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Abstract

Over the last 20 years, the Mondego estuary, Portugal has experienced excessive growth of

macroalgae especially in the inner parts of the system, with several algal species implicated. In this

study, we compare the effects of morphologically different species, the red alga Gracilaria verrucosa

and the green macroalga Enteromorpha intestinalis on macrobenthic assemblages, by a field

experiment whereby the biomass of algae was manipulated and the resultant changes in macrofauna

abundance evaluated. The experiments were carried out in different areas (a relatively undisturbed

sea grass bed and an upstream eutrophic area) experiencing different degrees of overall enrichment.

Measurements of sediment redox potential revealed a rapid anoxia with a significant increase in

algal biomass after 4 weeks. The effects of macroalgae were different at the two sites, being more

marked in the eutrophic area. In addition, the effects of Gracilaria and Enteromorpha were

significantly different, with Enteromorpha having a greater detrimental effect for most of the

macrofauna, in particular Cyathura carinata, Scrobicularia plana, Cerastoderma edule and

Alkmaria romijni. However, three of the most abundant invertebrates (Hydrobia ulvae, Hediste

diversicolor and Capitella capitata) showed significant increases in abundance in weed affected

compared to weed-free plots. Gracilaria had less of an impact on macrobenthic assemblages leading

to a more enriched community. Between-site differences in overall impact were related to their

previous disturbance history.
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1. Introduction

Eutrophication of coastal waters as a result of anthropogenic activities is now widely

recognized as a major, worldwide pollution threat (Vadas and Beal, 1987; Beukema, 1991;

Fletcher, 1996; Norkko and Bonsdorff, 1996a,b; Beukema and Cadée, 1997; Valiela et al.,

1997; Raffaelli et al., 1998; Lillebø et al., 1999; Pardal et al., 2000; Cloern, 2001; Sfriso et

al., 2001; Cardoso et al., 2002). One of the direct symptoms of enrichment in estuaries is

the extreme growth of opportunistic green macroalgae, often associated with increases in

nutrition load (Raffaelli et al., 1989, 1998; Norkko and Bonsdorff, 1996a,b; Martins et al.,

2001; Sfriso et al., 2001).

In intertidal areas, these algae can form dense mats, which negatively impact on the

underlying macrofaunal assemblages, although at low biomasses there may be enhanced

effects (Hull, 1987; Raffaelli et al., 1998). At low densities and for restricted periods of

time, a patchy cover of algae increases habitat complexity and may facilitate local

recruitment (Norkko and Bonsdorff, 1996a,b; Raffaelli et al., 1998). However, at high

biomasses, macroalgal mats have been shown to negatively affect macrofaunal commu-

nities (Soulsby et al., 1982; Hull, 1987; Everett, 1994; Norkko and Bonsdorff, 1996a,b;

Norkko et al., 2000). The majority of studies on the effects of macroalgal mats on intertidal

macrofauna has focused only on green algae, mainly Enteromorpha (Raffaelli et al., 1998;

Bolam et al., 2000) while few, if any, studies have concentrated on the effects of red

macroalgal species.

In the Mondego estuary, Portugal, which has undergone significant eutrophication over

the last two decades (Marques et al., 1997; Lillebø et al., 1999; Lopes et al., 2000; Pardal

et al., 2000; Martins et al., 2001; Cardoso et al., 2002; Dolbeth et al., 2003), seasonal

macroalgal blooms have been observed, particularly in the inner areas of the southern arm

of the estuary from late winter to early summer when algae often collapse. These blooms

are characterized by two quite different macroalgal taxa, the red Gracilaria verrucosa and

the green Enteromorpha intestinalis, which have different morphological and ecological

characteristics (Cabioc’h et al., 1992), and distinctly different macrofaunal responses

might be expected (Raffaelli, 2000; Bolam and Fernandes, 2002). Here, we compare the

effects of these two algae on the intertidal community in two different areas, an

undisturbed sea grass bed and an eutrophic mudflat—to explore the effect of disturbance

history on the outcome of such experiments.
2. Materials and methods

2.1. Study site and experimental design

The Mondego estuary is a warm temperate system located on the Atlantic coast of

Portugal (40j08N, 8j50W). It comprises two arms, northern and southern, separated by an

alluvium-formed island (Murraceira Island) (Fig. 1). The northern arm is deeper (4–8 m

during high tide, tidal range 1–3 m) than the southern arm (2–4 m during high tide, tidal

range 1–3 m) and is almost silted up in the upper zones, resulting in the freshwater

outflow being mainly via the northern arm. Circulation in the southern arm is mostly



Fig. 1. Location of the Mondego estuary and experimental areas (Z. noltii meadows and eutrophic area).
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dependent on the tides and on the freshwater input from the Pranto River, a small tributary.

The discharge from this tributary is controlled by a sluice and is regulated according to the

water needs of rice fields in the Mondego Valley (Flindt et al., 1997; Lillebø et al., 1999).

Two different areas were selected as experimental sites along a well-documented

gradient (Marques et al., 1993a,b, 1997; Lillebø et al., 1999; Pardal et al., 2000; Martins et

al., 2001; Cardoso et al., 2002; Dolbeth et al., 2003) in the southern arm of the Mondego

estuary: (a) sea grass (Zostera noltii) meadows, corresponding to a non-eutrophic area, and

(b) the eutrophic area upstream (Fig. 1). The Z. noltii meadows are located downstream

and are characterized by a mud flat covered by sea grass and where the red macroalga (G.

verrucosa) is abundant, especially in late summer (50–100 g AFDW m� 2) (Lillebø et al.,

1999; Pardal et al., 2000). The eutrophic area is located upstream in the inner part of the

estuary. This sandy-mud area is characterized by the absence of rooted macrophytes (for

more than 15 years) but covered seasonally by green macroalgae, especially E. intestinalis

(Pardal et al., 2000; Martins et al., 2001; Cardoso et al., 2002; Dolbeth et al., 2003). These

two areas are characterized by different macrobenthic communities as a result of their

distinct biological and physicochemical features (e.g. presence/absence of sea grasses, pH,

oxygen, salinity, total inorganic nitrogen) (Cardoso et al., 2002).

Within each of these experimental areas, six blocks, each consisting of eight treatment

plots (plot size = 0.25� 0.25 m), were set up in mid-September 2002. For each of the two
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species of alga, three levels of algal biomass were added to the plots: 0.3 kg wet weight

m� 2 (low biomass), 1.0 kg wet weight m� 2 (intermediate biomass) and 3.0 kg wet weight

m� 2 (high biomass). The biomasses used span the range found at the sites (see Fig. 2 and

Cardoso et al., 2002) and are consistent with those used by other workers (Hull, 1987;

Raffaelli, 1999, 2000; Raffaelli et al., 1998).

Algae were maintained in position under sheets of wire mesh anchored with

corkscrewed wire at each corner, penetrating several centimetres into the sediment.

Additionally, a weed control (treatment left clear of algae but covered with wire mesh)

and a mesh control (treatment clear of both algae and mesh) were established within

each block. A mesh control was used to reveal any artefacts associated with the mesh

while the weed control was used to assess weed effects on invertebrate assemblages by

comparing this treatment with the other algal treatments. Thus, each block contained a

plot of low, intermediate and high algal biomass for the two algal taxa, a mesh control

and a weed control. The blocks were dispersed over the site to provide a randomized

block design.

Algal material used in the experiment was previously collected from sites on the

estuary where the species occur naturally and washed carefully to remove any associated

fauna.

The experiment was set up at low tide and ran for 4 weeks and redox potential

assessed regularly. After 4 weeks, the redox potential under the algal treatments became

markedly negative and the experiment was terminated. This experimental period is
Fig. 2. Variation of algal biomass in the Mondego estuary from January 1993 to September 1995.
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somewhat shorter than that of other experiments (Hull, 1987; Raffaelli, 1999, 2000;

Bolam and Fernandes, 2002), due to higher temperatures recorded at these sites, which

led to a rapid algal decomposition and anoxia. For this reason, we decided to finish the

experiment before an algal crash could happen. After this period, plots were sampled for

macrofauna, taking a single core (containing material at the surface) from each plot

using a 13-cm diameter corer to a depth of 10 cm. Each sample was taken from the

centre of the plot to avoid possible edge effects. Samples were washed in estuarine water

over a 500 Am mesh and the fauna retained preserved in 4% buffered formalin. Later,

animals were separated and kept in 70% ethanol. Macrofauna was identified to the

lowest possible taxon and counted. Sediment redox potential values were measured at

the end of the experiment using an Eh electrode (Crison pH/mv-506). Recordings were

made at 4-cm depth.

2.2. Data analysis

Two-factor ANOVA (sites� algal treatments) was carried out followed by a multiple

comparison test, the Tukey test, if significant, in order to determine where differences

between treatments lay. All data were previously checked for normality using the

Kolmogorov–Smirnov test and for homogeneity of variances using the Levene’s test

(Zar, 1996). Data not meeting these criteria were transformed appropriately (Zar, 1996)

and checked again for normality and homocedasticity.

Between-treatment and between-site comparisons were also made at the community

level using nonmetric Multi-Dimensional Scaling (MDS) ordination (Clarke and Warwick,

2001; Clarke and Gorley, 2001). The MDS plot was derived from the similarity matrix

based species abundance data in each replicate plot for all the treatments. Raw counts were

square root transformed to scale down the effects of very abundant species (Clarke and

Warwick, 2001). To validate our interpretation of the MDS, we performed the ANOSIM

test (analysis of similarities), built on a simple nonparametric permutation procedure,

applied to the similarity matrix underlying the ordination of the samples (treatments)

(Clarke and Warwick, 2001).
3. Results

3.1. Macrofauna

After 4 weeks of algal cover, there were effects of both algal species at both

experimental sites. However, the effects were dependent on both the algal taxon and

whether the site had a history of disturbance. The abundance of the several species

suffered modifications, some of them increased while others decreased in the presence of

weed (Enteromorpha and Gracilaria). Furthermore, there was no change in the total

number of species: from the 18 species of the eutrophic area and 14 of the Z. noltii

meadows, just 7 were sufficiently abundant for statistical analysis.

No significant effects of the mesh on species abundance were detected. For clarity, we

review the effects of the two algal taxa at each site and then compare the sites.



3.1.1. Effects of algae in the disturbed area

Overall, E. intestinalis had a greater impact than G. verrucosa for all biomass levels on

most of the macroinvertebrate species, namely Cyathura carinata, Scrobicularia plana,

Cerastoderma edule, Hediste diversicolor, Alkmaria romijni and Capitella capitata (Fig.

3, Table 1). There were dose-dependent negative effects of both types of algae on C.

carinata, while for the bivalves, S. plana and C. edule, there was a slight increase in

numbers in the presence of low weed biomass then a marked decline at high weed

biomass.

For the polychaete H. diversicolor, there was a general trend of an increase in

abundance of this species with increasing weed biomass in the Enteromorpha

plots.

A. romijni tended to slightly decline with increasing biomasses of Enteromorpha but

there was no effect of Gracilaria.

C. capitata increased at high biomasses of Enteromorpha, but the response was the

opposite for Gracilaria.
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Zostera noltii meadows 

Fig. 3. Mean species abundance ( + 95% confidence intervals) after 4 weeks of experiment in the two experimental

areas.



Fig. 3 (continued).
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3.1.2. Effects of algae in the sea grass meadows

In contrast to the eutrophic area, the effects of green and red macroalgae on benthic

macrofauna were considerably less in the sea grass meadows except for Hydrobia ulvae

(Fig. 3) in the presence of Enteromorpha. As expected, H. ulvae exhibited a positive

response to green macroalgae, showing an increase in abundance with increasing weed

biomass. For most of the other species (e.g. C. carinata, C. edule, A. romijni) there were

no effects possibly due to their low abundance in the cores. For the polychaete H.

diversicolor there was slight tendency for an increase in density with increasing Enter-

omorpha biomass.



Table 1

Statistical results of the two-way analysis of variance

Two-way ANOVA

Source of

variation

Degrees of

freedom

Significant

level

Tukey test

Hydrobia ulvae A 1 *** –

B 7 ns

A�B 7 **

Cyathura carinata A 1 *** –

B 7 ***

A�B 7 ***

Scrobicularia plana A 1 *** E Ent 3.9 < E Gr1.0

B 7 *

A�B 7 ns

Cerastoderma edule A 1 *** –

B 7 *

A�B 7 ns

Hediste diversicolor A 1 *** Z Ent 3.0 > Z Gr3.0

B 7 **

A�B 7 ns

Capitella capitata A 1 *** –

B 7 ***

A�B 7 ns

Factor A—sites, factor B—algal treatments, A�B—interaction, E—eutrophic area, Z—Z. noltii meadows, A.

*p< 0.05.

**p< 0.01.

***p< 0.001.
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3.1.3. Two-way analysis of variance

There were no significant algal treatment effects for H. ulvae (P= 0.347), but a

difference between sites (P= 0.000) and a significant interaction (P= 0.003), almost

certainly due to the different direction of the algal effects at the two sites (in the sea grass

meadows, Hydrobia increases with algal biomass, while at the eutrophic area, abundance

decreases).

C. carinata was significantly affected by site and algal treatments (P= 0.000 for both

factors) and there was a significant interaction (P= 0.000) term, probably because there

were effects of algal treatments at the eutrophic area while in the sea grass meadows

almost no effect was recorded.

For other species (e.g. S. plana, C. edule, H. diversicolor and C. capitata), there were

both between-biomass and between-site differences but no interaction between the two

factors (Table 1).

3.1.4. Redox potential

Sediment redox potential differed consistently between the two experimental areas (Fig.

4), being significantly lower in the eutrophic area consistent with the notion that this site is

more disturbed than the sea grass bed. In the eutrophic area, redox potential became more

negative with increasing algal biomass and weed treatment plots were significantly more

reduced than the control plots (ANOVA, F23 = 3.10, P= 0.029). However, Tukey tests



Fig. 4. Sediment redox potential measured at 4-cm depth at the Z. noltii meadows and eutrophic area.
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failed to reveal any significant differences between the Enteromorpha and Gracilaria

plots. In contrast, the sediments in the sea grass meadows did not show significant

differences between the treatments.

3.1.5. Multivariate analysis of the macrofaunal assemblages

The macrobenthic communities of the two study areas are clearly separated in the MDS

plot (Fig. 5). For the eutrophic area, macrobenthic assemblages within the weed controls

are detached from the ones corresponding to the treatments with highest biomass of
Fig. 5. Two-dimensional MDS ordination plot of macrobenthic communities.



Table 2

Statistical results of the ANOSIM test applied to the MDS analysis

Groups R statistic Significant level

Z weed control*Z Ent 1.0 R= 0.439 P= 0.002

Z weed control*Z Ent 3.0 R= 0.444 P= 0.004

Z weed control*Z Gr 1.0 R= 0.506 P= 0.004

Z Ent 0.3*Z Ent 3.0 R= 0.300 P= 0.022

Z Ent 0.3*Z Gr 1.0 R= 0.267 P= 0.039

E weed control*E Ent 3.0 R= 0.696 P= 0.002

E weed control*E Gr 1.0 R= 0.243 P= 0.019

E weed control*E Gr 3.0 R= 0.600 P= 0.002

E Ent 0.3*E Ent 3.0 R= 0.515 P= 0.002

E Ent 0.3*E Gr 1.0 R= 0.269 P= 0.019

E Ent 0.3*E Gr 3.0 R= 0.474 P= 0.002

E Ent 1.0*E Ent 3.0 R= 0.476 P= 0.002

E Ent 1.0*E Gr 1.0 R= 0.196 P= 0.032

E Ent 1.0*E Gr 3.0 R= 0.207 P= 0.039

E Ent 3.0*E Gr 0.3 R= 0.615 P= 0.002

E Ent 3.0*E Gr 1.0 R= 0.281 P= 0.015

E Ent 3.0*E Gr 3.0 R= 0.344 P= 0.006

E Gr 0.3*E Gr 3.0 R= 0.357 P= 0.002

E Gr 1.0*E Gr 3.0 R= 0.241 P= 0.037
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Enteromorpha and Gracilaria (Ent 3.0 and Gr 3.0), with the intermediate treatments

occupying an intermediate position (Fig. 5). On the other hand, for the Zostera meadows,

differences between treatments are less evident.

Significant differences were detected by ANOSIM between the two sites. Zostera

meadows were significantly different from the eutrophic area at the 5% level (R = 0.786;

P= 0.001). ANOSIM test was also used to detect any differences between treatments in the

two areas. The significant results are expressed in Table 2.
4. Discussion

The results of the present study demonstrate that the response of the macrobenthic

species to macroalgae is different in the two study areas. Previous studies have indicated

that the sediment environment in the two areas is quite different (Pardal et al., 2000;

Cardoso et al., 2002) and this is confirmed by our redox results. These indicate that the sea

grass meadows have a less hostile redox environment than the upstream disturbed area,

which is probably less resistant to additional impacts. It is perhaps not surprising that the

effects of the algae are more marked in the disturbed site (characterized by bare

sediments).

Within each area, the responses of the benthic macrofauna to algal mats were algal-

species dependent, with some species being negatively affected and others being enhanced

by the algae. On the other hand, for some species (e.g. A. romijni, H. ulvae) differences

between the weed control and the mesh control were observed, however, no significant

effects of the mesh on species abundance were recorded.
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For H. ulvae, one of the dominant taxa in the Mondego estuary (see Lillebø et al., 1999;

Cardoso et al., 2002), there were positive effects of the green macroalgae in the Z. noltii

meadows. This is consistent with other studies, which show that Hydrobia is an

opportunistic species, utilising intertidal algal mats both as food resource and refuge

(Soulsby et al., 1982; Norkko and Bonsdorff, 1996a,b; Norkko et al., 2000; Schanz et al.,

2002). In contrast, the effects of this alga on Hydrobia, in the eutrophic area, were

insignificant. This could be due to the short period of the experiment, which associated to

the fragile population structure in this area (since during most of the time, only juveniles

are present while adults only appear during periods with macroalgal blooms—see Cardoso

et al., 2002) may not have allowed Hydrobia to respond in the same way as in the Z. noltii

meadows. Gracilaria had no detectable effects on Hydrobia, probably because snails do

not seem to use this type of algae as a food resource because of its stiff consistency, while

its gross morphology possibly affords Hydrobia less protection than Enteromorpha.

The isopod C. carinata was negatively affected by both kinds of algae. The most likely

explanation for this is the physical barrier created by mats of macroalgae that will interfere

negatively with its feeding mechanism at the sediment–water interface (Cyathura is a

deposit feeder and a predator). This response is similar to that observed for the amphipod

Corophium volutator in other estuarine systems (Hull, 1987; Raffaelli, 1999, 2000). In the

sea grass meadows, Cyathura is too rare to permit the detection of such effects.

For the bivalves, S. plana and C. edule, despite the low abundances found, there was a

positive effect at low algal biomasses and a decline at high biomasses. This was much

more evident within the Enteromorpha plots, possibly because Gracilaria does not create

such a rigid barrier between infauna and the oxygenated water column and hence generate

such a hostile sediment environment. The effects of Enteromorpha are similar to those in

previous surveys carried out by Everett (1994), Bolam et al. (2000), Bolam and Fernandes

(2002) and Lewis et al. (2003) but dissimilar to those reported by Hull (1987) and Raffaelli

(1999). In the latter studies, the positive effects were due to the presence of a large number

of juveniles, which was not the case here.

H. diversicolor, overall, seems to benefit from green algal cover since Enteromorpha,

gives protection and constitutes a favourable food-source. Nevertheless for this endofaunal

species, occurred a small decline in the eutrophic area at the highest biomasses, probably

due to a new factor of stress induced by the large amount of weed that interferes with the

sediment properties on an already disturbed area. This is consistent with the findings from

other studies that tested lower weed biomasses (e.g. Norkko and Bonsdorff, 1996a). In

contrast, A. romijni was negatively impacted by green macroalgae. This polychaete is a

surface deposit feeder and the physical barrier created by macroalgae will probably

interfere with its feeding behaviour.

Capitella is the only species that increased within the high biomass plots, although less

so for Gracilaria. Capitella is an opportunistic detritivore species, usually associated with

organically enriched sediments (Pearson and Rosenberg, 1978; Soulsby et al., 1982;

Raffaelli, 1999, 2000; Bolam et al., 2000). Due to higher tissue thickness and lower

surface/volume ratio, Gracilaria decomposition rate is much slower than the Enter-

omorpha one (sometimes only a few hours at temperatures above 25 jC), contributing less
for food resources. Therefore, this species might be expected to do better in areas affected

by green macroalgae than those covered by red macroalgae.



P.G. Cardoso et al. / J. Exp. Mar. Biol. Ecol. 308 (2004) 207–220218
The present study has shown that the morphological and ecological features of the algal

species involved in blooms are an important determinant of algal–invertebrate interactions.

The effects of Enteromorpha on the macrobenthic communities are much greater than those

forGracilaria in the present study. In the presence ofEnteromorpha, the community tends to

be impoverished, dominated mainly by small size opportunistic species, like A. romijni, H.

ulvae and C. capitata, while in the presence of Gracilaria the negative effects are usually

less (Marques et al., 2003; Cardoso et al., in press). In addition, the prior disturbance history

of a site appears to be important in determining the extent of the impact of such blooms.

The present results and the one by Cardoso et al. (in press) confirmed the knowledge

that, in the long term, sustained eutrophication together with spring macroalgal blooms

may lead to complete replacement of sea grass habitat by unvegetated coarser sediments.

The macrofaunal assemblages tend to be dominated by opportunistic invertebrate taxa

with total macrobenthic biomass and species richness tending to decrease. Recovery from

this situation may not only require reduction in nutrient loadings to the estuary, but also

active sea grass restoration programmes to reverse the positive feedback processes

involved in the decrease of the environmental quality of eutrophic systems.
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