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Abstract

In this paper we present a technique to compute the maximum of a weighted sum of the objective functions in multiple
objective linear fractional programming (MOLFP). The basic idea of the technique is to divide (by the approximate ‘mid-
dle’) the non-dominated region in two sub-regions and to analyze each of them in order to discard one if it can be proved
that the maximum of the weighted sum is in the other. The process is repeated with the remaining region. The process will
end when the remaining regions are so little that the differences among their non-dominated solutions are lower than a pre-
defined error. Through the discarded regions it is possible to extract conditions that establish weight indifference regions.
These conditions define the variation range of the weights that necessarily leads to the same non-dominated solution. An
example, illustrating the concept, is presented. Some computational results indicating the performance of the technique are
also presented.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The computation required by a multiobjective
linear programming (MOLP) method is very easy
when compared with the complexity and computa-
tional burden usually needed to compute one
non-dominated solution in multiple objective linear
fractional programming (MOLFP). The weighted
sum of the functions is probably the widest multicri-
teria approach used in practice to aggregate the
objective functions according to the preferences of
the decision maker (DM). This aggregation leads
to a fractional function where the linear numerator
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and denominator of each objective function turns
out to be (in the general case) polynomials, the
degree of which equals the number of objective
functions. Thus, this transformation of the MOLFP
in to a single criterion problem leads to a very diffi-
cult problem to solve by the nowadays existing tech-
niques. Schaible and Shi (2003) consider it one of
the most difficult fractional problems encountered
so far – it is much more removed from convex pro-
gramming than other multiratio problems. Schaible
and Shi (2003) provide a survey of applications and
various algorithmic approaches for this problem.

In this paper we present a new technique (a new
and faster version of the algorithm presented in
Costa and Lourenço, 2001) for computing the max-
imum of the weighted sum of the linear fractional
.
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objective functions. This means to compute the non-
dominated solution of the MOLFP problem associ-
ated with a given weight vector for the objective
functions. The basic idea of the technique is to
divide (by the approximate ‘middle’) the non-domi-
nate region in two sub-regions and to analyze each
of them in order to discard one if it can be proved
that the maximum of the weighted sum is in the
other. The process is repeated with the remaining
region. It is not always possible to discard one of
the regions and so the process must be repeated
for both, building a search tree. In most problems
it is only after a certain level of the search tree that
we can start to discard regions. The process will end
when the remaining regions are so little that the dif-
ferences among their non-dominated solutions are
lower than a pre-defined error.

One region can be discarded when the value of
the weighted sum of its ideal point is worst than
the value of the weighted sum of a non-dominated
solution belonging to another region not yet dis-
carded. This condition can be used for computing
the weight indifference regions. Considering all the
discarded regions we build a set of constraints defin-
ing the weight variation ranges that necessarily leads
to the same non-dominated solution. It is possible
that weight vectors not fulfilling the set of con-
straints also lead to the same non-dominated solu-
tion, but at least we will have information about
part of the indifference region. This information is
very useful in multiobjective, because in most appli-
cations the decision makers (DM’s) will not be sat-
isfied with just one run of the technique. They will
want to know what happens if they change the
weight vector. Knowing part of the weight indiffer-
ence region will ease the computation burden.

The needed amount of calculus of the technique
is the corresponding to the computation of the ideal
point for each region that is created. To compute
the ideal point of one region we need to solve a lin-
ear programming problem for each objective func-
tion. In this paper we present some computational
results for several performance tests. We can con-
clude that the technique performs very well when
compared with the nowadays existing techniques.
Kuno (2002) seems be the existing technique that
proved to have the highest performance. Neverthe-
less, it is very difficult to compare techniques,
because several of the existing ones attempt also
to solve other kinds of problems. Schaible and Shi
(2003) present a good survey about the techniques
and try to compare them. We would like to empha-
size the work of Falk and Palocsay (1992), Konno
and Yamashita (1999), Konno and Abe (1999),
Konno and Fukaishi (2000), Freund and Jarre
(2001), Kuno (2002), Phuong and Tuy (2003), Dai
et al. (2005) because they constitute chronologic
marks of the work in the field. Nevertheless, the
break through of the technique presented in this
paper was achieved by the explicit consideration
of a sum of linear ratios as a multiobjective prob-
lem: probably there is much to gain in the design
of new hybrid techniques incorporating concepts
from several fields.

Kornbluth and Steuer (1981a) can be considered
the seminal work in MOLFP. In their paper they
present its main characteristics, difficulties and dif-
ferences from MOLP. They also present one
method to compute all the weakly non-dominated
solutions of a MOLFP problem. This method is
complex due to the necessity of knowing the ‘break
point’ of the ‘broken edges’, which is the point
where a feasible edge changes from dominated to
non-dominated or vice versa. In another work of
the same authors (Kornbluth and Steuer, 1981b)
they extend goal programming in order to include
linear fractional criteria, resulting in the core mech-
anism of an interactive MOLFP method. Costa
(2005) attempts to make a small survey of the exist-
ing interactive MOLFP methods while presenting a
new interactive method. Reference may be made to
Steuer (1986) for a review of the more representative
existing MOLP interactive methods, while noticing
the existence of improved methods or versions of
the same methods. He also provides a good intro-
duction to MOLFP. Stancu-Minasian (1997, Chap-
ter 6) extends these concepts.

The paper will proceed as follows. Firstly, we
present the used notation and formulation of the
problems to be solved. Secondly we give an outline
of the new computation technique. After that, we
formally define the technique. In Section 5, we pres-
ent the results supporting the technique and the
building process of the weight indifference region.
Section 6 illustrates the concepts with a small exam-
ple and Section 7 presents some computational
results. Finally, in the last section, we present some
conclusions.

2. Notation

In this paper we formulate the multiple objective
linear fractional programming (MOLFP) problems
in the following way:
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max z1 ¼ c1xþa1

d1xþb1

n o
� � �
max zp ¼ cpxþap

dpxþbp

n o
s:t: x 2 S ¼ x 2 RnjAx 6 b; x P 0; b 2 Rmf g;

where ck, dk 2 Rn, A 2 Rm.n and ak, bk 2 R, k =
1, . . . ,p and "k, x 2 S: dkx + bk > 0.

We will differentiate between weakly non-domi-
nated solutions – a point x 0 2 S is weakly non-dom-
inated if and only if there does not exist another
point x 2 S such that zk(x) > zk(x 0), for all
k = 1, . . . ,p – and non-dominated solutions – a
point x 0 2 S is non-dominated if and only if there
does not exist another point x 2 S such that
zk(x) P zk(x 0), for k = 1, . . . ,p, and zk(x) > zk(x 0)
for at least one k. We will use the some denomina-
tion – non-dominated – in both the decision and
objective spaces. That is, the image, z 0, in the objec-
tive space of the non-dominated solution x 0 2 S will
also be called ‘non-dominated’.

The weighted sum of the objective functions can
be formulated as

max k1
c1xþa1

d1xþb1
þ � � � þ kp

cpþap

dpxþbp

n o
s:t: x 2 S;

where k 2 Rp is defined according to the preferences
of the DM. Usually

Pp
k¼1kk ¼ 1 in order to normal-

ize the weights and kk > 0, k = 1, . . . ,p, in order to
prevent the result from being a weakly non-domi-
nated solution. The maximum of a weighted sum
of linear fractional functions is a non-dominated
solution (if all the weights are strictly bigger than
zero), but in general not all of the non-dominated
solutions can be computed using a weighted sum
of the linear fractional functions. That is because
in MOLFP the non-dominated region can be non-
convex.

The ideal point, z*, is the point of the objective
functions’ space whose coordinates are equal
to the maximum that can be achieved separately
by each objective function in the feasible region. z*

is computed through the determination of the
pay-off table, that is, computing zk = z(x*k);
k = 1, . . . ,p; where x*k is non-dominated and opti-
mizes the program:

max zkðxÞ
s:t: x 2 S:

There is a variable change technique (Charnes and
Cooper, 1962) that turns a linear fractional problem
into a plain linear program. Consider the following
single criterion problem:

max z ¼ cxþa
dxþb

n o
s:t: x 2 S ¼ x 2 RnjAx ¼ b; x P 0; b 2 Rmf g;

where c,d 2 Rn; a,b 2 R and "x 2 S, dx + b > 0.
We define the new variables:

t ¼ 1

dxþ b
and y ¼ xt:

Making the variables substitution we arrive to the
following linear program:

maxfz ¼ cy þ atg
s:t: Ay � bt ¼ 0;

dy þ bt ¼ 1;

y 2 Rn; y P 0; t 2 R; t P 0:

This variable change is extensively used by the tech-
nique in order to compute the maximum of each
objective function.

3. Outline of the technique

The technique is a new and faster version of the
technique presented in Costa and Lourenço (2001)
for computing the maximum of the weighted sum
of linear fractional objective functions. This means
to compute the non-dominated solution of the
MOLFP problem associated with a given weight
vector for the objective functions. The basic idea
of the technique is to divide (by the approximate
‘middle’) the non-dominate region in two sub-
regions and to analyze each of them in order to dis-
card one if it can be proved that the maximum of
the weighted sum is in the other. The process is
repeated with the remaining region.

The division of the non-dominated region – Step
4, Section 4 – is by the approximate middle and not
by exactly the middle, because in order to know the
range of the region we compute the pay-off table of
the problem. As one of the anonymous referees
noticed, the pay-off table of a multiobjective prob-
lem with more than two objective functions does
not always indicate the minimum of the criterion
values over the non-dominated region. Iserman
and Steuer (1987), Reeves and Reid (1988) provide
a deep discussion about this issue. This particularity
tends to work in favor of the technique’s perfor-
mance. We tested other forms of dividing the
region, namely using the weighted range of the
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pay-off table and the range of the weighted sum of
the solutions of the pay-off table. Besides that, we
also tried to divide not by the middle (that is,
50%–50%) but using 30%–70% and other possibili-
ties. The form presented in this paper proved to
be the best one.

It is also relevant to note that when analyzing a
region, that is, when computing the pay-off table
corresponding to that region, it is not necessary to
perform all the calculus. If we have the pay-off table
of one region and if we divide it in two sub-regions
we only need to compute half of the pay-off table
solutions of the two new sub-regions. The solutions
of the precedent pay-off table will be present in the
pay-off tables of the two new sub-regions – Step 5,
Section 4. This, of course, doubles the speed of the
technique.

It is not always possible to discard one of the
regions and so the process must be repeated for both,
building a search tree. In most problems it is only
after a certain level of the search tree that we can
start to discard regions. The process will end when
the remaining regions are so little that the differences
among their non-dominated solutions are lower than
a pre-defined error. One region can be discarded
when the value of the weighted sum of its ideal point
is worst than the value of the weighted sum of a non-
dominated solution belonging to another region not
yet discarded – Corollary 1 of Section 5. In order to
speed up the computations, an incumbent non-dom-
inated solution is maintained: the solution that has
the best weighted sum computed so far. This incum-
bent solution is used to make the necessary compar-
isons with the ideal point of the regions that are
potentially to discard.

Having a tree to search a criterion to choose the
next region to divide is necessary. The technique
chooses the one having the best ideal point – Step
3, Section 4. Other criteria were tested: the region
having the lower index and the region having the
best weighted solution. The criterion presented in
this paper proved to be the best.

When there are no more regions to divide,
because the remains have the range, of their pay-
off table objective functions, lower than the error
the technique stops.
4. The technique

Step 1 – Initializing
e is the pre-defined error.
Q = ; is the set of region indexes the variation
range of which is lower than the pre-defined
error.
n = 0 is the index of the current region.
M is the index set of regions that can be further
sub-divided.
M = {n} is the initial region index set.
g = 0 is the region counter.
zI = (�1,�1, . . . ,�1) is the incumbent
solution.
nI = n is the incumbent region index.
S(n) is the feasible region of the nth region;
S(0) = S.
k is the given weight vector.

Step 2 – Analyzing the first region
Computing the pay-off table of the nth region.
For k = 1, . . . ,p

compute zk(x*k) = max zk(x) s.t. x 2 S(n);
and, for j = 1, . . . ,p

zkn
j ¼ zjðx�kÞ:

Note: The solutions can be weakly non-
dominated.
z�n ¼ ðz1n

1 ; z
2n
2 ; . . . ; zpn

p Þ is the ideal point of region
n = 0.
Initializing the incumbent solution.
For j = 1, . . . ,p do:
If
Pp

k¼1kkzjn
k >

Pp
k¼1kkzI

k then zI zjn.

Step 3 – Choosing the next region
If there are regions that can be further divided

the algorithm chooses the one having the best ideal
point to proceed, i.e., it defines the new n.

If M 5 ; and
Pp

k¼1kkzkn
k ¼ maxm2M

Pp
k¼1kkzkm

k

then
M Mn{n};

If not

If there is no other region to further divide it is
necessary to recalculate the pay-off tables of the
not discarded regions (the ones remaining in Q),
taking in to consideration that we do not want
weakly non-dominated solutions.

For all q 2 Q do:
Compute zkq = z(x*k), k = 1, . . . ,p, where x*k is
non-dominated and optimizes the program:
max zk(x) s.t. x 2 S(q)

End of For all q.
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The non-dominated solution, �z, that maximizes
the weighted sum of the objective functions is the
one that maximizes:

max
q2Q;j¼1;...;p

Xp

k¼1

kkzjq
k :

The algorithm stops.

End of If not.

Step 4 – Sub-dividing a region
The index of the objective function to constrain,

denoted by r, in order to sub-divide the region n,
corresponds to the one having the largest range in
the pay-off table, i.e.:

Dzn
r ¼ max

k¼1;...;p
Dzn

k ¼ zkn
k �min

k 6¼j
fzjn

k g
� �� �

:

Creating two new regions:

g  g þ 1;

SðgÞ ¼ SðnÞ \ x 2 RnjzrðxÞP zrn
r � 1

2
Dzn

r

� �
:

g  g þ 1;

SðgÞ ¼ SðnÞ \ x 2 RnjzrðxÞ 6 zrn
r � 1

2
Dzn

r

� �
:

Step 5 – Analyzing the two new regions
Computing the pay-off table of the two new

regions. Note that the maximum of each objective
function in the previous region must belong to one
of the new regions, and so there is no need to com-
pute it.

For k = 1, . . . ,p do:

If zkn

r P zrn
r � 1

2
Dzn

r then

zkðg�1Þ ¼ zkn;

zkg
k ¼ max zkðxÞ s:t: x 2 SðgÞ:

Note: The solutions can be weakly efficient.
If not

zkg ¼ zkn;

zkðg�1Þ
k ¼ max zkðxÞ s:t: x 2 Sðg � 1Þ:

Note: The solutions can be weakly efficient.
End of If

End of For k = 1, . . . ,p.

If it is an interesting region (a region where it is
still possible the subsistence of the searched non-
dominated solution – that is, a region that fulfils
the following condition) it will be further analyzed,
otherwise it will just be ignored (discarded).
If
Pp

k¼1kkz�gk P
Pp

k¼1kkzI
k then

Being an interesting region the incumbent solu-
tion will be tested against the solutions of the
region’s pay-off table.

For j = 1, . . . ,p do:

If
Pp

k¼1kkzjg
k >

Pp
k¼1kkzI

k then zI zjg; nI g.
End of For j = 1, . . . ,p.

Being an interesting region it will either be fur-
ther divided (if the range of one of the pay-off table
objective functions is bigger than the error) or clas-
sified as a region to search for the non-dominated
solution in the end.

If ð9k;j k ¼ 1; . . . ; p; j ¼ 1; . . . ; pjz�gk � zjg
k > eÞ

then
M M + {g}

If not Q Q + {g}
End of If

The same as above for the region (g � 1).

If
Pp

k¼1kkz�ðg�1Þ
k P

Pp
k¼1kkzI

k then

For j = 1, . . . ,p do:

If
Pp

k¼1kkzjðg�1Þ
k >

Pp
k¼1kkzI

k then

zI zj(g�1)

nI (g � 1)
End of If

End of For j = 1, . . . ,p.
If ð9k;jk¼ 1; . . . ;p;j¼ 1; . . . ;pjz�ðg�1Þ

k � zjðg�1Þ
k > eÞ

then
M M + {(g � 1)}

If not Q Q + {(g � 1)}
End of If.

Step 6 – Discarding regions
If the region did change, the incumbent solution

also changed, and so it pays to check if we can dis-
card some more regions.

If (nI = g) or (nI = (g � 1)) then

For all the m 2M do

If
Pp

k¼1kkz�mk <
Pp

k¼1kkzI
k then M 

Mn{m};
End of For all m.
For all the q 2 Q do

If
Pp

k¼1kkz�qk <
Pp

k¼1kkzI
k then Q Qn{q};

End of For all q.
End of If.
Return to Step 3.
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5. Convergence and indifference regions
Let us introduce the set:

K ¼ ðk1; . . . ; kpÞ : ki > 0; i ¼ 1; . . . ; p;
Xp

j¼1

kj ¼ 1

( )
:

Theorem (Condition for discarding a region (Step
6)). Consider that z* is the ideal point of region A of

S and z1 that can be achieved in region B of S. IfPp
k¼1kkz�k <

Pp
k¼1kkz1

k , k 2 K, holds then the non-

dominated solution, �z, that maximizes
Pp

k¼1kkzkðxÞ,
x 2 S, cannot be achieved in region A.

Proof. Consider that �z can be achieved in region A.
Thus

Xp

k¼1

kk�zk P
Xp

k¼1

kkz1
k >

Xp

k¼1

kkz�k

that is
Pp

k¼1kkð�zk � z�kÞ > 0.
This last expression means that there is at least one
k 0 to which �zk0 > z�k0 and so z* would not be the ideal
point of region A. This proves the theorem. h

Corollary 1. Let �z be a non-dominated solution, z*

the ideal point of region A � S and k 2 K. IfPp
k¼1kkz�k <

Pp
k¼1kk�zk and S* is the set of optimal

solutions of the linear program
max
Xp

k¼1

kkzkðxÞ; s:t: x 2 S;
then S* � SnA.

The proof of the corollary is a direct consequence
of the theorem.

Let N be the non-dominated solution set in the
objective function space: N = {z: z(x) is non-domi-
nated and x 2 S}.

Corollary 2 (Technique’s convergence). If N is lim-

ited, the computation technique, presented in Section

4, converges to the searched non-dominated solution,
with an error e > 0, in a finite number of iterations.

Proof. The non-dominated region of the problem is
successively subdivided according to Step 4 (by sub-
dividing the admissible region by the ‘middle’ of the
pay-off table). The resulting sub-regions are either
discarded or subdivided until the range of their
pay-off tables is lower or equal to a pre-specified
error, e > 0. Those lasting sub-regions are analyzed
in order to pick the searched non-dominated
solution (second part of Step 3). Considering the
sets N+ = N \ {z : zk(x) P 1

2
y, x 2 S, for some y 2

R, for some 1 6 k 6 p} and N� = N \ {z : zk(x) 6
1
2
y, x 2 S, for some y 2 R, for some 1 6 k 6 p} it

is clear that N = N+ [ N�. So, the only discarded
regions are the ones to which, according to Corol-
lary 1, the searched non-dominated solution does
not belong.

A limited set can always be successively subdi-
vided into smaller portions, in a finite number of
iterations, until the dimensions of those portions
being lower than a pre-specified number, if that
number is bigger than zero. This concludes the
proof. h

Let Zð�z; k1Þ be the set of ideal points of all the
regions that were discarded (Step 6) on computing
the non-dominated solution �z associated with
k1 2 K, that is

Zð�z; k1Þ ¼
(

z� : z� is the ideal point of A � S; k1 2 K

and
Xp

k¼1

k1
kz�k <

Xp

k¼1

k1
k�zk

)
:

Corollary 3. If �z is a non-dominated solution that

maximizes
Pp

k¼1k
1
kzkðxÞ; x 2 S; k1 2 K, then the set

Kð�z; k1Þ ¼ fk 2 K :
Pp

k¼1ðz�k � �zkÞkk < 0 for each z�

2 Zð�z; k1Þg is part of the weight indifference region

associated with �z.

Proof. The proof of this corollary is a direct conse-
quence of the theorem, Corollary 1 and the
following.

The algorithm presented in the previous section
builds a search tree of feasible regions. The regions
that fulfill the condition of the theorem are dis-
carded, the others are sub-divided until their ideal
point is lower enough to fulfill the condition or until
the range of their pay-off table is lower or equal to a
pre-specified error, e. �z belongs to at least one of
these last regions, which were neither discarded nor
sub-divided.

Without loss of generality, consider z 0 the ideal
point of one of those regions neither discarded nor
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Fig. 1. Feasible and non-dominated region.
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subdivided, and z1 a non-dominated solution of that
region. So

Xp

k¼1

z1
kk

1
k 6

Xp

k¼1

�zkk
1
k 6

Xp

k¼1

z0kk
1
k ;

because �z is the non-dominated solution that maxi-
mizes the weighted-sum of the objective functions
and the region was not discarded.

Besides that,
Pp

k¼1z0kk
1
k 6

Pp
k¼1ðz1

k þ eÞk1
k ,

because the range of variation of the pay-off table
is lower or equal to e.

Concluding:

Xp

k¼1

z1
kk

1
k 6

Xp

k¼1

�zkk
1
k 6

Xp

k¼1

ðz1
k þ eÞk1

k

0 6
Xp

k¼1
�zkk

1
k �

Xp

k¼1

z1
kk

1
k 6 e:

That is, the weighted-sum of the objective functions
for the non-dominated solutions of the regions that
were neither discarded nor sub-divided only differ
among themselves by an amount that is lower or
equal to the pre-specified error, and so must be con-
sidered indifferent among themselves. This con-
cludes the proof. h

Remark. The proof of this corollary implies that the
second part of the technique’s Step 3 can be simpli-
fied. It is not necessary to examine all the sub-
regions the index of which belong to set Q, but only
to guarantee that the incumbent solution zI is not
weakly non-dominated.
Fig. 2. Search tree of regions. k = (0.01,0.8,0.19). ‘Not Div.’
means ‘not divided’. ‘Disc.’ means ‘discarded’.
6. Illustrative example

In this section we will illustrate the computation
of indifference regions through the example (Kornb-
luth and Steuer, 1981a):

max z1 ¼ x1�4
�x2þ3

n o
max z2 ¼ �x1þ4

x2þ1

n o
max fz3 ¼ �x1 þ x2g
s:t: � x1 þ 4x2 6 0;

x1 � 1=2x2 6 4;

x1; x2 P 0:

The used software was developed by the author and
other (João Lourenço) and can be obtained for free
from the author of this paper.
S is the feasible region defined by the constraints
of the problem. Fig. 1 presents the feasible region –
the triangle defined by the points A, B and C – and
the non-dominated region – the bold (dashed)
points – of the problem. The points B and D are
weakly non-dominated solutions. z1, z2 and z3 are
the non-dominated solutions that maximize each
objective function, respectively.

Computing (through the technique presented in
Section 4 and using an error e = 0.1) the non-dom-
inated solution associated with the weight vector
k = (0.01,0.8, 0.19), we obtain the solution x1 =
0.0, x2 = 0.0, z1 = �1.3, z2 = 4.0, z3 = 0.0. The
resulting regions organized in a search tree are pre-
sented in Fig. 2. Note that Fig. 2, as Figs. 3–5 are
screen shots from the software. The X stands for S

in this paper notation.
Fig. 3 presents the pay-off table solutions, the

ideal point and their weighted sum for region X[1]
of Fig. 2. This region corresponds to the initial fea-
sible region, and so this table is also the pay-off
table of the original problem.



Fig. 3. Pay-off table and ideal point of region X[1]. ‘Su’ means
‘sum’. ‘Id. Sol.’ means ‘ideal solution or point’.

Fig. 4. Pay-off table and ideal point of region X[2].

Fig. 5. Pay-off table and ideal point of region X[3].

Table 1
Ideal points of the discarded regions of Fig. 2

Region z1 z2 z3

X[3] 0.3 1.9 �1.1
X[5] �0.6 2.9 �1.1
X[7] �1.0 3.0 �0.5
X[9] �1.0 3.5 �0.5
X[11] �1.2 3.7 �0.3
X[13] �1.2 3.9 �0.1
X[15] �1.3 3.9 �0.1

Table 2
Constraints defining Kð�z; kÞ
X[3] �2.7k1 +1.0k2 P�1.1
X[5] �1.8k1 P�1.1
X[7] �0.8k1 +0.6k2 P�0.5
X[9] �0.9k1 P�0.5
X[11] �0.4k1 P�0.3
X[13] �0.1k1 +0.1k2 P�0.1
X[15] �0.1k1 P�0.1

Fig. 6. Representation of Kð�z; kÞ.
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As formally presented in Section 4, the regions
X[2] and X[3] were generated through the division
of region X[1]. The constraint that originates region
X[2] is z2 P 1

2
(4.000 � (�0.267)) + (�0.267) ()

(z2 P 1.867, and the constraint originating X[3] is
z2 6 1.867. The new regions were created by con-
straining the objective function two because it has
the biggest range in the pay-off table of region X[1].

Figs. 4 and 5 present the pay-off table solutions,
the ideal points and their weighted sums, of
regions X[2] and X[3], respectively. The weighted
sum value of the ideal point of region X[3] is lower
than the weighted sum value of at least one of the
solutions already computed (from regions X[1] and
X[2]), as one can see by comparing the values in
Figs. 3–5. This was the reason for discarding
region X[3].
The ideal points of each discarded region are
listed in Table 1. The set of constraints defining
Kð�z; kÞ and computed according to the Corollary 3
is presented in Table 2 and depicted in Fig. 6. Note
that we consider k3 = 1 � k1 � k2 and k P 0 and
that a lot of constraints are redundant.

It is only simple to represent the weight indiffer-
ence regions for problems up to three objective
functions; nevertheless the information gathered in
Table 2 is very interesting and can be used in several
ways in order to help the decision maker on explor-
ing the non-dominated region.
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7. Computational results of the technique

We will report some computational results from
tests performed on randomly generated problems.
The technique was coded in Delphi Pascal 5.0
for Microsoft Windows and a simplex code for
solving linear problems was obtained through
URL http://www.netcologne.de/~nc-weidenma/
readme.htm, and adapted to the present case. Three
versions have been implemented by the author of
this paper differing on the allowed number of
regions: 10,000, 50,000 and 100,000 regions. Note
that these differences imply to allocate different
amounts of memory to the application and conse-
quently the application will run at different speeds
– as less memory is reserved the fastest it will run,
as long as the allocated memory is enough. The
application versions were used depending on the
problems dimensions. The three versions were lim-
ited to 200 (m) constraints and 140 (n) decision vari-
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Fig. 8. Performance of the technique according to the nu
ables. There was no limit on the number of objective
functions (p). The used data structures were
dynamic arrays. All the data generated by the tech-
nique is kept in the data structures.

The tests used randomly generated problems
according to Kuno (2002): data ckj,dkj 2 [0.0,0.5]
and aij 2 [0.0,1.0] were uniformly random numbers;
b was set to constant and equals to one. In Kuno
(2002) all constant terms of denominators and
numerators were the same number, which ranged
from 2.0 and 100.0. Instead, in our tests ak,
bk 2 [2.0,100] were also uniformly random num-
bers. All the reported tests were carried out for what
we found to be the worst case computation, that is:
when all the weights are equal to one another. Each
measure was obtained through the average of 20
runs, ignoring the two worst and two best values.

We used a Pentium 830, 3 MHz, with 4 Gbytes of
RAM memory, under the Windows XP, Pack 2,
operating system. The tests were run with the appli-
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cation priority set to high and the pagination was
managed by the operating system.

Fig. 7 presents the performance of the technique
according to the elapsed time in milliseconds. The
problems were generated with 10 decision variables
and 10 constraints. Fig. 8 presents the number of
generated regions for the same problems. The stan-
dard deviation of the measures (averages) depicted
in both figures are approximately equal to, but
lower than the averages.

Fig. 9 shows the performance according to the
elapsed time in milliseconds, with an error of
0.001. The problems were once again generated with
10 decision variables and 10 constraints. The stan-
dard deviations followed the same pattern of the
results presented in Figs. 7 and 8.

Finally, Fig. 10 presents the performance of the
technique according to the elapsed time, in millisec-
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Fig. 10. Time in milliseconds against no. of constraints · no
onds, for several different numbers of constraints
and variables. The problems were generated with
three objective functions and the error was kept to
0.001.

The biggest problem we were able to solve in less
than an hour (3,600,000 milliseconds) had 20 objec-
tive functions, 200 constraints and 140 decision vari-
ables. The error was 0.001. The maximum number
of regions (in the 20 runs of the problem) was bigger
than 99,000, that is, it was near the limits of the soft-
ware implementation. The Windows XP allocated
more than 600 Mbytes of RAM just for the applica-
tion. In order to reach higher problem dimensions it
will be necessary to re-code the technique: to use
data structures that do not save everything. This
will add an extra complexity to the code while sav-
ing time (fewer exchanges between the RAM and
the hard disk) and memory usage.
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jective Functions

e (milliseconds). Error = 0.001 for all measures.
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. of variables. Error = 0.001, three objective functions.
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It is not possible to make a fair comparison with
other techniques without coding and test them with
the same problems and in the same computational
environment. Nevertheless, we believe that the tech-
nique presented in this paper allows for bigger prob-
lems in less time than the one from Kuno (2002).
Roughly speaking the difference is to go from sec-
onds to milliseconds. It is worth to note that Scha-
ible and Shi (2003), Dai et al. (2005) acknowledge
that the technique of Kuno (2002) works very well.
The break through of the technique presented in this
paper was achieved by the explicit consideration of
a sum of linear ratios as a multiobjective problem:
probably there is much to gain in the design of a
new hybrid technique incorporating concepts from
both techniques.

Phuong and Tuy (2003) reported computational
experiments with a set of problems not randomly
generated, but taken from the literature. We also
tested the technique with those problems. The aim
of the tests was not for performance comparison,
but to guarantee the rightness of our computer
implementation – we obtained the same results with
higher precision. There is no point on comparing
the performance of both techniques because the
one of Phuong and Tuy (2003), being slower, also
deals with other kinds of problems.
8. Conclusions

In this paper we presented a new technique to
optimize a weighted sum of the linear fractional
objective functions, i.e., to compute the non-domi-
nated solution of the MOLFP problem associated
with a given weight vector. The performance of
the technique proved to be very good in the compu-
tational tests.

An issue, not considered in the presented tech-
nique but under research, is to use the primal–dual
simplex to compute the pay-off tables. Probably
the speed of the technique would drastically
improve if we start the computation of a solution
of a region’s pay-off table from the optimal base
of the corresponding solution of the pay-off
table of the precedent region.

We also presented the conditions for building a
set of constraints defining the weight variation
ranges that necessarily leads to the same non-domi-
nated solution. It is possible that weight vectors not
fulfilling the set of constraints also lead to the same
non-dominated solution, but at least we defined part
of the indifference region. This information is very
useful in multiobjective, because in most applica-
tions the decision makers will not be satisfied with
just one run of the technique. They will want to
know what happens if they change the weight vec-
tor. Knowing part of the weight indifference region
will ease the computation burden.
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