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Abstract

This note presents the main characteristics of a decision support system (DSS) dealing with multiobjective integer

and mixed-integer programming problems. The DSS is based on interactive reference point approaches developed by

the authors for this kind of problems. It is implemented for Windows platforms and aims at providing an open

communication protocol for interaction with the decision maker(s).
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1. Introduction

Some interactive decision support systems

(DSSs) have been developed for dealing with multi-

ple objective integer (or mixed-integer) linear pro-

gramming problems (MOILP/MOMILP). They

implement interactive procedures, which consider
distinct protocols to interact with the decision

maker (DM) and to guide the decision process, and

use different techniques to compute nondominated

solutions. Examples of different interactive ap-

proaches are described in [5–7].

In our opinion, open communication ap-

proaches, which enable a free exploration of the
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problem and a progressive learning of the non-

dominated solution set, are more suitable for

dealing with MOILP/MOMILP problems than

those approaches that aim at converging to the

optimum of an implicit utility function. In open

communication approaches there are no irrevoca-

ble decisions during the whole process and the DM
is always allowed to go backwards at a later in-

teraction. For instance, finding twice the same

solution does not necessarily mean entering in

cycle. The state of knowledge of the DM can vary

during this learning process, and so different op-

tions originating from the same starting solution

may occur. The process only finishes when the DM

considers to have gained sufficient insight into the
nondominated solution set to base a final decision.

We have developed an open communication

DSS whose principal module includes the inter-

active reference point procedures [1,2], previously
ed.

mail to: mjoao@inescc.pt


M.J. Alves, J. Cl�ıımaco / European Journal of Operational Research 155 (2004) 258–265 259
developed for MOILP/MOMILP problems. Since

we believe that joining procedures, as pieces of a

DSS, may not be enough to build an effective DSS,

we have developed the methodology underlying

the DSS and simultaneously we have investigated

the way it should be integrated into a compu-
tational system. The interactive procedures

underlying the system provide a simple protocol to

interact with the DM (not demanding too much

information about his/her preferences at each in-

teraction), allowing the DM to explore freely his/

her convictions and the set of nondominated so-

lutions. The computational effort has been taken

into account, as we have developed sensitivity
analysis/re-optimization techniques to reduce the

time needed to compute new nondominated solu-

tions.

The purpose of this note is, therefore, to present

the architecture of a DSS born from previous

methodological work, complementing the papers

[1,2] on the same research stream. In Section 2 the

main characteristics of the DSS are presented, and
an example is shown in Section 3. This note fin-

ishes with some conclusions in Section 4.
2. The main characteristics of the DSS

The DSS has been designed to solve MOILP/

MOMILP problems. This system is based on in-
teractive reference point procedures [1,2] mainly

devoted to perform directional searches for non-

dominated solutions. At each interaction of a di-

rectional search, the DM needs only to select the

objective function he/she wants to improve in re-

lation to the previous nondominated solution. The

procedure automatically adjusts the reference

point and computes a new nondominated solution.
Nothing else is necessary to abandon the previous

solution and to compute a new one. The adjust-

ment of the reference point is performed by

sensitivity analysis, and leads to a parametric

right-hand side scalarizing program which is

solved using postoptimality techniques. So, con-

secutive nondominated solutions following partic-

ular trajectories (which improve one objective
function at each interaction) can be obtained using

this approach. These features promote directional
searches or local searches, since the following

nondominated solution is close to the previous

one.

The interactive procedure [1] was first deve-

loped for MOILP problems. This approach is

based on cutting planes, and has shown consider-
able practical limitations. Nevertheless, it has also

highlighted how much this type of search tool may

be of value for a MOILP DSS. In fact, during a

directional search the DM does not need to give

explicitly new reference points which could lead to

the same solution or to a solution distant from the

current one.

Consequently, we have then developed the in-
teractive procedure [2] which only differs from [1] in

the technical approach to solve the scalarizing

programs. This is based on the branch-and-bound

methodology and applies not only to MOILP but

also to MOMILP problems. It is intended to per-

form directional searches in an effective way by

including an iterative routine of sensitivity analysis/

re-optimization that uses information provided by
the previous branch-and-bound tree to adjust auto-

matically the reference point and to go ahead in the

computation of the next nondominated solution.

The DSS also includes a procedure that com-

bines the two previous approaches. It only applies

to MOILP and combines cutting planes and

branch-and-bound to solve the scalarizing pro-

grams and to perform the sensitivity analysis/re-
optimization phases. The computational tests have

shown that the branch-and-bound approach out-

performs this one (because it is faster) in most

problems, but there are certain types of problems

(such as multiobjective multidimensional 0–1

knapsack problems) to which the combined ap-

proach suits better than the branch-and-bound

approach.
In our opinion, directional searches provide a

useful decision support tool for the DM. Never-

theless, the experience acquired from their appli-

cation to several test problems raised some

questions, such that: how useful are the directional

searches in the initial phase of the decision process,

when the DM does not know anything about the

problem? If the DM wants to perform a global
search, will it be easy for him/her to specify ref-

erence points explicitly?



260 M.J. Alves, J. Cl�ıımaco / European Journal of Operational Research 155 (2004) 258–265
We have felt that it is difficult to a DM to make

a strategic search at an early phase of the decision

process. A strategic search is important to get a

holistic knowledge of the nondominated solution

set of the problem, enabling the DM to define

anchor points to the following search phases. A
holistic knowledge of the problem can be provided

by the computation of the nondominated solutions

that optimize each objective function individually

(and compose the pay-off table) and/or other

supported nondominated solutions obtained by

the optimization of weighted-sums of the objec-

tive functions considering a set of well-dispersed

weighting vectors.
Another weak point of the directional searches

is the following: in each interaction, the DM

chooses an objective function to be improved, but

he/she does not have control over the variation of

the other objective functions. Then, the algorithm

searches automatically for the closest solution in a

predefined trajectory that improves the objective

function selected by the DM. But the DM may
also desire to control the variation of the other

objective functions, namely by disallowing that

they decrease below certain levels. Therefore, the

procedure must give the DM the possibility of

imposing additional limitations on the objective

function values. It is worth noting that the intro-

duction of additional limitations on the objective

function values into the original directional sear-
ches corresponds to changing predefined trajecto-

ries to be followed. Thus, the DM is given a great

control over the trajectory and does not require

too much information about his/her preferences:

just the objective function he/she wants to privilege

at each moment, and lower bounds (optional) for

some or all the other objective functions.

We have incorporated the above mentioned
features into the DSS. Thus, the system offers the

DM a set of tools, which can be used at any phase

of the decision process. These tools aim at pro-

viding a progressive learning of the decision al-

ternatives and a gradual establishment of the

preferences of the DM. Some of them, such as the

optimization of weighted-sums of the objective

functions, are in general more useful in an initial
phase of the decision process. The combination

of the directional searches with the possibility of
imposing additional limitations on the objective

function values can be used to scan nondominated

solutions throughout different directions or to

carry out a search focused on a delimited region

(local search), for instance on the neighborhood of

a nondominated solution that the DM considers
interesting. The latter should be more useful in a

final phase of the decision process.

The flowchart of Fig. 1 outlines the protocol

of interaction with the DM implemented in the

DSS.

The DSS has been implemented with the Delphi

developer for Windows platforms. In the design of

the user interface we have tried to make it easy to
learn and easy to use. The basic components are a

menu bar and a main window. The menus are

intended to choose global operations, such as in-

troducing/editing a problem or choosing an inter-

active multiobjective procedure to deal with the

problem. The system also integrates metaheuristic

approaches to deal with multiobjective 0–1 linear

problems (the interested reader may refer to [3]).
The problem files created by the DSS can be

opened and changed using other programs, for

instance the Microsoft Excel.

If the user selects an interactive multiobjective

procedure to deal with the problem, the main

window (Fig. 2 in the next section) will present

tool bars with icon-controls that enable to perform

specific operations, such as:

• to input information of preferences about the

problem, namely to specify new reference points

(information needed to perform E in Fig. 1), in

order to choose an objective function to be im-

proved during a directional search (to perform

F ), to specify weighting vectors for weighted-

sums (to perform C) or to impose bounds on
the objective functions (D);

• to demand the computation of new nondomi-

nated solutions, by projecting a reference point

onto the nondominated solution set (E), starting
a new directional search (entering F ), continuing
in the same directional search (keeping in F ) or
optimizing a weighted-sum (C); these compu-

tations can be performed considering the original
feasible space or a restricted region delimited by

bounds on the objective functions (D);



Fig. 1. Protocol to interact with the DM implemented in the DSS.
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• operations that concern with the analysis of

results: to configure some visualization chara-

acteristics (colors, or the number of solutions

visible on the main window) or to open sepa-

rate windows that show other numerical or
graphical information; to save in disk, save/

delete in/from the memory of the system or

print nondominated solutions already com-

puted.

The interface has been designed to suit an open

communication approach with the DM(s). It en-

ables a free exploration of the problem and a
progressive learning of the set of nondominated

solutions. There are no irrevocable decisions dur-
ing the whole process and the process only finishes

when the DM(s) consider(s) to have gained suffi-

cient insight into the nondominated solution set to

base a final decision. More than one DM is al-

lowed under the paradigm that they search for
consensus, i.e. they work in a cooperative way.

During the process, each DM can save/delete

nondominated solutions in the memory of the

system, keeping at the end of the procedure the

solutions considered more satisfactory. The system

enables a free exchange of information collected

by the DMs. Each DM may choose a shade of

colour for their preferred solutions, which is used
to highlight the contrasts or convergence in the

graphical representations.



Fig. 2. The main window of the system showing solution 4.
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3. An example

Let us consider a multiobjective integer problem

with 250 binary variables, 50 constraints and three

objective functions to be maximized. The structure

of the constraints follows a packing problem, i.e.
the constraint i is of the type

P250

j¼1 aijxj 6 1 with the

aij�s equal to 0 or 1. In this example, the aij�s were
randomly generated with the following proba-

bilities ðpÞ:
0; p ¼ 0:75;
1; p ¼ 0:25:

�

The coefficients of the objective functions were

also randomly generated in the range of integers

½0; 30� (uniformly).

Suppose that the user wants to begin the deci-
sion process by knowing the nondominated solu-

tions that optimize individually each objective

function. So, he/she selects the corresponding op-

tion (computation of the solutions that make up

the pay-off table). The solutions obtained are the
first three solutions saved in the memory of the

system, whose objective function values are: f ð1Þ ¼
ð671; 372; 401Þ, f ð2Þ ¼ ð473; 776; 633Þ and f ð3Þ ¼
ð426; 545; 767Þ. Thus, the ideal solution for this

problem is (671, 776, 767).

Then the user chooses the reference point ap-
proach based on branch-and-bound to explore the

problem. In this case, the user is requested to

choose a reference point to start the search. Con-

sider that the ideal solution is chosen, so the ref-

erence point (671, 776, 767) is projected onto the

nondominated solution set. A new solution is

computed, its objective functions vector being

f ð4Þ ¼ ð527; 721; 661Þ. Fig. 2 shows the main win-
dow of the system with the solution 4. The main

window includes three main panels: the panel on

the left shows bar graphs for the last solution(s);

the panel on the right shows the corresponding

numerical information; above these, there is a

panel of controls (divided into two tabs, ‘‘Stan-

dard’’ and ‘‘View options’’) which includes the

main options available for this procedure.
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Consider that the user wants to make a direc-

tional search (pressing button of Fig. 2), and

chooses criterion f1 as the one to be improved. The

next nondominated solution f ð5Þ ¼ ð536; 625; 702Þ
is obtained. Assuming that the user wants to con-

tinue the search in the same direction (pressing

button ), then the nondominated solution

f ð6Þ ¼ ð542; 657; 589Þ is computed. If the users

continues the search in the same direction, the next

nondominated solution is f ð7Þ ¼ ð604; 567; 657Þ.
Fig. 3(a) shows the main window with bar

graphs for the last four solutions (f ð4Þ; f ð5Þ; f ð6Þ and

f ð7Þ) and the numerical information of the last

solution.

Fig. 3(b) shows indifference regions (for all the

solutions already known) with respect to the ref-

erence points. An indifference region means a re-

gion (set) of reference points that lead to the same
solution. The space of the reference points coincide

with the space of the objective functions. So, when

this space is of dimension 3 (or 2), it can be

graphically visualized, and no information is lost

if we consider just a cut, i.e. a plane (line) where

the sum of the components of the reference points

is constant. Further, the visualization can be re-
Fig. 3. Graphs after computing solution 7. (a) Representation on the m

space.
duced to a triangle (line segment) inside this plane

(line) provided that the limits are defined properly.

All the nondominated solutions of the problem

have an indifference region on this triangle (line

segment), and the individual optima for the ob-

jective functions fill areas near the vertices of the
triangle (line segment). This can be observed in

Fig. 3(b) where solutions 1, 2 and 3, which opti-

mize f1, f2 and f3, respectively, appear in the cor-

ners of the triangle. The indifference regions on

the reference point space are generally nonconvex

and difficult to determine. So, at each interaction,

the DSS only determines convex sub-regions for

one or more nondominated solutions (instead of
the whole indifference region). Then, the DSS fills

the corresponding areas in the triangle with the

colours assigned to those solutions in other

graphs. These areas give information to the users

about reference points that are uninteresting to be

selected because they surely lead to solutions al-

ready known. For more details on this topic, see

[4].
Suppose that now the user decides to impose

the limitation f2 P 580 (by choosing option )

and selects a new starting reference point (pressing
ain window. (b) Indifference sub-regions on the reference point



Fig. 4. Indifference sub-regions for the solutions computed.
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of Fig. 3(a) and inputting the values of the

new reference point into a dialog box, or just

clicking on the desired point of the triangle of Fig.

3(b)). Let the point marked with an � in Fig. 4 be

the new reference point selected by the user. This

reference point is projected onto the nondomi-

nated solution set restricted by f2 P 580, leading

to the already known solution 6: f ð6Þ ¼ ð542; 657;
589Þ. Another indifference sub-region of solution 6
(on the reference points space) is computed and

attached to the area previously determined for this

solution. This can be observed if we compare Fig.

4 with Fig. 3(b). Note that the region of solution 6

in Fig. 4 does not include the selected reference

point marked with an �. This situation is only

possible because the reference point was projected

onto the nondominated solution set restricted by
the limitation f2 P 580. Thus, this reference point

would certainly lead to a solution that does not

satisfy f2 P 580 if it was projected onto the whole

nondominated solution set.

Then, a new directional search is initialized in

the region restricted by f2 P 580. Starting from

the current point, the user selects f3 to be im-
proved. The next solution obtained is f ð5Þ ¼ ð536;
625; 702Þ, which is already known. Continuing the

search in the same direction, the next nondomi-

nated solution is f ð8Þ ¼ ð504; 596; 756Þ. If the user

wants to continue the search in the same direction,

he/she is then informed that the optimum of f3 was
reached in the region restricted by f2 P 580. So,

the decision process could proceed in another di-

rection or from a different starting reference point.

Fig. 4 illustrates the previous search. The da-

shed line in this figure shows the trajectory of

reference points that would be followed if the

limitation f2 P 580 had not been included. As we

have noticed before, the introduction of additional
limitations on the objective function values during

directional searches corresponds to changing the

predefined original trajectories.
4. Conclusions

A new DSS devoted to multiobjective integer
and mixed-integer linear programming models was

introduced in this note. It proposes a learning

oriented search for the nondominated solution set

rather than the convergence to any implicit utility

function of the DM. We believe in open commu-

nication decision support tools combining two

search phases. First, a strategic phase dedicated to

getting a rough idea of the shape of the nondomi-
nated solution set, in order to provide information

that enables the reduction of the scope of the

search, namely the narrowing the feasible region

by introducing bounds on the objective function

values. In a final phase a free local search is re-

commended. Although, in most of the situations,

this is the normal sequence of learning the non-

dominated solution set, the procedures of the dif-
ferent phases can be mixed, i.e. they can be

combined interactively.

The use of graphics and interactive tools to in-

troduce and/or to manage data and to visualize

results were extensively explored in this DSS, tak-

ing into account the cognitive strengths and the

limitations of the Human Being. Nevertheless,

the major innovation of this work is related to the
originality of the calculation tools, namely in the

directional/local search phases. The elicitation of
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information from the DM to pursue the search is

not too hard, i.e. he/she is just asked about the

progressive introduction of bounds on the objective

function values, taking into account the current

state of knowledge of the nondominated solution

set, and of the objective function he/she wants to
improve to follow a directional/local search. Fur-

thermore, it concerns exclusively objective function

values, as recommended by several psychological

studies on interactive procedures. Some features of

the DSS were illustrated using an example.
5. Final notes

The distribution of this software is free. The

software and/or the complete formulation of the

example in Section 3 can be obtained from

the authors.

It is worth noting that this software can be

useful for educational purposes. First, because it

enables a progressive learning of the problem and
a free exploration of the set of nondominated so-

lutions. Second, because the graphics provided by

this system, namely the representation of indiffer-

ence regions of the reference point space (available

for problems with two or three objective func-

tions), make the software useful for a more tech-

nical teaching. The interpretation of this graph

gives a deeper knowledge of the operating mode of
reference point approaches when dealing with

discrete sets of nondominated solutions.
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