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Abstract

This paper presents a multiobjective linear integer programming model for supporting the choice of remote load control strategies
in electric distribution network management. The model takes into account the main concerns in load management, considering
three objective functions: minimization of the peak demand as perceived by the distribution network dispatch center, maximization
of the utility profit associated with the energy services delivered by the controlled loads and minimization of the discomfort caused
to consumers. The problem was analyzed using an interactive reference point method for multiobjective integer (and mixed-integer)
linear programming. This approach exploits the use of the branch-and-bound algorithm for solving the reference point scalarizing
programs through which efficient solutions are computed. Post-optimality techniques enable a stability analysis of the efficient
solutions by means of computing and displaying graphically sets of reference points that correspond to the same solution.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Electric utilities have been using demand- and supply-side resources in an integrated manner, due to its potential
attractiveness both at operational and economic levels. A growing interest is being devoted to these activities with
the ongoing restructuring and liberalization trends in the energy sector, mainly due to the volatility and spikes of
wholesale electricity prices and reliability concerns (transmission congestion and generation shortfalls). For instance,
these programs can be very attractive for a retailer dealing with volatile wholesale prices and fixed, over a certain time
period, retail prices.

The reduction of peak power demand is an important operational benefit associated with these activities [1–3].
The use of demand-side resources can be accomplished, in the framework of load management (LM), by means of

the implementation of direct load control actions, consisting of power curtailment actions (on/off patterns) changing
the regular working cycles of end-use loads. This entails changing the demand shape at more aggregate levels of loads.
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Those on/off patterns are generally applied, during a period of time, to groups of loads associated with energy services
whose quality is not substantially affected by supply interruptions of short duration, such as electric water heaters and
air conditioners in the residential sector. Since these are thermostatic loads, external changes to their working cycle
have influence on their demand pattern in subsequent time periods. As a consequence, load management programs can
also give rise to undesirable effects, such as the payback effect (whenever power is restored simultaneously to loads thus
eventually creating another peak, when compared with the situation without load control actions) and possible reduction
in revenues. This effect can be avoided by planning the on/off periods for all groups under control as non-coincident.

The selection of load control actions requires the explicit consideration of multiple, incommensurate and conflicting
evaluation criteria of the merit of alternative load shedding strategies, capable of reflecting economic, technical and
quality of service aspects. The quality of service dimension is crucial because consumers’ acceptance is indispensable
for the success of load management programs. A multiobjective linear integer model for supporting the choice of
remote load control strategies in electric distribution network management has been developed. The model takes into
account the main concerns of load management, considering three objective functions: minimization of peak demand
as perceived by the distribution network dispatch center, maximization of utility profit corresponding to the energy
services delivered by the controlled loads and minimization of discomfort caused to consumers.

In these complex combinatorial problems, several sources of uncertainty influence the quality of the data used to
compute the coefficients of the mathematical model. Moreover, in presence of multiple evaluation aspects, opera-
tionalized by objective functions, the decision maker’s preferences also play a crucial role in the selection of a final
(compromise) nondominated solution to be implemented. Therefore, a methodological interactive approach is used,
which enables to perform a (post-optimal) stability analysis of the nondominated solutions in face of changes of the
decision maker’s preferences. This method is devoted to multiobjective integer (and mixed-integer) linear program-
ming problems and it is based on reference points (consisting of aspiration levels the decision maker would like to
attain for each objective function). It exploits the use of the branch-and-bound algorithm for solving the reference
point scalarizing programs through which nondominated solutions are computed, also displaying graphically sets of
reference points that correspond to the same solution (thus avoiding an exhaustive search).

In this section, the interest and motivation of the study have been provided. In Section 2, the methodological approach
to search for nondominated solutions and perform a stability analysis of the nondominated solutions is presented. The
mathematical model for the selection of control strategies is presented in Section 3. The analysis of the problem is
described in Section 4. In Section 5 some conclusions are drawn on the suitability of the proposed approach to analyze
the stability of solutions to the load management problem.

2. Overview of the methodological approach

Let us consider the multiple objective integer linear programming (MOILP) problem:

max f1(x) = c1x
. . .

max fk(x) = ckx
s.t. x ∈ X = {x|Ax = b, x�0, x integer}

(1)

where x is an n-dimensional vector of variables, A is an m×n matrix, b is the RHS vector and the vectors ci (i=1, . . . , k)

represent the coefficients of the objective functions (criteria). It is assumed that X is bounded and fi(x)=cix (i =1. . .k)

are also integer-valued for all feasible x.
Let Z denote the feasible region in the criteria space, i.e. the set of points z ∈ Rk such that zi = fi(x), i = 1, . . . , k,

x ∈ X.
x′ ∈ X is an efficient or nondominated solution iff there is no x ∈ X such that cix�cix′ for all i and cj x > cj x′ for

at least one j.
x′′ ∈ X is said to be weakly efficient/nondominated iff there is no x ∈ X such that cix > cix′′ for all i.
Although the term efficient is more often used for points x and the term nondominated for points z, they can be used

interchangeably.
MOILP problems and other multiobjective problems with non-convex feasible regions admit not only supported

efficient solutions but also unsupported efficient solutions, i.e. solutions that do not belong to the frontier of the convex
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hull of the feasible region. These solutions cannot be obtained by optimizing scalar surrogate functions consisting
in weighted-sums of the objective functions. For that reason, reference point scalarizing functions, which have been
introduced by Bowman [4] and Wierzbicki [5], among others, are more adequate to deal with MOILP problems. Several
developments on reference point approaches, namely interactive methods, have been further reported in the literature
(e.g. [6–9]).

Let q denote a criterion reference point that may represent aspiration levels that the decision maker (DM) would like
to attain for the objective functions. Let us consider the min-max scalarizing program minx∈X{maxi=1...k(qi −fi(x))},
which projects q onto the nondominated solution set. Since the optimal solution to this scalarizing program may be a
weakly efficient solution only, then the term −�

∑k
i=1fi(x) is usually added to ensure the efficiency condition, where

� > 0 is a small constant. This scalarizing program, which is

min
x∈X

({
max

i=1...k
(qi − fi(x))

}
− �

k∑
i=1

fi(x)

)
,

is equivalent to (2):

min

(
� − �

k∑
i=1

fi(x)

)
s.t. fi(x) + ��qi, i = 1, . . . , k,

x ∈ X.

(2)

If q > z for all z ∈ Z, then the optimal solution to (2) is the nondominated solution to (1) closest to q according to the
(augmented) Tchebycheff metric. Otherwise, (2) does not minimize a distance, but the result is also a nondominated
solution. Actually, as stated by Wierzbicki [10], this minimization does not mean “coming close” in a traditional sense,
but “coming close or better”.

Alves and Clímaco [9] developed an interactive method for MOILP (and mixed-integer) programs, which uses the
scalarizing program (2) to compute efficient solutions. The method is mainly devoted to perform directional searches
by solving scalarizing programs (2) parameterized on q.

Basically, this interactive method works as follows. At each interaction the DM can assess directly a new reference
point (q), which is inserted into the scalarizing program (2), or just select an objective function he wants to improve
regarding the efficient solution previously computed. In the former case, the result is a new efficient solution or an
already known solution, since there are multiple reference points that lead to the same solution. In the latter case,
the DM aims at performing a directional search and the procedure ensures that a solution which is different from the
previous one is obtained, because the reference point is automatically adjusted. This stage involves an iterative process
of sensitivity analysis based on the branch-and-bound algorithm.

Let us consider that q̄ is the reference point used in the previous computation of a directional search, which led to
the efficient solution x̄. For short, we say that the reference point q̄ leads to the efficient solution x̄ if x̄ optimizes the
scalarizing program (2) with the vector of parameters q̄. Besides, let us consider that the DM selected the objective
function fp to be improved. Hence, the iterative sensitivity analysis procedure determines �̄p �0 such that reference
points between q̄ = (q̄1, . . . , q̄k) and (q̄1, . . . , q̄p + �̄p, . . . , q̄k) still lead to x̄, but for �p > �̄p a different efficient
solution is obtained. The sensitivity analysis procedure uses information provided by the branch-and-bound tree that
solved the integer program (2) for the reference point q̄. The tree structure and some information on the terminal nodes
are preserved between consecutive computations. They are used to determine �̄p, also providing a starting structure for

computing the new efficient solution that optimizes (2) for the new reference point, i.e., q̂ = (q̄1, . . . , q̄p + �̂p, . . . , q̄k)

with �̂p slightly over �̄p. The previous branch-and-bound tree is firstly simplified by cutting branches corresponding
to variable constraints that are no longer active. The tree is then expanded if new branching is required until the new
optimal solution for the scalarizing program is reached, which improves the objective function fp selected by the
DM. This procedure enables to save time in the computational phases promoting the directional searches for efficient
solutions. Besides choosing the objective to be improved at each moment, the DM has also the possibility of imposing
constraints on the objective function values in order to have more control of the directional searches. These constraints
(of type fi(x)� li for one or more i ∈ {1, . . . , k}) may be revised whenever the DM wants, by relaxing or tightening
the bounds. If a local analysis is made (which may be useful in a final phase of the decision process) the DM can easily
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conclude whether a region of interest is completely explored or not. More details about this interactive MOILP method
can be found in [9].

Throughout a directional search for improving fp the procedure identifies reference points from q̄ to (q̄1, . . . , q̄p +
�̄p, . . . , q̄k) that lead to the same efficient solution, say x̄. Therefore, it is indifferent to consider any of those reference
points in the scalarizing program to obtain the efficient solution x̄. This means that there is an indifference or stability
set of reference points associated with each efficient solution.

Besides points between q̄ and (q̄1, . . . , q̄p + �̄p, . . . , q̄k), other reference points belonging to the stability set of x̄
can easily be identified. Let s denote the vector of surplus variables corresponding to the first k constraints of (2), and
s̄ their optimal values when q = q̄. Hence, all the reference points (q̄1 + �1, . . . , q̄p + �p, . . . , q̄k + �k) with 0��i � s̄i
(i = 1, . . . , k) belong to the stability set of x̄. Note, however, that at least one s̄i = 0 according to the mathematical
properties of the min-max problem (2), as � = maxi=1...k(qi − fi(x)). Combining the information on the reference
points obtained throughout directional searches with this simple analysis, the procedure is able to compute one or more
convex sets of reference points that lead to x̄. The whole stability set of a given solution is usually non-convex, and
difficult to determine. In general, this procedure is not able to define it completely, but just characterize some of its
convex sub-sets [11].

For MOILP problems with 2 or 3 objective functions those stability sets (regions) can be graphically visualized.
Let us focus on the three-objective case, which concerns our case study. The 3D stability regions of a three-objective
problem can be represented on a 2D graph by considering the cut q1 + q2 + q3 = S, with S constant. Since the optimal
solution to (2) does not change if a constant is added to all components of q, each stability region can be represented
on the plane defined by q1 + q2 + q3 = S without loss of information. If the origin of the graph is adequately chosen
(ensuring that any stability region has a representation on this graph) and considering, for instance q1 on the x-axis and
q2 on the y-axis, the graph takes on a triangular shape. In this representation, q3 = S − q1 − q2. More details about the
definition and graphical representation of these regions can be found in [11].

The interpretation of stability regions provides important insights into the MOILP problem because they help the
DM (or the procedure) to avoid the selection of reference points that lead to the same efficient solution. Besides, they
can induce a better perception of some characteristics of the efficient solution set, such as the number of solutions and
their closeness in the objective function space. In sum, this information enables a stability analysis for each efficient
solution with respect to the change of the reference point, also providing stability degrees (through the areas of the
stability regions) for the efficient solutions with respect to the improvement of an objective function. Note that, in
the framework of an interactive decision aid procedure, the DM is required to provide preference information in the
objective function space (levels he would like to attain for each objective, and/or objective to improve). This is the
space he is most familiar with and, therefore, this information does not involve an excessive burden (such as marginal
rates of substitution or other preference information requirements).

The methodology presented in this section has been applied to a load management case study, whose model is
presented in the next section.

3. The load management problem

The model presented herein is a slightly changed version of the model previously proposed by Jorge et al. [12], taking
into account evaluation aspects of different nature (technical, economical and quality of service) which are at stake in
load management policies. The three objective functions, which operationalize these evaluation aspects in our model,
are: minimize the peak demand as perceived by the distribution network dispatch center, maximize the utility profit
associated with the energy services delivered by the controlled loads, and minimize the discomfort that is caused to
consumers by control actions. The use of this multiobjective model allows the DM to select a control strategy to apply
to each group of controlled loads, in order to guarantee a compromise efficient solution among the three objectives.

The model does not depend on the type of controlled load, though it has been applied only to the control of electric
water heaters groups. The information on the electricity consumption of the load groups and on hot water temperatures
with or without the application of the control strategies to the load groups is obtained with a physically based load
model [13]. Control strategies define the on/off schedule of load groups, during the period of time where maximum
demand control is to be achieved.



190 M.J. Alves et al. / Computers & Operations Research 35 (2008) 186–197

3.1. Mathematical model

The network load diagram is assumed to be known by means of a load forecast procedure. The total control period
(�T ), which must be as long as needed in order to prevent a new peak demand caused by the payback phenomenon, is
divided into n equal intervals (�t=�T/n). In the following, let i denote the elementary time interval index (i=1, . . . , n),
j the load group index (j =1, . . . , m) and k the control strategy index (k=1, . . . , v); xjk is the binary decision variable
that assumes the value 1 if control strategy k is selected to be applied to group j, and 0 otherwise (j = 1, . . . , m;
k = 1, . . . , v).

Let us first define the objective functions.
Under load control, the average network demand (Xi) at each elementary interval i is given by

Xi =
∑
j

∑
k

(cijkxjk) + Li, i = 1, . . . , n, (3)

where cijk is the difference at interval i between the demand of load group j when control strategy k is applied to it and
its demand without any control action; Li is the average forecasted network demand at interval i without load control.

The first objective consists in minimizing peak demand, or, equivalently, in minimizing the maximum network con-
trolled demand, that is: min max{X1, X2, . . . , Xn}. This objective can be formulated in an alternative way, maximizing
the peak demand reduction: max min{P −X1, P −X2, . . . , P −Xn}, where P is the forecasted network peak demand
without control.

This objective is not linear, but it can be transformed into a linear one, solving the following linear problem:

max F1 = r (4)

s.t.

P − Xi − r �0 ⇔ P −
⎛
⎝∑

j

∑
k

(cijkxjk) + Li

⎞
⎠− r �0 (i = 1, . . . , n), r �0, (5)

where r is the variable that represents the network peak demand reduction.
Hence, (4) is the first objective function and (5) is a set of constraints for the multiobjective problem.
The second objective consists in optimizing the profit. This is equivalent to maximizing the revenue variation caused

by the electricity consumption variation achieved with the application of control strategies. Thus, maximizing profit
can be stated as

max F2 =
∑
j

∑
k

(Rjkxjk), (6)

where Rjk = (�t/60)
∑
i

cijkmij is the profit variation corresponding to the consumption variation in group j when

subject to control strategy k, mij being the net revenue perceived by the utility per KWh at interval i by selling energy
to group j.

The third objective consists in minimizing the consumers’ discomfort. The measurement of the discomfort caused
by control actions is based on the number of loads for which the minimum comfort threshold has been violated.

Minimizing the discomfort caused to consumers corresponds to minimizing the following function:

min F3 =
∑
j

∑
k

Djkxjk , (7)

where Djk =�AAjk +�BBjk; �A and �B are coefficients of importance with respect to the accumulated value (Ajk) and
the maximum number (Bjk) of loads in group j that violate the minimum comfort threshold, when subject to control
strategy k, and Djk is an aggregate measure of discomfort defined as a function of Ajk and Bjk .

Besides (5), the other constraints of the model are the following:

(a) One control strategy should be applied to each load group∑
k

xjk = 1 (j = 1, . . . , m) (8)
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(b) There is a maximum number of loads that are allowed to violate the minimum comfort threshold. Control strategies
that lead to a higher number of loads in such situation are rejected∑

k

Bjkxjk �bj (j = 1, . . . , m), (9)

where bj is the maximum number of loads in group j that are allowed to simultaneously violate the minimum
comfort threshold.

(c) Decision variables xjk are binary

xjk = 0 or 1 (j = 1, . . . , m; k = 1, . . . , v). (10)

4. Application of the interactive approach to the load management model

Jorge et al. [12] used the well-known STEM method [14] to analyze a case study using the three-objective model
described above. This case study corresponds to 4000 water heaters aggregated into eight groups. Eight control strategies
were generated for each load group. The problem includes 65 variables (64 binary variables xjk plus variable r). The
data used to supply the model have been collected from a Portuguese distribution company.

In the study presented in [12], the payoff table (displaying the objective function values for the solutions that optimize
individually each objective function) plus five other efficient solutions were computed. Those solutions seem to provide
interesting strategies, namely the last solution computed, which was considered by the DM a satisfactory compromise
solution. However, due to the limitations of the STEM method it was not possible to make a comprehensive search for
the efficient solution set. This is strongly recommendable namely because the a priori points of view of the electricity
supply company and the points of view of the consumers are not compatible. Therefore, the multicriteria interactive
analysis should contribute to an indispensable learning process putting in evidence not only all the relevant profiles of
well contrasted nondominated alternative options but also providing aids to achieve a satisfactory compromise solution
for the various actors. In the STEM method, the DM specifies a relaxation quantity for one objective function, in each
interaction, in order to improve the other objectives. However, the DM has not the possibility of selecting an objective
he would like to be privileged in the following computation(s). Instead, by following directional searches, the DM
can choose the objective to be improved at each moment, having also the possibility of imposing constraints on the
objective values.

In the next paragraphs, we describe the analysis of this load management model using the interactive reference point
method (implemented in a software package) described in Section 2. The results are compared with those obtained using
the STEM method, for the sake of illustration of the value-added resulting from the use of a decision aid tool capable
of characterizing in a progressive and selective manner the nondominated solution set using the preference information
provided by the DM as a guidance. Moreover, by knowing the stability regions associated with each nondominated
solution, the DM avoids to specify preference information that would incur in a useless computational effort, for it
would lead to solutions already known.

The MOILP software package started by computing the three efficient solutions that optimize individually each
objective function, presented in Table 1, and the corresponding stability regions—Fig. 1. The stability regions displayed
in Fig. 1 represent the loci of reference points that lead to the same efficient solution (in Fig. 1, the solutions that optimize
individually each objective function) when computing efficient solutions using the scalarizing program (2).

It should be noted that the graphical representation of stability regions in Fig. 1 considers the system of points
q̃ = (q̃1, q̃2, q̃3) = (q1 × 10, q2, −q3) due to: (a) F3 is a minimizing function and F1 and F2 are maximizing functions,

Table 1
Solutions that optimize individually each objective function

Max F1 (KW) Max F2 (PTE) Min F3 Control strategies

Solution 1 514 8108 4420 1 2 8 3 2 2 2 2
Solution 2 293 15402 7360 8 8 8 8 8 8 8 8
Solution 3 17 2976 980 6 3 3 6 6 3 6 7
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Fig. 1. Indifference regions for the solutions that optimize individually each objective function.

so the symmetric of F3 is considered for scalarizing purposes; (b) F1 has been changed to F1 × 10 to measure the
three objective function values on comparable orders of magnitude. Hence, an original reference point (q1, q2, q3) is
converted into (q̃1, q̃2, q̃3) to be used in the scalarizing program (2) and also in the representation of the stability regions
of the efficient solutions with respect to reference points.

In Table 1 (and the following), the Control Strategies are identified by a number that represents the control strategy
applied to each group (from 1 to 8). For instance, the solution that optimizes F1 (the one that most reduces the peak
demand) consists in applying strategy 1 to group 1, strategy 2 to group 2, strategy 8 to group 3, strategy 3 to group 4,
and so on.

Solutions 1, 2 and 3 give rise to the network load diagrams displayed in Figs. 2(a)–(c), respectively. The load curve
corresponding to the situation without remote control actions is also displayed in each graph of Fig. 2.

After computing the first three solutions, a directional search was performed starting from solution 2 and choosing
F3 (the consumers’ discomfort) to be improved since this was a very sacrificed criterion in solution 2. Twenty-eight
efficient solutions (from 4 to 31) were computed throughout this directional search. These solutions are shown in
Table 2. Then, we decided to change the improvement direction because most of these solutions present very low
values of reduction on the peak demand (F1).

Hence, the search was redirected to improve F1 (starting from solution 31), and the new solutions from 32 to 36
were computed (see Table 3). Solution 36 is identical to the second solution obtained by Jorge et al. [12], thus also
denoted as solution STEM-2: (F1, F2, F3) = (364, 9265, 2450).

At this stage we considered that F1 had a reasonable value. Besides, F1 values that satisfy F1 �300 KW would
also be acceptable. Therefore, this constraint was imposed and a new search was performed in order to improve profits
(F2). Solution 37 was computed and new solutions—from 38 to 41—followed it (see Table 3). As expected, all of them
present a peak reduction of at least 300 KW and growing values on profits. Solution 39 coincides with solution STEM-5
[12]. As this had been considered a satisfactory compromise solution in that study, we decided to make a local analysis
around this one and the last solutions obtained.

The following bounds were then imposed: F3 �3000 (which is not satisfied by solution 41) and F2 �10200, keeping
up F1 �300. The nondominated solution closest to the last reference point (which led to solution 41) that satisfies these
additional constraints is solution 40 (300, 10288, 2930), already known.
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Fig. 2. Global network load curves corresponding to solutions 1, 2 and 3.

The improvement of F1, satisfying the same constraints, resulted in solution 39. Fig. 3 shows bar graphs for the last
three solutions presented by the decision aid tool to the DM (41, 40 and 39, respectively) and the numerical information
of solution 39.

Relaxing the bound on F2 to F2 �10000, and keeping the other bounds, the outcome for the same reference point is
also solution 39. Moreover, if F1 is chosen to be improved from this point, and maintaining the previous bounds, the
procedure announces that no better value for F1 is possible. Identical message is shown if F3 is chosen to be improved.
Therefore, this region of nondominated solutions was completely explored.

Fig. 4 shows the global network load curves corresponding to solutions 39 and 41, which are not very different (as
it was expected). The load curves for the load groups under control in the same solutions (39 and 41) are displayed in
Fig. 5.

Fig. 6 displays the stability regions for the 41 efficient solutions computed. It can be observed that there are cases
where large variations of the reference point lead to the same efficient solution and other cases where a small change
of the reference point is sufficient to result in a different efficient solution. Fig. 6 also presents the directions of
improvement for each objective function. Hence, the stability regions indicate how stable an efficient solution is with
respect to the DM’s preferences, namely regarding the intention of improving a given objective function.

The analysis of the load management problem presented herein is just an example of a sequence of directional searches
that could be followed. Since the software enables a free exploration of the problem, many other search strategies can
be performed, providing more information about the problem. We made a deeper analysis and we realized that the
problem has more than 200 efficient solutions. In fact, a large number of solutions should be expected by observing
the large unfilled area on the graph in Fig. 6. As a curiosity, we can mention that among those 200 solutions only 39 are
supported efficient solutions (solutions that can be obtained through the optimization of a scalar function consisting in
a weighted-sum of the objective functions). In what concerns the search for the 41 solutions described above, 12 of
them are supported and 29 are unsupported solutions.

From the analysis of this problem we can conclude that the successive efficient solutions obtained throughout
directional searches, as well as the analysis of their stability regions, can give a good perception of the geometry of
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Table 2
Solutions computed in the first directional search

Max F1 (KW) Max F2 (PTE) Min F3 Control strategies

Directional search starting from solution 2 to improve F3:
Solution 4 183 14 652 7240 8 8 8 8 8 7 8 8
Solution 5 94 14 294 6930 8 8 8 8 7 8 8 8
Solution 6 273 14 281 6430 8 8 8 3 8 8 8 8
Solution 7 269 14 034 5570 8 8 8 1 8 8 8 8
Solution 8 44 13 778 5180 8 8 8 2 8 6 2 8
Solution 9 279 13 371 5150 3 8 8 1 8 8 8 8
Solution 10 11 13 228 4870 8 8 8 2 2 6 2 8
Solution 11 51 13 133 4430 4 8 8 1 8 6 8 8
Solution 12 23 12 947 3870 7 8 8 6 8 6 1 8
Solution 13 40 12 784 3770 7 8 8 2 2 6 1 8
Solution 14 40 12 372 3700 7 8 8 2 4 6 1 8
Solution 15 38 12 175 3650 7 8 8 1 2 6 5 8
Solution 16 18 12 141 3390 7 7 6 1 8 6 8 8
Solution 17 48 11 866 3300 7 7 8 1 8 6 2 8
Solution 18 35 11 732 2980 7 7 7 2 8 6 1 8
Solution 19 23 11 355 2960 7 1 6 4 8 6 1 8
Solution 20 44 11 345 2770 7 7 7 6 8 6 1 8
Solution 21 44 11 196 2610 7 7 1 6 8 6 1 8
Solution 22 44 11 033 2510 7 7 1 2 2 6 1 8
Solution 23 44 10 621 2440 7 7 1 2 4 6 1 8
Solution 24 16 10 463 2320 7 3 1 6 8 6 3 8
Solution 25 28 10 371 2300 7 7 1 2 6 6 1 8
Solution 26 16 10 140 2270 7 3 1 6 8 6 1 8
Solution 27 44 10 088 2180 7 7 1 6 7 6 1 8
Solution 28 126 10 069 2170 7 3 1 4 2 6 3 8
Solution 29 16 10 068 2140 7 3 1 6 8 6 5 8
Solution 30 16 9977 2110 7 4 6 4 3 6 1 8
Solution 31 126 9770 1990 7 3 1 4 3 6 1 8

Table 3
Solutions computed in the second and following directional searches

Max F1 (KW) Max F2 (PTE) Min F3 Control strategies

Directional search starting from solution 31 to improve F1:
Solution 32 211 9644 2250 7 7 1 2 6 8 1 1
Solution 33 262 9776 2500 7 4 6 4 8 8 1 1
Solution 34 293 9497 2530 7 7 1 1 8 7 5 1
Solution 35 293 9679 2610 7 3 2 4 8 8 3 1
Sol. 36 (STEM-2) 364 9265 2450 7 4 6 4 2 8 1 2

Changing direction to improve F2, considering F1 �300 KW:
Solution 37 331 9646 2690 7 7 7 1 8 7 5 1
Solution 38 319 9744 2760 7 7 7 2 2 7 1 2
Sol. 39 (STEM-5) 319 10255 2810 7 7 7 2 8 7 1 1
Solution 40 300 10288 2960 7 7 7 2 8 8 4 1
Solution 41 362 10415 3130 7 7 7 1 8 6 5 2

the efficient solution set. There exist “consecutive” solutions that present similar values for all the objective functions,
but there are others that present very different values in one (or more) objective(s). An example of the first situation
is the transition from solution 21 to 22 (see Table 2): F1 maintains its value, F2 diminishes 1.5% and F3 improves
3.8%. Thus, these solutions have close values for all the objective functions. An example of the second situation
is the transition from solution 27 to 28: F1 improves 186% and F3 improves 0.46%, just sacrificing F2 on 0.19%.
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Fig. 3. Graphs of solutions 41, 40 and 39, respectively, and numerical information of solution 39.
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Fig. 4. Global network load curves corresponding to solutions 39 and 41.
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Fig. 5. Load curves of the groups under control in solutions 39 and 41.
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Fig. 6. Stability regions for all the efficient solutions computed.

These are “consecutive” solutions with similar values on F2 and F3, but a very different value on F1. So, it can be
easily considered that solution 28 is superior to solution 27.

5. Conclusions

In this paper we presented a study of a multiobjective load management problem using a decision support software
having at its core an interactive reference point method for multiobjective (mixed) integer linear programming. The
results have been compared with those obtained by the application of the STEM method to the same problem, for the
sake of illustration of the value-added of the approach proposed herein.

The interactive reference point method used in this study is mainly devoted to perform directional searches. It also
enables a stability analysis of the efficient solutions by providing a graphical representation of indifference reference
points that result in the same solution (for problems up to three objective functions).

Several advantages of this approach are highlighted in this study of a load management problem:

• The procedure enables a free exploration of the decision alternatives, allowing for both a strategic search and a
more local analysis, when a region of interest for the DM has been identified.

• Following directional searches, the DM can choose the objective function he wants to improve at each moment,
having also the possibility of imposing constraints on the objective function values. These constraints may be
revised whenever the DM wants, either by relaxing or tightening the bounds. This is far more flexible than other
procedures, such as the STEM method in which the DM specifies a relaxation quantity for one objective function
in order to improve the other objectives, but has not the possibility of selecting a criterion he would desire to be
privileged in the following computation(s).

• If a local analysis is made (which may be useful in a final phase of the decision process) the DM can easily
conclude whether a region of interest is completely explored or not.

• Trajectories of successive efficient solutions obtained throughout directional searches, combined with the analysis
of their stability regions, can give a good perception of the geometry of the efficient solution set. Although stability
regions concern the change of the reference point in the scalarizing program, they also provide stability degrees
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for the efficient solutions with respect to the improvement of a given objective function. Those “consecutive”
efficient solutions may present similar values for all the objective functions or very different values in one (or
more) objective(s). The DM can thus perceive these asymmetries.
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