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Abstract 

The hippocampal CA3 subregion of the rat is characteristically enriched in kainate receptors. At the synaptic level, the subcellular 
localization of these receptors is still a matter of debate. The CA3 pyramidal cells are particularly sensitive to excitotoxicity induced 
by kainate, which is in agreement with the high levels of kainate receptors in the stratum lucidum of the hippocampal CA3 subregion. 
Immunocytochemical studies, using antibodies against kainate receptor subunits, clearly demonstrated the presence of postsynaptic 
kainate receptors. However, it was not possible at the time to identify the activity of postsynaptic kainate receptors as mediators of 
the synaptic transmission. There are also reports showing the labeling of unmyelinated axons and nerve terminals with antibodies 
against kainate receptor subunits. The evidence for the presence of presynaptic kainate receptors in the hippocampus is further 
substantiated by the demonstration that stimulation of kainate receptors in synaptosomes isolated from the rat hippocampal CA3 
subregion increases the intracellular free Ca 2÷ concentration ([Ca2+]~) coupled to the release of glutamate. These results support the 
model proposed by Coyle (1983), in which the excitotoxicity induced by kainate involves the activation of presynaptic kainate 
receptors, causing the release of glutamate. According to this model, the neurotoxic effect of kainate in the rat hippocampal CA3 
subregion involves a direct effect on presynaptic kainate receptors and an indirect effect on postsynaptic glutamate receptors due to 
the enhanced release of glutamate. © 1998 Elsevier Science Ltd. All rights reserved 

L-Glutamate is the major excitatory neurotransmitter in 
the brain. The effects of glutamate are mediated through 
the interaction with glutamate receptors located pre- 
synaptically, postsynaptically, or on glial cells. In nerve 
terminals, glutamate receptors may induce the release 
of neurotransmitters, or modulate the response of the 
synapse to the next stimulus (Ruzicka and Jhamandas, 
1993; Verhage et al., 1994). 

Glutamate receptors may be classified as metabotropic, 
which are coupled to G-protein second messenger path- 
way systems, or may be ionotropic allowing the direct 
influx of  cations (Ruzicka and Jhamandas, 1993; Schoepp 
and Conn, 1993; Pin and Bockaert, 1995). Ionotropic 
glutamate receptors form a complex family of  glutamate 
receptors with both N M D A  and non-NMDA receptors. 
These two groups have different glutamate receptor sub- 
unit compositions and also distinct pharmacological 
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characteristics (Hollmann and Heinemann, 1994). In con- 
trast to non-NMDA receptors, the N M D A  receptors are 
efficiently activated by NMDA, require the presence of  
glycine to be fully active, are blocked by physiological 
concentrations of Mg 2+ and are insensitive to either 
AMPA or kainate (Hollmann and Heinemann, 1994). 

Non-NMDA glutamate ionotropic receptors are com- 
posed by homomeric or heteromeric associations of either 
AMPA receptor subunits, GIuRA.o, or kainate receptor 
subunits, GIuRs_ 7 and KAI.: (Hollmann and Heinemann, 
1994; Bettler and Mulle, 1995). The different non-NMDA 
ionotropic receptors studied to date have a permeability 
to Ca: ÷ lower than that of  N M D A  receptors (Bettler and 
Mulle, 1995; Mori and Mishina, 1995). However, several 
factors may contribute to the existence of a diversity 
of  non-NMDA glutamate receptors with different Ca 2+ 
permeability, such as subunit composition (Hollmann et 
al., 1991; Verdoorn et al., 1991; Burnashev et al., 1992), 
mechanisms of alternative splicing (Sommer et al., 1990; 
Sommer and Seeburg, 1992), and editing of mRNA 
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(Bettler and Mulle, 1995; Seeburg, 1993: KOhler et al., 

1993). 
Both AMPA and kainate receptors are non-NMDA 

ionotropic glutamate receptors efficiently activated by 
either AMPA or kainate. However, the order of agonist 
potency for these two groups of receptors is quite differ- 
ent. The usual agonist potency order for the activation 
of the AMPA receptors is: quisqualate > 
AMPA>glutamate>kainate (Kein~inen et al., 1990; 
Hollmann and Heinemann, 1994; Bettler and M ulle, 
1995), but the relative potency of each agonist depends 
on the subunit composition of the receptors (Hollmann 
and Heinemann, 1994). Kainate receptors are activated 
by lower concentrations of kainate as compared to 
AMPA. Also, kainate receptors are formed by two 
different groups, which are low-affinity kainate receptors 
(GluRs_7) and high-affinity kainate receptors (KA ~_~). The 
agonist potency order is domoate>kainate>gluta- 
mate > AMPA, for the low affinity kainate receptors, or 
kainate > domoate > glutamate > > AMPA, for high- 
affinity kainate receptors (Hollmann and Heinemann, 
1994; Bettler and Mulle, 1995). 

The quinoxaline derivative, CNQX, is the most well 
known competitive antagonist of non-NM DA glutamate 
receptors (Honor6 et al., 1988; Egebjerg et al., 1991). 
Another quinoxaline compound, NBQX, is a stronger 
inhibitor of AMPA receptors as compared to kainate 
receptors (Sheardown et al., 1990). By comparing the 
inhibitory effects of the two compounds, it is possible to 
distinguish between the activity of kainate receptors and 
AMPA receptors (Sheardown et al., 1990). Recently, 
a new compound, 5-nitro-6,7,8,9, tetrahydro- 
benzo[g]indole-2,3-dione-3-oxime (NS-102), was used 
as a specific competitive antagonist of low affinity kainate 
receptors (Johansen et al., 1993; Verdoorn et al., 1994). 
Also, a new non-competitive and specific inhibitor of 
AMPA receptors, GYKI 53655, is a useful tool to dis- 
tinguish between the activity of AMPA and kainate 
receptors, since kainate receptors are insensitive to this 
compound (Partenain et al., 1995). 

1. Kainate receptors 

The physiology, subunit constitution and subcellular 
localization of native kainate receptors in the CA3 sub- 
region of the hippocampus persist largely unknown, 
although, in recent years, several groups of investigators 
contributed to partially clarifying this important problem 
(Lerma et al., 1997; Huettner~ 1997; Petralia, 1997). 

1.1. [~H]kainate  bindin9 sites 

The labeling of brain slices with [3H]kainate showed the 
existence of two different binding sites; low-affinity bind- 
ing sites (Kd~60nM) and high-affinity binding sites 

(Kd~10nM) (Foster et al., 1981; Unnerstall and 
Wamsley, 1983; Sommer and Seeburg, 1992; Garcia- 
Ladona and Gombos, 1993). Both in mice and in rat 
hippocampal CA3 subregion, there exist a large number 
of kainate binding sites in the s tratum lucidum, cor- 
responding to the mossy fiber nerve terminals region 
(Foster et al., 1981; Unnerstall and Wamsley, 1983; 
Represa et al., 1987; Miller et al., 1990; Garcia-Ladona 
and Gombos, 1993; Frotscher et al., 1994). The presence 
of high-affinity kainate binding sites in the s tratum 
lucidum of the rat CA3 subregion is an indication of a 
synaptic localization of high-affinity kainate receptors. 
Accordingly, the ontogeny of [3H]kainate binding sites 
occurs within the period of maturation of synapses for- 
med between the mossy fiber projections and the CA3 
pyramidal cells (Miller et al., 1990; Dessi et al., 1991). 
It was shown that these binding sites are particularly 
concentrated in synaptic plasma membranes, specially at 
the synaptic junctions (Foster et al., 1981), in contrast 
with the subcellular localization of [3H]AMPA binding 
sites, since the latter are specially abundant in the mic- 
rosomal fraction (Henley, 1995). 

1.2. Distribution o f  m R N A  .for kainate  receptor subunits 
in the hippocampus 

The distribution of mRNA for Glu R6, KA~ and KA2 
subunits is in agreement with the high levels of high- 
affinity kainate binding sites, specially in the CA3 sub- 
region of the hippocampus. High levels of KA2 subunits 
are expressed in all hippocampal subregions (Herb et al., 
1992; Wisden and Seeburg, 1993b); Bahn et al., 1994). 
The presence ofmRNA for KA~ subunits is characteristic 
of CA3 pyramidal cells, since this kainate receptor sub- 
unit is specially abundant in the CA3 subregion, with 
lower levels in the dentate gyrus (Werner et al., 1991; 
Herb et al., 1992; Wisden and Seeburg, 1993b; Bahn et 
al., 1994). Low-affinity kainate receptor subunits are also 
expressed in the hippocampus. For GluR6, the mRNA is 
abundant in the dentate gyrus and also in the CA3 sub- 
region (Egebjerg et al., 1991; Wisden and Seeburg, 1993b; 
Bahn et al., 1994). GluR7 is not expressed in high levels 
in the hippocampus, but dentate gyrus granule cells show 
moderate levels of mRNA for GluR7 (Bettler et al., 1992; 
Lomeli et al., 1992; Wisden and Seeburg, 1993b; Bahn et 
al., 1994). GluR5 is expressed in low levels in CA1 sub- 
region and is almost absent in other subregions of the 
hippocampus (Bettler et al., 1990; Wisden and Seeburg, 
1993b; Bahn et al., 1994). However, the scattered pattern 
of the in situ hybridization labeling for the GluR5 mRNA 
indicates that some interneurons may express high levels 
of mRNA for GluR5 (Bahn et al., 1994). 

The distribution of mRNA for the various kainate 
receptor subunits suggests that CA3 pyramidal cells may 
express kainate receptors having GluR6, KA~ or KA2 
subunits, and that dentate gyrus granule cells may express 
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receptors with GIuR6, GIuRT, KA~ or KAz subunits 
(Bahn and Wisden, 1997). The latter constitution for 
kainate receptors may be expected for the subunit 
arrangement of the putative mossy fiber nerve terminal 
kainate receptors, since the mRNA for these receptors 
may be expected to reside on dentate gyrus granule cells. 

1.3. Immunocy tochem&try  

The use of antibodies recognizing GluR6/7 (Petralia et al., 
1994), GluRs/6/7 (Huntley et al., 1993; Siegel et al., 1995), 
or KA2 subunits (Petralia et al., 1994; Roche and 
Huganir, 1995) revealed a similar distribution of glu- 
tamate receptor subunits and of [3H]kainate binding sites. 
In the rat and monkey hippocampus, the immu- 
noreactivity with these antibodies occurs mainly in the 
hilus and in the CA3 subregion (Petralia et al., 1994; 
Siegel et al., 1995). At the synaptic level, the localization 
of kainate receptor subunits appears to be principally at 
the postsynaptic membranes (Petralia et al., 1994; Hun- 
tley et al., 1993; Siegel et al., 1995). However, presynaptic 
KA2 subunits were also identified in nerve terminals of 
the rat cerebral and cerebellar cortex (Petralia et al., 
1994). Also, antibodies against GluR6/7 (Petralia et al., 
1994) react strongly with unmyelinated axons, which pos- 
sibly are mossy fibers. Mossy fibers in the CA3 subregion 
of the monkey hippocampus are also stained with anti- 
bodies against GluRs/6/7 (Siegel et al., 1995). Some mye- 
linated axons of the CA3 subregion of the rat 
hippocampus and also some unmyelinated axons of the 
cerebral and cerebellar cortex of the rat are recognized 
by an antibody against KA2 subunit (Petralia et al., 1994). 

Several factors may account for the labeling of axons 
with kainate receptor antibodies, and may include non- 
specific staining, nonfunctional transport of receptor 
subunits along the axon, nonsynaptic localization of 
kainate receptors, or presynaptic kainate receptors (Petr- 
alia, 1997). The presence of functional presynaptic kain- 
ate receptors in the CA3 subregion of the rat 
hippocampus is supported by several biochemical and 
physiological observations (Represa et al., 1987; Ben-Ari 
and Gho, 1988) and by our demonstration, for the first 
time, that kainate receptor stimulation increases the 
[Ca2+]i in hippocampal synaptosomes (Malva et al., 
1995). However, there are no clear immunocytochemical 
demonstrations of these presynaptic receptors, which 
may be due, in part, to conformational changes, to associ- 
ation of the receptors with other molecules, or to the 
presence of undetectable low levels of kainate receptor 
subunits (Petralia, 1997). 

1.4. Electrophysioloyy  

One of the most important problems in investigating 
kainate receptors is the lack of electrophysiological 
activity of kainate receptors in hippocampal slices, using 

patch-clamp techniques (Jonas and Sakmann, 1992; 
McBain and Dingledine, 1993). Several factors may 
account for this difficulty, including the localization of 
kainate receptors in distal dendrites or in nerve terminals, 
the localization of kainate receptors in glial cells, and 
also the AMPA receptors-mediated non-desensitizing 
currents elicited by kainate (Wisden and Seeburg, 1993a; 
Bettler and Mulle, 1995) which may mimic the effect of 
kainate on kainate receptors. 

The use of the novel AMPA receptor antagonists, 
GYKI 52466 and GYKI 53655, allows identification of 
the rapidly desensitizing currents elicited by kainate, 
attributed to the activity of kainate receptors (Partenain 
et al., 1995) in hippocampal neuronal microcultures. 
However, kainate receptors do not mediate synaptic 
transmission in these hippocampal cultures (Lerma et al., 
1997), although there are strong immunocytochemical 
evidences for the presence of postsynaptic kainate recep- 
tors in these cells (Lerma et al., 1997). These observations 
are consistent with the lack of detection of kainate recep- 
tor-induced currents in apical dendrites of the CA3 and 
CA1 pyramidal cells in slices of the hippocampus (Spru- 
ston et al., 1995). 

1.5. Exc i to tox ic i t y  

The high levels of kainate receptors in the CA3 subregion 
of the rat hippocampus (Hollmann and Heinemann, 
1994) is in accordance with observations that the CA3 
pyramidal cells are particularly sensitive to kainate recep- 
tor agonists-induced excitotoxicity (Nadler et al., 1978; 
Coyle, 1983; Represa et al., 1987). The best evidence 
for presynaptic kainate receptors was obtained through 
lesion studies. It was observed that [3H]kainate binding 
sites in the stratum lucidum of the rat hippocampus are 
more sensitive to colchicine lesion of granule cells than 
to kainate induced CA3 pyramidal cells death (Represa 
et al., 1987). Also, neonatal ~-ray irradiation reduce the 
number of granule cells and prevent the epileptic action 
of kainate (Gaiarsa et al., 1994). 

The kindling model of experimental epileptogenesis 
involves the generation of spontaneous seizures together 
with reorganization of mossy fiber synapses (McNamara, 
1988; Sutula et al., 1988; Ben-Ari and Represa, 1990; 
Cavazos et al., 1991). It is interesting that together with 
synaptic reorganization of mossy fiber projections there 
appeared new [3H]kainate binding sites in the infra- 
pyramidal cell layer of the CA3 subregion (Ben-Ari and 
Represa, 1990). One may speculate that the new [3H]kai- 
nate binding sites appearing in the infrapyramidal cell 
layer are presynaptic kainate receptors in mossy fiber 
terminals. However, it is also possible that this [3H]kai- 
nate binding sites are postsynaptic kainate receptors 
which appear after the formation of these new abnormal 
synapses. 
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1.6. Presynaptic  kainate  receptors and regulation oJneuro- 
transmitter release 

The model proposed by Joseph T. Coyle (1983) to explain 
the specially high sensitivity of CA3 pyramidal cells to 
kainate-induced toxicity, postulates the involvement of 
presynaptic kainate receptors in mediating the release 
of glutamate in this brain region. However, until very 
recently, it had not been possible to clearly show physio- 
logical activity of presynaptic kainate receptors in CA3 
nerve terminals. 

Presynaptic kainate receptors in rat mossy fiber 
synaptosomes may be involved in the domoate or 
kainate-induced increase in glutamate release elicited by 
KCI depolarization (Gannon and Terrian, 1991; Terrian 
et al., 1991). However, due to the high concentration of 
agonists used, activation of AMPA receptors may also 
occur. In apparent contradiction, it was also shown that 
stimulation of presynaptic kainate receptors reduces the 
release of [3H]glutamate induced by 4-aminopyridine or 
KC1 depolarization (Chittajallu et al., 1996), and these 
authors also observed a decrease in synaptic transmission 
in CA1 Schaffer collateral-commissural synapses (Chit- 
tajallu et al., 1996). However, interestingly, the authors 
observed that in some synapses this inhibitory effect is 
preceded by a transient increase in synaptic trans- 
mission, which the authors attributed to an initial 
and transient release of glutamate (Chittajallu et al., 
1996). 

The inhibitory synaptic transmission in the hippo- 
campus may be depressed following activation of pre- 
synaptic kainate receptors (Clarke et al., 1996), which 
may be attributed to the inhibition of GABA release, in 
accordance to the observation made in rat hippocampal 
synaptosomes (Cunha et al., 1997). Inhibition of GABA 
release by presynaptic kainate receptors may contribute 
to the increase in neuronal excitability induced by kainate 
receptor agonists, eventually causing neuronal toxicity. 
The presence of presynaptic kainate receptor subunits 
in non-glutamatergic synapses was also shown in the 
cerebellar and cerebral cortex of the rat, using an anti- 
body against KA2 kainate receptor subunit (Petralia et 
al., 1994). 

Recently, we identified the activity of glutamate recep- 
tors, in synaptosomes isolated from the CA3 subregion 
of rat hippocampus, which modulate the [Ca2+]~ (Malva 
et al., 1995). The stimulation of these receptors increased 
the [Ca2+]i with the following agonist potency order: 
domoate (ECs0, 0.16/~M)>kainate (ECs0, 0.86/~M)> 
AMPA (ECs0, 43.04 #M) (Malva et al., 1996). This agon- 
ist potency order, the ECs0 values, and the sensitivity to 
the inhibition by CNQX (Malva et al., 1995) are clearly 
compatible with the activity expected for a kainate recep- 
tor (Hollmann and Heinemann, 1994). We also found 
that the stimulation of kainate receptors induced the 
exocytotic release of glutamate (Malva et al., 1996), spe- 

cially in synaptosomes from the hippocampal CA3 sub- 
region. The influx of Ca 2+ which is coupled to the 
exocytotic release of neurotransmitters occurs in part 
through class A and class B voltage sensitive calcium 
channels (Carvalho et al., 1995). 

2. Conclusion 

The existing evidence indicates that the rat CA3 hip- 
pocampal subregion is specially enriched in kainate 
receptors. Also, the presence of kainate receptors in this 
brain subregion is compatible with the specially high 
sensitivity of CA3 pyramidal neurons to excitotoxicity 
induced by kainate receptor agonists, like kainate or 
domoate. For  several years the subcellular localization 
of these kainate receptors was a matter of debate, and 
even now this problem remains essentially unsolved. 
However, a large consensus exists that CA3 kainate 
receptors in the rat hippocampus are synaptic receptors, 
and also strong immunocytochemical evidences suggest 
that some receptors may be localized in the postsynaptic 
membranes. However, physiological studies do not stron- 
gly support this hypothesis. Some evidence exists, based 
on immunocytochemical studies, for the localization of 
kainate receptors in nerve terminals, including mossy 
fiber terminals. However, the stronger evidence for the 
presence of presynaptic kainate receptors was obtained 
through lesion studies, and by the identification of 
physiological active kainate receptors in modulating the 
[CaZ+]j coupled to the release of glutamate in synap- 
tosomes, in accordance to the high sensitivity of CA3 to 
excitotoxicity. 

Note added in proof 

After the acceptance of the present paper two different 
groups reported the identification of the activity of post- 
synaptic kainate receptors in CA3 pyramidal cells (Nat-  
ure, 388, 179-182; Nature,  388, 182-186). 
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