
Theory and Methodology

Using cutting planes in an interactive reference point approach for
multiobjective integer linear programming problems

Maria Jo~ao Alves *, Jo~ao Cl�õmaco

Faculdade de Economia, Universidade de Coimbra / INESC, Av. Dias da Silva, 165, 3000 Coimbra, Portugal

Received 9 February 1998; accepted 30 June 1998

Abstract

We propose an interactive approach for multiple objective integer linear programming (MOILP) problems that

combines the use of the Tchebyche� metric with cutting plane techniques. At each interaction, the method computes the

nondominated solution for the MOILP problem that is closest to a reference point according to the Tchebyche� metric.

The information provided by the decision maker in each dialogue phase is used to adjust the next reference point

through a sensitivity analysis stage. Cutting plane techniques enable the method to take advantage of computations

performed at previous iterations to solve the next scalarizing integer program. We address both theoretical issues and

the computational implementation. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Over the last decades, various interactive
methods and decision support systems have been
developed to deal with multicriteria problems.
However, most research e�orts have been so far
concentrated on multiobjective linear programs
and multiattribute models. Research in developing
methods, even noninteractive, to tackle multiob-
jective combinatorial problems is very restricted.
This is well recognized in Ulungu and Teghem's
survey (Ulungu and Teghem, 1994) where they

refer to the multiobjective spirit (in combinatorial
optimization) that is not yet prevalent and much
progress remains to be made in this direction.
They also point out two main reasons that prob-
ably explain why multiobjective combinatorial
optimization has been substantially ignored com-
pared with the vast literature on single objective
problems: ®rst, the ``multiobjective paradigm'' is
not really implemented among the circle of re-
search workers and, second, the inherent di�cul-
ties which are not easy to tackle.

Multiobjective problems with discrete variables
arise naturally in many practical applications on
several di�erent areas, such as transportation and
location-allocation problems, capital budgeting,
project selection, among others. However, the de-
velopment of methods for these problems faces
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two relevant types of di�culties, those caused by
the existence of more than one objective function
(criterion), and the computational complexity of
the scalarizing (single-objective) combinatorial
problems to produce nondominated (e�cient) so-
lutions. It is, therefore, imperative to pay special
attention to the issues concerning mathematical
programming as well as the decision process in
order to build an e�ective method that helps the
decision maker (DM) to compromise and choose
an acceptable solution. A survey of techniques for
®nding nondominated solutions in MOILP can be
found in (Teghem and Kunsch, 1986a). Also,
(Evans, 1984) and (Teghem and Kunsch, 1986b)
provide overviews of approaches for MOILP
problems.

Interactive methods o�er a more attractive way
to deal with multiobjective problems than the
methods designed to ®nd all the nondominated
solutions (generating methods). Interactive meth-
ods try to overcome the main di�culties of gen-
erating methods that usually require a large
amount of computational resources, both in time
and storage space. This is particularly relevant in
hard problems. Interactive methods should how-
ever be aware of the DM's capacities for process-
ing information, not demanding too much about
the DM's preferences at each interaction.

Another important issue is the way nondomi-
nated solutions are computed. Since the set of
nondominated solutions for problems with dis-
crete variables is not convex, weighted sums of the
objective functions do not provide a way of
reaching every nondominated solution. Besides
supported there exist unsupported nondominated
solutions ± solutions that are dominated by convex
combinations of other nondominated solutions.
Tchebyche� metric-based scalarizing programs
have the advantage over weighted-sums programs
of being able to reach, not only supported, but also
unsupported nondominated solutions. A general
characterization for the nondominated solution set
based on the Tchebyche� metric was ®rst proposed
by Bowman (1976). A Tchebyche� scalarizing
program computes the (weakly) nondominated
solution closest to a reference point (e.g. the ideal
criterion point) according to a (weighted)
Tchebyche� (L1) metric.

In general, reference point approaches for
multiobjective problems (considering discrete
variables or not) rely on the de®nition of an
achievement scalarizing function ± as suggested by
Wierzbicki (1980) ± by means of aspiration levels
(reference point) for the objective functions. The
achievement scalarizing function projects the ref-
erence point onto the nondominated set, for in-
stance, through the minimization of a (weighted)
Tchebyche� distance to the reference point (as-
suming the reference point larger than all non-
dominated criterion points). General information
about aspiration based decision support systems
can be found in Lewandowski and Wierzbicki
(1989, 1988). Interactive methods using Tcheby-
che� or other achievement scalarizing functions
have been developed for MOILP problems by
Steuer and Choo (1983), Steuer (1986), Kar-
aivanova et al. (1993), Karaivanova et al. (1995),
Vassilev and Narula (1993), Narula and Vassilev
(1994), among others.

While many researchers use augmented
weighted Tchebyche� scalarizing programs keep-
ing constant the reference point (usually the ideal
criterion point) and varying the weights (e.g.
Steuer and Choo, 1983), we have opted for aug-
mented non-weighted Tchebyche� programs pa-
rameterized on the reference point. Besides being
able to reach all the nondominated solutions, two
main advantages can be drawn from using refer-
ence points instead of weights as the controlling
parameters: (i) nondominated solutions that im-
prove one criterion in relation to a previous non-
dominated solution can be obtained by changing
only the corresponding component of the reference
point leaving the others unchanged; (ii) concerning
sensitivity analysis of the scalarizing programs, it
is easier to deal with changes in the reference point
than in the weight vector because, while the former
is placed on the right-hand side of constraints, the
latter appears as coe�cients of variables in the
constraints.

Following in form the theory presented in
Steuer and Choo (1983) and Steuer (1986) for
weighted Tchebyche� programs, we present in
Section 2 some new propositions concerning the
use in MOILP of non-weighted Tchebyche� pro-
grams controlled by the reference points.
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In this paper we propose an interactive method
for multiobjective all-integer linear programming
(MOILP) problems that combines Tchebyche�
scalarizing programs, cutting planes and sensitivity
analysis. This combination promotes local and
directional searches. The sensitivity analysis pro-
cedure aims to adjust the reference point for the
next computational phase in a directional search.
This feature avoids considering reference points
that would lead to the previous nondominated
solution. In di�erent contexts, other research work
on sensitivity analysis in multiobjective decision
making has been conducted. Interested readers
may refer to Insua (1990) for an extensive study on
this ®eld.

The main issues of the interactive multiobjec-
tive method we propose are the following:

(i) simple protocol to interact with the DM,
which is based on the speci®cation of reference
points (aspiration levels), or just the indication
of an objective function that the DM wants to
improve in respect to a previous nondominated
solution ± (local or directional search);
(ii) identi®cation of ranges for the components
of the reference points that lead to the same
nondominated solution ± this feature aims to
avoid wasting computational e�ort;
(iii) taking advantage of computations previous-
ly performed for producing other nondominated
solutions ± this means that sequential scalarizing
programs are not solved independently.
We have adopted cutting plane techniques to

solve the scalarizing programs. Although cutting
planes have shown great limitations from a prac-
tical point of view, they facilitate the incorporation
of the sensitivity analysis procedure we have de-
veloped. Since the nondominated solution set of a
MOILP problem is discrete, it is desirable that the
multiobjective approach is able to early identify
reference points that lead to the same result when
performing local or directional searches. The sen-
sitivity analysis procedure is intended to satisfy
this requirement (issue (ii)). Moreover, cutting
planes enable to pro®t from previous computa-
tions to solve the next scalarizing programs (issue
(iii)). These are the main reasons that encouraged
us to go ahead with this work using cutting planes
in spite of their practical limitations.

The current version of the interactive method
we propose herein uses Gomory's cutting planes
(Gomory, 1963) and minimum cover inequalities of
Crowder et al. (1983) if all the decision variables of
the multiobjective problem are 0±1. These tech-
niques possess the usual feature of cutting o�
fractional solutions without eliminating any fea-
sible integer solution. Recent research on cutting
planes has been developed for certain classes of
pure integer or mixed 0±1 problems (e.g. Roy and
Wolsey, 1987; Cook et al., 1990; Boyd, 1994; Balas
et al., 1993, 1996a, b; Ceria et al., 1998). Most of
them focus on the integration of cutting planes
within a branch-and-bound framework, which
cannot apply to our approach in a straightforward
manner. Nevertheless, our approach is not con-
®ned to the use of Gomory's cutting planes and
minimum cover inequalities. Other cutting plane
techniques devoted to pure integer programs could
also be included.

Remainder sections of this paper are organized
as follows: In Section 2 the problem is de®ned
and some theoretical results (whose proofs are in
Appendix A) are stated. Section 3 describes the
interactive method and discusses the sensitivity
analysis issues. An illustrative numerical example
is presented in Section 4. Section 5 is devoted
to the computational implementation. The
paper closes with some concluding remarks in
Section 6.

2. Problem de®nition and theoretical results

The multiobjective integer linear programming
problem can be formulated as follows:

�MOILP�
max z1 � c1x;

. . .

max zk � ckx;
s:t: x 2 S;

S � fxjAx � b; x P 0; x integerg;
where k is the number of objective functions (cri-
teria), n is the number of variables, A is a m ´ n
matrix, b is a column m-vector and ci; i � 1; . . . ; k
are row n-vectors.
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It is assumed that S is bounded and A, b, and
ci; i � 1; . . . ; k have integer components. MOILP is
thus a multiobjective pure integer program.

Let Z be the set of images of all x 2 S under the
zi. We de®ne e�ciency and nondominance in the
usual manner:

~x 2 S is an e�cient solution i� there does not
exist another x 2 S such that cix P ci~x for all i and
cjx > cj~x for at least one j. �x 2 S is a weakly-e�-
cient solution i� there does not exist another x 2 S
such that cix > ci�x for all i.

The criterion points corresponding to (weakly)
e�cient solutions are called (weakly) nondominat-
ed points/solutions.

Let z� denote a criterion reference point.
Without loss of generality we shall assume that z�

satis®es z�i P z0i; i � 1; . . . ; k; 8z0 2 Z. This can be
assured by considering z�P z�, where z� denotes
the ideal criterion point.

The following program determines a solution
z2Z closest to the reference point z� according to
the Tchebyche� metric:

�P1; z�� min fag
s:t: z�i ÿ cix6 a; i � 1; . . . ; k;

x 2 S; aP 0:

Although (P1, z�) may have optimal solutions
that are weakly-nondominated for the (MOILP)
problem, among the alternative optima there al-
ways exists at least one nondominated solution
(Proposition 1).

Proposition 1. Let M � Z be the set of criterion
points z with zi � cix; i � 1; . . . ; k; such that x
minimizes (P1, z�). Then, there exists ~z 2 M such
that ~z is nondominated.

Proposition 2.~z is a nondominated criterion point with
~zi � ci~x; i � 1; . . . ; k �~x being an e�cient solution)

()
There exists z�P z�, such that ~x minimizes the
augmented Tchebyche� program:

�P2; z�� min aÿ q
Xk

i�1

cix

( )
s:t: z�i ÿ cix6 a; i � 1; . . . ; k;

x 2 S; a P 0;

with q positive small enough.

From Proposition 2 we conclude that non-
weighted Tchebyche� scalarizing programs con-
trolled by reference points, (P2, z�), or even
(P1, z�), allow to reach all the nondominated so-
lutions. Propositions 1 and 2 are adaptations of
the Tchebyche� theory presented in Steuer and
Choo (1983) and Steuer (1986). Besides, we state
other results for MOILP:

(i) to obtain nondominated solutions that im-
prove a speci®c objective function, say zp, in re-
lation to a previous nondominated solution, one
may increase the pth component of the reference
point used in the Tchebyche� scalarizing pro-
gram leaving the other components unchanged
± (a similar result was stated by Metev and Yor-
danova (1993) for MOLP);
(ii) one may consider only integer reference
points and integer increments without loosing
intermediate nondominated solutions ± this al-
lows the variables in Tchebyche� scalarizing
programs to be all-integer;
(iii) under the circumstances of (i) and (ii), Go-
mory's cutting planes introduced in the resolu-
tion of a Tchebyche� scalarizing program are
still valid for the next scalarizing program. In
spite of their validity, these inequalities become
weaker than before.
Besides Gomory's cutting planes, we also use

minimum cover inequalities for 0±1 MOILP prob-
lems. Since the Tchebyche� scalarizing programs
are never pure 0±1, these inequalities are always
introduced in the MOILP problem, i.e., only the
constraints Ax� b are used to generate minimum
cover inequalities.

Statements (i), (ii) and (iii) translate, respec-
tively, Propositions 3±5 that follow (the latter is
stated in a more global sense). By reasons of
simplicity and clearness of the proofs (see Ap-
pendix A), these propositions are established for
programs (P1, z�) instead of (P2, z�).

Proposition 3. Let xa be an e�cient solution that
minimizes (P1, za�) and zb� � �za�

1 ; . . . ; za�
p �

hp; . . . ; za�
k � with hp > 0: Then, either (i) xa mini-

mizes (P1, zb�) or (ii) there exists xb that minimizes

568 M.J. Alves, J. ClõÂmaco / European Journal of Operational Research 117 (1999) 565±577



(P1, zb�) and improves the pth objective function in
relation to xa �i:e: zb

p > za
p�:

Proposition 4. Let za� � �za�
1 ; . . . ; za�

p ; . . . ; za�
k � be

an integer reference point, zb� � �za�
1 ; . . . ; za�

p �
1; . . . ; za�

k � and zc� � �za�
1 ; . . . ; za�

p � hp; . . . ; za�
k �

with 0 < hp < 1: Then, there does not exist any
e�cient solution that minimizes (P1, zc�) without
minimizing (P1, za�) or (P1, zb�).

Proposition 5. If the integer reference points, za�

and zb� satisfy zb�P za� then all the cutting planes
introduced during the resolution of (P1, za�) are still
valid for (P1, zb�).

Propositions 1±5 state some of the theoretical
foundations of the interactive method we propose
in Section 3.

3. The interactive method

The ¯owchart in Fig. 1 presents the algorithm
of the interactive MOILP method.

Notice that the DM can choose any integer
reference point, attainable or not (step 2). Step 3 is
just a technical step which ensures that z�P z�.
This conversion does not modify the outcome of
the original z� and allows to restrict a to be non-
negative in the scalarizing programs. Otherwise,
the unique di�erence would be a free.

The ¯owchart presents a proposal of a protocol
to interact with the DM. However, the core of the
algorithm is the iterative process of step 7 that
embodies sensitivity analysis and computing
phases. Other interactive protocols with this kind
of tools could be studied.

3.1. Sensitivity analysis

Whenever the DM speci®es an objective func-
tion zp to be improved, it would be desirable to
know the maximum integer increment of the pth
component of the reference point, say hmax

p , that
would still lead to the current nondominated so-
lution. Once this value has been determined, we
would consider �hp � hmax

p � 1 having the guarantee

of getting a ``nearby'' but di�erent nondominated
solution that improves zp. Unfortunately, there is
not so far any sensitivity analysis procedure that
answers this question in an easy computational
way. Therefore, we propose a stepwise process that
approaches iteratively the value of hmax

p , and con-
sequently �hp, until a new nondominated solution is
obtained.

For reasons of clearness, and without losing
generality, we consider programs (P1, z�) instead
of (P2, z�). Recall that the objective function of
(P1, z�) is solely the minimization of a, the L1
distance to the reference point.

Notation: Let si be the surplus variable associ-
ated with the ith constraint cix� aP z�i ; i 2
f1; . . . ; kg of �P1; z��. Since z� and ci; i � 1; . . . ; k,
are integer vectors, all si variables are also integer.

Let us suppose that the current reference point
is za� and xa is the current e�cient solution (with
za nondominated) corresponding to �xa; aa�, the
optimal solution of �P1; za��; si � sa

i ; i � 1; . . . ; k:
Let za� � hp denote �za�

1 ; . . . ; za�
p � hp; . . . ; za�

k �.
Further, let �P1; za��LR�CP

be the program obtained
from the introduction of cutting planes into the
linear relaxation of (P1, za�) such that �xa; aa�
minimizes �P1; za��LR�CP

too. ``é ù'' will denote the
operation of taking the smallest integer larger than
or equal to the relevant quantity.

In the sensitivity analysis iterative process there
are two di�erent situations to be considered: the
entrance, i.e., the ®rst iteration of the process that
starts with an integer solution; the return while the
current solution is non-integer.

Entrance: If sa
p > 0 �sa

p � aa ÿ za�
p � za

p� then
�xa; aa� minimizes �P1; za� � hp� for hp (at least)
between 0 and sa

p, (according to the proof of
Proposition 3 ± case II). Hence, we consider hmax

p �
sa

p;
�hp � hmax

p � 1 and zb� � za� � �hp: Since the L1
distance between za and zb� is aa � 1, then the a
optimal value of (P1, zb�), say ab, will satisfy
aa6 ab6 aa � 1() ab � aa _ ab � aa � 1:

If sa
p � 0 then the a optimal value of �P1; za��

hp�LR�CP
is aa � pa

p � hp for hp values that keep fea-

sible the current basis. pa
p denotes the shadow price

of constraint p in �P1; za��LR�CP
. For any value of

hp; aa � pa
p � hp is a lower bound for a in the optimal

solution of �P1; za� � hp�. Since a is integer, the
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lower bound can be adjusted to aa � dpa
p � hpe. On

the other hand, �xa; aa � hp� is feasible for
�P1; za� � hp�:Therefore, xa minimizes �P1; za� � hp�
for (at least) the values of hp that satisfy
dpa

p � hpe � hp. Hence,

hmax
p � maxfhpjdpa

p � hpe � hpg:

�hp � hmax
p � 1; zb� � za� � �hp

and

�ab � aa � hmax
p _ ab � aa � �hp�:

A particular case occurs when pa
p � 1 in which case

hmax
p � 1 and xa optimizes the objective function p

of the MOILP problem.
Conclusion: In both cases, a �hp value is deter-

mined such that reference points za� � hp, with hp

integer lower than �hp, would lead to the previous
nondominated solution. Since the result is not yet
known with respect to zb� � za� � �hp, this will be
the next reference point. This analysis also pro-

Fig. 1. Flowchart of the method.
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vides an upper bound for the a optimal value of
�P1; zb�� which is aa � 1 when sa

p � 0 and aa � �hp

when sa
p > 0. The upper bound represents the L1

distance from the previous nondominated solu-
tion, za, to zb�.

After determining the new reference point, zb�,
the current basis and the corresponding solution
are updated for zb� yielding ��x; �a�. If �a is fractional,
the procedure returns to the sensitivity analysis
phase; if �a is integer but �a fractional, a new round
of cutting planes is introduced discarding all the
inactive cutting planes.

Return: At this time, an upper bound U for ab is
known such that ab � U ÿ 1 _ ab � U . Note that
this information has not been included in the sim-
plex tableau, it just supports the sensitivity analysis.

Since �a is fractional, d�ae � U . Hence, xa still
minimizes �P1; zb�� and hmax

p may be increased.
Let dp denote an integer increment in hmax

p . A
lower and an upper bound for the a optimal value
of (P1, zb� � dp) can be stated. They are d�a� �pp �
dpe for the lower bound and U � dp for the upper
bound. Therefore, while dp is such that
d�a� �pp � dpe � U � dp, xa is guaranteed to mini-
mize (P1, zb� � dp). For that reason, hmax

p , �hp and,
consequently, the pth component of zb� are in-
creased by

dmax
p � maxfdp integer jd�a� �pp � dpe � U � dpg:

Likewise, U  U � dmax
p .

Note: When (P2, z�) is used instead of (P1, z�),
the shadow price �pp must be replaced by a slightly
di�erent value �ÿ�aa;sp� ± the symmetric value of the
a-row, sp-column entry in the updated simplex
tableau. The sensitivity analysis is always made in
relation to a, rather than to the objective function
of the scalarizing problem.

4. An illustrative example

Let us consider the MOILP problem:

max z1 � x1 ÿ x2;
max z2 � x1 � 2x2;
s:t: x1 � 6x26 21;

4x1 � 6x26 63;
x1; x2 P 0 and integer:

Fig. 2 shows the e�cient solutions on the de-
cision variable space (a) and the corresponding
nondominated points on the criterion space (b).

A preprocessing phase (for more details see
Section 5), has included the bounds x16 4 and
x26 3 into the problem.

Let us consider the scalarizing program (P2, z�)
(considering q� 0.001) and start with z� �
za� � (6, 10). Denoting by x3, x4 the slack variables
corresponding to the constraints of the MOILP
problem and s1, s2 the surplus variables of the two
®rst constraints in (P2, z�), the optimal solution of
the linear relaxation of (P2, za�) is: x1� 3.929,
x2� 1.333, x3� 9.071, x4� 0, s1� 0, s2� 0,
a� 3.405. Three Gomory's cutting planes have
been generated, from the rows of a, x2 and x1, and
added to the tableau. After two iterations of the
dual-simplex, an integer solution is obtained. It is
the point B on Fig. 2: xa� (4, 1, 11, 1); sa� (1, 0);
aa� 4; za� (3, 6). Only the third cut is active, so
the other two may be discarded.

Let us suppose that the DM wishes to improve
z1. Since sa

1� 1, then hmax
1 � sa

1 � 1 and �h1� 2.
Therefore, the reference point is changed to
zb� � (8,10) knowing a priori the possible optimal
values for a: ab � 4 _ ab � 5. The simplex tableau
is updated by changing the basis that has become
unfeasible, yielding a fractional solution where
a� 4.66(6) and �ÿ�aa;s1

�� 0.66(6) (p1, the ®rst
shadow price, is 0.667). We conclude that dmax

1 � 1
by testing the values for d1 such that
da� �ÿ�aa;s1

� � d1e � 5� d1. In other words, za is
the closest point (according to the Tchebyche�
metric) to the reference points (8, 10) and (9, 10) ±
corresponding to d1� 0 and d1� 1, respectively.
zb� is thus adjusted to (10, 10) and the possible
optimal values for ab are now 6 or 7. An integer
solution is then obtained (by updating the simplex
tableau): xb� (4, 0, 17, 7); sb� (0,0); ab� 6; zb� (4,
4) ± point A on the picture.

Assuming that the DM wants to continue
improving z1, the sensitivity analysis leads to the
reference point zc� � (13, 10) (due to �ÿ�aa;s1

��
0.66(6)). This forces x2 ± a degenerate basic
variable for zb� � (10, 10) ± to become negative;
x2 is therefore replaced by s2 in the basis. The
result is the same e�cient solution ± xb ± but now
�ÿ�aa;s1

�� 1 enabling to conclude that xb is the
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best e�cient solution for the ®rst objective func-
tion, z1.

5. Computational implementation

The multiobjective interactive method has been
implemented for Windows 95 (in a PC ± pentium,
166 MHz) using the DELPHI developer. This
implementation contains a spreadsheet-based
problem editor, graphical procedures to interact
with the DM and computing routines. The latter
includes routines for problem preprocessing, sen-
sitivity analysis, cutting plane generation and a
solver that rely on the dual simplex method for
bounded-variable linear programs. Problem pre-
processing attempts to reduce the problem, namely
by (i) removing redundant constraints, (ii) replac-
ing constraints by bounds on variables, (iii) ®xing
variables or tightening bounds, and (iv) reducing
coe�cients. Items (i), (ii) and (iii) follow Brearly et
al. (1975) with some modi®cations in (iii) and ad-
aptations to the multiobjective case. Item (iv) fol-
lows Johnson et al. (1985) and is exclusively
designed for 0±1 problems.

We have tested about forty randomly generated
problems of di�erent types (0±1 knapsack, integer
knapsack, 0±1 multidimensional knapsack, set
covering and set packing). They have 10±100
variables, 1±40 constraints and 2 or 3 objective
functions. For each problem we made several tests
considering either reference points explicitly given
or following directional searches. Since the com-
puting routines rely solely on cutting planes, this
approach is very sensitive to numerical errors: it
failed in about 6% of the tests within our set of
problems. Anyway, we have found out that this
approach is very useful for local or directional
searches because it allows the DM to skip refer-
ence points that lead to an already known result,
thus enabling to save computational e�ort. The
sensitivity analysis embedded in this process does
not seem to cause additional numerical di�culties.

In order to better illustrate the computational
application, let us consider a facility location
model. It concerns the selection of the sites, among
n regions, for waste processing facilities. Other
regions must be situated within a pre-de®ned dis-
tance, say d, from its nearest facility. All the n
regions that de®ne the network are potential sites

Fig. 2. Decision variable space and criterion space of the example.
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to locate a facility. Three objective functions are
de®ned; while the ®rst concerns the cost ± to
minimize the total cost of building the facilities ±
the two other concern the risk ± to minimize the
total population directly a�ected by the facilities
and to minimize the total number of facilities that
cover each region. This problem, whose con-
straints follow a set-covering formulation, may be
stated as follows:

min f1 �
Xn

j�1

cjxj;

min f2 �
Xn

j�1

ajxj;

min f3 �
Xn

i�1

X
j2Fi

xj;

s:t:
X
j2Fi

xj P 1; i � 1; . . . ; n;

xj � 0 or 1; j � 1; . . . ; n;

where cj is the cost of building a facility in region j,
aj is the population in region j and Fi the set of
regions that are within d from i (Fi always contains
i). We consider herein a network with 40 regions.
Although being consistent, the data is not real (it is
available with the authors).

Knowing the ideal criterion point, (1585 ´ 103,
1604 ´ 103, 45), the reference point z� �
(1650 ´ 103, 1220 ´ 103, 45) was chosen to start
the search, leading to a ®rst nondominated solu-
tion. Suppose that a direction of decreasing the
cost (f1) was ®rst selected and then the direction of
motion was changed to improve f3. Table 1 shows
the results obtained by this search. Notice that all
the reference points other than the ®rst one were

automatically changed. As we mentioned before,
``nearby'' nondominated solutions are obtained
throughout a directional search. The designation
of ``nearby'' is in the sense of the L1 distance to
the reference point. Apart from the biobjective
case, this does not surely mean the ``closest'' so-
lution for the criterion chosen to be improved, as
we can see from the results in Table 1 (sol. 5 is
closer to sol. 2 in f1 than sol. 3). Fig. 3 shows
windows with graphical displays for these solu-
tions: on the left (a), bar graphs with the criterion
values; on the right (b), a representation of the
reference point space where regions of reference
points that lead to the same nondominated solu-
tion, translated to a plane

P3
i�1 z�i � K (K being

constant), are iteratively appended. We shall omit
explanations about the way these regions are
computed because this is not within the main
scope of the paper and also due to space reasons.

6. Concluding remarks and future research

We have proposed an interactive method de-
signed for multiobjective pure integer linear
problems. By taking advantage of cutting plane
techniques and Tchebyche� theory, we have de-
veloped a sensitivity analysis tool intended to
identify ranges for the reference points that lead to
the same nondominated solution. For instance, if
the DM wants to look for nondominated solutions
``nearby'' the current one, he/she does not need to
point ``in the dark'' to reference points that would
probably lead to the same solution. This tool is
specially useful to perform a local search around
the nondominated solutions most preferred by the

Table 1

Some results of the facility location problem

Strategy Reference point

�z�1 � 103; z�2 � 103; z�3 �
Solution time (s)

�f1 � 103; f2 � 103; f3� Open facilities

Start (1650, 1220, 45) sol. 1: (1950, 1655, 55) 3, 7, 14, 16, 24, 26, 31, 35, 37 6.3

Decrease f1 )(1460, 1220, 45) sol. 2: (1728, 1709, 49) 2, 7, 11, 24, 26, 31, 35, 37 14.7

Decrease f1 )(1194, 1220, 45) sol. 3: (1695, 1753, 48) 7, 12, 14, 24, 26, 31, 35, 37 9.8

Decrease f1 )(1064, 1220, 45) sol. 4: (1610, 1850, 52) 7, 11, 12, 24, 26, 31, 35, 37 30.9

Decrease f3 )(1064, 1220, ÿ580) back to sol. 3 0.2

Decrease f3 )(1064, 1220, ÿ589) sol. 5: (1700, 1788, 46) 7, 12, 20, 24, 26, 34, 37 0.9
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DM, a directional search to improve one objective
function or a more strategic search in problems
with scattered nondominated sets. Computational
probes have highlighted how such a search tool
may be of value as an element of an interactive
MOILP method.

The current version of our method only uses
some well known cutting planes that make it very
limited in practice. However, further cutting plane
techniques for pure integer programs could also be
included. In order to make this multiobjective
cutting plane approach more reliable in practice,
we have been exploiting its combination with a
multiobjective Branch and Bound approach. This
seems to us a promising avenue. Besides, we have
been improving the computational implementa-
tion by building an integrated MOILP decision
support system. This system makes the most of
graphical displays, namely the representation of
the reference point space (like Fig. 3(b)).
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Appendix A

Proof of Proposition 1. This proposition is proved
in a similar way as Theorem 3.1 in Steuer and
Choo (1983). The di�erence between Theorem 3.1
and this proposition is that, while the former refers
to a weighted Tchebyche� program where the
reference point is always the ideal criterion point,
the latter refers to a non-weighted Tchebyche�
program considering any reference point. h

Fig. 3. Graphical displays for the facility location problem.
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Proof of Proposition 2. This proposition can be
proved by following steps similar to the proof of
Theorem 3.7 in Steuer and Choo (1983). We recall
that Theorem 3.7 refers to an augmented weighted
Tchebyche� program where the reference point is
®xed to the ideal criterion point, z�, and the
controlling parameters are the weights k in
(ki�z�i ÿ cix�).

Ü follows directly from Theorem 3.7 in Steuer
and Choo (1983) considering ki� 1, i� 1,. . .,k, and
z� � z�.
) considering z�i � ~zi � h, i� 1,. . .,k, where

h � maxi�1;...;k�z�i ÿ ~zi�, this implication is easily
proved by simple adaptations of Lemmas 3.2 and
3.3 and Theorem 3.4 of Steuer and Choo
(1983). h

Proof of Proposition 3. Let aa be the a optimal
value for (P1, za�) and za the image of xa on the
objective function space.

Case I: If za�
p ÿ za

p � aa then �xa; aa � hp� is a
feasible solution for (P1, zb�). If it is not an optimal
solution (this means that (i) does not hold) then
there exists another solution (xb; ab) that optimizes
(P1, zb�). Let zb be the image of xb on the objective
function space. Since ab < aa � hp and zb�

p ÿ
zb

p6 ab () za�
p � hp ÿ zb

p6 ab, then za�
p ÿ zb

p < aa.
By the assumption of case I, za�

p ÿ za
p � aa, thus

zb
p > za

p.
Case II: za�

p ÿ za
p < aa. Consider two situations:

II.1: If hp6 aa ÿ za�
p � za

p then

zb�
p ÿ za

p6 za�
p � �aa ÿ za�

p � za
p� ÿ za

p � aa

() zb�
p ÿ za

p 6 aa: �A:1�

Also,

zb�
i ÿ za

i 6 aa for all i 6� p

because zb�
i � za�

i ; i 6� p: �A:2�

By A.1 and A.2, �xa; aa� is a feasible solution
for (P1, zb�). On the other hand, any feasible
solution (~x; ~a) for (P1, zb�) is also feasible to
(P1, za�). Since �xa; aa� is optimal for (P1, za�),
then aa6 ~a. Hence �xa; aa� is also optimal for
(P1, zb�).
II.2: If hp > aa ÿ za�

p � za
p then

hp � �aa ÿ za�
p � za

p� � dp with dp > 0:

De®ne

zc� � �za�
1 ; . . . ; za�

p � �aa ÿ za�
p � za

p�; . . . ; za�
k �:

According to II.1, �xa; aa� is an optimal solu-
tion for (P1, zc�) and zc�

p ÿ za
p � aa holds. The

result produced by

zb� � �zc�
1 ; . . . ; zc�

p � dp; . . . ; zc�
k �

in relation to zc� follows case I. h

Proof of Proposition 4. Suppose that there exists xc

e�cient that minimizes (P1, zc�) and does not
minimize (P1, za�) neither (P1, zb�). Let zc be the
image of xc on the objective function space. Let aa,
ab and ac the optimal values of a for (P1, za�),
(P1, zb�) and (P1, zc�), respectively.

Case I: If zc�
p ÿ zc

p � ac then ac is non-integer;
Let bacc be the integer part and haci the fractional
part of ac, i.e. ac � bacc � haci.

For all i 6� p; since zc�
i is integer;

zc�
i ÿ zc

i 6 bacc: �A:3�

0 < hp < 1 and 0 < haci < 1 implying that

hp ÿ haci � 0

and zc
p � za�

p ÿ bacc: �A:4�
By A.3 and A.4, (xc, bacc) is feasible for (P1, za�).
Let (xa, aa) be an optimal solution for (P1, za�).
Then (xa, aa � hp) is feasible for (P1, zc�). aa < bacc
because xc does not minimize (P1, za�). So, aa �
hp < bacc � hp � bacc � haci � ac which contra-
dicts the hypothesis that (xc, ac) minimizes
(P1, zc�).

Case II: If zc�
p ÿ zc

p < ac then there exists Ij �
f1; . . . ; kgnfpg such that zc�

j ÿ zc
j � ac, j 2 Ij and ac

is integer.

zc�
j ÿ zc

j � ac () zb�
j ÿ zc

j � ac; j 2 Ij; �A:5�

for all i 62 Ij [ fpg; zb�
i ÿ zc

i < ac; �A:6�
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and for p,

zc�
p ÿ zc

p < ac () zb�
p ÿ zc

p < ac ÿ hp � 1:

The left-hand side is integer, which implies that

zb�
p ÿ zc

p6 ac: �A:7�
By A.5, A.6 and A.7, (xc, ac) is feasible for
(P1, zb�). Let (xb, ab) be an optimal solution for
(P1, zb�). (xb, ab) is feasible for (P1, zc�) and ab < ac

because (xc, ac) does not minimize (P1, zb�) which
contradicts the hypothesis that (xc, ac) minimizes
(P1, zc�). h

Proof of Proposition 5. Every integer feasible
solution (~x, ~a) for (P1, zb�) satis®es A. ~x� b and
ci � ~x� ~a P zb�

i ; i � 1; . . . ; k. As zb�
i P za�

i for all i,
(~x, ~a) is also feasible to (P1, za�). Hence, the
(P1, zb�) feasible set is a subset of the (P1, za�)
feasible set and the proposition holds. h
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