
Computers & Operations Research 34 (2007) 1800–1823
www.elsevier.com/locate/cor

Efficient primal-dual heuristic for a dynamic location problem�

Joana Diasa,∗, M. Eugénia Captivob, João Clímacoa

aFaculdade de Economia and INESC-Coimbra, Universidade de Coimbra, Av. Dias da Silva,165, 3004-512 Coimbra, Portugal
bUniversidade de Lisboa, Faculdade de Ciências, Centro de Investigação Operacional, Campo Grande,

Bloco C6, Piso 4, 1749-016 Lisboa, Portugal

Available online 23 September 2005

Abstract

In this paper the dynamic location problem with opening, closure and reopening of facilities is formulated and
an efficient primal-dual heuristic that computes both upper and lower limits to its optimal solution is described.
The problem here studied considers the possibility of reconfiguring any location more than once over the planning
horizon. This problem is NP-hard (the simple plant location problem is a special case of the problem studied). A
primal-dual heuristic based on the work of Erlenkotter [A dual-based procedure for uncapacitated facility location.
Operations Research 1978;26:992–1009] and Van Roy and Erlenkotter [A dual-based procedure for dynamic facility
location. Management Science 1982;28:1091–105] was developed and tested over a set of randomly generated test
problems. The results obtained are quite good, both in terms of the quality of lower and upper bounds calculated as
in terms of the computational time spent by the heuristic. A branch-and-bound procedure that enables to optimize
the problem is also described and tested over the same set of randomly generated problems.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Location; Heuristics; Branch and bound

1. Introduction

The simple plant location problem (SPLP) consists of choosing the locations where to install facilities,
in such a way that all clients can be served by, at least, one operating facility, minimizing the total costs
involved (both fixed costs of opening facilities and costs of assigning clients to open facilities). If there

� This research was partially supported by the research projects POCTI/ISFL-1/152, POCTI/MAT/139/2001, POSI/ISFL-
13/308 and POSI/SRI/37346/2001.∗ Corresponding author. Fax: +351 239 403 511.

E-mail address: joana@fe.uc.pt (J. Dias).

0305-0548/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2005.07.005

http://www.elsevier.com/locate/cor
mailto:joana@fe.uc.pt


J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823 1801

are no capacity constraints associated to the facilities, each client will be assigned to exactly one facility
(the operating facility corresponding to the smallest assignment cost). The SPLP has been widely studied
in the literature [1–8].

The dynamic location problem is a generalization of the SPLP that considers the location of facilities
during a planning horizon. In each period of the planning horizon the assignment of each client to an
operating facility has to be guaranteed.

According to Erlenkotter [9], two main characteristics force the consideration of a dynamic location
problem: the assignment costs change significantly during the planning horizon; there must be significant
costs for relocating facilities. If the first characteristic is absent, the problem can be formulated as a SPLP,
if the second characteristic is absent a set of disconnected SPLP can be considered (one for each period
of the planning horizon).

Wesolowsky [10] was one of the first authors who studied the dynamic location problem. In his paper,
the author generalizes the Weber problem, considering the existence of several time periods. Wesolowsky
and Truscott [11] describe a discrete location problem considering a fixed number of open facilities
in each time period. They describe a resolution method based on dynamic programming. Fong and
Srinivasan [12,13] study the problem of determining a schedule of capacity expansions of facilities over
a planning horizon (determining the location, size and timing of construction of facilities). They present
a heuristic procedure that tries to improve a feasible solution by exchanging capacities between pairs
of regions. Van Roy and Erlenkotter [14] describe the dynamic simple plant location problem without
capacity constraints, considering that a facility can be open in the beginning of a time period (remaining
open until the end of the planning horizon). If there are open facilities at the beginning of the planning
horizon, these existing facilities can be closed at the end of a time period, remaining closed until the
end of the planning horizon. The authors describe a branch-and-bound algorithm that uses a dual ascent
procedure and present computational results that show the efficiency of the method. Laporte and Dejax
[15] study a dynamic location-routing problem and present two different solution approaches to tackle the
problem. Jacobsen [16] describes several multiperiod capacitated location models and methods. Shulman
[17] describes a dynamic location problem with capacity constraints. The author considers a limited
number of possible facility maximum capacities, accepting that more than one facility can be located
at the same site in different time periods (therefore increasing the existing capacity in one location).
The author presents an algorithm based on the Lagrangean relaxation technique. Galvão and Santibãnez-
Gonzalez [18] consider a generalization of the p-median problem to several time periods (clients should
be assigned to a set of pk facilities in period k, minimizing installation and transportation costs). They
describe a Lagrangean heuristic and show some computational results. Melachrinoudis et al. [19] describe
a multiobjective, capacitated dynamic model for the location of landfills. Hinojosa et al. [20] deal with
the problem of multiproduct dynamic location and develop a heuristic procedure based on a Lagrangean
relaxation. Antunes and Peeters [21] present a dynamic location problem that considers the location of
new facilities, or the closure, reduction or expansion of existing facilities (this work was based on a real
case) and study the advantages and limitations of simulated annealing to solve this problem.

In most problems described in the literature that consider the possibility of opening and closing of
facilities, no location can have its configuration changed more than once during the planning horizon.
This means that if a facility is open at the beginning of a time period it will remain open until the end
of the planning horizon, and if a facility is closed at the end of a time period, it will remain closed. The
paper by Wesolowsky and Truscott [11] is an exception to this rule, but in this article the fixed costs
of opening a facility are the same whether a facility was already operating in a given location or not.



1802 J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823

Furthermore, the authors do not consider either the existence of operating costs during the time periods
the facilities are operating, or the existence of fixed closing costs when a facility is closed. Chardaire et
al. [22] and Canel et al. [23] consider the possibility of a facility being open, closed and reopen more
than once. Nevertheless, the authors do not differentiate between open and reopen fixed costs (which, in
most cases, are clearly different), and present a non-linear objective function.

The dynamic location problem formulated in this paper considers the possibility of opening, closing and
reopening a facility more than once during the planning horizon. The differentiation between the opening
and the reopening of a facility is convenient because it allows the differentiation of the corresponding
fixed costs. There are several situations where these costs are clearly different (for instance, if the facilities
have already been acquired or, in case of locating obnoxious facilities, if studies of environmental impact
have already been done). The model proposed also considers the existence of operating and closing costs
(that most of the times cannot be ignored). It is also possible to consider the existence of open facilities
at the beginning of the planning horizon.

The model described is a generalization of the SPLP, so it is straightforward to conclude that it is a NP-
hard problem [4]. A primal-dual heuristic is developed that builds primal and dual admissible solutions,
trying to force the complementary conditions to be satisfied. Whenever the heuristic is unable to find the
optimal solution to the problem, it provides a primal admissible solution and a lower bound to the optimal
solution value. Therefore, it is always possible to check the quality of the best primal solution calculated.

In the next section the problem is formulated. In Section 3, the dual problem is derived. In Section 4,
the primal-dual heuristic is described. In Section 5 a branch-and-bound procedure based on the heuristic
of Section 4 guaranteeing the calculation of the optimal solution is described. In Section 6, the results of
the computational tests are presented. In Section 7, some conclusions are pointed out, and future work
directions are outlined.

2. Problem formulation

Let us define the following notation:

J {1, . . . , n} set of indexes corresponding to the clients’ locations;
I {1, . . . , m} set of indexes corresponding to facilities’ possible locations;
T number of time periods considered in the planning horizon;
ct
ij cost of assigning client j to facility i in period t;

FA�
it fixed cost of opening a facility i at the beginning of period t, and closing the facility at the

end of period � (the facility will be in operation from the beginning of t to the end of �);
FR�

it fixed cost of reopening a facility i at the beginning of period t, and closing it at the end of
period � (the facility will be in operation from the beginning of t to the end of �);

and let us define the variables:

a
�
it =

{1 if facility i is opened at the beginning of period t and stays open until
the end of period �,

0 otherwise,



J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823 1803

r
�
it =

{1 if facility i is reopen at the beginning of period t and stays open until
the end of period �,

0 otherwise,

xt
ij =

{
1 if client j is assigned to facility i during period t,

0 otherwise.

Variables r
�
it are only defined for period t greater than one. The fixed costs incurred by opening or

reopening a facility i from period t to � should consider the opening costs at period t, fixed operating costs
from t to � and also closure costs at period �. The dynamic location problem that allows facilities to open,
close and reopen more than once during the planning horizon will be formulated as DLPOCR:

DLPOCR:

Min
T∑

t=1

m∑
i=1

n∑
j=1

ct
ij x

t
ij +

m∑
i=1

T∑
t=1

T∑
�=t

FA�
it a

�
it +

m∑
i=1

T∑
t=2

T∑
�=t

FR�
it r

�
it (1)

s.t.:
m∑

i=1

xt
ij = 1 ∀j ∈ J, t = 1, . . . , T , (2)

t∑
�=1

T∑
�=t

(a
�
i� + r

�
i�)− xt

ij �0 ∀ i ∈ I, j ∈ J, t = 1, . . . , T , (3)

t−1∑
�=1

t−1∑
�=�

a
�
i� −

T∑
�=t

r
�
it �0 ∀ i ∈ I, t = 1, . . . , T , (4)

T∑
t=1

T∑
�=t

a
�
it �1 ∀ i ∈ I , (5)

t∑
�=1

T∑
�=t

(a
�
i� + r

�
i�)�1 ∀ i ∈ I, t = 2, . . . , T , (6)

a
�
it , x

t
ij ∈ {0, 1} ∀ i ∈ I, j ∈ J, t = 1, . . . , T , �� t ,

r
�
it ∈ {0, 1} ∀ i ∈ I, t = 2, . . . , T , �� t . (7)

Constraints (2) guarantee that, in every time period, each client is fully assigned to exactly one facility;
constraints (3) assure that, in every time period, a client can only be assigned to facilities that are opera-
tional in that time period; constraints (4) guarantee that a facility can only be reopened at the beginning of
period t if it has already been opened earlier and is not in operation at the beginning of period t; constraints
(5) impose that a facility can only be opened once during the planning horizon; constraints (6) assure
that, in every time period, only one facility can be opened in each location. Constraints (5) and (6) need to



1804 J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823

be considered explicitly only when there are negative fixed costs. If all fixed costs are greater than zero,
then (5) and (6) could be replaced by

t∑
�=2

T∑
�=�

r
�
i� �1 ∀ i ∈ I, t = 2, . . . , T . (8)

The formulation presented will also be valid if there are facilities operating before the beginning of the
planning horizon. Consider the set Ic ⊂ I such that for i ∈ Ic, i is opened before the beginning of the
planning horizon. The facilities belonging to Ic can remain opened during the first time period or can be
closed even before the beginning of time period 1. Consider:

a
�
i1 =

{1 if facility i is already open before the first time period and stays open until
the end of period �,

0 otherwise,

a
�
it =

{1 if facility i is closed before the beginning of the first time period, is reopen for the
first time at the beginning of period t and stays open until the end of period �,

0 otherwise.

Variables a
�
i1 are defined for i ∈ Ic and variables a

�
it are defined for i ∈ Ic, t > 1. The fixed costs

associated with variables a
�
i1, i ∈ Ic, correspond to the operating costs during the periods the facility is in

operation, plus the costs of closing the facility at the end of �. The fixed costs associated with variables
a

�
it , i ∈ Ic and t > 1, correspond to the costs incurred by closing the facility before the beginning of time

period 1, plus the costs of reopening the facility at the beginning of time period t, plus operating costs
during the periods the facility is opened, plus the costs of closing the facility. Reinterpreting variables
a

�
it , i ∈ Ic, in this way makes it possible to use the formulated problem without having to increase the

number of restrictions or variables.

3. Formulation of the dual problem

3.1. Dual formulation

Multiplying constraints (5) and (6) by −1 and associating dual variables vt
j with constraints (2), wt

ij

with constraints (3), ut
i with constraints (4), �i with constraints (5) and �t

i with constraints (6), the dual
problem of DLPOCR can be formulated as D-DLPOCR:

D-DLPOCR:

Max
T∑

t=1

n∑
j=1

vt
j −

m∑
i=1

�i −
T∑

t=1

m∑
i=1

�t
i (9)

s.t.:
vt
j − wt

ij �ct
ij ∀ i ∈ I, j ∈ J, t = 1, . . . , T , (10)



J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823 1805

n∑
j=1

�∑
�=t

w�
ij +

T∑
�=�+1

u�
i − �i −

�∑
�=t

��
i �FA�

it ∀ i ∈ I, t = 1, . . . , T , �= t, . . . , T , (11)

n∑
j=1

�∑
�=t

w�
ij − ut

i −
�∑

�=t

��
i �FR�

it ∀ i ∈ I, t = 2, . . . , T , �= t, . . . , T , (12)

wt
ij , u

t
i, �i , �t

i �0 ∀ i ∈, j ∈ J, t = 1, . . . , T .

An equivalent condensed formulation is obtained by considering wt
ij =max{0, vt

j − ct
ij }:

CD-DLPOCR:

Max
T∑

t=1

n∑
j=1

vt
j −

m∑
i=1

�i −
T∑

t=1

m∑
i=1

�t
i

s.t.:
n∑

j=1

�∑
�=t

max{0, v�
j − c�

ij }�FA�
it −

T∑
�=�+1

u�
i + �i +

�∑
�=t

��
i

∀ i ∈ I, t = 1, . . . , T , �= t, . . . , T (13)

n∑
j=1

�∑
�=t

max{0, v�
j−c�

ij }�FR�
it+ut

i+
�∑

�=t

��
i ∀ i∈I, t = 1, . . . , T , �=t, . . . , T (14)

ut
i, �i , �t

i �0 ∀ i ∈ I, j ∈ J, t = 1, . . . , T .

3.2. Complementary conditions

Let us define:

SA�
it = FA�

it −
T∑

�=�+1

u�
i + �i +

�∑
�=t

��
i −

n∑
j=1

�∑
�=t

max{0, v�
j − c�

ij }

∀ i ∈ I, t = 1, . . . , T , �= t, . . . , T , (15)

SR�
it = FR�

it + ut
i +

�∑
�=t

��
i −

n∑
j=1

�∑
�=t

max{0, v�
j − c�

ij }

∀ i ∈ I, t = 2, . . . , T , �= t, . . . , T , (16)

S
�
it =min{SA�

it , SR�
it } ∀ i ∈ I, t = 1, . . . , T , �= t, . . . , T . (17)



1806 J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823

The following complementary conditions hold in presence of optimal primal and dual solutions to the
problems DLPOCR and its dual problem D-DLPOCR (when there is no duality gap)

⎛
⎝ t∑

�=1

T∑
�=t

(a
�
i� + r

�
i�)− xt

ij

⎞
⎠ wt

ij = 0 ∀ i ∈ I, j ∈ J, t = 1, . . . , T , (18)

⎛
⎝ t−1∑

�=1

t−1∑
�=�

a
�
i� −

T∑
�=t

r
�
it

⎞
⎠ ut

i = 0 ∀ i ∈ I, t = 1, . . . , T , (19)

⎛
⎝ T∑

t=1

T∑
�=t

a
�
it − 1

⎞
⎠ �i = 0 ∀ i ∈ I , (20)

⎛
⎝ t∑

�=1

T∑
�=�

(a
�
i� + r

�
i�)− 1

⎞
⎠ �t

i = 0 ∀ i ∈ I, t = 2, . . . , T , (21)

SA�
it a

�
it = 0 ∀ i ∈ I, t = 1, . . . , T , �= t, . . . , T , (22)

SR�
it r

�
it = 0 ∀ i ∈ I, t = 2, . . . , T , �= t, . . . , T . (23)

4. Primal-dual heuristic

The primal-dual heuristic that has been developed builds admissible primal solutions based on admis-
sible dual solutions to problem D-DLPOCR, trying to force conditions (18)–(23) to be satisfied. If the
heuristic can find a pair of primal and dual solutions that satisfy all the complementary conditions, then
it has discovered the optimal solution. When this does not happen, the best dual solution known will give
a lower bound to the optimum value of the primal objective function. The heuristic functioning scheme
is the following:

1. Initialization of dual variables.
2. Dual ascent procedure for dual variables vt

j .
3. Primal procedure.
4. Dual adjustment procedure for dual variables �i . If the dual solution is changed go to 2.
5. Repeat the dual-primal adjustment procedure for variables vt

j until there is no improvement in the dual
objective function value.

6. Dual adjustment procedure for dual variables �i . If the dual solution is changed go to 2.
7. Dual ascent procedure for dual variables ut

i . If the dual solution is changed go to 2.



J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823 1807

8. Dual descent procedure for dual variables ut
i . If the dual solution is changed go to 2.

9. Dual adjustment procedure for variables �t
i . If the dual solution is changed go to 2.

The heuristic will stop when the optimal primal solution is found, or when there are no improvements
in primal or dual objective function values.

The order in which the several procedures are executed can be changed, giving rise to a number of very
similar heuristics. The sequence presented was the one that gave the best results with the preliminary test
problems solved.

4.1. Initialization of dual variables

Dual variables are initialized as follows:

1.

vt
j =min

i
{ct

ij }, ∀j ∈ J, t = 1, . . . , T ; �t
i = 0, ∀ i ∈ I, t = 1, . . . , T ;

2.

ut
i =

⎧⎨
⎩max

{
0,−min

t
� � t

FR�
it

}
, if ∃FR�

it < 0,

0, otherwise

∀ i ∈ I, t = 1, . . . , T ;

3.

�i =max

⎧⎨
⎩0,−min

t
� � t

⎛
⎝FA�

it −
T∑

�=�+1

u�
i

⎞
⎠

⎫⎬
⎭ , ∀ i ∈ I, t = 1, . . . , T .

4.2. Dual ascent procedure for variables vt
j

This procedure tries to increase all dual variables vt
j , j ∈ J+, J+ ⊂ J . If this procedure is executed

in step 2 of the heuristic, then J+ is the whole set J . Whenever this procedure is executed within
other procedure, the set J+ will be defined before dual ascent procedure is called. This procedure is a
straightforward adaptation of the one described in [14]. The only difference is in the updating step of
slacks SA�

i� and SR�
i�: each time the value of vt

j is increased, slacks SA�
i� and SR�

i�, �� t ��, have to be
updated (its value will be decreased by the same amount the dual variable was increased, if vt

j is greater
than or equal to ct

ij ).

4.3. Primal procedure

The primal-dual heuristic intends to build primal admissible solutions to DLPOCR based on dual
admissible solutions, trying to force conditions (18)–(23) to be satisfied. Consider the following set



1808 J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823

definitions:

I ∗ = {(i, �, �) : S�
i� = 0},

I ∗t = {i : (i, �, �) ∈ I ∗ and �� t ��},
I+t = {i : facility i is opened during period t},
I+A = {(i, �, �) : a�

i� = 1},
I+R = {(i, �, �) : r�

i� = 1}.

The set I ∗ corresponds to (i, �, �), such that SA�
i� and/or SR�

i� are equal to zero. The set I ∗t corresponds
to the facilities that can be opened during period t . A facility i belongs to set I+t if it is going to be opened
during period t . Sets I ∗t and I+t are not necessarily equal, because the procedure will always try to open
the minimum number of facilities, guaranteeing that all clients will be assigned to one operating facility
in every time period. Sets I+A and I+R are built during the primal procedure and determine which facilities
will be (re) opened, when and for how long.

The primal procedure begins by including in set I+t all facilities belonging to I ∗t that are considered
essential during period t .

Definition 1. A facility i is considered essential during period t if there is at least one client j that has to
be assigned to facility i during period t . This happens if and only if ∃j ∈ J : vt

j �ct
ij ∧ vt

j < ct
i′j ,∀ i′ ∈

I, i′ �= i.

Non-essential facilities would only be operational during time period t if there are clients j that cannot
be assigned to essential facilities. In this case, the procedure includes in set I+t the facility i belonging to
I ∗t that corresponds to the smallest cost ct

ij .

Primal procedure

1. I+A = I+R =�. I+t =�, ∀t . Build sets I ∗ and I ∗t . Num= 0.
2. For t = 1, . . . , T , include in set I+t all facilities i such that ∃j : vt

j �ct
ij and vt

j < ct
i′j , ∀ i′ �= i.

3. For each client j such that vt
j < ct

ij ,∀ i ∈ I+t , include in set I+t facility i such that ct
ij=minvt

j �ct
i′j

ct
i′J .

Num= Num+ 1. If Num= 1 then I+A = I+R =�. I ∗t = I+t and I+t =�, ∀t , go to 2. Else go to 4.
4. Build sets I+A and I+R . Update I+t . For t = 1, . . . , T , assign each client j to facility i′ ∈ I+t such that

ct
i′j = mini∈I {ct

ij }.
5. Test complementary conditions (19)–(21).

In the primal procedure, steps 4 and 5 require special attention. As a matter of fact, building sets
I+A and I+R is much more complicated than building set I+ as described in Dynaloc [14] taking into

account the remarks of Saldanha da Gama and Captivo [24]. If, for a facility i ∈ I+t , S
�
i� = 0, �� t ��

for more than one pair (�, �), the choice of which variable to include in set I+A or I+R is not trivial. To
build these sets two procedures were developed. For each facility i, these procedures include in I+A or I+R
variables that guarantee facility i will be opened at least during periods t such that i ∈ I+t , and that satisfy



J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823 1809

constraints (4)–(6). Defining

t1 =min{� : i ∈ I+� } and t2 =max{� : i ∈ I+� }
procedure 1 tries to build a solution from period t1 forward, and procedure 2 tries to build a solution from
period t2 backwards. In step 4 of the heuristic, both procedures are executed.

Procedure 1:

begin= 1; time= t1; opening= true;
WHILE time� t2

IF i ∈ I+time THEN
�= begin; �= T ; t = time; stop= false;
WHILE �� t and not stop

WHILE �� t and not stop
IF ∃(i, �, �) ∈ I ∗ THEN

IF opening THEN
(i, �, �)→ I+1A

opening= false
ENDIF
ELSE (i, �, �)→ I+1R ENDELSE
time= begin= �+ 1
stop= true

ENDIF
ELSE �= �− 1 ENDELSE

ENDWHILE
�= �+ 1; �= T

ENDWHILE
IF not stop THEN

IF opening THEN
(i, begin, t2)→ I+1A

opening= false
ENDIF
ELSE (i, begin, t2)→ I+1R ENDELSE
time= t2 + 1

ENDIF
ENDIF
ELSE time= time+ 1 ENDELSE

ENDWHILE

This step can be described formally as follows:

Step 4 of primal procedure:

1. i = 1;
2. If ∃t : i ∈ I+t , go to 3; else go to 8;
3. t1 = min{� : i ∈ I+� }; t2 = max{� : i ∈ I+� };



1810 J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823

4. I+1A = I+A ; I+1R = I+R . Execute Procedure 1;
5. I+2A = I+A ; I+2R = I+R . Execute Procedure 2;

6. sum1= ∑
(i,�,�)∈I+1A

FA�
i� +

∑
(i,�,�)∈I+1R

FR�
i�; sum2= ∑

(i,�,�)∈I+2A

FA�
i� +

∑
(i,�,�)∈I+2R

FR�
i�;

7. If (sum1 < sum2) I+A = I+1A, I+R = I+1R; else I+A = I+2A, I+R = I+2R;
8. i = i + 1; if i > m stop. Else go to 2.

Procedure 2:

end= T ; time= t2;
WHILE time� t1

IF i ∈ I+time THEN
�= 1; �= end; t = time; stop= false;
WHILE �� t and not stop

WHILE �� t and not stop
IF ∃(i, �, �) ∈ I ∗ THEN

IF �� t1 THEN (i, �, �)→ I+2A ENDIF
ELSE (i, �, �)→ I+2R ENDELSE
time= end= �− 1
stop= true

ENDIF
ELSE �= �+ 1 ENDELSE

ENDWHILE
�= �− 1; �= 1

ENDWHILE
IF not stop THEN

(i, t1, end)→ I+2A

time= t1 − 1
ENDIF

ENDIF
ELSE time= time− 1 ENDELSE

ENDWHILE

After the execution of step 4, a primal admissible solution is found, but conditions (19)–(23) can be
violated. As can be seen from procedures 1 and 2, for each facility i there will be at most one violation
of conditions (22) or (23). Step 5 of the primal procedure tries to decrease the number of violations of
conditions (19)–(21). These conditions imply that:

• If �i �= 0, then facility i has to be opened during one or more time periods.
• If �t

i �= 0, then facility i has to be operating during period t.
• If ut

i �= 0, then, facility i has to be reopened at the beginning of period t, if it had already been opened
and closed before t.

Proposition 1. If �i , �t
i and ut

i are all greater than zero then, if the complementary conditions (19) are
satisfied, conditions (20) and (21) will also be satisfied.



J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823 1811

Proposition 2. If �i and �t
i are simultaneously greater than zero and conditions (21) are satisfied, then

conditions (20) will also be satisfied.

These propositions follow directly from the definition of the complementary conditions (19)–(21), and
are used in step 5 of the primal procedure.

Step 5 of the Primal Procedure

i = 1
WHILE i�m

�verified= false; �verified= false; t = 1;
WHILE t �T

IF ut
i �= 0 and ∃(i, �, �) ∈ I+A , � < t THEN

IF �(i, t, �) ∈ I+R THEN
tmax= min {� : (i, �, �) ∈ I+R and � > t}
tmax= min {T , tmax}
IF ∃(i, t, �) ∈ I ∗, � < tmax THEN

(i, t, �)→ I+R
�verified= true; �verified= true

ENDIF
ENDIF
ELSE �verified= true; �verified= true ENDELSE

ENDIF
IF �t

i = 0 and �verified= false THEN
IF i /∈ I+t THEN

IF ∃(i, �, �) ∈ I+A THEN
tmin= max {� : (i, �, �) ∈ I+A ∪ I+R , � < t}
tmax= min {� : (i, �, �) ∈ I+A ∪ I+R , � > t}

ENDIF
ELSE tmin= 1; tmax= T ENDELSE
IF ∃(i, �, �) ∈ I ∗ : �� tmin and �� tmax THEN

(i, �, �)→ I+A or I+R
�verified= false

ENDIF
ENDIF
ELSE �verified= true ENDELSE

ENDIF
ENDWHILE
IF �verified= false and �i �= 0 THEN

Choose (i, �, �) ∈ I ∗
(i, �, �)→ I+A

ENDIF
ENDWHILE



1812 J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823

4.4. Dual adjustment procedure for variables �i

If it is possible for a variable �i to decrease its value, the dual objective function value will automatically
increase. The value of variable �i can be decreased if SA�

i� �= 0, ∀1����.

Increasing the value of the dual variable �i , increases all slacks SA�
i�. The change in these slacks allows

the increase of some vt
j that were blocked. However, variables �i have a coefficient of minus one in the

dual objective function. Therefore, they should only be increased if the enhancement of variables vt
j is

compensatory. It should be noted that it is worth trying to increase �i only if SR�
i� �= 0 and SA�

i� = 0.

Otherwise, a change in the slack SA�
i� would not be reflected in dual variables vt

j .

Dual adjustment procedure for dual variables �i

Consider I t∗
j = {i : ∃(�, �) with �� t ��|(i, �, �) ∈ I ∗ and vt

j �ct
ij }.

1. i ← 1;
2. ��i ← min��� {SA�

i�}. If ��i = 0 then go to 3. Else go to 7.

3. ��i = max{SR�
i� : ∃(i, �, �) ∈ I+R with SA�

i� = 0 and SR�
i� �= 0}.

4. If ��i �= 0 then �i ← �i + ��i ; SA�
i�← SA�

i� + ��i , ∀�, ���. Else go to 8.
5. J+={(j, t) : I t∗

j ={i}, ∀t}. Execute the dual ascent procedure for dual variables vt
j ·J+=J . Execute

the dual ascent procedure for dual variables vt
j .

6. ��i =min
�

� � �

SA�
i�.

7. ��i = min{��i , �i}. If ��i �= 0 then SA�
i�← SA�

i� − ��i , ∀�, ���; �i ← �i − ��i .
8. If i = #I then stop. Else i ← i + 1; go to 2.

Proposition 3. The dual adjustment procedure for dual variables �i cannot worsen CD-DLPOCR
objective function value.

Proof. Decreasing the value of dual variable �i , keeping the dual solution admissible, constitutes an
improvement in the dual objective function value (because variable �i has a coefficient of minus one in
the objective function).

Increasing the value of �i , increases the value of some slacks. Consider that �vt
j is the change in the

value of variable vt
j after the execution of the dual ascent procedure in step 5. Let �1�i be the increase

calculated in step 4, �2�i the decrease calculated in step 7 and ��i = �1�i − �2�i . Consider SA
′�
i� as the

slack resulting from the execution of the dual adjustment procedure. It should be noted that �1�i ��2�i . To

check that this inequality always holds, consider slack SA
′�
i� that was equal to zero and that was increased

by �1�i . During the execution of the dual ascent procedure (step 5) this slack can only decrease, therefore,

�2�i �SA
′�
i� ��1�i .

After the procedure execution, two situations can arise:

1. If there is some slack SA
′�
i� that has returned to its original value, it means that the increase in

variable �i was totally used by the dual ascent procedure for the increase in dual variables vt
j ,



J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823 1813

so
∑

j

∑
t �vt

j ��1�i : SA
′�
i� = SA�

i� + ��i −
∑

j

∑�
t=� �vt

j , therefore if SA
′�
i� = SA�

i� then ��i −∑
j

∑�
t=� �vt

j = 0.

2. If SA
′�
i� = SA�

i� for all slacks, then it means that they are all greater than zero, and the procedure

will decrease the value of the dual variable �i . Consider slack SA
′�
i�, with vt

j �ct
ij , that after step

6 was changed to SA
′�
i� = SA�

i� + �1�i −
∑

j

∑�
t=� �vt

j . As SA
′�
i� > SA�

i�, this means that: �1�i −∑
j

∑�
t=� �vt

j > 0 ⇔ �1�i >
∑

j

∑�
t=� �vt

j . If�i kept its value, the objective function value would
diminish. However, this variable will be decreased by �2�i , calculated as in step 7. This means that at
least one slack will be equal to zero, so the increase in variable �i will be compensated by the increase
in the dual variables vt

j :

SA
′�
i� = SA�

i� + �1�i − �2�i −
∑
j

�∑
t=�

�vt
j = 0.

As SA�
i� �0 then: �1�i − �2�i −

∑
j

∑�
t=� �vt

j �0⇔ �1�i − �2�i �
∑

j

∑�
t=� �vt

j .
In the worst case, the decrease in step 7 is equal to the increase in step 4, and the dual objective function

does not change.

4.5. Dual-primal adjustment procedure for variables vt
j

The dual-primal adjustment procedure for variables vt
j detects violations of the complementary con-

ditions (18), and decreases the values of some variables vt
j , allowing other variables vt

j to increase. This
procedure can reduce the number of violations of complementary conditions (18) and, at the same time,
can improve the value of the dual objective function.

Consider the following sets:

I t∗
j = {i : ∃(�, �) with �� t ��|(i, �, �) ∈ I ∗ and vt

j �ct
ij },

I t+
j = {i : i ∈ I+t and vt

j > ct
ij },

J t+
i = {(j, �) : I �∗

j = {i} and (i, �, �) /∈ I ∗, ����� < t or t < �����},
ct−
j =maxi {ct

ij : vt
j > ct

ij }.

The set I t+
j indicates, for each client j, all operating facilities during period t such that vt

j is greater
than the assignment cost ct

ij . A violation of the complementary condition (18) is detected by the existence

of, at least, one pair (j, t) such that the number of elements in I t+
j is greater than one. Decreasing the

value of a variable vt
j such that the number of elements in I t+

j is greater than one, means that at least

slacks S
�
i�, �� t ��, will be increased for two distinct facilities. This may promote the increase in the dual

objective function. The set J t+
i represents all variables vt

j whose value can be increased with the rise of

slack S
�
i�, �� t ��. This procedure is based on the works of Erlenkotter [3] and Van Roy and Erlenkotter

[14] taking into account the remarks of Saldanha da Gama and Captivo [24].



1814 J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823

4.6. Dual ascent procedure for variables ut
i

Increasing variables ut
i , increases slacks SR�

it , �� t , but at the same time diminishes slacks SA�
i�, ��� < t .

If the procedure is able to increase slacks S
�
i� that are blocking variables vt

j , decreasing

S
�
i� that are not blocking any variable vt

j , then it will be possible to improve the dual objective
function value.

If there is SR�
it=0 and SA�

it �= 0, then the increase in ut
i can be of help. This situation occurs, for instance,

when (i, t, �) ∈ I+A with SA�
it �= 0 and SR�

it=0. In this case, SR�
it=0 should not increase more than SA�

it−
SR�

it , because any further increase will not change the value of S
�
it . On the other hand, variable ut

i cannot

grow more than the minimum value of SA�
i�, ∀��� < t , so that the dual solution remains admissible.

Increasing variable ut
i can diminish the number of violations of complementary conditions (22).

Consider variables ut
i organized as a sequence of pairs (i, t).

Dual ascent procedure for dual variables ut
i

1. Initialize (i, t)← (i, t)1; q ← 1.
2. �← t; �ut

i ← 0; �← 0.

3. If SR�
it = 0 and SA�

it �= 0, then �ut
i ← max{�ut

i, SA�
it } and �← 1.

4. If �= T go to 5, else �← �+ 1, go to 3.
5. If � = 0, go to 7. Else �ut

i ← min{�ut
i, min���<t SA�

i�}, SR�
it ← SR�

it + �ut
i,∀�� t . SA�

i� ← SA�
i� −

�ut
i,∀��� < t and ut

i ← ut
i + �ut

i .
6. J+ = {(j, t) : I t∗

j = {i},∀t}. Execute the dual ascent procedure for variables vt
j . J+ = J . Execute the

dual ascent procedure for variables vt
j .

7. If q = #I × T then stop. Else q ← q + 1; (i, t)← (i, t)q , go to 2.

4.7. Dual descent procedure for variables ut
i

Decreasing ut
i will decrease slacks SR�

it , �� t , and increase slacks SA�
i�, ��� < t . To guarantee the

admissibility of the dual solution, variable ut
i can only be decreased if SR�

it > 0,∀�� t . If the procedure is

able to increase slacks S
�
i� that are blocking dual variables vt

j and decrease slacks that does not influence
vt
j values, then it is possible to improve the dual objective function value.

Dual descent procedure for variables ut
i

1. Initialize (i, t)← (i, t)1; q ← 1.
2. If ut

i = 0 go to 6; Otherwise, �ut
i ← 0; �← 0.

3. If SR�
it > 0, ∀�� t , then �ut

i ← min�� t {SR�
it } and �← 1.

4. If �= 0 go to 6. Else �ut
i ← min{�ut

i, u
t
i}; SR�

it ← SR�
it − �ut

i,∀�� t . SA�
i�← SA�

i�+ �ut
i,∀��� < t

and ut
i ← ut

i − �ut
i .

5. J+ = {(j, t) : I t∗
j = {i},∀t}. Execute the dual ascent procedure for variables vt

j . J+ = J . Execute the
dual ascent procedure for variables vt

j .
6. If q = #I × T then stop. Else q ← q + 1; (i, t)← (i, t)q , go to 2.



J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823 1815

4.8. Dual adjustment procedure for variables �t
i

Increasing the value of �t
i will increase slacks S

�
i�, �� t ��. If there are slacks S

�
i�, �� t �� that are

blocking dual variables vt
j , then it is possible to improve the value of the dual objective function. However,

it is only worth to increase �t
i if the change in dual variables vt

j compensates the loss of �t
i in the objective

function value (the variable �t
i has a coefficient of minus one). If the procedure is able to diminish the

value of �t
i , maintaining the dual solution feasibility, then there is an immediate improvement in the dual

objective function value.
Consider variables �t

i organized as a sequence of pairs (i, t), and M a large positive number.

Dual adjustment procedure for variables �t
i

1. Initialize (i, t)← (i, t)1; q ← 1.
2. ��t

i = min�� t �� S
�
i�. If ��t

i �= 0, then go to 6. Else ��t
i ← M .

3. S
�
i�← S

�
i� + ��t

i ,∀�� t ��; �t
i = �t

i + ��t
i .

4. J+ = {(j, t) : I t∗
j = {i},∀t}. Execute the dual ascent procedure for variables vt

j . J+ = J . Execute the
dual ascent procedure for variables vt

j .

5. ��t
i = min�� t �� S

�
i�.

6. ��t
i = min{��t

i , �t
i}. If ��t

i �= 0 then S
�
i�← S

�
i� − ��t

i ,∀ �� t �� and �t
i = �t

i − ��t
i .

7. If q = #I × T then stop. Else q ← q + 1; (i, t)← (i, t)q , go to 2.

5. Branch-and-bound procedure

A branch-and-bound procedure was developed that guarantees the calculation of the optimum solution
to DLPOCR, whenever the primal-dual heuristic described cannot find it. In this procedure, variables are
always fixed first to zero and then to one. The tree is searched using a depth search procedure. At every
node of the tree, the primal-dual heuristic is executed. The variable to be fixed is chosen according to the
complementary conditions that are being violated by the current pair of primal and dual solutions, and
according to the following order:

1. If a
�
i� = 1 and SA�

i� �= 0, then choose variable r
�
i�.

2. If r
�
i� = 1 and SR�

i� �= 0, then choose variable a
�
i�.

3. If ut
i �= 0 and r

�
it = 0,∀�� t , then choose variable r

�
it such that SR�

i� = 0.

4. If �t
i �= 0 and a

�
i� = r

�
i� = 0,∀�� t ��, then choose variable a

�
i� or r

�
i� such that S

�
i� = 0.

5. If vt
j > ct

ij , for more than one facility i ∈ I+, then choose variable a
�
i� ∈ I+A or r

�
i� ∈ I+R , �� t ��.

The order presented was the one that gave the best results in the preliminary test problems solved.
Variables are fixed to one or to zero using procedures similar to the ones described in [3]. To fix one
variable to zero, its fixed cost is changed to + ∝. This will not put at risk the admissibility of the dual
solution. To fix the variable to one, its fixed cost is changed to zero. This will impose some changes
in the dual solution that, in general, becomes inadmissible. If variable a

�
i� or r

�
i� is fixed to one, then



1816 J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823

all dual variables vt
j such that vt

j > ct
ij , �� t ��, will have to be changed to vt

j = ct
ij (and consequently

slacks will have to be increased). This causes deterioration in the value of the dual objective function
value, that is compensated by summing up to this value the fixed cost of the variable that was fixed
to one.

Using a heuristic, to calculate a primal solution at every node of the branch-and-bound tree, has a major
disadvantage: the primal solution calculated might not be optimum, so the node can be fathomed only if
one of the following conditions holds:

1. The problem is infeasible.
2. The dual objective function value equals the primal objective function value, meaning the optimal

solution of the current node has been found.
3. The current dual objective function value is worse than the objective function value of the best primal

solution found thus far.

6. Computational tests

6.1. Description of the computational experiments

The primal-dual heuristic and the branch-and-bound procedure were tested with a set of randomly
generated problems. The following values for m, n and T were considered and, for each combination, five
problems were generated (total of 360 problems):

n 25 50 100 200 500 1000
m 5 10 50 100
T 5 20 50

The test problems were generated according to the following procedure:

1. Random generation of (x, y) coordinates in the plane, according to a uniform distribution and con-
sidering a 500× 500 square. These coordinates correspond to the location of the m+ n nodes of the
network.

2. Random creation of arcs between the network nodes, considering a probability of 75%.
3. Creation of arcs (not created in step 2) between nodes such that the Euclidean distance from one

another is less than 50, with probability of 80%.
4. Generation of costs associated with arcs: for the first period, the costs are randomly generated according

to a uniform distribution, in the interval [100,1100]. For t > 1, the cost associated to the arc in period
t is equal to the cost in t − 1 plus a changing factor randomly generated corresponding to a variation
between −10% and +10%.

5. For each time period, calculation of the shortest path between each client and each facility, using the
Floyd–Warshall algorithm [25].

6. For each facility i and period t, consider tend = t, . . . , T . For tend = t , random generation of fixed
costs for variables atend

it and r tend
it according to a uniform distribution in the interval [500,3500]. For

tend > t , random generation of a factor between 0% and 10% that represents an increase in the fixed
cost for tend− 1.



J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823 1817

All test problems, as well as the source code and executable file for the generation algorithm, are
available upon request from the authors. All experiments were carried out in a Pentium 4, 1.80 Ghz,
running under Windows 2000 operating system, with a maximum of 2000 MB of virtual memory and
260 kb of Ram.

Both heuristic and branch-and-bound procedure were programmed using C-language and Borland-C++
compiler (version 5.0). The performance of these two algorithms was compared with the performance of
Cplex, version 7.0.

The branch-and-bound procedure is terminated whenever the branch-and-bound tree reaches level
25,000, or when the execution time exceeds 175,000 s. Cplex terminates without calculating the optimal
solution whenever more than 2,100,000,000 nodes of the branch-and-bound tree are explored, or when
the number of simplex iterations in a node exceeds 2,100,000,000, or when there is not enough memory
to read the problem.

After the execution of the primal-dual heuristic, a local search procedure was executed. Consider the
following notation:

SOLS = set of solutions constituting the k-neighborhood of solution S.
ZS = primal objective function value considering solution S.

Definition 2. An admissible solution S′ to DLPOCR is said to be in the k-neighborhood of the admissible
solution S if and only if S′ differs from S by the insertion or removal of at most k functioning continuous
time periods to a facility i.

The local search procedure can be described as follows:

Local search procedure

1. k← 1. S = current primal solution.
2. Calculate S+ ∈ SOLS such that ZS+ = minS′∈SOLs

{ZS′ }.
3. If ZS+ < ZS , then S ← S+ and go to 2. Else go to 4.
4. k← k + 1. If k > T then stop. Else go to 2.

6.2. Computational results

The computational results obtained considering T equal to 5 will be omitted because the computational
times spent by the primal-dual heuristics are less than 15 s, and the computational results obtained consid-
ering T equal to 20 and 50 are representative of the behavior of the heuristic when compared to Cplex and
branch-and-bound. These results are, however, available from the authors upon request. Table 1 shows
average results of the quality of the primal solutions obtained by the primal-dual heuristic, and after the ex-
ecution of the local search procedure around the best solution found by the heuristic. For each set (n, m, T ),
five problems were generated and solved by the heuristic. The table shows the worst, the best and the
average value of the deviations of the best primal solution found from a known lower bound on the optimal
value. This lower bound is equal to the optimum value for all problems Cplex or the branch-and-bound
algorithm were able to solve. For all the others, this lower bound is given by the best dual solution found
by the primal-dual heuristic. The values shown are calculated, in percentage, as (Z−ZLB)/ZLB, where Z
is the objective function value of the best primal solution found and ZLB is the value of the lower bound.



1818 J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823

Table 1
Quality of the primal solution (in percentage)

T m n Primal-dual heuristic Primal-dual heuristic T m n Primal-dual heuristic Primal-dual heuristic
+ local search + local search
procedure procedure

Best Average Worst Best Average Worst Best Average Worst Best Average Worst

20 5 25 0.00 0.01 0.04 0.00 0.00 0.00 50 5 25 0.00 6.34 15.89 0.00 2.70 8.06
20 5 50 0.00 0.49 1.99 0.00 0.27 1.35 50 5 50 1.98 5.74 10.75 0.13 1.53 5.19
20 5 100 0.00 1.05 3.78 0.00 0.22 1.08 50 5 100 2.33 4.40 7.02 0.00 1.12 4.37
20 5 200 0.00 0.36 0.89 0.00 0.02 0.05 50 5 200 0.22 3.26 9.83 0.00 0.39 0.90
20 5 500 0.00 0.54 0.88 0.00 0.00 0.00 50 5 500 0.33 1.79 3.34 0.00 0.57 1.79
20 5 1000 0.00 0.19 0.38 0.00 0.01 0.04 50 5 1000 0.39 1.55 3.62 0.02 0.49 1.53
20 10 25 0.00 0.54 2.70 0.00 0.01 0.03 50 10 25 6.71 9.52 11.93 0.65 1.66 2.18
20 10 50 0.00 0.44 1.44 0.00 0.16 0.79 50 10 50 0.74 9.59 27.41 0.00 0.70 1.79
20 10 100 0.00 1.26 3.30 0.00 0.00 0.00 50 10 100 0.64 3.27 4.92 0.22 1.08 2.81
20 10 200 0.00 0.77 1.81 0.00 0.05 0.09 50 10 200 4.03 8.03 19.7 0.60 2.16 5.07
20 10 500 0.00 0.08 0.27 0.00 0.02 0.10 50 10 500 0.53 2.40 4.61 0.03 0.58 2.10
20 10 1000 0.00 0.20 0.69 0.00 0.02 0.06 50 10 1000 0.24 2.12 4.38 0.06 0.90 3.02
20 50 25 0.00 1.52 4.61 0.00 0.00 0.00 50 50 25 8.32 12.47 17.01 2.33 4.64 6.09
20 50 50 0.53 1.91 3.66 0.00 1.13 3.16 50 50 50 5.01 8.15 12.81 0.40 3.04 7.66
20 50 100 0.48 1.93 4.06 0.00 0.32 1.20 50 50 100 1.30 5.70 12.46 0.88 2.53 3.52
20 50 200 0.59 2.52 5.24 0.00 1.86 3.45 50 50 200 3.41 5.30 7.26 1.16 2.21 4.72
20 50 500 0.22 0.90 2.39 0.00 0.39 1.34 50 50 500 2.36 4.19 6.99 0.17 1.17 1.81
20 50 1000 1.21 1.74 2.26 0.67 1.17 1.98 50 50 1000 1.40 2.40 2.85 0.39 1.07 1.80
20 100 25 0.39 2.09 5.40 0.00 0.23 0.93 50 100 25 4.81 14.32 40.14 2.27 3.51 6.73
20 100 50 0.90 1.99 3.57 0.00 0.72 2.48 50 100 50 4.91 9.88 22.98 1.13 2.44 4.20
20 100 100 0.42 2.33 4.51 0.00 0.32 0.54 50 100 100 1.65 5.78 9.93 0.85 2.73 7.99
20 100 200 0.15 1.51 2.79 0.00 0.22 0.53 50 100 200 3.33 7.19 8.87 0.73 3.04 7.75
20 100 500 2.04 2.58 3.49 0.80 1.50 2.24 50 100 500 2.50 4.33 5.83 1.17 2.06 2.50
20 100 1000 2.38 2.82 3.05 2.08 2.62 2.96 50 100 1000 3.44 4.83 7.06 2.03 2.53 3.16

Average results 0.39 1.24 2.63 0.15 0.47 1.02 Average results 2.52 5.94 11.57 0.63 1.87 4.03

Table 2 shows, in percentage, the quality of the lower bound on the optimal objective function value
calculated by the primal-dual heuristic. The quality of the lower bound is calculated as (Z∗ −ZLB)/Z∗,
where Z∗ represents the best objective function value known.

Table 3 compares the execution times in seconds of the primal-dual heuristic with and without the
execution of the local search procedure, and Table 4 shows the execution times of Cplex and of the
branch-and-bound procedure.

The heuristic was able to find primal solutions for all of the test problems. Problems that neither Cplex
nor the branch-and-bound procedure were able to solve are not considered in Tables 2 and 4. The symbol
‘–’ means that the corresponding procedure was not able to solve any of the 5 problems. For instances
with (T , m, n) = (5, 100, 500) and (20, 100, 50), Cplex was not able to solve one of the five problems.
For instances with (T , m, n)= (20, 50, 500), the branch-and-bound procedure was not capable of solving
one of the five problems. In these cases, the values presented consider only four executiontimes.



J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823 1819

Table 2
Quality of the lower bound

T m n Lower bound

Best Average Worst

20 5 25 0.00 0.08 0.39
20 5 50 0.00 0.01 0.03
20 5 100 0.00 0.41 1.24
20 5 200 0.00 0.00 0.00
20 5 500 0.00 0.00 0.00
20 5 1000 0.00 0.00 0.00
20 10 25 0.00 0.01 0.06
20 10 50 0.00 0.13 0.63
20 10 100 0.00 0.03 0.10
20 10 200 0.00 0.07 0.28
20 10 500 0.00 0.01 0.04
20 10 1000 0.00 0.00 0.00
20 50 25 0.00 0.28 1.06
20 50 50 0.41 1.05 1.59
20 50 100 0.14 0.45 0.81
20 50 200 0.46 0.79 1.58
20 50 500 0.48 0.56 0.61
20 100 25 0.20 1.20 3.06
20 100 50 1.05 1.35 2.16
20 100 100 0.49 0.98 1.53
20 100 200 0.52 1.03 1.84
Average results 0.18 0.40 0.81

50 5 25 0.00 0.11 0.24
50 5 50 0.04 0.21 0.29
50 5 100 0.00 0.37 0.92
50 10 25 0.00 0.15 0.48
50 10 50 0.00 0.72 2.03
50 10 100 0.20 0.84 2.11
50 10 200 0.01 0.21 0.49
Average results 0.04 0.37 0.94

6.3. Conclusions

The analysis of the computational results allows drawing some conclusions:

1. The primal-dual heuristic is an efficient procedure to calculate admissible solutions to DLPOCR. The
heuristic is able to calculate good-quality solutions in reasonable computational times even for very
large instances of the problem. The average deviation from the best-known lower bound is 2.59%.

2. The execution of the local search procedure after the primal-dual heuristic is worthwhile, because the
additional computational time needed can result in a significant improvement in the quality of the best
primal solution found. The average deviation from the best-known lower bound is 0.86%.



1820 J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823

Ta
bl

e
3

Pr
im

al
-d

ua
lh

eu
ri

st
ic

co
m

pu
ta

tio
na

lt
im

es
in

se
co

nd
s

T
m

n
Pr

im
al

-d
ua

lh
eu

ri
st

ic
Pr

im
al

-d
ua

lh
eu

ri
st

ic
T

m
n

Pr
im

al
-d

ua
lh

eu
ri

st
ic

Pr
im

al
-d

ua
lh

eu
ri

st
ic

+
lo

ca
ls

ea
rc

h
+

lo
ca

ls
ea

rc
h

B
es

t
A

ve
ra

ge
W

or
st

B
es

t
A

ve
ra

ge
W

or
st

B
es

t
A

ve
ra

ge
W

or
st

B
es

t
A

ve
ra

ge
W

or
st

20
5

25
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
50

5
25

0.
3

0.
3

0.
5

0.
3

0.
5

0.
7

20
5

50
0.

0
0.

1
0.

1
0.

0
0.

1
0.

1
50

5
50

0.
9

1.
0

1.
1

1.
4

1.
4

1.
5

20
5

10
0

0.
1

0.
1

0.
1

0.
1

0.
2

0.
2

50
5

10
0

1.
7

1.
8

1.
9

2.
5

2.
6

2.
7

20
5

20
0

0.
2

0.
3

0.
3

0.
2

0.
3

0.
4

50
5

20
0

3.
8

4.
0

4.
2

4.
4

5.
8

6.
9

20
5

50
0

0.
6

0.
9

1.
3

0.
6

1.
0

1.
6

50
5

50
0

8.
9

10
.2

11
.8

9.
6

14
.9

20
.3

20
5

10
00

1.
2

1.
9

2.
4

1.
2

2.
1

2.
9

50
5

10
00

18
.6

21
.1

3
22

.8
31

.5
33

.6
37

.6
20

10
25

0.
0

0.
0

0.
1

0.
0

0.
0

0.
1

50
10

25
1.

3
1.

6
1.

8
2.

0
2.

2
2.

5
20

10
50

0.
1

0.
2

0.
2

0.
1

0.
2

0.
3

50
10

50
3.

7
4.

0
4.

5
3.

9
5.

1
5.

6
20

10
10

0
0.

4
0.

5
0.

6
0.

5
0.

6
0.

8
50

10
10

0
7.

8
8.

4
9.

6
10

.0
10

.7
12

.1
20

10
20

0
1.

0
1.

1
1.

2
1.

0
1.

4
1.

5
50

10
20

0
15

.6
16

.2
17

.0
23

.6
24

.8
25

.5
20

10
50

0
2.

6
3.

0
3.

6
2.

6
3.

4
4.

3
50

10
50

0
40

.3
42

.4
44

.8
58

.7
62

.3
66

.0
20

10
10

00
5.

3
6.

0
6.

7
5.

3
8.

0
10

.6
50

10
10

00
80

.5
81

.4
83

.2
11

1.
5

12
6.

6
13

8.
5

20
50

25
0.

6
0.

7
1.

0
0.

7
0.

9
1.

2
50

50
25

57
.0

69
.1

72
.9

60
.6

73
.4

77
.5

20
50

50
3.

7
4.

7
5.

2
4.

1
5.

0
5.

5
50

50
50

16
8.

2
17

2.
5

17
8.

1
18

3.
8

18
7.

9
19

3.
7

20
50

10
0

13
.7

13
.9

14
.3

15
.0

15
.5

16
.1

50
50

10
0

35
9.

8
36

7.
8

37
5.

6
40

1.
4

41
9.

1
44

9.
4

20
50

20
0

30
.5

30
.9

31
.6

34
.6

37
.2

40
.4

50
50

20
0

73
6.

7
74

4.
2

75
0.

4
81

4.
4

87
1.

4
89

6.
1

20
50

50
0

78
.8

80
.7

82
.0

92
.8

10
1.

6
10

8.
6

50
50

50
0

18
52

.8
18

64
.8

18
76

.1
21

22
.9

22
41

.6
23

87
.5

20
50

10
00

15
8.

6
16

0.
8

16
3.

0
18

6.
1

20
1.

5
21

5.
6

50
50

10
00

27
46

.2
35

35
.1

37
56

.5
37

46
.9

42
76

.2
44

72
.1

20
10

0
25

2.
8

3.
2

3.
5

3.
4

3.
6

3.
8

50
10

0
25

28
3.

9
30

7.
5

32
9.

8
29

8.
6

32
0.

8
34

0.
1

20
10

0
50

17
.4

21
.0

25
.5

18
.2

21
.9

26
.3

50
10

0
50

75
5.

4
77

3.
6

79
2.

6
78

0.
9

80
5.

2
83

7.
3

20
10

0
10

0
56

.8
57

.8
59

.9
59

.4
61

.5
63

.7
50

10
0

10
0

16
11

.2
16

30
.0

16
38

.5
16

95
.6

17
39

.5
17

90
.3

20
10

0
20

0
13

2.
0

13
6.

5
14

0.
7

14
9.

2
15

3.
1

15
7.

4
50

10
0

20
0

33
02

.0
33

14
.0

33
23

.4
34

65
.1

36
00

.6
36

69
.0

20
10

0
50

0
33

4.
8

33
7.

5
33

9.
7

37
1.

6
39

7.
9

41
5.

5
50

10
0

50
0

82
98

.7
83

25
.9

83
55

.6
87

31
.9

90
26

.7
93

92
.4

20
10

0
10

00
68

0.
9

70
5.

7
72

1.
0

73
0.

0
77

4.
1

84
8.

0
50

10
0

10
00

16
69

1.
7

16
73

5.
7

16
76

8.
7

17
53

2.
7

18
17

7.
2

18
58

0.
3



J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823 1821

Table 4
Cplex and branch-and-bound execution times in seconds

T m n Cplex Branch-and-bound

Best Average Worst Best Average Worst

20 5 25 1.1 1.2 1.4 0.0 0.3 1.7
20 5 50 2.2 2.3 2.3 0.0 1.8 8.5
20 5 100 4.8 28.7 123.0 0.1 2.5 9.0
20 5 200 13.0 15.7 22.6 0.3 3.3 11.8
20 5 500 476.0 563.6 790.4 1.5 37.0 85.2
20 5 1000 7531.3 7821.6 8479.0 1.4 26.1 95.2
20 10 25 2.6 2.9 3.9 0.0 0.0 0.1
20 10 50 5.8 6.0 6.1 0.2 2.3 6.7
20 10 100 13.5 14.2 14.6 0.6 2.5 6.4
20 10 200 174.8 271.3 541.6 1.3 8.9 17.4
20 10 500 9019.7 9379.2 9690.0 3.3 21.4 84.9
20 10 1000 — — — 6.6 41.8 128.7
20 50 25 48.5 118.2 345.9 2.7 22.4 98.9
20 50 50 619.6 1881.2 3163.7 6.1 79.2 240.6
20 50 100 9160.8 9657.4 9891.8 26.0 154.1 386.7
20 50 200 — — — 174.4 10218.9 38633.6
20 50 500 — — — 1335.2 24601.9 81552.6
20 100 25 618.4 1574.3 3349.5 13.0 44.5 81.1
20 100 50 9325.1 14092.7 20264.3 64.2 5202.9 20157.0
20 100 100 — — — 164.6 597.0 1254.8
20 100 200 — — — 9323.7 52291.0 173287.4
50 5 25 115.6 152.9 186.0 0.3 30.8 113.6
50 5 50 3560.2 3994.2 4898.3 1.7 2211.7 8148.3
50 5 100 — — — 579.1 1168.6 1819.8
50 10 25 3913.2 4070.8 4242.4 32.1 2343.9 4377.2
50 10 50 — — — 432.3 9585.0 21667.7
50 10 100 — — — 142.6 6248.5 13398.5
50 10 200 — — — 2391.2 21833.1 46346.8

3. The lower bounds calculated by the heuristic are, in general, very tight. The average deviation from
the optimal solution is 0.43%, and the worst deviation is 4.62%.

4. Cplex is unable to solve large instances of the problem.
5. In 86% of the problems solved by Cplex, the optimal solution of DLPOCR linear relaxation was an

integer solution.
6. The branch-and-bound algorithm is, in average, more efficient than Cplex. Nevertheless, it needs to

build branch-and-bound trees with much more nodes than Cplex. The branch-and-bound procedure
has more difficulties solving problems with large n values. This is due to the fact that larger n values
lead to an increasing number of violations of complementary conditions (18). The branch-and-bound
algorithm is, in general, capable of solving larger instances of the problem than Cplex.



1822 J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823

In what concerns the characteristics of the DLPOCR solutions calculated, they can be very different,
even for problems of the same size. Nevertheless, it is possible to point out some observations:

1. It is in problems with a large number of periods (T �20) and few facility locations (m�10) that
facilities tend to be opened, closed and reopened more often. As the number of possible facility
locations increases, the number of facilities that are opened more than once decreases.

2. Defining the set I+={i ∈ I : ∃(i, �, �) ∈ I+A ∪I+R }, it is possible to consider two subsets of I+: subset
I+1 containing facilities that are opened during most time periods, and subset I+2 containing facilities
that are opened sporadically. With the increase in the number of possible facility locations, there is an
increase in the number of facilities belonging to subset I+2 .

3. The assignment of clients to facilities is basically stable during the planning horizon, because the
assignment is generally made considering facility belonging to I+1 . Exception is made for periods
where facilities belonging to I+2 are in operation.

7. Conclusions and future work directions

In this paper the DLPOCR was formulated and an efficient primal-dual heuristic was described. This
problem, studied here for the first time as an integer linear problem, increases the flexibility of the dynamic
simple location problems. The model introduces the possibility of opening and closing a facility more
than once during the planning horizon. It also considers explicitly not only installation (differentiating
opening and reopening costs) and operating costs but also costs incurred by the closure of a facility. The
primal-dual heuristic developed is capable of solving even large instances of the problem, generating
good-quality solutions, and calculates tight lower bounds for the optimal objective function value.

The quality of the results obtained encouraged the authors to study the DLPOCR with additional
restrictions, namely capacity restrictions [26]. These capacity restrictions can be dealt with in two ways:
considering them explicitly in the dual problem formulation, or relaxing them in a Lagrangean way. In
the latter case, the problem obtained is the DLPOCR, and a subgradient optimization method can be
used. Instead of solving DLPOCR optimally, the lower bounds calculated by the primal-dual heuristic
can be used.

References

[1] Beasley JE. Lagrangean heuristics for location problems. European Journal of Operational Research 1993;65:383–99.
[2] Cornuejols G, Nemhauser G, Wolsey L. The uncapacitated facility location problem. In: Mirchandani PB, Francis RL,

editors. Discrete location theory. New York: Wiley Interscience; 1990. p. 119–72.
[3] Erlenkotter D. A dual-based procedure for uncapacitated facility location. Operations Research 1978;26:992–1009.
[4] Krarup J, Pruzan P. The simple plant location problem: survey and synthesis. European Journal of Operational Research

1983;12:36–81.
[5] Krarup J, Pruzan P. Ingredients of locational analysis in discrete location. In: Mirchandani PB, Francis RL, editors. Discrete

location theory. New York: Wiley Interscience; 1990. p. 1–54.
[6] Morris JG. On the extent to which certain fixed-charged depot location problems can be solved by LP. Journal of the

Operational Research Society 1978;29:71–6.



J. Dias et al. / Computers & Operations Research 34 (2007) 1800–1823 1823

[7] Ross T, Soland R. Modelling facility location problems as generalized assignment problems. Management Science
1977;24:345–57.

[8] Swain R. A parametric decomposition approach for the solution of uncapacitated location problems. Management Science
1974;21:189–98.

[9] Erlenkotter D. A comparative study of approaches to dynamic location problems. European Journal of Operational Research
1981;6:133–43.

[10] Wesolowsky GO. Dynamic facility location. Management Science 1973;19:1241–8.
[11] Wesolowsky G, Truscott W. The Multiperiod location-allocation problem with relocation of factilities. Management Science

1975;22:57–65.
[12] Fong CO, Srinivasan V. The multiregion dynamic capacity expansion problem—Part I. Operations Research 1981;29:

787–99.
[13] Fong CO, Srinivasan V. The multiregion dynamic capacity expansion problem—Part II. Operations Research 1981;29:

800–16.
[14] Van Roy T, Erlenkotter D. A dual-based procedure for dynamic facility location. Management Science 1982;28:

1091–105.
[15] Laporte G, Dejax P. Dynamic location-routing problems. Journal of the Operational Research Society 1989;40:471–82.
[16] Jacobsen S. Multiperiod capacitated location models. In: Mirchandani PB, Francis RL, editors. Discrete location theory.

New York: Wiley Interscience; 1990. p. 173–207.
[17] Shulman A. An algorithm for solving dynamic capacitated plant location problems with discrete expansion sizes. Operations

Research 1991;39:423–36.
[18] Galvão RD, Santibañez-Gonzalez R. A Lagrangean heuristic for the P -median dynamic location problem. European

Journal of Operational Research 1992;58:250–62.
[19] Melachrinoudis E, Min H, Wu X. A multiobjective model for the dynamic location of landfills. Location Science 1995;3:

143–66.
[20] Hinojosa Y, Puerto J, Fernández FR. A multiperiod two-echelon multicommodity capacitated plant location problem.

European Journal of Operational Research 2000;123:271–91.
[21] Antunes A, Peeters D. On solving complex multi-period location models using simulated annealing. European Journal of

Operational Research 2001;130:190–201.
[22] Chardaire P, Sutter A, Costa M-C. Solving the dynamic facility location problem. Networks 1996;28:117–24.
[23] Canel C, Khumawala B, Law J, Loh A. An algorithm for the capacitated, multi-commodity, multi-period facility location

problem. Computers & Operations Research 2001;8:411–27.
[24] Saldanha da Gama F, Captivo ME. A note on a dual based procedure for dynamic facility location. Working Paper 11/96,

Centro de Investigação Operacional, Faculdade de Ciências da Universidade de Lisboa, 1996.
[25] Ahuja R, Magnanti T, Orlin J. Network flows-theory, algorithms and applications. Englewood Cliffs, NJ: Prentice-Hall;

1993.
[26] Dias J, Captivo ME, Clímaco J. Capacitated dynamic location problems with opening, closure and reopening of facilities.

Inescc Research Report 02/2004.


	Efficient primal-dual heuristic for a dynamic location problem62626262
	Introduction
	Problem formulation
	Formulation of the dual problem
	Dual formulation
	Complementary conditions

	Primal-dual heuristic
	Initialization of dual variables
	Dual ascent procedure for variables vjt
	Primal procedure
	Dual adjustment procedure for variables rhoi
	Dual-primal adjustment procedure for variables vjt
	Dual ascent procedure for variables uit
	Dual descent procedure for variables uit
	Dual adjustment procedure for variables piit

	Branch-and-bound procedure
	Computational tests
	Description of the computational experiments
	Computational results
	Conclusions

	Conclusions and future work directions
	References


