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Abstract

A different approach to the capacitated single allocation hub location problem is presented. Instead of using capacity constraints
to limit the amount of flow that can be received by the hubs, we introduce a second objective function to the model (besides the
traditional cost minimizing function), that tries to minimize the time to process the flow entering the hubs. Two bi-criteria single
allocation hub location problems are presented: in a first model, total time is considered as the second criteria and, in a second model,
the maximum service time for the hubs is minimized. To generate non-dominated solutions an interactive decision-aid approach
developed for bi-criteria integer linear programming problems is used. Both bi-criteria models are tested on a set of instances,
analyzing the corresponding non-dominated solutions set and studying the reasonableness of the hubs flow charge for these non-
dominated solutions. The increased information provided by the non-dominated solutions of the bi-criteria model when compared
to the unique solution given by the capacitated hub location model is highlighted.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of locating hub facilities arises when some traffic must be transported from a set of origins to a set of
destinations, but when it is impossible to establish a direct link between each pair of nodes or when it is too expensive to
create such links. In this situation, generally a group of nodes is chosen to locate hubs, which will serve as consolidation,
switching and distribution centers for traffic. The origins and destinations will be allocated to this set of hubs. So, if i is
connected to hub k and j is connected to hub m, flows from i to j (Wij ) will be routed from i to k, from k to m and from
m to j. It is assumed that hubs are fully interconnected and that the non-hub nodes can be linked directly to, at least,
one hub [1–3]. One of the main characteristics of hub systems is that, by gathering the flows, they enable economies
of scale resulting in lower transportation costs [4].
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This is a general definition of the basic hub location problem, but there are many variants about this issue: non-hub
nodes may be allocated only to one hub—single allocation [5–7] or to several hubs—multiple allocation [8]; the use of
direct links between non-hub nodes may be allowed; the location of some (or all) hubs may be fixed; hub nodes may
be allowed to be located anywhere in a continuous region—continuous hub location problems [9] or may be chosen
from a discrete set of places—discrete hub location problems; there may exist a constraint fixing the number of nodes
that will be selected as hubs—p-hub problem [10,11] or a fixed cost for establishing a hub may be considered; instead
of choosing nodes to locate hubs, we can select the arcs connecting the non-hub nodes to hubs—hub arc location
problem [12,13]. Capacities in hub location problems may assume different aspects: there can be capacities on the hub
nodes (limiting the volume of flow into the hub [14–16] or for the total flow through the hub) as well as on the flows
between hubs or between hubs and non-hubs; on other hand, a minimum flow value needed to allow service on the link
between a non-hub node and a hub may exist [17,18]. Many different cost functions have been studied, for example,
flow-dependent cost functions [19]; time functions—latest arrival hub location problem [20].

The scheme chosen for the hub location problem should depend and reflect the reality of the distribution system
considered. For more details on the classification of hub location problems, see Campbell [21], Campbell et al. [3] and
Bryan et al. [22].

Hub location problems have important applications in transportation and telecommunication systems. The phenom-
enal growth of the air express package delivery business has been linked to the use of hub-and-spoke networks. Hub
location in telecommunication systems has also received a lot of interest, for example, in designing backbone networks
and locating concentrators [23]. This problem also arises in many different applications, such as, postal delivery ser-
vices, airline services (air passenger travel, air freight travel), communication networks (telephone networks, video
teleconferences and computer communications), emergency services and logistic systems [21,24,3].

In this paper we will study the capacitated single allocation hub location problem (CSAHLP) (the basic problem,
with single allocation of non-hub nodes to hubs, and with upper bounds upon the amount of flow hubs can receive).
The paper is organized as follows: Section 2 describes two bi-criteria models for the hub location problem; Section 3
explains the interactive approach used to calculate non-dominated solutions (n.d.s.); Section 4 presents and analyzes
computational results and in Section 5 some conclusions are drawn.

2. The bi-criteria model

2.1. The purpose of the bi-criteria model

Bi-criteria models are especially adequate to deal with hub location problems, namely due to the usual conflict
between the quality and the cost of the solutions. In this paper we take advantage of a new bi-criteria model to deal
with the limitations of a classical capacitated hub location problem. In fact, if a mono-criterion model with capac-
ity constraints is chosen, the options of the decision maker (DM) are limited to the acceptance or rejection of the
optimal solution, many times without awareness of the simplifications/omissions of the model. The consideration
of several criteria enables the stable part of the DM’s preference structure to be fixed [25]. The use of the pro-
posed bi-criteria model will allow the DM to consider the model as the core of a learning oriented decision support
tool, enabling a reflection on the different n.d.s. and allowing negotiation with all the actors of the decision pro-
cess while tolerating hesitations and ambiguities (dealing with the uncertainties associated with the aggregation of
the preferences expressed by each criterion). The interactive process looks for a progressive and selective learning
of the non-dominated solutions set, clarifying the criteria values aggregation meaning and consequences. Although
in some situations it is possible to opt for one alternative in many others the interactive process just enables the
elimination of great part of the feasible solutions reducing the final choice to a small part of the non-dominated
ones.

In this case, if necessary, these alternatives can be scrutinized using another multi-criteria analysis tool dedicated to
discrete problems, where the alternatives are known explicitly and in small number. Of course, this stage looks for a
more detailed analysis of this sub-set of the non-dominated alternatives. However, it does not enable the combinatorial
nature of feasible solutions to be explored. So, it just should be used for a deeper study of alternatives filtered by the
phase one of the process. Furthermore, in some circumstances one must not restrict this second phase of the process to
the analysis of the n.d.s. selected by our bi-criteria interactive decision support tool. Dominated solutions, very close,
in terms of the objective function values, to one or more of the selected n.d.s. sub-set, should also be considered in the



M.G. Costa et al. / Computers & Operations Research 35 (2008) 3671–3695 3673

second phase, taking into account that a deeper scrutiny will be done and that they are acceptable in terms of the first
phase of the process.

In this paper we propose a bi-criteria decision support tool dedicated to the above referred to first phase of the
process. Besides the cost it considers alternatively the minimization of the time the hubs take to process the flow or the
minimization of the maximum service time of the hubs. It seems to be suitable and simple enough to be accepted as
relevant by the DM and other actors, possibly associated with the decision process. Furthermore, note that usually the
classical cost minimizing criterion generates solutions that are characterized by an excessive concentration of the flow
on a small number of nodes. To avoid this situation, the classical model restricts the amount of flow that can be redirected
or sorted by a hub, generating a problem with capacity constraints. However, this is not free of inconveniences. Let us
take the case of a mail distribution center with a limited flow capacity. If during one day they receive slightly more flow
than the estimated capacity, they will need extra time to be able of processing the extra flow. It would not be reasonable
to refuse the extra amount of flow. This will be even more obvious if we consider an emergency service. Obviously, an
emergency service cannot refuse the emergency flow even if it exceeds its capacity.

To deal with these situations, we consider that a more realistic approach would be to try to minimize the total time
that hubs take to process the flow or to try to minimize the maximum service time of the hubs, depending on the cases.
So, we believe that a bi-criteria approach to the problem would be more helpful to the DM, instead of limiting sharply
a priori the amount of flow the hubs can process. The analysis of the different n.d.s. will allow a clarification of the
uncertainty associated with the capacity. It can be said that capacity rather than a “hard constraint” is considered as a
“soft constraint”.

2.2. Mathematical formulation

Using the notation in Ernst and Krishnamoorthy [15], let us define the following variables: Y i
km is the total amount

of flow from location i (origin) that is routed via hubs k and m; Zik = 1 if node i is allocated to a hub located at node k
and 0 otherwise (in particular, Zkk =1 implies that node k is selected as a hub). The input data are given as: n—number
of locations; Wij —flow from location i to location j (Oi =�jWij and Di =�jWji); dij —distance between node i and
node j; �—coefficient of the collection cost (per unit flow) from any non-hub node to any hub node; �—coefficient of
the distribution cost from any hub node to any non-hub node; � (0���1; � < � and � < �)—coefficient of the transfer
cost between any two hubs; Fk—fixed cost of establishing a hub at node k; �k—capacity of collecting flow at hub k
(flow into hub k).

Different authors have proposed many formulations for the CSAHLP. Our model is based on the formulation presented
by Ernst and Krishnamoorthy [15], which seems to be the most effective approach for this problem.

CSAHLP:

min
n∑

i=1

n∑
k=1

dikZik(�Oi + �Di) +
n∑

i=1

n∑
k=1

n∑
m=1

�dkmY i
km +

n∑
k=1

FkZkk

s.t.
n∑

k=1

Zik = 1, i = 1, . . . , n, (1)

Zik �Zkk, i = 1, . . . , n; k = 1, . . . , n, (2)
n∑

i=1

OiZik ��kZkk, k = 1, . . . , n, (3)

n∑
m=1

Y i
km −

n∑
m=1

Y i
mk = OiZik −

n∑
j=1

WijZjk, i = 1, . . . , n; k = 1, . . . , n, (4)

Zik ∈ {0, 1}, i = 1, . . . , n; k = 1, . . . , n, (5)

Y i
km �0, i = 1, . . . , n; k = 1, . . . , n; m = 1, . . . , n. (6)
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The objective function sums the transportation cost over all (i, j) pairs and the fixed cost of establishing a hub. Eq. (1)
together with condition (5) enforces single allocation for each node; constraints (2) assure that no node is assigned to
a location unless a hub is opened at that site; constraints (3) are the capacity constraints that limit the amount of flow
processed by hub k; Eqs. (4) are the divergence equations for commodity i at node k in a complete graph, when the
demand and supply at the node is determined by the allocations Zik .

The main idea behind this formulation is to track flows on arcs for each specific origin. It appears to be an approach
with fewer variables and constraints, leading to a slightly weaker formulation but with faster solution times, therefore
allowing for larger problems, than other models reported in the literature, to be solved.

In this work the idea is to remove the capacity constraints (3) and introduce a second objective function that measures
the time hubs take to process the flow. Two approaches were considered for the second objective function: summing
the total time for processing the flow gathered by the hubs that, of course, has to be minimized (BSAHLP-1); and
minimizing the maximum service time on the hubs (BSAHLP-2). In this study, the capacity constraints are discarded
and the hubs flow charge is analyzed for the different n.d.s. obtained during the interactive search.

Besides the data already defined, we also use the following additional data: Tk—time hub k takes to process one unit
of flow; Pk—fixed time to initiate the service at hub k.

The formulations for the two models proposed in this paper are:
BSAHLP-1:

min
n∑

i=1

n∑
k=1

dikZik(�Oi + �Di) +
n∑

i=1

n∑
k=1

n∑
m=1

�dkmY i
km +

n∑
k=1

FkZkk

min
n∑

i=1

n∑
k=1

OiTkZik +
n∑

k=1
PkZkk

s.t.
n∑

k=1
Zik = 1, i = 1, . . . , n, (1)

Zik �Zkk, i = 1, . . . , n; k = 1, . . . , n, (2)

n∑
m=1

Y i
km −

n∑
m=1

Y i
mk = OiZik −

n∑
j=1

WijZjk, i = 1, . . . , n; k = 1, . . . , n, (4)

Zik ∈ {0, 1}, i = 1, . . . , n; k = 1, . . . , n, (5)

Y i
km �0, i = 1, . . . , n; k = 1, . . . , n; m = 1, . . . , n. (6)

BSAHLP-2:

min
n∑

i=1

n∑
k=1

dikZik(�Oi + �Di) +
n∑

i=1

n∑
k=1

n∑
m=1

�dkmY i
km +

n∑
k=1

FkZkk

min max
k

(
n∑

i=1
OiTkZik + PkZkk

)

s.t.
n∑

k=1
Zik = 1, i = 1, . . . , n, (1)

Zik �Zkk, i = 1, . . . , n; k = 1, . . . , n, (2)

n∑
m=1

Y i
km −

n∑
m=1

Y i
mk = OiZik −

n∑
j=1

WijZjk, i = 1, . . . , n; k = 1, . . . , n, (4)

Zik ∈ {0, 1}, i = 1, . . . , n; k = 1, . . . , n, (5)

Y i
km �0, i = 1, . . . , n; k = 1, . . . , n; m = 1, . . . , n. (6)
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For the second model, after linearizing the second objective function, we get
BSAHLP-2∗:

min
n∑

i=1

n∑
k=1

dikZik(�Oi + �Di) +
n∑

i=1

n∑
k=1

n∑
m=1

�dkmY i
km +

n∑
k=1

FkZkk

min �

s.t.

��
n∑

i=1
OiTkZik + PkZkk, k = 1, . . . , n, (7)

n∑
k=1

Zik = 1, i = 1, . . . , n, (1)

Zik �Zkk, i = 1, . . . , n; k = 1, . . . , n, (2)

n∑
m=1

Y i
km −

n∑
m=1

Y i
mk = OiZik −

n∑
j=1

WijZjk, i = 1, . . . , n; k = 1, . . . , n, (4)

Zik ∈ {0, 1}, i = 1, . . . , n; k = 1, . . . , n, (5)

Y i
km �0, i = 1, . . . , n; k = 1, . . . , n; m = 1, . . . , n. (6)

3. Solution approaches for the bi-criteria model

We start this section by introducing some definitions that will be used throughout this paper.

3.1. Terminology for multi-criteria theory

A multiple objective linear problem (MOLP) can be written as

min f1(x)

min f2(x)

...

min fk(x)

s.t. x ∈ S,

where k is the number of objectives, fi(x) is the ith objective function (i = 1, 2, . . . , k) and S is the feasible region.

Definition 1 (Steuer [26]). Let z1 = (f1(x
1), f2(x

1), . . . , fk(x
1)) and z2 = (f1(x

2), f2(x
2), . . . , fk(x

2)) ∈ Rk be
two criteria vectors. Then, z1 dominates z2 if and only if z1 �z2 and z1 �= z2 (i.e., fi(x

1)�fi(x
2) for all i and

fi(x
1) �= fi(x

2) for at least one i).
In other words, a criterion vector is non-dominated if it is not dominated by any other feasible criterion vector.

Definition 2 (Steuer [26]). A feasible solution xe to problem MOLP is said to be efficient if and only f (xe) is non-
dominated.

Definition 3 (Steuer [26]). The ideal point or ideal vector for problem MOLP is a point in the objective space,
f ∗ = [f ∗

1 , f ∗
2 , . . . , f ∗

k ], such that f ∗
i (i = 1, 2, . . . , k) is the optimal objective function value for the problem

min fi(x)

s.t. x ∈ S.
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When we consider the optimal objective function value for each problem individually, we are referring to the lexico-
graphic minimums, f ∗

i (i = 1, 2, . . . , k). These values altogether, f ∗ = [f ∗
1 , f ∗

2 , . . . , f ∗
k ] form the ideal vector.

MOLPs rarely have points that simultaneously optimize all the objectives (e.g. the ideal point is not feasible). Rather,
they have a set of efficient solutions, from which the DM must choose the one he/she prefers the most.

Definition 4. A reference point, which is an aspiration level, for problem MOLP is a point in the objective space,
f ′ = [f ′

1, f
′
2, . . . , f

′
k], such that f ′

i (i = 1, 2, . . . , k) is the value the DM wishes to obtain for the objective function i.
Usually the reference point is the ideal point, but it may correspond to other values of interest to the DM.

Definition 5. A reservation level, for problem MOLP is a point in the objective space, f = [f 1, f 2, . . . , f k], such
that f i (i = 1, 2, . . . , k) is the worst acceptable value for the objective function i.

3.2. The interactive approach

In order to analyze the information provided by the bi-criteria models we use an interactive method based upon the
progressive and selective learning of the n.d.s. set (see [27,28]).

According to Larichev and Nikiforov [29], good interactive methods are those that use information relative to the
objective function values in the dialogue with the DM, in order to create a system of preferences. This may lead to two
different ways of acting. According to the terminology of Nakayama [30]:

• to fix aspiration levels (the objective function values the DM wishes to achieve), in general, close to the ideal value
(optimistic point of view);

• to fix reservation levels (the worst acceptable values for the objective functions—pessimistic point of view).

The interactive framework (see Fig. 1) developed to this type of bi-criteria approach has several characteristics,
namely:

(i) there are no irrevocable decisions along the process;
(ii) the method is not too demanding with respect to the information required from the user in each interaction, i.e.,

in the interaction phase the user is able to indicate a sub-region to carry on the search for n.d.s. in two (simple)
different ways:

• by indicating aspiration levels (optimistic reference points) concerning the objective function values;
• by indicating reservation levels (pessimistic point of view) concerning the objective function values;

(iii) it enables the user to find any non-dominated solution of the problem, namely:
• supported n.d.s. (those located on the frontier of the convex hull);
• non-supported n.d.s. (in the duality ‘gaps’ between the adjacent points that define the convex hull);

(iv) on the operational side, a single criterion mixed integer programming problem (whose structure remains almost
unchanged, with computational advantages) has to be solved at each step.

This method (inspired by Ferreira et al. [31]) starts by calculating the two lexicographic minima and involves two main
phases: a dialogue phase with the DM and a calculation phase.

During the dialogue phase, the DM is asked to give indications about the sub-region to carry on the search for new
n.d.s. If using reservation levels concerning the objective function values, then the information can be transmitted in
two different ways: by indicating upper bounds on the values of both objective functions or by indicating two non-
dominated solutions candidate to be adjacent. If using aspiration levels concerning the objective function values, then
the DM can transmit the information by indicating the reference point he/she would like to achieve.

In the calculation phase, two procedures were used to determine n.d.s. on the region of interest, according to the
procedure used to indicate the sub-region to carry on the search:

• the minimization of a Chebyshev distance to a reference point;
• the minimization of a weighted sum of the objective functions.
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 Start

Calculation of the lexicographic 
minimum and ideal point 

The ideal
point is 

feasible? 

STOP 
There is no 

conflict between 
the criteria 

Yes

No

STOP
The DM considers to have

"sufficient" knowledge about 
the set of non-dominated

solutions ? 

The DM indicates a sub-region to carry on the search for non-dominated solutions by: 
-  indicating reservation levels concerning the objective function values; 
- indicating aspiration levels (optimistic reference points) concerning the 

objective function values; 

Determination of non-dominated solutions on the 
region of interest 

Decision phase

Yes

No

Fig. 1. General diagram of the interactive procedure inspired by Ferreira et al. [31]

3.2.1. Minimization of a Chebyshev distance to a reference point
To use the interactive procedure minimizing the Chebyshev distance to a reference point (see [26,32]), the first

reference point will be the ideal vector (this is adequate in our case, but other reference points could be used). So, we
have to calculate the ideal vector z∗∗ as follows:

z∗∗
i = z∗

i − εi

= min{fi(x) : x ∈ S} − εi, i = 1, 2.

We have used εi = 0.2.
With a z∗∗ ideal criterion vector and the weighting vectors

� ∈ 	 =
{

� ∈ Rk : �i > 0,

k∑
i=1

�i = 1

}
,

we can define the weighted Chebyshev metrics as (recall that we are considering a minimization criterion):

‖z − z∗∗‖�∞ = max
(i=1,...,k)

{�i |zi − z∗∗
i |},

measuring the distance between z ∈ Rk and z∗∗.
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To measure the distance between z ∈ Rk and z∗∗, we may also define the augmented weighted Chebyshev metrics
as

‖|z − z∗∗|‖�∞ = ‖z − z∗∗‖�∞ + 

k∑

i=1

|zi − z∗∗
i |,

‖|z − z∗∗|‖�∞ = max
(i=1,...,k)

{�i |zi − z∗∗
i |} + 


k∑
i=1

|zi − z∗∗
i |

with 
 > 0 sufficiently small.
As (zi − z∗∗

i ) will never be negative, we can drop the absolute value signs, writing:

‖|z − z∗∗|‖�∞ = max
(i=1,...,k)

{�i (zi − z∗∗
i )} + 


k∑
i=1

(zi − z∗∗
i ).

The program for finding the points in Z closest to z∗∗ according to the augmented weighted Chebyshev metric is

min

{
� + 


k∑
i=1

(zi − z∗∗
i )

}

s.t. ���i (zi − z∗∗
i ) (1� i�k),

fi(x) = zi (1� i�k),

x ∈ S.

Specifying for our model BSAHLP-1 (considering 
 = 0.000001), and recalling that z1 and z2 have no bounds,

min � + 0.000001w1 + 0.000001w2

s.t. � − �1w1 �0,

� − �2w2 �0,

w1 − z+
1 + z−

1 = z∗∗
1 ,

w2 − z+
2 + z−

2 = z∗∗
2 ,

z+
1 − z−

1 − f1(x) = 0,

z+
2 − z−

2 − f2(x) = 0,

x ∈ S,

�, w1, w2, z
+
1 , z−

1 , z+
2 , z−

2 �0,

where S stands for the decision space defined by constraints (1), (2), (4)–(6).
For the weighting vectors � ∈ 	, we have considered (accordingly to Steuer [26]),

�i = 1

(zi − z∗∗
i )

·
(

2∑
i=1

1

(zi − z∗∗
i )

)−1

(i = 1, 2).

When the reference point is changed, the process is repeated considering z∗∗ as the new reference point. The interactive
procedure would continue, changing the reference point (as it will be explained in the example of paragraph 3.2.3) and
repeating the process.

3.2.2. Minimization of a weighted sum of the objective functions
Although the reference point procedure of the previous paragraph could be adapted to the interactive approach

using reservation levels, we decided to introduce another procedure based on the optimization of weighted sums of
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f2

f1

A

B
C

D

E

F
G

Fig. 2. Graphic representation of the objective space.

the objective functions considering two extra constraints (regarding the reservation levels). Note that the weights are
just operational parameters that can be fixed by the analyst or even by default using equal weights. In any case they
are not elicited during the dialogue phase with the DM. This procedure seems to be more easily understood by the
DM in the case of asking him/her to fix reservation levels interactively. Furthermore, it enables the comparison of the
computational efficiency of both procedures.

In bi-criteria integer linear programming (BILP) models, besides the n.d.s. on the efficient frontier of the convex
hull in the objective space (supported non-dominated solutions—A, B, D, F and G) other n.d.s. may exist, called
unsupported (C and E), inside the duality gaps, dominated by convex combinations of the supported ones, as can be
seen in Fig. 2.

In discrete problems, the optimization of weighted sums of the different objectives will only guarantee the gen-
eration of part of the n.d.s. set. As presented by Ross and Soland [33], to obtain all n.d.s. of a BILP model like,
for example,

min f1(x)

min f2(x)

s.t. x ∈ S

a parametric constrained problem of the type

min �1f1(x) + �2f2(x)

s.t. f1(x)�1,

f2(x)�2,

x ∈ S

can be solved for different values of (1, 2) and considering (�1, �2) such that �1 + �2 = 1 and �1 > 0, �2 > 0.
Obviously, some unsupported n.d.s. can be the most appropriate for the DM. So, this sub-set of n.d.s. must be
considered.

In the calculation phase we optimize a single criterion problem representing the weighted sum of both objective
functions, imposing limits on their values accordingly to the preferences expressed by the DM during the dialog phase.
This corresponds to the optimization of the problem below, where ε > 0 is sufficiently small to allow the calculation
of a new non-dominated solution distinct from Z(t) and Z(r). We use f1 andf2 as the two objective functions of the



3680 M.G. Costa et al. / Computers & Operations Research 35 (2008) 3671–3695

25172

23099

20128

18527

16934

262447.5 274925.25 287829.75 295569
f1

f2

S2

S5

S4

S3

S1

Fig. 3. Graphic representation of the objective space.

proposed bi-criteria model:

min �f1(x) + (1 − �)f2(x)

s.t. f1(x)�f
(t)
1 − ε,

f2(x)�f
(r)
2 − ε,

x ∈ S,

0 < � < 1.

We assume that f
(r)
1 < f

(t)
1 and f

(t)
2 < f

(r)
2 ; S stands for the decision space defined by constraints (1), (2), (4)–(6). If

this problem has an optimal solution, then it will be a new non-dominated solution to the bi-criteria model. Otherwise,
it is possible to conclude that the non-dominated solutions Z(t) and Z(r) are adjacent.

A general solver for mixed integer linear programming CPLEX was used to solve this single criterion problem.
A graphic representation of the objective space is presented to the DM with the non-dominated solutions already

known, indicating those that are adjacent and showing the regions where new n.d.s. may still exist.
In Fig. 3, we show an example of a graphic representation of the objective space presented to the DM, and indicate

the n.d.s. calculated for BSAHLP-1.
In this example, five n.d.s. have been calculated; S1 and S2 stand for the lexicographic minima of f1 and f2; the

white region illustrates the inexistence of new non-dominated solutions (S5 and S2 are adjacent n.d.s.) and the gray
region indicates the unexplored areas where new n.d.s. may still exist.

Let us take the case where the DM wishes to continue the search for new non-dominated solution in the region
between S4 and S5. Then, in the calculation phase, we would solve the mono-criterion problem:

min �f1(x) + (1 − �)f2(x)

s.t. f1(x)�287 829.50,

f2(x)�20 127,

x ∈ S,

0 < � < 1.

The optimal solution to this problem would be S6 with f1(S6) = 280 542.25 and f2(S6) = 19 414. After updating the
objective space, the DM is presented with Fig. 4.

These two phases go on alternately, only ending when the DM considers having sufficient knowledge of the n.d.s.
set. The DM has the option to calculate the entire n.d.s. set.
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Fig. 5. Objective space for problem 10T L (using the optimization of a weighted sum of both objective functions).

3.2.3. Comparison between both interactive procedures
Obviously, whether using the optimization of a weighted sum of both objective functions or using the minimization

of an augmented weighted Chebyshev distance during the calculation phase, the n.d.s. set is exactly the same.
Let us consider problem 10T L (problem with 10 nodes, fixed costs of type T and capacities of type L—for more

details on problem classification, see Section 4.1.). When using the weighted sum of objective functions to calculate the
n.d.s. for the first model, we get the objective space presented in Fig. 5. Notice that this problem was entirely explored
with a total of eight n.d.s. We begin by calculating the two lexicographic minima and then, as explained in Section
3.2.2, we obtain the remaining non-dominated solutions. The white areas marked as SA, SB, SC, SD, SE, SF and SG,
represent explored regions where there are no n.d.s. Notice that it was necessary to explore these areas in order to be
sure that they did not include any other non-dominated solution.

If we use the minimization of a Chebyshev distance to a reference point we will, obviously, get the same n.d.s. set.
The difference appears on the white areas and the searching process. It is possible to eliminate some of these areas of
the objective space without having to explore the eventual existence of new n.d.s. Let us see how.

Once again, we begin by calculating the two lexicographic minima and the correspondent ideal point (z∗∗)
(see Fig. 6).
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Fig. 7. Solution S3.

Then, we minimize an augmented weighted Chebyshev distance to the ideal point, solving the following problem:

min � + 0.000001W1 + 0.000001W2

s.t. � − 0.136W1 �0,

� − 0.864W2 �0,

W1 − Z+
1 + Z−

1 = −263401,

W2 − Z+
2 + Z−

2 = −18875.0,

f1(x) − Z+
1 + Z−

1 = 0,

f2(x) − Z+
2 + Z−

2 = 0,

x ∈ S,

�, W1, W2, Z
+
1 , Z−

1 , Z+
2 , Z−

2 �0

obtaining the optimal solution S3 (see Fig. 7).
Observing the diagonal equation and as f1(S3) = 280 931.1, we can calculate f2(A) = 21 642.97.
The optimality of S3 implies that there will not exist any solution on the rectangle ABZ∗∗D. So, it is possible to

consider explored also the area ABCS3. In the previous method, we would have to explore also this area. It is possible,
for every non-dominated solution, to find this area through the calculation of the diagonal equation.
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Fig. 8. Objective space for problem 10T L (using the minimization of an augmented weighted Chebyshev distance).

Table 1
CPU times (in seconds) for both interactive procedures

Solutions First method (WCD) Second method (WSOF)

S1 1.92 1.92
S3 0.36 0.99
S4 0.98 0.62
S5 1.28 0.91
S6 1.91 1.68
S7 1.65 1.49
S8 1.19 0.84
S2 0.17 0.17
SA∗/SA 1.68 2.63
SB∗/SB 1.12 1.15
SC∗/SC 1.50 1.62
SD∗/SD 2.08 2.38
SE∗/SE 1.44 1.15
SF∗/SF 2.03 1.91
SG∗/SG 1.63 1.12

Next, the DM would be asked to indicate whether he/she wishes to continue the search for new n.d.s. He/she would
have the opportunity to indicate one of two possible reference points: point B or point D (these are the best possible
objective values in the gray rectangles where n.d.s. may still exist). This procedure would go on until the DM wishes
to stop. For this problem in particular, and as said before, we have studied the entire n.d.s. set presented in Fig. 8.

The gray areas represent those regions that are eliminated from the search process by the diagonal equation. The
white areas marked as SA∗, SB∗, SC∗, SD∗, SE∗, SF∗ and SG∗, as before, represent regions where there are no n.d.s.
These white areas are smaller than before because they were reduced by the diagonal equation.

If we observe that the mono-criterion problem to solve in each interaction uses four more constraints than the
weighted sum of the objective functions, we would expect higher processing times. In Table 1 we present the CPU
times for both interactive procedures.

We can conclude that when comparing the CPU times, the second procedure (WSOF—optimization of a weighted
sum of both objective functions) generally takes less time when calculating n.d.s., but takes a longer time when
exploring the white areas (those areas where there are no new n.d.s.). This probably occurs because in the first procedure
(WCD—minimization of a Chebyshev distance to a reference point) those areas are reduced by the diagonal equation.
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Although we only present the comparison of the two procedures considering problem 10T L and model BSAHLP-1,
the same type of results was obtained for all the problems tested.

4. Computational results

4.1. Test data

The computational results were carried on using the AP data set, electronically available from OR_Library
(http://mscmga.ms.ic.ac.uk/info.html).

This data set consists of 200 nodes representing postcode districts and their coordinates and flow volumes. It also
includes capacities and fixed costs on the nodes. There are two types of capacities and fixed costs: tight (T ) and loose
(L). Problems with values of type T are more difficult to solve. For every problem size there are four types of problems:
LL, LT, TL and TT. The problems are denoted as nFC, where n stands for the number of nodes, F is the type of fixed
cost and C is the type of capacity. The AP data set considers � = 3, � = 0.75 and � = 2.

Our bi-criteria approach was applied to the data instances with 10, 20, 25 and 40 nodes. A total of 16 problems were
analyzed (for each model BSAHLP-1 and BSAHLP-2).

To build the second objective function we needed to generate values for the times to process the flow (Tk and Pk)
as the AP data set does not contemplate these values. This data was generated as a function of the capacity values
available in the AP data set. For the time hub k takes to process one unit of flow (Tk), we assumed that hub k capacity
was expressed in units of flow for one day comprised of eight hours of work. Choosing to express time in seconds, we
calculated the time needed to process one unit of flow for each hub. For example, if we consider a node with capacity
equal to 2199 units of flow per day (in 28 800 s), the results show that one unit of flow would take 13 s to be processed.
For the fixed time to initiate service at hub k (Pk), we considered that it should be an increasing function (in a concave
way) on the capacity of each node (values available in Appendix A).

4.2. N.d.s. set analysis for the bi-criteria models

After using the interactive procedures to calculate the n.d.s. set for the two bi-criteria models we established some
comparisons between this set of solutions and the unique solution obtained with formulation CSAHLP. We observed
that the 16 problems could be placed together in three different groups: a first one representing the problems for
which the optimal solution of model CSAHLP is one of the n.d.s. of the bi-criteria model; a second one that groups
those situations where the optimal solution of model CSAHLP corresponds to the lexicographic minimum of the first
objective function of the bi-criteria model and a third group where the optimal solution of CSAHLP is a dominated
solution of the bi-criteria model. We decided to calculate the entire set of non-dominated solutions in order to discuss
the advantages of this type of approach when compared to the capacitated hub location model.

To compare all these situations we calculated the tradeoffs between the values of the two objective functions for the
different n.d.s. set, relatively to the optimal solution of CSAHLP. These tradeoffs were calculated as

�f B
2 /f C

2

�f B
1 /f C

1

,

where f C
1 and f C

2 stand for the values of both objective functions for the optimal solution of CSAHLP; �f B
1 and �f B

2
represent, for both objective functions, the difference between the values of the current solution of BSAHLP and the
optimal solution of CSAHLP. This measure allows us to analyze how much f2 changes when f1 varies in one unit.
We can examine how much we have to penalize the value of one objective function, in order to improve the other.
Obviously, all tradeoffs will be non-positive, indicating that both criteria values are inversely proportional: the decrease
of one objective function will make the increase of the other.

When we analyze solutions with lower value for f2 and higher value for f1 (than the optimal solution of CSAHLP),
we will be interested in higher tradeoffs, meaning that the increase of the value of f1 by 1% is intended to produce the
biggest reduction possible on the value of f2. On the other hand, when we observe solutions with better value for f1
and worse value for f2, we will choose smaller tradeoffs, meaning that in order to reduce f1 by 1%, we will penalize
the value of f2 the least possible.

http://mscmga.ms.ic.ac.uk/info.html
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Table 2
Main characteristics of problems in Group I (BSAHLP-1)

Problem Number of n.d.s. N.d.s. that improve f1 N.d.s. that improve f2 Number of n.d.s. with flow excess

10LT 22 11 10 17
20LT 17 10 6 16
25LL 31 5 25 8
25T L 29 1 27 4
40LL 42 3 38 9

We have also calculated the amount (if any) of flow that exceeds the capacity of the hubs.
Let us analyze in more detail the three groups of problems.

4.2.1. The BSAHLP-1 model
Group I: This group contains those problems where the optimal solution of the single criterion model belongs to the

set of n.d.s. of the bi-criteria model. In this case the bi-criteria model identifies alternative solutions that allow the DM
to improve the value of one of the two criteria: the DM will know a set of solutions with lower costs (and higher service
times) than the unique original solution and an alternative set characterized by lower service times (and higher costs).
The DM will be able to analyze the tradeoffs between the two criteria, study the excess of flow the hubs will have to
process and, according to his/her preferences, he/she can choose a final solution that reflects his/her value system.

Five problems are in this situation: 10LT , 20LT , 25LL, 25T L and 40LL. Their main characteristics can be sum-
marized in Table 2.

Let us observe problem 25LL: in a total of 31 n.d.s., five allow improving cost values and 25 allow improving service
time values. Analyzing the tradeoffs of four of these solutions, we can say that by increasing the value of service times
by 0.92% (solution S5) the DM can reduce the costs by 1%. This is possible by exceeding the capacity of hub 18 by
6.1%.

Other possibility (solution S13) is to increase service times by 0.75% generating a reduction on the cost of 1%, with
a slightly excessive flow (0.76%) on hub 18.

Alternatively, the DM may choose to improve service times: by increasing the value of total costs by 1%, he/she may
reduce the value of service times by 7.27% (solution S3) or by 6.73% (solution S7). None of these solutions present
an excess of flow in the hubs.

So, it is possible to see that the DM has some interesting alternatives to the unique solution of CSAHLP, which will
improve the value of one criterion without a major increase on the value of the other one. This is possible, in some
situations, even without exceeding the hubs capacity.

A similar analysis could be made for the remaining solutions of this problem and also for the other four problems of
Group I.

As it is not possible to present the entire non-dominated solution set, we show in Appendix B the characteristics of
some selected n.d.s. for the five problems in this group.

Group II: In this group we consider the problems for which the optimal solution of the single criterion model
corresponds to the lexicographic minimum of the cost function for the bi-criteria model. In this situation, we can
conclude that the capacity constraints from the original model are not restrictive and can be eliminated. The entire
n.d.s. set of BSAHLP-1 presents solutions with lower service times and greater values on the costs. The DM will be
able to know the alternatives characterized by an improvement in service quality.

Five problems are in this situation: 10LL, 10T L, 10T T , 20LL and 20T L. Only problem 10T T presents some
excessive flow concentration in the hubs. Their special features are summarized in Table 3.

For problem 10LL (see Appendix B), we calculated a total of 13 n.d.s., none with excess of flow in the hubs. The
DM is presented with a considerable set of solutions that allow reducing the service times significantly without major
increase of the costs. There is a situation where it is possible to improve service times by 8.19%, by increasing the
costs only by 0.77% (solution S3). Solution S6 gives an alternative with 10.31% less on service times and just 1.58%
more on costs. Also, the DM can reduce service times by 20.48% (solution S7), by increasing cost values by 3.76%.

For a more detailed analysis of problems in this group, see Appendix B.
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Table 3
Main characteristics of problems in Group II (BSAHLP-1)

Problem Number of n.d.s. Number of n.d.s. with flow excess

10LL 13 0
10T L 8 0
10T T 12 7
20LL 23 0
20T L 19 0

Table 4
Main characteristics of problems in Group III (BSAHLP-1)

Problem Number of n.d.s. N.d.s. that improve N.d.s. that improve N.d.s. that improve Number of n.d.s.
f1 and f2 only f1 only f2 with flow excess

20T T 6 1 5 0 6
25LT 38 9 15 14 36
25T T 25 18 1 6 25
40LT 52 11 19 22 52
40T L 16 1 0 15 2
40T T 26 9 8 9 26

Group III: This set includes the problems where the optimal solution of CSAHLP is dominated by some of the
n.d.s. of BSAHLP-1. Those solutions that dominate the original solution have excessive flow concentration on (one or
several) hubs. Otherwise, they would be considered to be the optimal solution of CSAHLP. In this situation, the DM
is presented with a set of alternatives that make it possible to improve simultaneously the value of costs and the value
of service times. The DM should analyze those solutions that dominate the original one, comparing the improvements
on the values of both criteria with the excessive flow incurred.

We found six problems in this situation: 20T T , 25LT , 25T T , 40LT , 40T L and 40T T . Their main characteristics
are summarized in Table 4.

Problem 20T T was entirely explored and has a unique solution that dominates the optimal solution of CSAHLP.
In this situation, the DM can conclude that, by using only hub 10, the cost values will decrease by 6.04% and
service times by 19.15%. This improvement on both criteria is possible by an excess of flow on hub 10 of 82.21%
(solution S2).

The analysis of problem 25T T is similar to the previous one but with a greater number of solutions that dominate the
solution of model CSAHLP: a total of 18. So, the DM has a considerable set of solutions that grant the improvement on
both objective function values. There is a situation where it is possible to reduce cost values by 1.88% and service times
by 20.57%. Hub 25 capacity will be exceeded by 28.10% (solution S16). If the DM chooses to implement solution
S18, he/she will improve cost values by 1.51% and service times by 20.92 %, exceeding hub 25 capacity by 34.40%.

The analysis of problems 25LT , 40LT , 40T L and 40T T is alike to the former problems with a total of, respectively,
9, 11, 1 and 9 solutions dominating the original one.

To examine the characteristics of the n.d.s. for problems of Group III, see Appendix B.
Once again, the final choice of the solution to be implemented belongs to the DM that should analyze the model,

compare the different solutions, reflect and clear some ambiguities that he/she might have.

4.2.2. The BSAHLP-2 model
The interactive procedure using the minimization of a weighted sum of the objective functions was chosen to calculate

the n.d.s. of the BSAHLP-2 model. This time, we noticed that all the 16 problems would be placed together in only
two groups: Groups I and II described previously in Section 4.2 for the BSAHLP-1 model.

As before, in Group I we include those problems where the DM is faced with a set of solutions that allow the reduction
of the costs, and another set that provides the reduction of the maximum service time. The majority of problems fall in
this category. Their main characteristics are summarized in Table 5.
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Table 5
Main characteristics of problems in Group I (BSAHLP-2)

Problem Number of n.d.s. N.d.s. that improve f1 N.d.s. that improve f2 Number of n.d.s. with flow excess

10LT 18 8 9 8
20LT 31 6 24 6
20T T 30 12 17 12
25LL 33 4 28 4
25LT 40 20 19 20
25T L 32 1 30 1
25T T 33 17 15 17
40LL 35 2 32 2
40LT 47 20 26 20
40T L 27 2 24 2
40T T 36 23 12 23

Table 6
Main characteristics of problems in Group II (BSAHLP-2)

Problem Number of n.d.s. Number of n.d.s. with flow excess

10LL 9 0
10T L 11 0
10T T 12 0
20LL 36 0
20T L 27 0

The DM should examine the different solutions, comparing the improvements on the objective function values with
the excessive flow incurred. Notice that the solutions with reduced maximum service times (and worse costs) have no
excessive flow on the hubs. For example, in problem 10LT , the DM knows eight alternatives with lower costs and
nine with reduced maximum service times. The DM can choose, for example, to reduce the value of costs by 1%, by
increasing the maximum service time by 43.78% (solution S10). Excess on the capacity of hub 3 of 47.94% accompanies
this situation. Alternatively, he/she can choose to reduce the maximum service time by 17.47%, by increasing the total
costs by 1% (solution S7). This is possible with no excess of flow on the hubs.

A similar analysis is possible for the other 10 remaining problems. We have selected four illustrative solutions for
each of these 11 problems and present their main characteristics in Appendix C.

In Group II, as in Section 4.2, we have considered those problems where the DM knows a set of alternatives with
lower maximum service times (and higher costs). For these problems the DM knows that the capacity constraints are
not limiting the optimal solution of the original model. It is important to notice that none of the n.d.s. calculated presents
flow excess on the hubs. Five problems belong to this group (Table 6).

Once again, the analysis of these results is identical to the one made for the previous problems. For example, in
problem 10LL the DM has information that allows him/her to improve maximum service times significantly, with little
cost aggravation. He/she may choose to reduce maximum service times by 4.07% by increasing cost values by only
0.30% (solution S3). He/she can also decide for a major modification: improving maximum service time by 46.15%,
by aggravating cost values by 6.71% (solution S13). The rest of the problems are summarized in Appendix C.

As previously, the DM chooses the final solution accordingly to his/her preferences.

5. Final remarks

In this paper we have presented a bi-criteria approach to the CSAHLP. We have studied two alternative
bi-criteria models: a first one that minimizes the total service time and a second one that minimizes the maximum
service time on the hubs. We chose to discard the capacity constraints and analyze the impact of these limits on the
different n.d.s.
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If in some problems the bi-criteria model was not able to give interesting alternatives to the unique solution of the
CSAHLP, because those solutions had major excess of flow on the hubs or they assumed big increases in the value
of the costs to reduce just slightly time values (and vice versa), it was not always like that. In the majority of the
problems analyzed, the bi-criteria model revealed of great utility, because from its application new interesting and
viable solutions were calculated. These new solutions give to the DM alternatives that enable him/her to improve
significantly one criterion without a major increase in the other. In many situations, we have seen solutions that allow
improving both simultaneously, without exceeding hub capacities significantly.

While it can be argued that model BSAHLP-1 presents some problems with many solutions with excessive flow on
the hubs, this is not true for the BSAHLP-2 model. In the first model, we were concerned with the total processing
time which, in order to be minimized, originated some solutions that concentrate flow on few hubs. As for the second
model, since it tries to minimize the maximum service time, the solutions are characterized by a greater number of
hubs, spreading the flow more evenly through the hubs and avoiding the flow excess.

Notice that when the capacity constraints represent real limitations for the hub system, the alternative solutions
presented by the bi-criteria models will imply a readjustment on the value of these capacities. This is true for those
situations where the n.d.s. are characterized by an excessive amount of flow in the hubs. We have seen many situations
where the capacity constraints were not exceeded. Even if they are exceeded, we should note that, in some cases, hub
capacities are only estimated values that can allow some changes.

In this paper, we have studied a model that interacts with the DM, giving him/her a major importance in the final
decision, while allowing him/her to choose, from a set of significant alternatives, the solution that suits him/her better
and the reality of his/her institution.

Appendix A. Values for the times to process the flow

Problems with 10 nodes:

k Capacities type L Capacities type T

TK PK TK PK

1 13 610 188 508
2 5 1016 250 441
3 13 613 447 330
4 6 874 144 582
5 7 865 103 686
6 5 986 135 601
7 5 1016 929 229
8 4 1042 214 477
9 6 895 123 629

10 5 1027 100 697

Problems with 20 nodes:

k Capacities type L Capacities type T

TK PK TK PK

1 15 562 25 443
2 56 295 33 385
3 9 725 59 287
4 9 756 19 506
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k Capacities type L Capacities type T

TK PK TK PK

5 5 947 14 597
6 8 789 18 523
7 6 902 123 199
8 9 748 28 415
9 7 835 16 548

10 6 876 13 608
11 14 591 1371 60
12 11 663 16 559
13 15 579 22 472
14 8 768 15 575
15 7 817 297 128
16 13 606 26 431
17 6 899 45 328
18 10 695 436 106
19 7 844 18 516
20 12 645 27 428

Problems with 25 nodes:

k Capacities type L Capacities type T

TK PK TK PK

1 18 517 29 407
2 66 271 39 354
3 11 666 70 264
4 10 695 22 466
5 6 871 16 549
6 9 725 21 481
7 7 829 145 183
8 10 688 33 382
9 8 767 19 503

10 8 805 16 559
11 16 544 1600 55
12 13 609 18 514
13 17 532 26 434
14 10 706 17 528
15 9 751 351 118
16 16 558 31 396
17 7 827 53 302
18 12 639 514 97
19 8 776 22 474
20 14 593 31 394
21 8 794 50 311
22 20 493 220 149
23 8 761 32 391
24 69 265 37 364
25 21 486 15 568
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Problems with 40 nodes:

k Capacities type L Capacities type T

TK PK TK PK

1 23 464 36 366
2 82 244 48 318
3 14 599 86 237
4 12 624 28 418
5 8 782 20 493
6 11 651 26 432
7 9 745 180 164
8 13 618 41 343
9 10 689 24 452

10 9 723 19 502
11 20 488 2057 49
12 16 547 23 462
13 21 478 32 390
14 12 635 22 474
15 11 674 436 106
16 19 501 38 356
17 9 742 66 271
18 15 574 640 87
19 10 697 27 426
20 17 532 39 354
21 10 714 63 279
22 25 443 272 134
23 10 683 40 351
24 86 238 46 327
25 26 437 19 510
26 16 552 20 498
27 30 404 702 83
28 70 264 41 343
29 8 760 34 380
30 8 787 21 480
31 38 359 47 323
32 28 416 17 527
33 85 240 98 223
34 11 656 30 401
35 10 712 28 414
36 8 783 443 105
37 21 484 74 256
38 11 664 25 445
39 13 612 38 359
40 55 298 18 520
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Appendix B. Selected non-dominated solutions for BSAHLP-1

Group I:

Problem Solution �f1 (%) �f2 (%) Tradeoffs Maximum Number of Total
excess of hubs with number of
flow (%) flow excess hubs

10LT S1 −10.65 520.72 −48.87 752.28 2 3
S10 −1.79 64.83 −36.21 47.94 1 3
S4 1.30 −6.24 −4.81 0.00 0 3
S7 2.90 −7.89 −2.72 0.00 0 3

20LT S4 −2.72 0.85 −0.31 15.04 1 2
S9 −1.31 0.29 −0.22 4.44 1 2
S10 0.47 −0.56 −1.21 2.95 1 2
S2 8.53 −6.33 −0.74 82.21 1 1

25LL S5 −0.97 0.94 −0.92 6.10 1 2
S13 −0.26 0.19 −0.75 0.76 1 2
S3 2.60 −18.87 −7.27 0.00 0 2
S7 2.84 −19.12 −6.73 0.00 0 2

25T L S1 −4.72 97.92 −20.74 137.34 1 1
S31 12.30 −9.25 −0.75 0.00 0 2
S12 15.66 −10.94 −0.70 0.00 0 2
S7 18.76 −16.20 −0.86 0.00 0 1

40LL S1 −0.40 296.22 −940.27 534.82 1 2
S8 −0.29 287.75 −1273.21 516.86 1 2
S3 0.07 −21.33 −414.59 0.00 0 2
S7 0.23 −21.96 −123.61 0.00 0 2

Group II:

Problem Solution �f1 (%) �f2 (%) Tradeoffs Maximum Number of Total
excess of hubs with number of
flow (%) flow excess hubs

10LL S3 0.77 −8.19 −10.62 0.00 0 3
S6 1.58 −10.31 −6.52 0.00 0 3
S5 2.57 −18.36 −7.15 0.00 0 2
S7 3.76 −20.48 −5.44 0.00 0 2

10T L S3 0.43 −6.03 −13.88 0.00 0 2
S5 2.13 −7.29 −3.42 0.00 0 2
S7 4.15 −8.81 −2.12 0.00 0 2
S11 9.55 −16.81 −1.76 0.00 0 2

10T T S4 1.53 −1.76 −1.15 0.00 0 3
S3 4.04 −6.32 −1.57 0.00 0 2
S5 5.23 −6.50 −1.24 0.00 0 2
S8 7.07 −6.51 −0.92 0.00 0 2
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Problem Solution �f1 (%) �f2 (%) Tradeoffs Maximum Number of Total
excess of hubs with number of
flow (%) flow excess hubs

20LL S6 4.26 −7.02 −1.65 0.00 0 2
S11 4.60 −7.46 −1.62 0.00 0 2
S8 6.53 −11.13 −1.70 0.00 0 2
S10 6.98 −11.50 −1.65 0.00 0 2

20T L S3 0.39 −0.42 −1.08 0.00 0 2
S7 1.58 −0.84 −0.53 0.00 0 2
S4 2.60 −5.65 −2.18 0.00 0 1
S18 15.57 −10.82 −0.70 0.00 0 2

Group III:

Problem Solution �f1 (%) �f2 (%) Tradeoffs Maximum Number of Total
excess of hubs with number of
flow (%) flow excess hubs

20T T S6 −8.16 226.79 −27.81 476.09 2 2
S9 −7.36 206.99 −28.13 423.06 2 2
S5 −6.93 196.13 −28.29 393.94 2 2
S2 −6.04 −19.15 3.17 82.21 1 1

25LT S39 −4.73 −0.41 0.09 30.56 1 3
S36 −4.71 −0.51 0.11 30.56 1 3
S33 −0.81 −4.25 5.22 21.53 2 3
S34 −0.73 −4.38 5.98 21.53 2 3

25T T S3 −9.98 −9.37 0.94 154.70 1 1
S7 −8.78 −10.24 1.17 74.77 1 2
S16 −1.88 −20.57 10.93 28.10 1 2
S18 −1.51 −20.92 13.81 34.40 1 2

40LT S57 −4.58 −1.43 0.31 108.36 1 2
S46 −4.57 −1.51 0.33 105.66 1 2
S47 −3.08 −2.49 0.81 70.94 2 2
S58 −2.62 −2.61 0.99 66.93 2 2

40T L S1 −1.93 −6.78 3.52 38.48 1 1
S3 2.24 −10.99 −4.90 32.06 1 1
S6 2.95 −11.15 −3.78 0.00 0 2
S13 3.44 −11.52 −3.35 0.00 0 2

40T T S28 −4.17 −10.60 2.54 55.54 2 2
S19 −4.05 −11.00 2.72 61.72 2 2
S24 −0.21 −12.94 61.56 90.99 1 2
S34 −0.04 −12.95 313.28 91.20 1 2
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Appendix C. Selected non-dominated solutions for BSAHLP-2

Group I:

Problem Solution �f1 (%) �f2 (%) Tradeoffs Maximum Number of Total
excess of hubs with number of
flow (%) flow excess hubs

10LT S14 −6.38 414.38 −64.99 326.86 2 4
S10 −1.79 78.38 −43.78 47.97 1 3
S7 0.50 −8.65 −17.47 0.00 0 4
S23 4.62 −24.57 −5.31 0.00 0 4

20LT S3 −3.70 15.73 −4.25 15.04 1 3
S10 −1.31 5.25 −4.01 4.44 1 2
S12 3.55 −20.87 −5.88 0.00 0 3
S9 4.78 −26.13 −5.46 0.00 0 3

20T T S10 −2.71 9.12 −3.37 6.23 2 2
S18 −1.52 9.06 −5.96 6.16 2 2
S13 1.88 −6.38 −3.40 0.00 0 3
S22 7.21 −19.78 −2.74 0.00 0 3

25LL S4 −0.71 7.56 −10.70 6.10 1 2
S6 −0.26 2.25 −8.72 0.76 1 2
S8 2.78 −26.69 −9.61 0.00 0 2
S3 2.87 −28.28 −9.85 0.00 0 2

25LT S22 −2.50 11.51 −4.60 9.56 2 4
S24 −0.42 3.05 −7.29 1.13 1 4
S25 1.31 −6.67 −5.09 0.00 0 3
S26 2.59 −12.98 −5.02 0.00 0 3

25T L S1 −4.72 198.53 −42.05 137.34 1 1
S4 0.06 −3.14 −55.52 0.00 0 2
S3 0.26 −7.53 −29.52 0.00 0 2
S7 0.97 −12.24 −12.65 0.00 0 2

25T T S13 −4.79 26.47 −4.79 24.35 2 2
S21 −0.31 10.53 −34.28 8.45 1 3
S15 2.35 −12.98 −5.53 0.00 0 3
S14 2.61 −15.16 −5.80 0.00 0 3

40LL S1 −0.40 577.83 −1442.08 534.82 1 2
S5 −0.29 558.67 −1943.55 516.86 1 2
S4 0.07 −14.49 −221.48 0.00 0 2
S3 0.09 −15.70 −179.58 0.00 0 2

40LT S8 −1.04 5.55 −5.34 5.30 2 3
S13 −0.20 0.99 −5.06 0.68 2 3
S23 0.53 −1.96 −3.70 0.00 0 3
S7 0.76 −3.39 −4.46 0.00 0 3

40T L S1 −1.93 38.45 −19.97 38.48 1 1
S10 −0.02 0.97 −42.00 0.34 1 2
S6 2.52 −29.48 −11.68 0.00 0 2
S3 2.67 −31.14 −11.65 0.00 0 2
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Problem Solution �f1 (%) �f2 (%) Tradeoffs Maximum Number of Total
excess of hubs with number of
flow (%) flow excess hubs

40T T S26 −4.92 11.75 −2.39 11.84 3 3
S52 −4.17 11.26 −2.70 11.35 3 3
S54 17.02 −32.22 −1.89 0.00 0 5
S18 19.77 −36.52 −1.85 0.00 0 5

Group II:

Problem Solution �f1 (%) �f2 (%) Tradeoffs Maximum Number of Total
excess of hubs with number of
flow (%) flow excess hubs

10LL S3 0.30 −4.07 −13.76 0.00 0 3
S8 3.44 −22.78 −6.63 0.00 0 3
S5 5.20 −37.01 −7.12 0.00 0 4
S13 6.71 −46.15 −6.88 0.00 0 5

10T L S3 0.46 −7.94 −17.19 0.00 0 3
S8 7.32 −25.01 −3.42 0.00 0 3
S7 7.73 −30.06 −3.89 0.00 0 3
S11 9.97 −32.94 −3.31 0.00 0 4

10T T S5 0.46 −8.65 −18.74 0.00 0 3
S7 5.32 −24.57 −4.62 0.00 0 3
S15 7.32 −26.69 −3.65 0.00 0 3
S13 9.74 −35.79 −3.34 0.00 0 3

20LL S3 0.85 −5.18 −6.08 0.00 0 2
S7 2.23 −10.41 −4.67 0.00 0 2
S5 6.41 −30.07 −4.69 0.00 0 3
S12 9.99 −45.74 −4.58 0.00 0 3

20T L S3 0.39 −5.17 −13.27 0.00 0 2
S5 1.58 −10.29 −6.52 0.00 0 2
S7 4.19 −22.05 −5.26 0.00 0 2
S8 10.49 −41.58 −3.96 0.00 0 3
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