

Available online at www.sciencedirect.com

Ecological Modelling 185 (2005) 165-175

www.elsevier.com/locate/ecolmodel

Calculations of exergy for organisms

Sven Erik Jørgensen^{a,*}, Niels Ladegaard^b, Marko Debeljak^c, Joao Carlos Marques^d

^a Institute A, Environmental Chemistry, DFU, University Park 2, 2100 Copenhagen Ø, Denmark

^b Langkaer Vaenge 9, Vaerløse 3500, Denmark

^c Department of Knowledge Technologies, Josef Stefan Institute, Jamova 39, SI 1000, Slovenia

^d Department of Zoology, Faculty of Sciences and Technology, Institute of Marine Research, IMAR, University of Coimbra, 3004-517 Coimbra, Portugal

Received 8 March 2004; accepted 29 November 2004

Abstract

Exergy estimations based on biomass and information for organisms can with good approximation be found as: $Ex = \beta c$, where *c* is the concentration of biomass and β the weighting factor, that accounts for the information that the organisms carry [Jørgensen, S.E., 2002. Integration of Ecosystem Theories: A Pattern, vol. 432, 3rd ed. Kluwer Academic Publishing Company, Dordrecht, The Netherlands]. The determination of β for various organisms has been based on the number of coding genes, but recent research has shown that some of the non-coding genes are crucial for the control, maintenance and development of the organisms. The results [Eichler, E.E., Sankoff, D., 2003. Structural dynamics of eukaryotic chromosome evolution. Science 301, 793–797.] of ongoing whole-genome projects have therefore be applied in order to obtain more accurate β -values. These new β -values are several times bigger than the previously applied values. The number of amino acids coding per gene has probably been underestimated in the previous calculations. However, applications of the former values, for instance in ecosystem health assessment, where exergy is used as ecological indicator (referred as exergy index) and in the development of structurally dynamic models, are still valid. Because the exergy calculations were applied only as relative measures.

This paper presents several indirect methods to determine β -values. It is shown that the β -values are well correlated to the age of the organisms (mya), to the number of cell types, to the minimum DNA-content, to the ratio non-coding genes versus total number of genes [Mattick, J.S., 2003. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioassays 25, 930–939.] and to the β -values, determined by Fonseca et al. on basis of the total amount of DNA. Indirect determinations were therefore able to expand and improve the previous list of β -values. The previous list had only 19 values, while the list based on the whole-genome project has 16 β -values. The expanded list presented in this paper contains 56 β -values. To reduce the uncertainty of the values, although assuming an apparent loss of discriminating power, it was decided to lump some organisms together in one group when it was know from the evolutionary tree that the organisms were closely related. It implies that the averages of β -values determined by different methods were applied, which should give a higher certainty.

* Corresponding author. Tel.: +45 35306281; fax: +45 35306013. *E-mail address:* sej@dfuni.dk (S.E. Jørgensen).

^{0304-3800/\$ -} see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.ecolmodel.2004.11.020

The result is a list with 45 β -values, that hopefully will improve the use of β -values to calculate the exergy for assessment of ecosystem health and for the development of structurally dynamic models. © 2004 Elsevier B.V. All rights reserved.

Keywords: Exergy; DNA; Genes; Evolution; Complexity

1. Introduction

In the last two decades, several mathematical functions have been proposed as holistic ecological indicators, intending (a) to express emergent properties of ecosystems arising from self-organisation processes in the run of their development, and (b) to act as orientors (goal functions) in models development. Such proposals resulted from a wider application of theoretical concepts, following the assumption that it is possible to develop a theoretical framework able to explain ecological observations, rules, and correlations on basis of an accepted pattern of ecosystem theories (Jørgensen and Marques, 2001). Exergy (Jørgensen and Mejer, 1979; Jørgensen, 1981), a concept derived from thermodynamics, which can be seen as a measure of the maximum amount of work that the system can perform when it is brought into thermodynamic equilibrium with its environment has been tested in several studies.

If exergy is calculated only from the chemical potentials, which are extremely dominant for ecosystems, the following expression is valid with good approximation:

exergy = Ex =
$$RT \sum_{i=n}^{i=0} {}^{i}C_{i} \ln C_{i}/C_{i0}.$$

where component 0 represents all the inorganic components, n = 1 corresponds to detritus and $i \ge 2$ are the organisms, while C_i is the concentration of the *i*th component in the ecosystem and C_{i0} the same component at thermodynamic equilibrium. $\beta \equiv \ln C_i/C_{i0}$, has previously (see Jørgensen et al., 1995, 2000; Jørgensen, 2002) been calculated for several organisms based upon the number of non-nonsense (coding) genes. It is assumed that an organism is represented by the enzymes, which determine the life processes and that C_{i0} can be calculated from the probability of random formation of these enzymes. The coding genes are considered blueprints of life. The calculations are based on

the central dogma: DNA makes RNA, RNA makes proteins and proteins do almost the real work of biology. This idea is consistent with Boltzmann's expression for free energy of information = $RT \ln W$, where W is the number of possible microstates. Fonseca et al. (2000) has proposed to use the total content of DNA based on the assumption that all DNA molecules represent information, but the organisms contain also junk genes, that are non-functional and the amount of coding DNA does not scale with complexity of the organisms (Mattick, 2003). However, as pointed out by Eddy (2001), the remaining DNA is not all junk, as it was assumed previously. Many hidden genes work through RNA and some of them play a major role in the control, maintenance and development of organisms.

Slowly but certainly we are realizing that there are non-coding genes that are clearly functional. Therefore to avoid confusion, we ought not to talk about genes anymore but call them transcriptional units to indicate the segments that are transcribed to RNA and have a function opposite to junk DNA. We do not vet know all the functions of DNA, but if we would know the number of transcriptional units of the various organisms we could find better β -values. The core question is: how can we account for the unappreciated power of RNA? Surveys of human DNA have found an almost equal number of genes and other transcriptional DNA-segments, sometimes called pseudogenes, and of defective copies and functional genes. In other words, if we would know for an organism the fraction of DNA, that is coding, the fraction that is transcriptional units with other functions and junk DNA, we could find a better β -value based on the same principles for computation of the β -value as previously applied.

What can we do until we have gained sufficient knowledge to allow calculations of much more accurate β -values? Fortunately, the β -values are applied relatively either as holistic indicators for ecosystem health (Jørgensen, 1998, 2001, 2002; Marques et al., 1997,

Table 1

project

1998, 2003; Xu et al., 2000,) or as weighting factors in structurally dynamic modelling (Jørgensen, 1998, 2002). The structurally dynamic modelling approach has now been used successfully in 18 case studies (see also Zhang et al., 2003a, 2003b) and the applied β values have at the best been relative, very approximate estimations. We can, however, probably from these experiences conclude that the structurally dynamic approach is robust in the sense that it is essential that the weighting factors reflect the relative and approximate complexity of the organisms, but an extreme discriminating power is not essential, provided that the less complex organisms have much lower β -values. Anyway, it would be beneficial to have better β -values and particularly to get a longer list of β -values that to a higher extent could distinguish between groups of species or families. The results (Eichler and Sankoff, 2003) of ongoing whole-genome projects have therefore be applied to give improved β -values. Moreover, this paper has attempted to expand the list of β -values on the basis of other applicable measures of the organism complexity.

2. Important correlations between β -values and other measures of organism complexity

It is assumed that the β -values presently applied are only relatively and approximately correct, although the latest results of the ongoing whole-genome projects has been applied to improve the β -values. It will probably be possible in the future to improve considerably the β -values as a result of our considerations in this paper,

Organism	Genome size (Mb)	Repeat (%)	β -value
Human	2900	46	2149
House mouse	2500	38	2127
Tiger puffer fish	400	<10 (9 is applied)	499
Sea squirt	155	10	191
Malaria mosquito	280	16	322
Fruit fly	137	2	184
Nematode worm	97	<1 (0.5 is applied)	133
Human malaria Parasite	23	<1 (0.5 is applied)	31
Rodent malaria Parasite	25	<1 (0.5 is applied)	34
Social Amoebe	34	<1 (0.5 is applied)	46
Intracellular parasite	34	<1 (0.5 is applied)	46
Brewer's yeast	12	2.4	15.9
Fission yeast	13.8	0.35	18.8
Microsporidium, parasite	2.5	< 0.1	3.4
Mustard weed	125	14	147
Rice	400	? (50 is applied)	275

 β -values found on basis of the ongoing whole-genome sequencing

when we have more knowledge about the transcriptional units of various organisms. Table 1 provides an overview of the results of the whole-genome sequencing projects and the β -values calculated on basis of the number of Mb and the % of repeating sequences. The exergy of organisms is found as the exergy of detritus + a contribution from the much lower C_{i0} , for organisms. The much lower concentration (see Jørgensen, 2002) is found from the probability that the amino acids have the right sequence. The probability corresponds to $20^{\text{number of nucleotides (1 - number of repeating genea)/3}}$ because there are 20 different amino acids and three nucleotides determine one amino acid.

The exergy can now be found (see also Jørgensen et al., 2000) from:

$$\frac{\text{Ex}_{\text{virus}}}{RT} = 7.34 \times 10^5 C_i + C_i \ln 20^{\text{number of nucleodites (1-number of repeating genes)/3}}_{\text{(exergy of detritus)}}$$

$$\beta = 1 + \frac{\ln 20 \text{ (number of nucleotides (1 - number of repeating genes)}}{3 \times 7.34 \times 10^5}$$

As $\ln 20 \approx 3$, we get:
$$\beta = 1 + \frac{(\text{number of nucleotides (1 - number of repeating genes)}}{\sqrt{1 + 10^5}}$$

$$\beta = 1 + \frac{(\text{number of nucleotides (1 - number of repeating genes)}}{7.34 \times 10^5}$$

It could be argued that the amount of genes would represent all the information but as we do not know all the

Concept	Relationship	<i>R</i> -value	Explanation
NCT	$\beta = 10.9 \text{ NCT} - 9.06$	0.83	Increasing NCT with increasing complexity
r-DNA	$\ln \beta = 5.44 \text{ r-DNA} + 1.62$	0.83	Other functions becomes more important with increasing complexity
min-DNA	$\beta = 12.0 + 1000 \text{ min-DNA}$	0.80	Min-DNA represents coding genes
Age	$\beta = 2601 - 385 \ln age$	0.84	Time arrow for evolution (NB age ≤ 700 mill.y)
β -Fon	$\beta = 84.8 + 1.19 \beta$ -Fon	0.92	Increasing DNA with increasing complexity (NB β -Fon ≥ 100)

Table 2 Relationships between β -values and other complexity measures (named concept) used to adjust or find new β -values

functions of genes in details and a significant part of the genes are coding for amino acids, it has been decided to translate the genes to the information embodied in the amino acid sequence, which is slightly lower than the information in the genes because only 20 codes are needed for selection of the right amino acid in the sequence, while $4 \times 4 \times 4 = 64$ codes are available from three nucleotides.

Table 1 represents thereby β -values that are better supported than the previously applied β -values. Fur-

thermore, this new list of β -values (Table 1) can be expanded, when we utilize all the available measures of organism complexity. Ladegaard et al. (submitted for publication) has found that there are correlations between the β -values on the one hand and on the other the number of cell types (abbreviated NCT), the ratio non-coding DNA to total DNA (Mattick, 2003) (abbreviated r-DNA), the minimum total DNA in a group of species (min-DNA), the age of the species (abbreviated age) and the β -values found by Fonseca et al. (2000)



Fig. 1. The β -value (y-axis, column 1) for a number of species or classes of species is plotted vs. the minimum total DNA (x-axis, column 2). It is preferable to use this figures instead of the equation in Table 2.

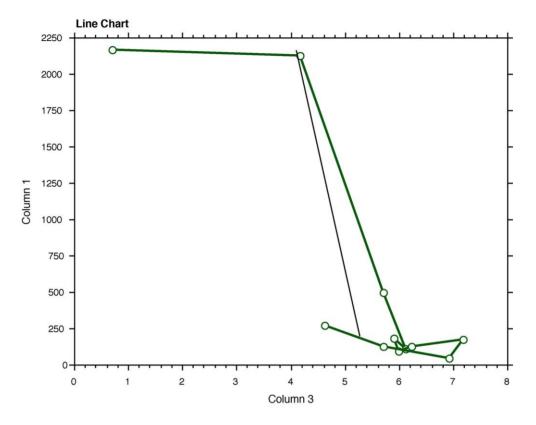


Fig. 2. The β -value (y-axis, column 1) is plotted vs. the ln age (x-axis, column 3) of various species or group of species. It is preferable to use this figure instead of the equation in Table 2. The thin line should be applied for ln age from 4.3 to 5.3.

(abbreviated β -Fon) based upon the determination of the total nuclear DNA. The equations used to cover the correlations are shown in Table 2. For two relationships are used the line chart namely for the minimum total DNA and the ln age plots. Both plots are associated with taxonomic group's emergence and the evolution and the relatively very rapid evolution from 600 to about 400 million years ago when many new species evolved makes a linear plot unrealistic. The two plots are shown as Figs. 1 and 2, respectively.

3. An expanded and slightly improved β -values table

If we take into account the number of cell types, the age of species, the ratio non-coding DNA to total DNA, the minimum nuclear DNA and the Fonseca et al. (2000) list of β -values, it becomes possible on basis of the relationships in Table 2 and Figs. 1 and 2 to find unknown β -values or find alternative β -values that may adjust the present β -values. An expanded β -value table can therefore be made with these relationships in hand. Table 3 shows the expanded β -value table. It is indicated in the table whether the β -value is based on Table 1, or calculated from NCT, r-DNA, min-DNA, age or β -Fon. More than two indications mean that the average value of two or more found values is applied (shown in the last columns). Vertebrates have indicated in brackets the values that would result from NCT, r-DNA, min-DNA, age and/or β -Fon. These values have, however, been used to find the correlations and can therefore not be considered "new values", but they support to a certain extent the level of the previously applied β -values.

The β -value for virus is based upon the information, that its nucleic acid consists of approximately 6000 nucleotides (Dürr et al., 2002), which implies that it can

Table 3 Extended and improved list of β -values, based on Table 1 the relationships in Table 2 and Figs. 1 and 2

coded by the DNAMinimal cell5.8r-DNA, NCTBacteria8.520.9Algae20NCTArchaea13.8min-DNA, averageProtists21NCTDiatoms66NCTYeast17.4Table 1Fungi61AgeProtozoa, Amoebe31-46Table 1Prolifera97NCT, min-DNA, r-DN,Angiosperm147r-minRhodophyta92NCTBryophyta173NCT, min-DNA, avera,Pteridophyta146NCT, min-DNAPislophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, avera,Platyhelminthes120NCTGastrotric, MetI165NCTGastrotric, MetII166NCTNematoda (Worms)133Table 1Nematoda (Worms)133Table 1Nematina76AgeMollusc310 β -FonGastrotric, MetII116NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310 β -FonGastrotric, MetII191Table 1Nematina76AgeMollusc310 β -Fon <th>Organism</th> <th>Conversion</th> <th>Found respectively from</th>	Organism	Conversion	Found respectively from
coded by the DNAMinimal cell5.8r-DNA, NCTBacteria8.520.9Algae20NCTArchaea13.8min-DNA, averageProtists21NCTDiatoms66NCTYeast17.4Table 1Fungi61AgeProtozoa, Amoebe31-46Table 1Prolifera97NCT, min-DNA, r-DN,Angiosperm147r-minRhodophyta92NCTBryophyta173NCT, min-DNA, averaPteridophyta146NCT, min-DNAPislophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, averaPlatyhelminthes120NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNAGastrotric, MetII116NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310 β -FonGastrotric, MetII116NCTNematina76AgeMollusc310 β -FonGastrotric, MetII191Table 1Nematina76AgeMollusc310 β -FonGastropods312min-DNA <th></th> <th>factor (β)</th> <th>and explanation</th>		factor (β)	and explanation
Minimal cell5.8r-DNA, NCTBacteria 8.5 20.9 Algae20NCTArchaea 13.8 min-DNA, averageProtists 21 NCTDiatoms 66 NCTYeast 17.4 Table 1Fungi 61 AgeProtozoa, Amoebe $31-46$ Table 1Prolifera 97 NCT, min-DNA, r-DN,Angiosperm 147 r-minRhodophyta 92 NCTBryophyta 173 NCT, min-DNA, averagPteridophyta 146 NCT, min-DNA, averagPteridophyta 146 NCT, min-DNAPsilophyta 170 NCTPinus mono 314 NCTMustard weed 147 Table 1Rice 275 Table 1Eudicot 268 NCT, r-DNAMonocot 393 r-DNAPlacozoa 35 NCTCnidaria 91 NCT, min-DNA, averaPlatyhelminthes 120 NCTMesozoa 30 NCTGastrotric, Metl 76 AgeRotifera 163 NCT, min-DNAGastrotric, Metll 116 NCTNematoda (Worms) 133 Table 1Nematoda (Worms) 133 Table 1Nematoda (Worms) 133 Table 1Nematoda 76 AgeMollusc 310 β -FonGastrotric, Metll 116 NCTNematoda 76 Age <td< td=""><td>Virus</td><td>1.01</td><td>Number of amino acids</td></td<>	Virus	1.01	Number of amino acids
Bacteria8.520.9Algae20NCTArchaea13.8min-DNA, averageProtists21NCTDiatoms66NCTYeast17.4Table 1Fungi61AgeProtozoa, Amoebe31–46Table 1Prolifera97NCT, min-DNA, r-DN.Angiosperm147r-minRhodophyta92NCTBryophyta173NCT, min-DNA, averagPreridophyta146NCT, min-DNA, averagPteridophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlaczoza30NCTMinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNAGastrotric, MetII116NCT, min-DNAChemphora167NCT, min-DNAEntoprocta165NCTNematina76AgeMollusc310β-FonGastrotric, MetII116NCT, min-DNAStarupods312min-DNABivalve297min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopo			coded by the DNA
Algae20NCTArchaea13.8min-DNA, averageProtists21NCTDiatoms66NCTYeast17.4Table 1Fungi61AgeProtozoa, Amoebe31–46Table 1Prolifera97NCT, min-DNA, r-DNAAngiosperm147r-minRhodophyta92NCTBryophyta173NCT, min-DNA, avera,Pteridophyta146NCT, min-DNAPsilophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlaczoza35NCTCnidaria91NCT, min-DNA, avera,Platyhelminthes120NCTMesozoa30NCTGastrotric, MetI76AgeKotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNA, avera,Entoprocta165NCTNematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNABraccan232min-DNABractopods109min-DNABractopods109min-DNABractopods109min-DNABractopods109min-DNABractopods109min-DNABractopods109m	Minimal cell	5.8	r-DNA, NCT
Archaea13.8min-DNA, averageProtists21NCTDiatoms66NCTYeast17.4Table 1Fungi61AgeProtozoa, Amoebe31–46Table 1Prolifera97NCT, min-DNA, r-DN.Angiosperm147r-minRhodophyta92NCTBryophyta173NCT, min-DNA, averagePteridophyta146NCT, min-DNA, averagePteridophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, averagePlatybelminthes120NCTMesozoa30NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNAChenophora167NCTMematina76AgeMollusc310β-FonGastropods312min-DNABivalve297min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNA <trr>Brachio</trr>	Bacteria	8.5	20.9
Protists21NCTDiatoms66NCTYeast17.4Table 1Fungi61AgeProtozoa, Amoebe31–46Table 1Prolifera97NCT, min-DNA, r-DN,Angiosperm147r-minRhodophyta92NCTBryophyta173NCT, min-DNA, avera,Pteridophyta146NCT, min-DNA, avera,Pteridophyta146NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, avera,Platybelminthes120NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNA, avera,Entophora167NCTNematoda (Worms)133Table 1Nematoda (Worms)133Table 1Nematoda (f.i. leeches)133NCT, min-DNABivalve297min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods	Algae	20	NCT
Diatoms66NCTYeast17.4Table 1Fungi61AgeProtozoa, Amoebe31–46Table 1Protozoa, Amoebe31–46Table 1Protozoa, Amoebe31–46Table 1Protozoa, Amoebe31–46Table 1Prolifera97NCT, min-DNA, r-DN,Angiosperm147r-minRhodophyta92NCTBryophyta173NCT, min-DNA, avera,Pteridophyta146NCT, min-DNAPsilophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r.DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, avera,Platyhelminthes120NCTMesozoa30NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNA, avera,Entoprocta165NCTNematina76AgeMollusc310 β -FonGastrotric, MetII116NCT, min-DNASea squirt191Table 1Crustacean232min-DNABrachiopods112min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109 <td< td=""><td>Archaea</td><td>13.8</td><td>min-DNA, average</td></td<>	Archaea	13.8	min-DNA, average
Yeast17.4Table 1Fungi61AgeProtozoa, Amoebe $31-46$ Table 1Protozoa, Amoebe $31-46$ Table 1Protozoa, Amoebe $31-46$ Table 1Prolifera97NCT, min-DNA, r-DN.Angiosperm147r-minRhodophyta92NCTBryophyta173NCT, min-DNA, averalPteridophyta146NCT, min-DNAPsilophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTOnidaria91NCT, min-DNA, averalPlatyhelminthes120NCTMesozoa30NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNAGastrotric, MetII116NCT, min-DNACtenophora167NCTNematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min	Protists	21	NCT
Fungi61AgeProtozoa, Amoebe31–46Table 1Protoifera97NCT, min-DNA, r-DNAAngiosperm147r-minRhodophyta92NCTBryophyta173NCT, min-DNA, averaPteridophyta146NCT, min-DNAPsilophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, averaPlatyhelminthes120NCTMesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGnahostom143NCTGastrotric, MetII116NCT, min-DNAChenophora167NCT, min-DNAGastrotric, MetII116NCTNematoda (Worms)133Table 1Nematoda (Worms)133Table 1Nematoda (fi. leeches)133NCT, min-DNABivalve297min-DNABivalve297min-DNAAnnelida (fi. leeches)156min-DNABrachiopods109min-DNABivalve227min-DNAAnnelida (fi. leeches)156min-DNAAnnelida (fi. leeches)156min-DNABrachiopods109min-DNA<	Diatoms	66	NCT
Protozoa, Amoebe31–46Table 1Protozoa, Amoebe31–46Table 1Prolifera97NCT, min-DNA, r-DNAAngiosperm147r-minRhodophyta92NCTBryophyta173NCT, min-DNA, averaPteridophyta146NCT, min-DNAPsilophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlaczoa35NCTCnidaria91NCT, min-DNA, averaPlatyhelminthes120NCTMesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAChenophora167NCT, min-DNAEntoprocta165NCTNematoda (Worms)133Table 1Nematoda (Worms)133Table 1Nematina76AgeMollusc310β-FonGastropods312min-DNABivalve297min-DNAAnnelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNAPlaceita165min-DNAHymenoptera267min-DNAPlactopods109min-DNAPlactopods109min-DNA	Yeast	17.4	Table 1
Prolifera97NCT, min-DNA, r-DNAAngiosperm147r-minRhodophyta92NCTBryophyta173NCT, min-DNA, averaPteridophyta146NCT, min-DNAPsilophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlaczoa35NCTCnidaria91NCT, min-DNA, averaPlatyhelminthes120NCTMesozoa30NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNAChenophora167NCT, min-DNA, averaEntoprocta165NCTMematoda (Worms)133Table 1Nematina76AgeMollusc310β-FonGastropods312min-DNABivalve297min-DNAAnnelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β-FonOloptera (Beetles)156min-DNA, β-FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNAHymenoptera267min-DNAHymenoptera267min-DNAHymenop	Fungi	61	Age
Angiosperm147r-minRhodophyta92NCTBryophyta173NCT, min-DNA, avera,Pteridophyta146NCT, min-DNAPsilophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, avera,Platyhelminthes120NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGnahostom143NCTGastrotric, MetII116NCT, min-DNAChenophora167NCT, min-DNAGastrotric, MetII116NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNABivalve297min-DNABrachiopods109min-DNABrachiopods109min-DNA, β -FonColeoptera (Beetles)156min-DNA, β -FonColeoptera (Beetles)156min-DNAHermiptera159min-DNAHermiptera267min-DNAHermiptera267min-DNALepidoptera221min-DNALepidoptera221min-DNAHymenoptera267	Protozoa, Amoebe	31–46	
Rodophyta92NCTBryophyta173NCT, min-DNA, avera,Pteridophyta146NCT, min-DNAPsilophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, avera,Platyhelminthes120NCTMesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNA, avera,Entoprocta167NCT, min-DNAGastrotric, MetII116NCT, min-DNA, avera,Entoprocta165NCTNematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonColeoptera (Beetles)156min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera	Prolifera	97	NCT, min-DNA, r-DNA
Bryophyta173NCT, min-DNA, avera, PteridophytaPteridophyta146NCT, min-DNAPsilophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, avera,Platyhelminthes120NCTMesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNA, avera,Entoprocta167NCT, min-DNAChenophora167NCT, min-DNARomatoda (Worms)133Table 1Nematoda (Worms)133Table 1Bivalve297min-DNABivalve297min-DNABivalve297min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β-FonDiptera (Flies)184Table 1Hemiptera159min-DNALepidoptera221min-DNAHymenoptera267min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera221min-DNAL	Angiosperm	147	r-min
Pteridophyta146NCT, min-DNAPsilophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, avera,Platyhelminthes120NCTMesozoa30NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNAChenophora167NCT, min-DNAEntoprocta165NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310β-FonGastropods312min-DNABivalve297min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods156min-DNA, β-FonColeoptera (Beetles)156min-DNA, β-FonDiptera (Flies)184Table 1Hemiptera259min-DNAHymenoptera267min-DNALepidoptera221min-DNAHymenoptera267min-DNALepidoptera221min-DNAHymenoptera267min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera221min	Rhodophyta	92	
Psilophyta170NCTPinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, avera,Platyhelminthes120NCTMesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNAChenophora167NCT, min-DNAEntoprocta165NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310β-FonGastropods312min-DNABivalve297min-DNABivalve297min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNAHymenoptera267min-DNAHymenoptera267min-DNALepidoptera221min-DNAPlasmida43r-DNAMosquito322Table 1Chordata246β-Fon, age		173	NCT, min-DNA, average
Pinus mono314NCTMustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, avera,Platyhelminthes120NCTMesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNAGastrotric, MetII116NCT, min-DNA, avera,Entoprocta167NCT, min-DNA, avera,Entoprocta165NCTNematina76AgeMollusc310β-FonGastropods312min-DNABivalve297min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β-FonColeoptera (Beetles)156min-DNA, β-FonDiptera (Flies)184Table 1Hemiptera259min-DNAHymenoptera267min-DNALepidoptera221min-DNAHymenoptera267min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera221min-DNALepidoptera2	Pteridophyta	146	NCT, min-DNA
Mustard weed147Table 1Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, averaPlatyhelminthes120NCTMesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGastrotric, MetII116NCT, min-DNAGastrotric, MetII116NCT, min-DNACtenophora167NCT, min-DNA, averaEntoprocta165NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Psilophyta	170	NCT
Rice275Table 1Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, averaPlatyhelminthes120NCTMesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGnahostom143NCTGastrotric, MetII116NCT, min-DNACtenophora167NCT, min-DNA, averaEntoprocta165NCTNematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods156min-DNA, β -FonColoeptera (Beetles)156min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera259min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Pinus mono	314	NCT
Eudicot268NCT, r-DNAMonocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, averaPlatyhelminthes120NCTMesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGnahostom143NCTGastrotric, MetII116NCT, min-DNAChenophora167NCT, min-DNA, averaEntoprocta165NCTNematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Mustard weed	147	Table 1
Monocot393r-DNAPlacozoa35NCTCnidaria91NCT, min-DNA, averaPlatyhelminthes120NCTMesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGnahostom143NCTGastrotric, MetII116NCT, min-DNAChenophora167NCT, min-DNA, averaEntoprocta165NCTNematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNABrachiopods109min-DNABrachiopods109min-DNABrachiopods109min-DNAHemiptera159min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera267min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Rice	275	Table 1
Placozoa35NCTCnidaria91NCT, min-DNA, averagePlatyhelminthes120NCTMesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGnahostom143NCTGastrotric, MetII116NCT, min-DNACtenophora167NCT, min-DNA, averageEntoprocta165NCTNematina76AgeMollusc310β-FonGastropods312min-DNABivalve297min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β-FonColeoptera (Beetles)156min-DNA, β-FonDiptera (Flies)184Table 1Hemiptera221min-DNAHymenoptera267min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246β-Fon, age	Eudicot	268	NCT, r-DNA
Cnidaria91NCT, min-DNA, averagePlatyhelminthes120NCTMesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGnahostom143NCTGastrotric, MetII116NCT, min-DNACtenophora167NCT, min-DNA, averageEntoprocta165NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonColeoptera (Beetles)156min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Monocot	393	r-DNA
Platyhelminthes120NCTMesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGnahostom143NCTGastrotric, MetII116NCT, min-DNACtenophora167NCT, min-DNA, averaEntoprocta165NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310β-FonGastropods312min-DNABivalve297min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β-FonColeoptera (Beetles)156min-DNA, β-FonDiptera (Flies)184Table 1Hemiptera159min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246β-Fon, age	Placozoa	35	NCT
Mesozoa30NCTKinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGnahostom143NCTGastrotric, MetII116NCT, min-DNACtenophora167NCT, min-DNA, avera,Entoprocta165NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonColeoptera (Beetles)156min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Cnidaria	91	NCT, min-DNA, average
Kinorhynch165NCTGastrotric, MetI76AgeRotifera163NCT, min-DNAGnahostom143NCTGastrotric, MetII116NCT, min-DNACtenophora167NCT, min-DNA, averageEntoprocta165NCTNematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNAAnnelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAMosquito322Table 1Chordata246 β -Fon, age	Platyhelminthes	120	NCT
Gastrotric, Metl76AgeRotifera163NCT, min-DNAGnahostom143NCTGastrotric, MetII116NCT, min-DNACtenophora167NCT, min-DNA, averaEntoprocta165NCTNematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNAAnnelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAMosquito322Table 1Chordata246 β -Fon, age	Mesozoa	30	NCT
Rotifera163NCT, min-DNAGnahostom143NCTGastrotric, MetII116NCT, min-DNACtenophora167NCT, min-DNA, averaEntoprocta165NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNAAnnelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAMosquito322Table 1Chordata246 β -Fon, age	Kinorhynch	165	NCT
Gnahostom143NCTGastrotric, MetII116NCT, min-DNACtenophora167NCT, min-DNA, averageEntoprocta165NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNAAnnelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAMosquito322Table 1Chordata246 β -Fon, age	Gastrotric, MetI	76	Age
Gastrotric, MetII116NCT, min-DNACtenophora167NCT, min-DNA, averaEntoprocta165NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNAAnnelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAMosquito322Table 1Chordata246 β -Fon, age	Rotifera	163	NCT, min-DNA
Ctenophora167NCT, min-DNA, averageEntoprocta165NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNAAnnelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAMosquito322Table 1Chordata246 β -Fon, age	Gnahostom	143	NCT
Entoprocta165NCTNematoda (Worms)133Table 1Nematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNAAnnelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Gastrotric, MetII	116	NCT, min-DNA
Nematoda (Worms)133Table 1Nematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNAAnnelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Ctenophora	167	NCT, min-DNA, average
Nematina76AgeMollusc310 β -FonGastropods312min-DNABivalve297min-DNAAnnelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonDiptera (Beetles)156min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age		165	NCT
Mollusc 310 β -FonGastropods 312 min-DNABivalve 297 min-DNAAnnelida (f.i. leeches) 133 NCT, min-DNABrachiopods 109 min-DTASea squirt 191 Table 1Crustacean 232 min-DNA, β -FonColeoptera (Beetles) 156 min-DNA, β -FonDiptera (Flies) 184 Table 1Hemiptera 159 min-DNAHymenoptera 267 min-DNALepidoptera 221 min-DNAPhasmida 43 r-DNAMosquito 322 Table 1Chordata 246 β -Fon, age	Nematoda (Worms)	133	Table 1
Gastropods312min-DNABivalve297min-DNAAnnelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonColeoptera (Beetles)156min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Nematina	76	Age
Bivalve297min-DNAAnnelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonColeoptera (Beetles)156min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Mollusc	310	β -Fon
Annelida (f.i. leeches)133NCT, min-DNABrachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonColeoptera (Beetles)156min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Gastropods	312	min-DNA
Brachiopods109min-DTASea squirt191Table 1Crustacean232min-DNA, β -FonColeoptera (Beetles)156min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Bivalve	297	min-DNA
Sea squirt191Table 1Crustacean232min-DNA, β -FonColeoptera (Beetles)156min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Annelida (f.i. leeches)	133	NCT, min-DNA
Crustacean232min-DNA, β -FonColeoptera (Beetles)156min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Brachiopods	109	min-DTA
Coleoptera (Beetles)156min-DNA, β -FonDiptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246 β -Fon, age	Sea squirt		
Diptera (Flies)184Table 1Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246β-Fon, age	Crustacean	232	min-DNA, β -Fon
Hemiptera159min-DNAHymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246β-Fon, age		156	min-DNA, β -Fon
Hymenoptera267min-DNALepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246β-Fon, age	Diptera (Flies)	184	Table 1
Lepidoptera221min-DNAPhasmida43r-DNAMosquito322Table 1Chordata246β-Fon, age	Hemiptera	159	min-DNA
Phasmida43r-DNAMosquito322Table 1Chordata246β-Fon, age	Hymenoptera	267	min-DNA
Mosquito322Table 1Chordata246 β -Fon, age	Lepidoptera	221	min-DNA
Chordata 246 β -Fon, age	Phasmida	43	r-DNA
, , ,	Mosquito	322	Table 1
	Chordata	246	β -Fon, age
Fish 499 Table 1	Fish	499	Table 1

Table 3 (Continued)

Organism	Conversion	Found respectively from
	factor (β)	and explanation
Amphibians	688	min-DNA, age, β -Fon
Reptiles	833	min-DNA, age, β -Fon
Birds	980	min-DNA, age,
		β -Fon + higher fat content
Mammals	2127	Table 1
Monkeys	2138	Age
Anthropoid apes	2145	Age
Humans	2173	Table 1, age, r-DNA

code for 2000 amino acids. Consequently, the exergy can be found (see Jørgensen et al., 2000) for virus from:

$$\frac{\text{Ex}_{\text{virus}}}{RT} = 7.34 \times 10^5 C_i + C_i \ln 20^{2000}$$
$$= 7.40 \times 10^5 C_i$$

and

$$\beta = \frac{7.40}{7.34} = 1.01$$

Table 3 contains 56 β -values which represent significant increase in comparison to the previous list, which included only 19 β -values, including detritus. β -values in Table 3 are higher than the previously applied ones, despite the fact that the number of genes is lower. The previous numbers were based on a coding of 700 amino acids per gene, which most probably is too low (see for instance Chapman and Higgins, 2001). The number is rather a few thousands. The previous β -values have extensively been used for assessment of ecosystem health and also for development of structurally dynamic models. A further comparison of the two sets of values will however reveal that the ratio between β -values for two different organisms is not very different in the two lists. Since the values only have been applied relatively, the previous comparisons of ecosystem health assessments and the previous structurally dynamic models remain valid.

The previous calculation of information exergy was constructed with assumption that ecosystem structure is build from organisms where interactions among them were not taken into considered (Bendoricchio and Jørgensen, 1997). This simplification is acceptable in modelling context and is in accordance with prevailing acceptance of the central dogma concept that states that the information of the living cell is stored in the DNA and flows to proteins through RNA but never in opposite direction (Crick, 1970). The exergy calculations are furthermore based upon Boltzmann's equation on the free energy of information: $Ex = RT \ln W$, where *W* is the number of microstates among which we do know the one which is valid.

It has, however, been shown that information is not solely stored just in genes or genome. Results of Ricard's study (2001) show that sequence information stored in the chromosomes does not represent the full information of cells. It was also shown that information can be transformed from protein to protein which is indeed at variance with the central dogma. This indicates that the information content of the metabolic network is much larger than the sequence information of living cell cannot be identified only with genetic information but with information stored in biological networks ranging from cell and organism to ecosystem. Thus, we have to include the complexity measures based on information of biological networks.

Recent publications about network complexity have proofed that Shannon's communication theory

(Shannon, 1948) is not ideally suited for describing network information (Strogas, 2001; Fell and Wagner, 2000). Shannon theory relies upon the statistical correlation between discrete variables and on the so-called subadditivity principle (Richard, 2003). Studies of biological networks have proofed (Richard, 2001, 2003) that biological network does not fulfil the criteria on which Shannon theory relies. Biological networks have properties of integration, emergence, evolution and going away from thermodynamic equilibrium. All those properties violate subadditivity principle and biological network is not composed only from statistically correlated discrete variables.

Richard (2003) has shown some possible alternations of Shannon theory in order to be objectively applied to networks. He states that principle of subadditivity is not a necessary condition for network, and this allows him to calculate the information of network. Neglecting subadditivity principle gives more a clear concept of information which is more general than the concept of communication and can be defined as the ability of a system to associate some of its element to generate functions (to develop away from thermody-

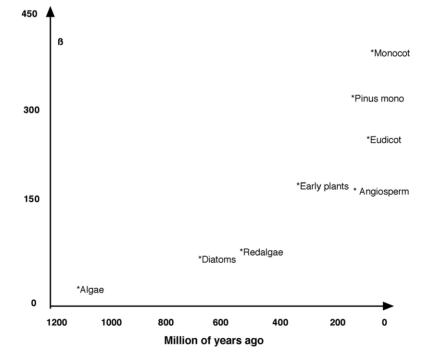


Fig. 3. Results from the application of an analysis of the evolution for plants are shown. The graph shows age vs. β -values according to Table 2.

namic equilibrium). In such a system the sum of joint entropy of the network is larger than the sum of individual entropies of its components. The system is complex and displays emergent effects associated with negative (lack of) information.

Further development and application of new concepts of Shannon theory which would be adopted to the properties of network information, has potential for successful continuation of our attempts for reliable description of life complexity (beta values) expressed by the exergy concept.

4. Revisions of the β -table using evolutionary trees

It is clear from the discussion in Section 1, that the β -values presented in Table 3 may be affected by the relatively high uncertainty, because they are determined indirectly—not on basis of a detailed knowledge about the functions of DNA—but from one of the indirect determination methods shown in Figs. 1 and 2 and Table 2. Estimations by two or more methods are nevertheless less uncertain. It has therefore been attempted to look at the evolution trees of the different taxonomic groups. In this case, species, group of species or families that are more closely related in terms of phylogeny than the β -values indicate, were lumped together in one group (McShea, 1996). The average β -values were applied to represent the organisms now included in the same group.

Results from the application of this analysis of evolutionary are shown in Figs. 3 and 4 and Table 4 provides the modified β -values. Table 4 contains 45 β values, including the β -value for detritus. The number of β -values has therefore more than doubled in comparison with the previous list (see for instance Jørgensen et al., 2000). It is proposed to use the β -values in Table 4 for ecosystem health assessment or development of structurally dynamic models, until an even better ta-

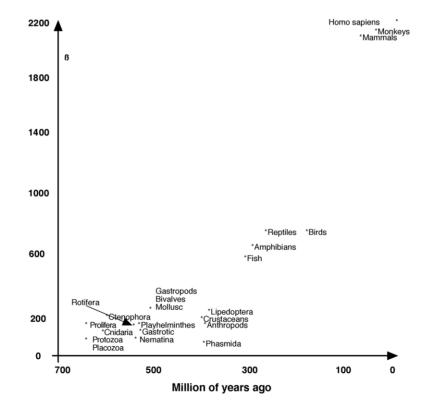


Fig. 4. Results from the application of an analysis of the evolution for animals are shown. The graph shows age vs. β-values according to Table 2.

ble can be produced. The values obtained are still relative and they are still uncertain, because they are not yet based on a completely detailed knowledge regarding the DNAs of all the organisms included in the list. The list is however probably more reliable than the list previously applied, because it is based on our latest

Table 4

detailed knowledge about the size of the genome for 16 organisms plus the latest knowledge about various indicators for the complexity of organisms. Because it includes more organisms, the β -values list in Table 4 is more user-friendly for usage in ecosystem health assessment and in modelling.

List of updated β -value	~		
Detritus		1.00	
Virus		1.01	
Minimal cell		5.8	
Bacteria		8.5	
Archaea		13.8	
Protists	Algae	20	
Yeast		17.8	
		33	Mesozoa, Placozoa
		39	Protozoa, amoebe
		43	Phasmida (stick insects)
Fungi, moulds		61	
		76	Nemertina
		91	Cnidaria (corals, sea anemones, jelly fish)
	Rhodophyta	92	
		97	Gastroticha
Prolifera, sponges		98	
		109	Brachiopoda
		120	Platyhelminthes (flatworms)
		133	Nematoda (round worms)
		133	Annelida (leeches)
		143	Gnathostomulida
	Mustard weed	143	
		165	Kinorhyncha
	Seedless vascular plants (incl. ferns)	158	
		163	Rotifera (wheel animals)
		164	Entoprocta
	Moss	174	
		167	Insecta (beetles, flies, bees, wasps, bugs, ant
		191	Coleodiea (Sea squirt)
		221	Lipidoptera (buffer flies)
		232	Crustaceans
		246	Chordata
	Rice	275	
	Gynosperms (inl. pinus)	314	
		310	Mollusca, bivalvia, gastropodea
		322	Mosquito
	Flowering plants	393	-
		499	Fish
		688	Amphibia
		833	Reptilia
		980	Aves (Birds)
		2127	Mammalia
		2138	Monkeys
		2145	Anthropoid apes
		2173	Homo Sapiens

5. Conclusive and closing remarks

It is clear that we do not have the knowledge that is needed to find the correct β -values for calculation of an exergy index (or we may call it, the index for the distance to the thermodynamic equilibrium) for an ecosystem model. In fact, the non-coding genes are not all junk information: but some may according to the latest results have a function which is important for the health of the organisms or as director for the organism development (Mattick, 2003). Therefore, it is wrong only to use the non-nonsense = the coding genes. The previous found β -values are therefore most probably too small as they only account for the non-nonsense genes in estimating the β -values. On the other side, we can anyhow only find relative values, and as the applications of the previous β -values for the assessment of ecosystem health and in development of structurally dynamic models have been satisfactorily robust, the previously obtained results are valid; but the values should of course be updated when new knowledge is available. For this purpose, a more detailed knowledge on (a) the genome for 16 organisms, (b) number of cell type, (c) the ratio nonsense DNA to total DNA, minimum DNA have together with Fonseca's β -values been applied to get a more discrete and reliable list of β values (see Tables 1 and 3). Table 3 has been calibrated toward the evolutionary trees, which has given occasion to some adjustment of the β -values (see Table 4). Consequently, it is at this stage advisable to use the values in Table 4 to estimate an exergy index for assessment of ecosystem health and for development of structurally dynamic models. For instance, zooplankton organisms, previously lumped simply in one group named zooplankton, can now be analysed using significantly more detailed list of β -values, which may be of importance for the further development of structurally dynamic models for aquatic ecosystems. The present list (Table 4) must, however, be permanently updated, as more certain measures of the information embodied in the organisms and about the complete genome size become available.

References

Bendoricchio, G., Jørgensen, S.E., 1997. Exergy as goal function of ecosystem dynamic. Ecol. Model. 102, 5–15.

- Chapman, K.E., Higgins, S.J., 2001. Essays in Biochemistry. Regulation of Gene Expression. Portland Press, 130 pp.
- Crick, F.C., 1970. Central dogma of molecular biology. Nature 227, 561–563.
- Dürr, H.P., Popp, F.A., Schommers, W., 2002. What is Life?. World Scientific, New Jersey, 372 pp.
- Eddy, S.R., 2001. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2, 919–929.
- Eichler, E.E., Sankoff, D., 2003. Structural dynamics of eukaryotic chromosome evolution. Science 301, 793–797.
- Fell, D.E., Wagner, A., 2000. The small-world of metabolism. Nat. Biotechnol. 18, 1121–1122.
- Fonseca, J.C., Marques, J.C., Paiva, A.A., Freitas, A.M., Madeira, V.M.C., Jørgensen, S.E., 2000. Nuclear DNA in the determination of weighing factors to estimate exergy from organisms biomass. Ecol. Model. 126, 179–189.
- Jørgensen, S.E., Mejer, H., 1979. A holistic approach to ecological modelling. Ecol. Model. 7, 169–189.
- Jørgensen, S.E., 1981. Exergy as a key function in ecological models. In: Mitsch, W., Bosserman, R.W., Klopatek, J.M. (Eds.), Energy and ecological modelling. Developments in Environmental Modelling. Elsevier, Amsterdam, pp. 587–590.
- Jørgensen, S.E., 1998. Exergy as orientor for the development of ecosystems. In: Ulgiati, S. (Ed. in chief), Brown, M.T., Giampietro, M., Herendeen, R.A., Mayumi, K. (associate Eds.), Proceedings of the International Workshop on Advances in Energy Studies and Energy Flows in Ecology and Economy. Porto Venere, Italy, May 26/30, MUSIS, ROMA, pp. 371–402.
- Jørgensen, S.E., 2001. Recent developments in system ecology. In: Matthies, M., Malchow, H., Kriz, J. (Eds.), Integrative System Approaches to Natural and Social Dynamics. Springer-Verlag, pp. 155–170.
- Jørgensen, S.E., Marques, J.C., 2001. Thermodynamics and ecosystem theory, case studies from hydrobiology. Hydrobiologia 445, 1–10.
- Jørgensen, S.E., Nors Nielsen, S., Mejer, H., 1995. Emergy, environ, exergy and ecological modelling. Ecol. Model. 77, 99–109.
- Jørgensen, S.E., Patten, B.C., Straskraba, M., 2000. Ecosystems emerging: 4. Growth. Ecol. Model. 126, 249–284.
- Jørgensen, S.E., 2002. Integration of Ecosystem Theories: A Pattern, vol. 432, 3rd ed. Kluwer Academic Publishing Company, Dordrecht, The Netherlands.
- Ladegaard, N., Debeljak, M., Jørgensen, S.E., Complexity measurements of ecosystems. Ecol. Model., submitted for publication.
- Marques, J.C., Pardal, M.A., Nielsen, S.N., Jørgensen, S.E., 1997. Analysis of the properties of exergy and biodiversity along an estuarine gradient of eutrophication. Ecol. Model. 102, 155–167.
- Marques, J.C., Pardal, M.A., Nielsen, S.N., Jørgensen, S.E., 1998. Thermodynamic orientors: exergy as a holistic ecosystem indicator: a case study. In: Müller, F., Leupelt, M. (Eds.), Ecotargets, Goal Functions and Orientors. Theoretical Concepts and Interdisciplinary Fundamentals for an Integrated, System-based Environmental Management. Springer-Verlag, Berlim, pp. 87–101 (Chapter 2.5).
- Marques, J.C., Nielsen, S.N., Pardal, M.A., Jørgensen, S.E., 2003. Impact of eutrophication and river management within a framework of ecosystem theories. Ecol. Model. 166, 147–168.

- Mattick, J.S., 2003. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioassays 25, 930–939.
- McShea, D.W., 1996. Metazoan Complexity and Evolution: Is there a Trend?.
- Richard, J., 2001. Binding energy and the information content of some elementary biological processes. Sci. de la vie/Life Sci. 324, 297–304.
- Richard, J., 2003. What do we mean by biological complexity? Sci. de la vie/Life Sci. 326, 133–140.
- Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27 (379–423), 623–656.

- Strogas, S.H., 2001. Exploring complex networks. Nature 410, 268–276.
- Xu, F-L., Jørgensen, S.E., Tao, S., Li, B-G., 2000. Modelling the effects of ecological engineering on ecosystem health of a shallow eutrophic Chinese lake (Lake Chao). Ecol. Model. 117, 239– 260.
- Zhang, J., Jørgensen, S.E., Tan, C.O., Beklioglu, M., 2003a. A structurally dynamic modelling Lake Mogan, Turkey as a case study. Ecol. Model. 164, 103–120.
- Zhang, J., Jørgensen, S.E., Tan, C.O., Beklioglu, M., 2003b. Hysteresis in vegetation shift—lake Mogan Prognoses. Ecol. Model. 164, 227–238.