h. The polymer and TA concentrations used were sel
n the basis of preliminary studies carried out between
nd polymers or VP and TA, since no further improvem

n the solubility values of VP was achieved by increas
-

ectly on 5-mm RMN tubes (0.6 ml total volume). The so
ulticomponent complexes were prepared by the lyophi

ion method as previously described (Ribeiro et al., 2003a).
eference samples containing pure VP and CDs at 6.8
ere also prepared in the same acidic environment a
omplexes (TA 16.6 mM).1H NMR chemical shifts (�δ)
aused upon complexation were measured to confirm th
lusion of VP in acidic medium and calculated accordin
he formula:�δ = δ (complex)− � (free).

The continuous variation method (Job’s plot) was ado
o assess the stoichiometry of the complexes. TA solutio
6.6 mM were prepared, with or without 0.1% HPMC (w
r 0.25% (w/v) in D2O, and subsequently used to obt
.8 mM stock solutions of VP and both CDs. A series of s

ions were prepared by mixing variable volumes of both s
olutions in varying proportions so that a complete rang
ole ratios was sampled (0 > [VP]/[VP] + [CD] > 1), keep

otal concentration constant ([VP] + [CD] = 6.8 mM). Che
cal shift differences (�δ) × [VP] (or [�CD]) were plotted a

function of mole ratio (r) (Mitra et al., 1998).

.4. COSY experiments

Standard absorptive two-dimensional1H–1H chemica
hift correlation spectra (COSY) were acquired in the s
pectrometer to allow the chemical shift assignment o
n TA solution. Each spectrum consisted of a matrix of
F2) by 0.5K (F1) covering a sweep width of 5000 Hz. Bef
ourier transformation, the matrix was zero filled to 4K
K and standard sinebell apodization functions were ap

n both dimensions.
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2.5. ROESY experiments

The average extent of penetration and the direction
of inclusion in the host cavity were determined by two-
dimensional phase sensitive nuclear Overhauser effect spec-
troscopy by the detection of intermolecular nuclear Over-
hauser effects (NOEs) between VP and CDs. ROESY spec-
tra were acquired in the phase sensitive mode using the same
spectrometer. Each spectrum consisted of a matrix of 2K (F2)
by 1K (F1) covering a sweep width of 5000 Hz. Spectra were
obtained with the samples prepared from lyophilized multi-
component complexes used for1H NMR studies, using spin-
lock mixing periods of 500 ms. Before Fourier transforma-
tion, the matrix was zero filled to 4K by 4K and sinebell
apodization functions were applied in both dimensions to
enhance spectral resolution. The ROESY spectra were nor-
malized and plotted with similar intensity contour levels for
all systems studied.

3. Results and discussion

3.1. Phase-solubility studies

Since VP is a poorly water-soluble base-type drug, mul-
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� -

solubility diagrams in the CD concentration range studied
(Higuchi and Connors, 1965) and indicating the formation
of 1:1 stoichiometry VP–CD complexes in 16.6 mM TA so-
lution, in the presence or absence of HPMC and PVP. The
increment of VP solubility seems to be related to the inclu-
sion ability of the CD molecules in TA solution. As the slopes
of these solubility diagrams were all less than 1, it was pos-
sible to calculate the apparent stability constants (KC) of the
multicomponent complexes. The estimatedKC and VP sol-
ubility values achieved in the multicomponent systems are
collected inTable 1. As it can be observed, the addition of
the water-soluble polymers to the complexation media re-
sulted in an increase on the diagram slopes that was reflected
on enhanced VP solubility. Thus, VP solubility in the pres-
ence of CDs, TA and polymers resulted in a synergistic ef-
fect and in an increase on CD complexation efficiency. The
binding potential and the solubilization effect of SBE�CD
were higher than that of�CD. This effect may be due to
the butyl micellar arms of SBE�CD that extend the depth of
the hydrophobic cavity of the CD (Zia et al., 2001). There-
fore,KC values of VP–SBE�CD–TA multicomponent com-
plexes were greater than those obtained with VP–�CD–TA
multicomponent complexes, since the complexation with the
SBE�CD may involve the CD cavity and the hydrophobic
sulfobutyl ether substituents.
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F nction�C nts
t

icomponent complexation with TA was attempted to in
ify solubilization by CDs. Phase-solubility studies of VP
ulticomponent systems with CDs and TA, with and w
ut polymers, were performed to obtain information ab

he drug solubilization mechanism. The phase-solubility
les of VP in 16.6 mM TA–CD solutions, in the presence
bsence of HPMC 0.10% (w/v) and PVP 0.25% (w/v)
hown inFig. 3.

VP solubility increased linearly as a function of b
CD and SBE�CD concentrations, giving AL-type phase

ig. 3. Phase-solubility profiles of VP, in 16.6 mM TA solution, as a fu
he mean of three determinations.
Similar solubility results were previously reported by
Ribeiro et al., 2003a,b) concerning the solubility of V
erely in the presence of CDs and water-soluble polym
here a VP synergistic solubility effect was also observe

he presence both PVP and HPMC, with a superior solub
ion and complexation effect being attributed to SBE�CD.
he major difference between these two studies is the
nce of TA. TA is an�-hydroxy-acid commonly used as c
omplexing agent with CDs to promote complex forma
f basic type drugs (Redenti et al., 2000). The mechanism

ofD and SBE�CD, with or without PVP and HPMC. Each point represe
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Table 1
Values of apparent stability constant (KC ± standard deviation) and drug solubility in VP complexes (n= 3)

S1
a S2

b S2/S0
c D2/D1

d KC (M−1)

VP–�CDe 0.51× 10−2 1.17× 10−2 2.3 – 75± 3
VP–�CD–PVPe 0.89× 10−2 2.24× 10−2 4.4 2.1 142± 4
VP–�CD–HPMCe 0.72× 10−2 3.23× 10−2 6.3 3.5 242± 7
VP–�CD–TA 5.80 7.59 1490 183.1 15 ± 3
VP–�CD–TA–PVP 6.06 9.44 1850 37± 4
VP–�CD–TA–HPMC 5.96 8.41 1650 343.4 23 ± 4
VP–SBE�CDe 0.51× 10−2 0.14 27.5 – 340± 8
VP–SBE�CD–PVPe 0.89× 10−2 0.21 41.2 1.5 490± 12
VP–SBE�CD–HPMCe 0.72× 10−2 0.16 31.4 1.4 390± 8
VP–SBE�CD–TA 5.80 10.62 2080 109.0 73 ± 5
VP–SBE�CD–TA–PVP 6.06 12.46 2440 144.3 155± 12
VP–SBE�CD–TA–HPMC 5.96 11.83 2320 136.0 129± 12

a VP solubility (mg/ml) in water, PVP 0.25% (w/v), HPMC 0.10% (w/v), TA 16.6 mM solution or in their combinations.
b VP solubility (mg/ml) in CD solutions (15 mM�CD or 60 mM SBE�CD in the absence of TA 16.6 mM or 25 mM for either�CD or SBE�CD in the

presence of TA 16.6 mM) with and without PVP 0.25% (w/v) or HPMC 0.10% (w/v).
c Ratio between VP solubility achieved in the complexes and VP intrinsic solubility in water (S0).
d D2/D1 is the ratio between the slopes of the phase-solubility diagrams achieved in VP–CD–TA multicomponent systems and in the corresponding binary

ones.
e Ribeiro et al. (2003a).

by which TA seems to enhance the solubilization and com-
plexation of these drugs has been related to its ability to in-
teract with CDs by forming hydrogen bonds with their nu-
merous hydroxyl groups (Fenyvesi et al., 1999). It is evident
from all examined systems that multicomponent complexes
formed between VP, CDs and TA were clearly more effec-
tive in enhancing VP solubility than the ternary complexes
VP–CD–polymers. In fact, VP solubilization efficiency was
improved nearly 4–41 times in VP–CD–polymers complexes
and 1650–2440 times in VP–CD–TA–polymer complexes, in
comparison with VP intrinsic solubility (S0 ≈ 5�g/ml). How-
ever, in all cases, a decrease in drug–CD interaction was also
experimented, as indicated by the decrease inKC values (see
Table 1). Such an effect was explained on the basis of the
higher initial drug solubility due to an increased ionization
of VP in the presence of TA with consequent less affinity
to the apolar cavity (Mura et al., 2001). Although CD com-
plexes of un-ionized drugs are usually of stronger stability
than those of their anionic counterparts, the achieved total
solubility (free ionized drug + un-ionized drug) usually in-
creases (Redenti et al., 2000). Therefore, when TA was added
to the complexation media, a greater overall VP solubility was
achieved by using a combined approach of CD complexation
and drug ionization. Indeed, CDs and TA had a synergistic
effect on VP solubility, since a greater extent on the solubi-
l and
T even
m PVP
o f the
p own
t CDs
( e
c heir
r d
h

increased 2.1–2.5 times on for VP–CD–TA–polymer multi-
component complexes, in comparison with VP–CD–TA com-
plexes. Thus, even in acidic medium, the water-soluble poly-
mers had an important role in the improvement of complexa-
tion efficiency of CDs towards VP, allowing better solubility
results to be achieved with a reduction in the amount of CD
required to dissolve VP.

3.2. 1H NMR studies

As the increased solubility of a drug in the presence of
CDs observed in phase-solubility diagrams cannot be con-
sidered as a definitive proof for the formation of inclusion
complexes, we performed NMR studies. NMR techniques
have been widely used to investigate supramolecular assem-
blies in solution, their stoichiometries and structure of the
resulting complexes, especially the orientation of the guest
molecule in the CD cavity (Djedaini and Perly, 1991). It is
well-known that the chemical shift (δ) of a given nucleus
depends on its shielding constant and in turn is sensitive to
medium effects. Therefore, changes in� (ppm) values of the
host and guest nuclei can provide a measure of the degree
of complex formation since significant changes in the mi-
croenvironment are known to occur between the free and
bound states (Wilson and Verral, 1998). As the chemical
e tion,
t (
o ts).
N true
i ens
o ity,
a nces
d uest.
T n pro-
c lded
ization effect, than that expected by the addition of CD
A separately, was displayed when used together. But
ore surprising was the observed effect of HPMC and
n VP–CD–TA systems. The simultaneous presence o
olymers and TA on the complexation media, both kn

o enhance separately the complexation efficiency of
Loftsson et al., 1999; Redenti et al., 2000), had a positiv
onsequence on VP solubility and CD complexation. T
elative solubilizing efficiencies (D2/D1) were 109–343-fol
igher than that of binary complexes VP–CD, andKC values
nvironment of some protons changes upon complexa
here is a consequent variation in the chemical shifts�δ)
f 1H NMR resonances (shielding or deshielding effec
MR spectroscopy provides the most direct evidence for

nclusion complex formation since H-3 and H-5 hydrog
f the host, that point toward the interior of the CD cav
re remarkably shielded, being the shift of their resona
ue to magnetic anisotropic effects exerted by the g
he guest resonances are also affected by the inclusio
ess, being the chemical shift of the anisotropically shie
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Table 2
1H Chemical shifts corresponding to�CD in free and complexed state

�CD protons VP–�CD–TA VP–�CD–TA–PVP VP–�CD–TA–HPMC

δ(free) δ(complex) �δa δ(complex) �δa δ(complex) �δa

H-1 4.999 4.995 −0.004 4.995 −0.004 4.990 −0.009
H-2 3.578 3.586 +0.008 3.588 +0.010 3.582 +0.004
H-3 3.892 3.844 −0.048 3.839 −0.053 3.835 −0.057
H-4 3.513 3.505 −0.008 3.505 −0.008 3.500 −0.013
H-5 3.782 3.774 −0.008 3.773 −0.009 3.768 −0.014
H-6 3.806 3.806 0.000 3.807 +0.001 3.809 +0.003

a �δ = δ(complex)− δ(free).

atoms modified in the NMR spectra (Ganza-Gonzalez et al.,
1994).

3.2.1. VP–�CD–TA multicomponent complexes
Due to fast exchange, separate sets of signals belonging

to the free and complexed forms were not detected in the
1H NMR spectra. The insertion of VP into�CD cavity was
clearly demonstrated by changes in the1H chemical shift
values of VP and�CD protons in all VP–�CD–TA multi-
component complexes.Table 2reports the chemical shift of
�CD protons in the native and complexed forms andFig. 4
the1H spectra of VP–�CD–TA multicomponent complexes.
In the presence of VP, both H-3 and H-5 inner protons of

�CD undergo a consistent upfield shift, which demonstrated
a clear involvement of these hydrogen atoms in host–guest in-
teractions. As this upfield displacement has been essentially
attributed to the anisotropic effect caused by the inclusion
of groups rich in�-electrons of the guest molecules into the
hydrophobic cavity of�CD, this observable fact was taken
as an evidence of complex formation (Djedaini and Perly,
1991), giving strong indications of the insertion of the aro-
matic ring of VP into�CD cavity. Furthermore, because of
higher shielding effect on H-3 proton (−0.048 to−0.0057)
with respect to H-5 (−0.008 to−0.014) it could be hypothe-
sized that VP penetrates into the�CD cavity from the more
accessible wider side (secondary hydroxyl rim). Since all the

F
(

ig. 4. Expansions from the1H NMR spectra of VP (I) and�CD (II), and from t
V) complexes.
he VP–�CD–TA (III), VP–�CD–TA–PVP (IV) and VP–�CD–TA–HPMC
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exterior protons of�CD were more or less influenced, we
cannot exclude the existence of interactions with external
surface of the macrocycle that could be ascribed to hydrogen
bond formation with the hydroxyl groups at the edge of the
CD cavity with the guest molecule and the co-complexing
agents, namely TA and polymers.

Protons of VP were assigned by analysis of one-
dimensional1H NMR spectra and two-dimensional chemical
shift correlation spectra (COSY). In this process, the assign-
ment of all individual aromatic protons of VP became diffi-
cult due to the superposition of the signals of H-A1 and H-A2.
Table 3summarizes all proton chemical shifts of VP in the
free and complexed forms.

Changes in the chemical shifts of the guest (VP) were
also monitored. The aromatic protons of the VP (δ: 7.1–7.6),
H-A1/A2 and H-A4 (−0.004 to−0.024), were shifted up-
field and the H-A3 proton was shifted downfield, with the
exception on VP–�CD–TA–PVP, where all the aromatic pro-
tons were shifted upfield. The extent of the displacements
depended on the system studied, with a general tendency
for higher�δ in the multicomponent complexes with PVP.
The upfield shifts indicate that these protons are close to a
host atom which is rich in�-electrons, in this case asso-
ciated with oxygen atoms, and also reflects conformational
changes produced by inclusion. On the other hand, the down-
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eld shift observed is probably due changes in local pol
r to deshielding effects caused by van der Waals inte

ions between the drug and carbohydrate chains (Djedaini et
l., 1990; Ganza-Gonzalez et al., 1994; Uccello-Barret
l., 1993). These findings suggest that the aromatic moie
P is located inside the CD cavity. Moreover, the proton
al corresponding to TA showed an appreciable upfield

ndicative of its involvement in interactions with the�CD
nd VP molecules and, therefore, a possible role in m
omponent complex formation. From1H NMR data, we ca
ssume that TA is strictly involved in the molecular assem

n particular, TA seems to be strictly implicated in the co
lexation process, by establishing electrostatic interac
ith protonated atoms of VP that results in the formatio
n ion-pair, and by the formation of hydrogen bonds w

he hydroxy groups of�CD. These results are in agreem
ith previously reported1H NMR studies for multicompo
ent complexes (Faucci et al., 2000; Fenyvesi et al., 19
elva et al., 1998). Additionally we did also observe a gene

endency for higher chemical shift displacements of the
ons of both VP and�CD molecules in the multicompone
omplexes with PVP and HPMC. This effect may be cred
o the ability of polymers in establishing different interacti
hydrophobic bonds, van der Waals dispersion forces o
rogen bonds) with the outer surface of the CD molecules
ith drug–CD complexes forming drug–CD–polymer agg
ates (Hládon and Cwiternia, 1994; Valero et al., 2003) and
onsequently reflected the important role in the stabiliza
f VP–CD–TA multicomponent complexes.

The continuous variation method was then adopte
erify the stoichiometry of VP–�CD–TA complexes. Th
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Fig. 5. Continuous variation plots for VP and�CD protons in VP–�CD–TA (A), VP–�CD–TA–PVP (B) and VP–�CD–TA–HPMC (C) multicomponent
complexes [protons of VP: (�) N/N′, (�) O and (�) U; protons of�CD: (�) H-3 and (�) H-5].

1H chemical shift (δ) was measured at different ratios of
drug/CD, while keeping the total [VP] + [CD] constant. The
calculated quantities�δ × [VP] (or �δ × [CD]) were propor-
tional to the concentration of the inclusion complex and could
thus be plotted against “r”. The continuous variation plots
(Fig. 5) for some of the most markedly affected protons of VP
and�CD confirmed the 1:1 (VP–�CD) stoichiometry, since
the maximum was atr = 0.5. These results are in complete
accordance with the above reported phase-solubility studies.

3.2.2. VP–SBE�CD–TA multicomponent complexes
The complexity of the1H NMR spectra of SBE�CD pre-

vents an accurate detection of the shifts induced by the com-
plexation process. Actually, the1H NMR spectra of this CD
are relatively uninformative, since there is an extensive over-
lapping of all protons betweenδ 3.5 and 4.1 (Luna et al.,
1997). For this reason, the information about the existence
of an interaction in solution was solely derived from the ob-
servation VP proton shifts in VP–SBE�CD–TA complexes
(Fig. 6). In these complexes, we observed a pronounced
chemical shift displacement for the aromatic protons of VP
(−0.019 to−0.0047). In the VP–SBE�CD–TA complex, the
H-A1/H-A2 and H-A3 protons experienced upfield shifts that
were inferred to the shielding effect of the hydrophobic cavity
of SBE�CD, while a downfield shift was observed for the H-
A fted
u -
p s in
t d dis-
p
c f VP
m -
fi ates
t he
c
d
n l shift
d orted

Fig. 6. Expansions from the1H NMR spectra of VP (I) and VP–SBE�CD–
TA (II), VP–SBE�CD–TA–PVP (III) and VP–SBE�CD–TA–HPMC (IV)
multicomponent complexes.
4 proton. In contrast, all aromatic protons of VP were shi
pfield in VP–SBE�CD–TA–polymer multicomponent com
lexes. This slight variation may reflect some difference

he structures of these complexes. Hence, the downfiel
lacement of H-A4 proton showed by the VP–SBE�CD–TA
omplex was attributed to a structure rearrangement o
olecule upon complexation (Veiga et al., 2001) and the up

eld shift for the resonances of the aromatic protons indic
hat the aromatic portion of VP is mainly involved in t
omplex formation with SBE�CD (Oh et al., 1998). Another
isparity observed between VP–SBE�CD–TA multicompo-
ent complexes respects the magnitude of the chemica
isplacements, since in general higher values were rep
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for the VP–SBE�CD–TA–polymer complexes. Taking into
account that the extent of these displacements is dependent
on the relative strength of the interactions between these aro-
matic protons and the hydrogen atoms of the�CD cavity, we
can assume that a deeper insertion of the aromatic moiety
of VP was produced by the presence of the polymers. These
observations are in total agreement with the reported results
of the phase-solubility studies, since higherKC values were
obtained for VP–SBE�CD–TA–polymer complexes than for
the VP–SBE�CD–TA complex.

In what concerns guest resonances, although there is a gen-
eral tendency for chemical shift displacements, upfield for the
aromatic protons and downfield for the other ones, there is
no simple explanation in terms of inclusion or non-inclusion.
The chemical shift displacement of VP protons must be re-
garded as a result of a combination of interactions with the
macrocycle and time-averaged conformational changes of the
included molecules (Redondo et al., 1999). Nevertheless, the
downfield shift of the resonances of the alkyl protons was
ascribed to the interaction with the hydrophilic external part
of the CD molecule (Uccello-Barretta et al., 1993) and to
conformational changes produced by the inclusion (Redenti
et al., 1999).

The same feature, as in VP–�CD–TA multicomponent
complexes, was observed with the protons of TA, that is,
a nce
o nts
w om-
p ers,
w
a dis-
p
� oi-
e pho-
b y-
d erac-
t n of
t ore-

over, the anionic SBE�CD produces a downfield shift dis-
placement of almost all non-aromatic protons, oppositely
to the �CD that induced preponderantly upfield displace-
ment in these hydrogen atoms. This fact prompts for a
different mode of interaction between VP and both CDs
(Owens et al., 1997) and may also reflect a distinct chemical
microenvironment.

Considering all results mentioned above, we can pre-
sume the existence of important structural differences in
VP–�CD–TA and VP–SBE�CD–TA multicomponent com-
plexes since SBE�CD has an average of seven negative
charges and therefore the most favourable position of posi-
tively amino charged groups of VP must be not far away from
the negatively moieties of the CD. The drug molecule has to
arrange itself within the hydrophobic cavity to allow for the
electrostatic interactions with the charged substituents, and,
at the same time, the protonated nitrogen atoms of the drug
will interact with TA molecules resulting in the creation of an
ion-pair, without the formation of chemical bonds (Másson
et al., 1998). In summary, SBE�CD most likely encloses the
aromatic ring of VP due to hydrophobic interaction and the
resulting complex is synergistically stabilized by additional
electrostatic interaction between sulfobutyl moieties of the
host and the protonated nitrogen atoms of the guest and by
hydrogen bond forming with the 2- and 3-hydroxy groups of
t

ap-
p
c m-
p lots
( -
t
p ithin
t stoi-
c ture
o
c e for-
m ,

F , VP–S t
c

n upfield shift related to the co-complexing performa
f the�-hydroxy-acid. Larger chemical shift displaceme
ere also observed for the VP protons in the multic
onent complexes with both HPMC and PVP polym
hich might reveal a tight association between VP, SBE�CD
nd TA in their presence. The magnitudes of the shift
lacements of VP protons were greater in SBE�CD than in
CD complexes. This may indicate that the aromatic m
ty of VP is included deeper into the expanded hydro
ic cavity of SBE�CD, since the sulbobutylation of the h
roxyl groups may change the nature of host–guest int

ion and could therefore expand the hydrophobic regio
he CD cavity, enhancing the binding of the guest. M

ig. 7. Continuous variation plots for VP protons in VP–SBE�CD–TA (A)
omplexes [protons of VP: () N/N′, (�) O, (�) Q/Q′ and (�) R].
he CD and the resulting ion-pair.
The continuous variation method was subsequently

lied to all protons of the VP molecule in VP–SBE�CD–TA
omplexes for confirming the stoichiometry of the co
lexes, yielding identical results. In all cases, Job’s p
Fig. 7) showed a maximum atr = 0.5, indicating the forma
ion of a complex where the complexing agent (SBE�CD) is
resent in first-order degree with respect to the drug, w

he range of the investigated concentrations. The 1:1
hiometry obtained is also strongly supported by the na
f the SBE�CD molecule, given that each SBE�CD molecule
arries an average of seven negative charges that mak
ation of higher-order complexes difficult (Loftsson et al.

BE�CD–TA–PVP (B) and VP–SBE�CD–TA–HPMC (C) multicomponen
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2002). These results are once again in agreement with the
above related phase-solubility studies.

3.3. ROESY studies

Deeper insight about the geometry of VP–CD–TA mul-
ticomponent complexes can be derived from the evidences
of spatial proximities between protons of host and guest
molecules. In the case of inclusion complex formation, the
drug molecule penetrates the cavity of CD and dipole–dipole
interactions can be detected between the glucose H-3 and
H-5 protons inside the CD cavity and protons of the guest.
This can be achieved by1H–1H nuclear Overhauser NMR ex-
periments. Unfortunately, the inherently small nuclear Over-
hauser effect (NOE) values, due to unfavourable correlation
times of CD complexes in water solution, clearly constitute
a drawback in studying the mutual geometric relationships
of this kind of structure. This problem is normally overcome
by collecting NOEs in the rotating frame (ROEs), as with
this technique the effects are always positive (Amato et al.,
1998; Forgo and D’Souza, 1998). In two-dimensional rotat-
ing frame Overhauser (ROESY) experiments, dipolar inter-
actions between protons at a distance less than 3–4Å are de-
tected as cross-peaks in a bi-dimensional map, indicating the
reality of the inclusion and the portion of the guest situated
i
e seful
i tem

structures present in solution, namely the average extent of
penetration and the direction of inclusion of VP in the host
cavity.

3.3.1. VP–�CD–TA multicomponent complexes
Inspection of the ROESY maps relative to VP–�CD–TA

multicomponent complexes allows us to establish a spatial
proximity between the aromatic hydrogens of VP and the in-
ner protons of�CD. An expansion of the ROESY spectrum
illustrating ROEs of VP aromatic protons in the VP–�CD–TA
complex is reported inFig. 8. The spectrum shows the ex-
istence of evident intermolecular cross-peaks between the
interior �CD hydrogens with all VP hydrogens of the aro-
matic ring, that is, H-A3, H-A1/A2 and H-A4 resonating at
δ 7.218–7.225, 7.267–7.277 and 7.563–7.587, respectively.
These correlations were of different intensities being the
order of the magnitude as follow: [H-A1/A2 ↔ H-3] > [H-
A3 ↔ H-3] ≈ [H-A4 ↔ H-3] > [H-A4 ↔ H-5]. Since higher
strength dipolar correlations were observed between all VP
aromatic protons and the H-3 proton of�CD than the ones
observed between the H-A4 proton of VP and the H-5 proton
of �CD, we could definitively suggest an internalization of
the VP moiety into the�CD hydrophobic cavity, being this
inclusion preferentially made from the wider rim of�CD
truncated cone. Moreover, the inexistence of intermolecular
c ns of
t acid
w

n the torus cavity (Schneider et al., 1998). Thus, ROESY
xperiments were used with the purpose of providing u

nformation in the elucidation of the supramolecular sys
Fig. 8. Expansion from the ROESY spectrum
ross-peaks between TA protons and the inner proto
he host molecule exclude the inclusion of the hydroxy-
ithin �CD cavity.
of VP–�CD–TA multicomponent complex.
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The VP–�CD–TA–polymer ROESY spectra demon-
strated comparable results, with equivalent dipolar interac-
tions evidenced between the inner protons of�CD and the
aromatic protons of VP, which indicates that a similar inclu-
sion process of the aromatic VP moiety must occur in these
systems. However, the intensities of the cross-peaks were
greater in the presence of the polymers (PVP and HPMC),
corroborating the previous results reported here, i.e., a some-
how superior stabilization of the resultant supramolecular as-
sembly by interaction with the outer surface of the inclusion
complex.

From NMR data, there are clear evidences that the more
or less planar VP is tilted inside the�CD cavity and this ar-
rangement allows the guest molecule to occupy most of the
available cavity space, while keeping the polar susbstituents
close to the hydroxy groups of the�CD rim. The polar sub-
stituents, namely the basic nitrogen atoms, may then protrude
to the exterior environment and are stabilized by tartarate ions
and by the hydroxy groups of the CD rim.

3.3.2. VP–SBE�CD–TA multicomponent complexes
In the two-dimensional ROESY spectra of

VP–SBE�CD–TA multicomponent complexes, cross-
peaks connecting two proton resonances were unambigu-
ously observed between the internal protons of the�CD
d
a of
V

intense ROE interactions were observed between H-A3,
H-A1/A2 and H-A4 aromatic protons of VP, and both internal
protons of SBE�CD (in the 3.4–3.9 ppm region) for all three
VP–SBE�CD–TA complexes under study, indicating also
in these systems the involvement of VP aromatic moiety in
the complexation. We also detected feeble intermolecular
cross-peaks between the aromatic protons in VP, and the
b–CH2 and c–CH2 hydrogens of the sulfobutyl side chains
of SBE�CD in theδ 2.85–2.75 and 1.60–1.75 regions, but
those were just observable in multicomponent containing
polymers. Using these NMR results, it is reasonable to
ascribe these effects to the formation of an inclusion
complex between SBE�CD and VP, through the inclusion
of the aromatic moiety of VP. As previously reported for
VP–�CD–TA multicomponent complexes, the presence of
polymers enhanced even more the magnitude of all observed
dipolar interactions making it possible to visualize the
interaction between VP and the alkyl side chains of the CD
derivative.

The greater ROE intensities observed in
VP–SBE�CD–TA multicomponent complexes relative
to the corresponding complexes with�CD again suggested
that VP was embedded in a more hydrophobic environ-
ment in the former inclusion complexes; hence, SBE�CD
exhibited the strongest inclusion property. This is due
t
n r the
e

erivative and the aromatic protons of VP.Fig. 9 shows
contour plot of a section of the ROESY spectrum

P–SBE�CD–TA–HPMC complex (δ: 1.60–4.0). Very
Fig. 9. Expansion from the ROESY spectrum of V
o attractive electrostatic interactions, since SBE�CD is
egatively charged while VP is positively charged unde
xperimental conditions. As previously reported byZia et al.
P–SBE�CD–TA–PVP multicomponent complex.
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(2001), chemical modifications of�CD with sulfobutylether
substituents may provide supplementary binding sites for
molecules capable of forming ionic interactions with the
charged sulfonate moieties. The charged sulfonate groups
of each CD are likely to repel one another by extending out
and away from each other providing a hydrophobic region
near the cavity composed of only alkyl ether protons of
the sulfobutyl groups. Thus, the alkyl chains of sulfobutyl
moieties may provide additional hydrophobic regions for
stabilization of the complex, potentially counterbalancing
the negative effects of steric interference. Sulfobutyl alkyl
chains may also provide an extension of the CD cavity
with which the guest molecule may interact. Consequently,
the expansion of the hydrophobic CD cavity enhances the
possibility of VP binding by means of a hydrophobic effect
and, in addition, complexation with VP seems to occur not
only via the CD cavity, but also via the alkyl chains near the
cavity.

The acidic character conferred by TA allows the positively
charged form of VP to be predominant in the complexation
media. The experimental results show that the aromatic moi-
ety of VP is deeply included into the hydrophobic cavity of
the SBE�CD. Furthermore, we can assume that TA is kept in
the proximity of the external rim of SBE�CD by a concerted
mechanism that involves the binding of the hydrophobic part
o at is
a tici-
p ith
t ,
2 ce-
m e, it
s f VP
i ter-
a s of
t

C in
s to a
v from
a mer
c con-
t ng
V ., a
c d a
p ,
2

4

solu-
b Ds,
T lex-
a P to
t nce
l nt
c sol-

ubility was drastically improved. Given that the complexation
efficiency is defined byKC ×S0 (Loftsson et al., 1999), the
decrease inKC values observed for the multicomponent com-
plexes was significantly overcome by the increase inS0 in the
presence of the hydroxy-acid. Additionally, the polymers had
a positive effect on theKC values of VP–CD–TA–polymer
multicomponent complexes emphasizing even more VP sol-
ubility and the complexation efficiency.

The stoichiometry of the multicomponent complexes pro-
vided by the phase-solubility diagrams was further confirmed
by the continuous variation method which indicated a 1:1 sto-
ichiometry and the formation of complexes where the com-
plexing agents (CDs) were present in first-order degree with
respect to VP.

Finally, high resolution1H NMR techniques made it pos-
sible to identify atomic interactions between the guest and
host and to establish geometrical relationships. The hall-
marks of the inclusion within CD cavities (chemical shift
displacements of the H-3 and H-5 protons of CDs and pro-
tons of VP molecule, and intermolecular ROESY correla-
tions between aromatic guest protons and the inner protons
of CDs) were clearly demonstrated. Moreover, the changes
on the1H signals measured in the presence of�CD were
of lower magnitude than those induced by SBE�CD, and
the greater magnitude of ROEs in VP–SBE�CD–TA mul-
t n of
V in a
m xes
w the
i CD
c be-
i s
a he
p ion-
p VP
s ical
s his
i ma-
t CD
s d ni-
t tro-
s utyl
m il-
i
o

d-
i ROE
d up-
p ro-
c f the
p abi-
l xes
b –TA
m
t aals
i

f the drug and simultaneous formation of an ion-pair th
ccommodated near the CD cavity. In addition, TA par
ates actively in the complex formation by interacting w

he external hydrogen bond system of CDs (Redenti et al.
000) as proved by the significant chemical shift displa
ents of TA protons in VP complexes. At the same tim

eems that the naphthyridine protonated nitrogen atom o
s synergistically stabilized by additional electrostatic in
ction with the charged head group of sulfobutyl moietie

he host.
Despite the uncertainty on the role of PVP and HPM

tabilizing the resultant multicomponent complex, due
ery broad and undefined NMR spectra, we can presume
ll reported NMR data that the derived VP–CD–TA–poly
omplexes must be additionally stabilized by outside
ributions in a similar way as with micelles, formi
P–CD–TA–polymer aggregates or a co-complex, i.e
omplex between several VP–CD–TA molecules an
olymer chain [(VP–CD–TA)n–polymer] (Ribeiro et al.
003b).

. Conclusions

The present results suggest that the increases in VP
ility resulted from a synergistic effect in presence of C
A and polymers, as well as from an increase on CD comp
tion efficiency. Despite the decrease in the affinity of V

he hydrophobic CD cavity in the presence of TA and he
ower KC values obtained in VP–CD–TA multicompone
omplexes relatively to VP–CD complexes, the achieved
icomponent complexes indicated a stronger interactio
P with the latter CD, suggesting that VP is embedded
ore hydrophobic environment in the inclusion comple
ith SBE�CD. These observations are consistent with

nsertion of the aromatic moiety of VP molecule into the
avity from the wider rim of the truncated cone of the CD,
ng deeply inserted in SBE�CD multicomponent complexe
nd less included in�CD complexes. We believe that t
yridine protonated nitrogen of VP molecule forms an
air with TA, as stated by the important improvement in
olubility in these systems and by the significant chem
hift displacements of TA protons in VP complexes. T
on-pair seems to participate actively in the complex for
ion by interacting with the external hydroxy groups of
econdary rim. In addition, the naphthyridine protonate
rogen atom of VP is synergistically stabilized by an elec
tatic interaction with the charged head group of sulfob
oieties of the SBE�CD, resulting in the enhanced stab

ty of VP–SBE�CD–TA complexes relatively with the�CD
nes.

The higherKC values obtained from the solubility stu
es along with the greater chemical shift differences and
ipolar correlations in VP–CD–TA–polymer complexes s
ort the involvement of polymers in the complexation p
ess. Accordingly, we presume that the conformation o
olymer chains play an important role in the exterior st

ization of the above mentioned multicomponent comple
y forming co-complexes between several VP–CD
olecules and a polymer chain [(VP–CD–TA)n–polymer]

hat involve relatively weak forces such as van der W
nteractions and hydrogen bonds.
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oftsson, T., Ḿasson, M., Sirgurj́onsd́ottir, J.F., 1999. Methods to enhan
the complexation efficiency of cyclodextrins. S.T.P Pharma Sc
237–242.

una, E.A., Velde, D.G.V., Tait, R.J., Thompson, O.D., Rajewski, R
Stella, V.J., 1997. Isolation and characterization by NMR spectros
of three monosubstitued 4-sulfobutyl ether derivatives of cyclom
heptaose (�-cyclodextrin). Carbohydr. Res. 299, 111–118.
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