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Abstract

Diffusion of aqueous sodium dodecyl sulfate (SDS) across cross-linked polyacrylamide hydrogel membranes has

been studied by electrical conductivity measurements. Initial rapid sorption of SDS (as unimer) into the membranes is

observed. The effect of SDS concentration, and of cross-linker fraction on the degree of swelling of the gels is studied

and associated with binding of the surfactant to the polymer, with surface bound water suggested to be involved in these

interactions. Below the surfactant critical micelle concentration, volume collapse of less cross-linked membranes is

observed, and associated with aggregate formation. Fluorescence measurements using pyrene as a probe show that

micellar aggregates do not diffuse through the membrane, and only overall unimer diffusion is observed. The effect of

cross-linking on the diffusion process is discussed.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Hydrogels; Diffusion coefficients; SDS; Acrylamide

1. Introduction

The diffusion of solutes in hydrogels has applications

in a wide variety of processes and systems, such as its

use in biosensors [1], purification procedures [2], etc.

Particular reference can be made to the application of

hydrogels based on polyacrylamide and the anionic

surfactant sodium dodecyl sulfate (SDS) in the elec-

trophoretic separation of biological macromolecules

(PAGE systems, see for example [3]). These varied ap-

plications result from the structural properties of the

gels, and from the fact that they act as solid matrices

with a very high water content, in which the different

solutes can move without interactions with other spe-

cies. For this reason, the gels also provide an ideal

model system in which diffusion may be easily studied in

the absence of convection, and from which it is postu-

lated that the free solution diffusivities can be inferred

[4].

In a previous study [5] we have found that water

may play an important role in the behaviour of neu-

tral gels based on acrylamide, due not only to non-

neglected water-solute interactions, but also to the effect

of water–polymer interactions on the water-solute be-

haviour.

In the present work, the influence of the monomer and

cross-linker fractions on the transport of aqueous solu-

tions of SDS was investigated in acrylamide-based non-

ionic hydrogels with various degrees of cross-linking. A

wide range (2� 10�4 to 4� 10�2 M) of surfactant con-
centration was studied, encompassing the critical micelle

concentration (c:m:c: � 8 mM) of the surfactant. The
results show that the flux of the surfactant is clearly

dependent on the water concentration inside the gel and

that it increases with a decreasing of the water concen-

tration. This unusual behaviour, which is similar to that

obtained with polyelectrolyte gels, will be discussed in

detail.
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2. Experimental

2.1. Preparation of the membranes

Acrylamide (AAm) and N,N 0-methylene-bis-acryl-

amide (MBAAm), sodium persulfate, and SDS were

obtained from Riedel-de-Haen, Fluka AG and Sigma,

respectively.

The gel membrane was prepared by free radical co-

polymerisation of the monomers (AAm and MBAAm)

in aqueous solutions, using the following procedure: a

quantity of the cross-linker and the initiator sodium

persulfate (in a percentage 0.1% (wt/v)) were added to a

volume of acrylamide solution and stirred until total

homogenisation was observed; the pre-gel solution was

dropped inside two glass sheets, separated by a plastic

rubber gasket; these were then joined using two spring

clips. The mould is placed in an oven at 50 �C for 2 h.
After this, the gel membrane obtained was removed

from the gasket, placed between two plastic sheets, and

stored inside a dessiccator at about 98% relative hu-

midity.

The degree of swelling of the samples (Q ¼ w=w0) was
estimated from the weights of dry PAAm (w0) and of the
swollen sample (w) and is equal to the volume ratio of
the samples in the different stages. The value of w was

measured in approximately 1 cm2 samples, after being

immersed for at least, two weeks in water or SDS so-

lution. The solutions were prepared with water of con-

ductivity (1:2� 0:4Þ � 10�4 X�1 m�1.

The relative volume (b ¼ V =V �) gives the volume al-

teration in the sample membrane, in equilibrium with

water (V �), due to SDS sorption.

Table 1 shows the composition of the synthesised

membranes as well as the degree of swelling when in

equilibrium with water, Q. For simplicity, the above

membranes will be referred to by their symbols.

2.2. Sorption and desorption experiments

The concentration of SDS sorbed by the membrane,

C, was calculated by measuring the concentration of

surfactant in the aqueous solution prior to ðc0Þ and after
ðc1Þ the swelling experiments, using the expression

C ¼ ðc1 � c0ÞVaq=V ð1Þ

where Vaq and V are the volumes of the aqueous solution

and membrane sample, respectively.

The membranes, which had previously been kept in

equilibrium with water, were then immersed without

stirring in the SDS solution for two weeks until they

attained equilibrium. The approach to equilibrium was

monitored gravimetrically (ADA analytical balance,

with a resolution of 0.1 mg). Experiments were carried

out in triplicate at 25 �C. Desorption experiments were
carried out in a similar way: the polymeric membranes,

after having reached equilibrium in electrolyte solution,

were immersed in a known volume of water for ap-

proximately two weeks. The amount of SDS desorbed,

as determined by conductivity, was then calculated.

2.3. Permeability technique

Permeability of SDS in polyacrylamide gels was mea-

sured using a cell similar to that previously reported [6]

(Fig. 1). This consists of two compartments filled with

SDS solution (A) and water (B), respectively. The hy-

drogel membrane (M), previously swollen in water up to

equilibrium, was placed between the two cells. Silicone

was used to seal the membrane to ensure hermetic in-

terfaces. The SDS flux through the membrane was

monitored by measuring the conductivity using a YSI

3200 apparatus, coupled to a conductivity cell with a cell

constant of K ¼ 10 m�1. The conductivity system was

calibrated after each experiment. Identical conditions

were used for calibration and permeability experiments.

During each experiment, the solutions in the cells A and

B were maintained at a constant temperature of 25 �C in
a thermostatic bath (Velp Scientifica). The data were

read at 2 min intervals over the time interval necessary

to reach a SDS concentration in cell B (cB) of approxi-
mately 2 orders of magnitude lower than that in cell A

(i.e. cA=cB > 100). For maximum precision, the experi-

Table 1

Chemical composition of the gels in the pre-gel solution, and

the degree of swelling, Q, of the gels in equilibrium with water

Gel [AAm] (M) MBAAm/AAm

(mol ratio, %)

Q� s

AA1 2.5 0.07 6.5� 0.6
AA2 2.5 0.007 24.8� 0.5
AA3 5 0.07 4.02� 0.07
AA4 5 0.007 6.34� 0.08
AA5 5 0.003 12.1� 0.1

Fig. 1. Permeability cell. A and B are the compartments of

surfactant solutions and water, respectively; M is the mem-

brane; and E is the conductivity electrode.
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mental conductivity data used to calculate the integral

diffusion coefficients was taken from at least 300 points.

Allowance for retardation of diffusion near the poly-

mer surface is essential in the case of hydrophilic poly-

mers with a high water content, especially due to the

formation of an immobile layer, the Nernst layer [7]. In

Fig. 2, for example, we may note the effect of the mem-

brane thickness on the SDS flux in two different systems:

SDS(2� 10�2 M)/AA2 and SDS(8� 10�4 M)/AA3,
when both solutions were stirred magnetically at 220

rpm. The experimental data were treated mathematically

assuming that the SDS transport through gels is Fickian.

Under these conditions, as a consequence of Fick�ss first
law, we may write [8]

cA=J ¼ lN=D0 þ l=P ð2Þ

where J is the amount of surfactant permeating the

membrane per unit area during the time t, lN is the
Nernst layer thickness and D0 is the diffusion coefficient
of the surfactant in aqueous solution [9,10]. From Fig. 2

and Eq. (2), using the interdiffusion coefficients of SDS

in aqueous solutions measured using the cell described

by Lobo and co-workers [10], we can estimate values of

lN ¼ 1:52� 10�6 and 4:02� 10�11 m for AA2 and AA3,
respectively. In these experiments we have used gel

samples of thickness approximately 1–2 mm. Here the

effect of the Nernst layer can be neglected since it rep-

resents <0.1% of the membrane thickness and therefore
is included in the experimental error of the diffusion

coefficients (approx. 5%).

2.4. Fluorescence measurements

Fluorescence measurements, both on membranes and

on diffusion across the membranes, were made using a

Spex Fluorolog 111 spectrometer. Pyrene was dissolved

in aqueous solutions of SDS, and its fluorescence mon-

itored in solution in standard quartz 1 cm2 cuvettes

using excitation at 337 nm. For studies of SDS perme-

ation across the membrane, aliquots of solution after the

membrane were taken, and the fluorescence spectra

measured at various times. Over the time range studied

(up to two days) there was no evidence of any pyrene

diffusion across the membrane.

3. Results and discussion

3.1. Effect of SDS on the gel properties

The effect of SDS concentration on the volume and

mass of the membranes was studied. Table 2 and Fig. 3

show the variation of the degree of swelling and relative

volume as a function of SDS concentration, respectively.

The effect of SDS concentration on the degree of

swelling, Q, and on the relative volume, b, is approxi-
mately the same. The effect of these two dependent pa-

rameters seems to be related to the water concentration

inside the gels as well as to the ratio of monomer to

cross-linker. The effect of the cross-linker on the degree

of swelling and volume collapse is greater with the gels

prepared with AAm 2.5 M (AA1 and AA2) than with

those using AAm 5 M (AA3–AA5). This can be justi-

fied by the topological interactions occurring between

polar acrylamide groups on the two chains which lead

to a more rigid structure which effectively works as

further cross-linking. Consequently, the effect of the

Fig. 2. Effect of the membrane thickness on the flux of SDS.

(�) AA2, lN ¼ 1:52� 10�6 m, R2 ¼ 1:00; (�) AA3, lN ¼ 4:02�
10�11 m, R2 ¼ 0:99.

Table 2

Degree of swelling ðQÞ of different polyacrylamide membranes in SDS solutions
c(SDS) (M) Qð�sÞ

AA1 AA2 AA3 AA4 AA5

8� 10�4 6.13� 0.04 21.6� 0.2 4.01� 0.05 6.48� 0.13 12.5� 0.5
1� 10�3 6.17� 0.09 20.9� 0.4 3.99� 0.03 6.45� 0.07 12.6� 0.4
2� 10�3 6.20� 0.07 20.2� 0.6 3.99� 0.12 6.43� 0.10 12.5� 0.3
5� 10�3 6.13� 0.02 19.5� 0.0 3.97� 0.02 6.29� 0.04 12.5� 0.1
8� 10�3 6.10� 0.08 18.1� 0.4 3.96� 0.04 6.19� 0.12 12.2� 0.1
1� 10�2 6.09� 0.02 17.1� 0.5 3.97� 0.01 6.07� 0.02 12.0� 0.2
2� 10�2 6.11� 0.02 16.7� 0.3 3.97� 0.02 5.95� 0.13 11.8� 0.1
4� 10�2 6.06� 0.06 15.5� 0.2 3.96� 0.08 5.86� 0.06 11.4� 0.2
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cross-linking is greater with the less concentrated

monomer gel. The volume collapse is most marked in

the gels AA2 and AA5, which are weakly cross-linked

and, therefore, characterised by having a high content of

water. The effect of SDS on the gels AA2 and AA5 is

also very important, and these gels still show the effect at

the highest swelling pressure––high swelling degree.

From the experimental data of Q and b we can see that
the variation of such parameters is most marked at SDS

concentrations above the critical micelle concentration

(cmc).

From Figs. 3 and 4, we may also conclude that there is

a rapid incorporation of surfactant in the membrane.

The relative volume ratio, b, in equilibrium with SDS

solution is reached within the first hour of immersion.

This rapid sorption can be justified either by a surface

process or by a fast diffusion process [11] followed by a

reorganisation of SDS aggregates inside the polymer

matrix which provokes the collapse of the membrane

structure. From Fig. 4 we can observe that the SDS–gel

equilibrium is reached more slowly in gels that are less

cross-linked and which show a higher percentage of

water uptake. This suggests that the mobility of the

network structure [12,13] in such gels can play an im-

portant role in the re-organisation and in the re-orien-

tation both of the SDS species, and of the polymeric

structure itself.

From fluorescence spectra of pyrene solubilized in an

aqueous solution of SDS at a concentration (4� 10�2
M) above the cmc, and for the same solution in equi-

librium with polyacrylamide (AA2) the intensity ratio

(I3=I1)––a direct measure of polarity changes in the
polymeric membrane [14]––for Py in SDS is 1.02, while

for the system containing PAAm it is 1.04. Assuming the

uncertainty of such ratio as �0.02 [15], we may conclude
that there is no alteration in the polarity of the medium

that the Py sees, and consequently there are no inter-

actions between the micelles and PAAm. Similar results

Fig. 3. Effect of the SDS concentration on the relative volume, b, of the polyacrylamides.

Fig. 4. Examples of the effect of SDS sorption on the relative volume ratio, b, of the hydrogels. (i) SDS(4� 10�2 M)/AA4;
(ii) SDS(4� 10�2 M)/AA1; (iii) SDS(4� 10�2 M)/AA2.
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were observed with the other polyacrylamide mem-

branes. This is in good agreement with the Nernst layer

analysis previously presented.

3.2. Sorption isotherms

To obtain more details of the thermodynamic features

of SDS/gel systems, sorption experiments were carried

out. The sorption isotherms of the polyacrylamide hy-

drogels prepared with 2.5 and 5 M acrylamide are shown

in Figs. 5 and 6, respectively. The experimental error of

the average values (shown in Figs. 5 and 6) is <7%.
From Figs. 5 and 6 we can see that whilst in the

PAAm from 2.5 M AAm there is no effect of the cross-

linker on the SDS sorption isotherms, in the membranes

with a higher content of AAm the effect of MBAAm

content is clear. The dependence of C on SDS concen-

tration needs a more detailed analysis. Taking the cmc

of SDS as a concentration reference (8:3� 10�3 M [16]),

we may note that at concentrations below the cmc, the

gel with a higher water content can dissolve more SDS,

whilst the concentration values for SDS in the other two

gels are approximately the same, in agreement with the

values for the degree of swelling. In contrast, at con-

centrations above the cmc, the values of C do not show

any clear dependence on water content.

From the experimental data of sorption, we may ob-

serve that at SDS concentrations below the cmc there is

an accumulation of SDS inside the gel (when c < cmc
then C > c) which is not followed at concentrations
higher than the cmc. The interaction between the surf-

actant and the polymer groups (physical or chemical

Fig. 5. Sorption isotherms of SDS in polyacrylamide membranes with acrylamide 2.5 M: (�) AA1; (N) AA2. The fitting lines were
obtained by linear regression of the Langmuir equation to experimental data (see Table 3).

Fig. 6. Sorption isotherms of SDS in polyacrylamides with acrylamide 5 M: (j) AA3; (�) AA4; (N) AA5. The fitting lines were
obtained by linear regression of the Langmuir equation to experimental data (see Table 3).
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sorption, immobilisation, formation of complexes in-

volving water, etc.) can be generally described in terms

of Langmuir sorption. Thus in general, sorption of SDS

can be described by equation

C ¼ C0K 0c=ð1þ K 0cÞ ð3Þ

where C0 represents the concentration of solute mole-

cules that could be sorbed in specific sites of a polymer

at saturation conditions, and K 0 is the corresponding

equilibrium constant. The isotherms of SDS sorption by

different gels shown in Figs. 5 and 6 confirm the Lang-

muir character of sorption. The fitting parameters of the

experimental data using Eq. (3) are presented in Table 3.

From analysis of the data in Table 3 we can conclude

that C0 increases with a decrease of cross-linker con-

centration for each set of PAAm (2.5 and 5 M) and that

the equilibrium constant increases with an increase of

both cross-linker concentration and AAm concentra-

tion. These results, therefore, show that the interaction

between the SDS and the polar groups of AAm is

stronger in the less concentrated gels. We may expect

that the polar part of the surfactant molecules interact

more strongly with the polar groups of acrylamide when

the free volume available for dissolving SDS decreases.

This is supported by the fact that although the mem-

branes AA3–AA5 have initially more polar groups de-

rived from AAm, the majority of these are not available

to interact with the polar part of SDS due to the for-

mation of so-called topological cross-linking.

Associating the sorption isotherms with the volume

changes during the sorption process, we may justify the

behaviour of SDS in the sorption isotherms. It is well

known that the less cross-linked hydrogels show a mo-

bility of their chains [17] and that this mobility decreases

with increasing cross-linker content. As an example we

can consider the gel AA5: this gel shows a very high C0

and a higher volume decrease when in equilibrium with

SDS solution. We expect that if there is another gel

showing higher SDS C values at concentrations, c,

above the cmc, then the collapse of the membrane must

have influence on the sorption equilibrium concentra-

tions.

According to the above discussion we suggest the

following mechanism of sorption: (a) the SDS unimers

can enter in the matrix and interact first with some polar

sites of the polymer matrix; (b) at concentrations of SDS

below the cmc, the unimers are trapped by the matrix

and the volume collapse of the less cross-linked mem-

brane occurs which suggests the formation of aggregates

and the consequent relaxation of the membrane struc-

ture; (c) at concentrations around and above the cmc

some unimers can enter the aqueous medium of the

matrix, while maintaining equilibrium with the unimers

in solution and the volume changes stop. We will show

that this is in agreement with the fact that micelles do

not cross the hydrogel membranes. Pyrene shows a very

low solubility in water, but does dissolve appreciably in

SDS micelles. If micelles cross the hydrogel membrane,

they will also transport pyrene. That this does not occur

is seen very clearly using fluorescence to monitor pyrene

as a probe for micelle transport across the membranes.

We have studied the permeation of SDS (4� 10�2 M) in
the presence of dissolved pyrene with the polyacrylamide

AA2 and AA3 for approximately three days. The mea-

sured fluorescence of the post-membrane solution after

this time clearly shows that no pyrene has crossed the

membrane, indicating that only the unimeric SDS mol-

ecules are able to go through the polymeric matrix.

Within the matrix, however, the structure favours the

formations of stable aggregates from these unimers.

There are two possibilities to interpret the experi-

mental results and the proposed model: (a) the sorption

of the SDS by the gel is followed by a rearrangement of

the SDS structure; (b) the surfactant can react with

polymeric network forming a supramolecular structure

similar to that reported to charged gels and surfactant

systems [18].

Hypothesis (b) is characterised by a rapid decrease in

the volume ratio of the polymeric matrix [18] as well as

by the formation of strong bonds between the polymeric

chain and the surfactant. However, desorption experi-

ments have shown that the concentration of the de-

sorbed surfactant in all systems is equal to the

concentration of the sorbed surfactant. In these cir-

cumstances, the process of sorption at specific polar sites

Table 3

Linear regression for fitting the experimental data (Figs. 5 and 6) to Eq. (3), with a 90% confidence interval

m� tsm (b� tsb) (M�1) R2 K 0 C0 (M)

AA1 0.14� 0.00 41.6� 2.6 0.994 7.1 3:3� 10�3
AA2 0.24� 0.00 34.2� 0.5 1.000 4.1 7:1� 10�3
AA3 0.31� 0.01 74.5� 3.7 0.999 3.3 4:1� 10�3
AA4 0.48� 0.01 112.6� 4.3 0.999 2.1 4:3� 10�3
AA5 0.58� 0.01 50.1� 3.8 0.998 1.7 1:2� 10�2

sm and sb are standard deviation of slope and intercept of linear regression of 1=C as function of 1=c, respectively; t: quantity used in the
calculation of confidence limits using a t-distribution; R2: correlation coefficient; m: gradient of regression line ðm ¼ 1=ðC0K 0ÞÞ;
b: intercept of regression line ðb ¼ 1=C0Þ.
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of the polymer is reversible and the formation of a su-

pramolecular structure does not occur, and hypothesis

(a) will be considered as more likely. With this model,

another question arises: What kind of bond exists be-

tween SDS unimers and the polar sites of the poly-

acrylamide structure, which are then responsible for the

Langmuir-type sorption? In a previous study [19] we

have found that water has an important influence in the

whole process of transport of non-associated electrolytes

in these gels. Water shows a variety of different struc-

tures in these gels [20]. The dissolution of a solute in

such a medium affects these structures, and consequently

the free energy of the system [21]. Therefore, the inter-

action of the polar group of the SDS unimer with the

polar sites of acrylamide does not occur directly but via

water molecules, specifically the so-called non-freezing

water molecules. This will explain the complete revers-

ibility of the sorption process.

3.3. Kinetic studies

The flux of SDS through polyacrylamide membranes

is shown in Fig. 7. This was obtained using the perme-

ability technique under steady-state conditions. The flux,

F, was calculated using the equation:

F ¼ Jl ¼ ðV =AÞdc=dt ð4Þ
where dc=dt is the variation of SDS concentration
crossing the membrane as a function of time, A is the

cross-sectional area of the membrane, and V is the vol-

ume of SDS solution.

The flux process in the gels can be explained by the

entrance of unimers in the matrix, possibly forming

small aggregates that are responsible for the mass

transport. At concentrations above the cmc, the micelles

cannot enter inside gel and the concentration of surf-

actant in gel is not sharply affected. For this reason, a

smaller increase in the flux occurs.

From Fig. 7 we may also observe that the effect of the

cross-linking on the flux of SDS is dependent on acryla-

mide concentration. In fact, in the polyacrylamide syn-

thesised with AAm 5 M (AA3–AA5), the transport of

SDS is dependent on the degree of swelling, which is

effectively proportional to the available free volume. We

should note, however, that the presence of the network

structure as well as the possible interactions with dif-

ferent water molecules and structures [20] may also be

responsible for the retardation of the permeability pro-

cess. We can also see that the highest increase in the

swelling degree (from AA4 to AA5) is followed by the

highest increase of the flux. The flux of SDS through

AA1 and AA2 shows two distinct regions: at SDS

concentrations below 8� 10�3 M the fluxes are equal,

which suggests that there is a balance between the type

of diffusing species and the free volume. At concentra-

tions above the cmc, the flux of SDS through AA1 is

enhanced comparing with AA2. This phenomenon can

be explained by the increase in the network density due

to the collapse of the gel (much more significant in the

gel AA2) and, as a consequence, an increase of steric

interference to surfactant permeation may occur. This

may explain the reversibility of the surfactant sorption

uptake [22] as well as supporting the idea that the for-

mation of links between the surfactant and the polymer

structure occurs via water.

The experimental results described in this and previ-

ous sections suggest that the diffusion of SDS depends

not only on C but also on the immobilised SDS species

Fig. 7. Dependence of the flux, F, on the surfactant concentration, at 25 �C. () AA1; (M) AA2; ðjÞ AA3; (�) AA4; (N) AA5. The
dashed line shows the cmc of SDS in aqueous solution.
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inside the polymer. Although some cases have been de-

scribed in literature of effective immobilisation of dif-

ferent ions in hydrogels [23], in the present systems the

immobilization of surfactant seems a rather complex

concept. At the same time the gel swelling and shrinking

processes are not pure diffusion processes. In fact the

total energy of a gel depends on bulk and shear energies.

Whilst the later can be minimised by readjusting the

shape of the gel, the bulk energy is controlled by diffu-

sion. Different models, as for example the Li-Tanaka

model [24] and the differential swelling stress model [25],

have been used in order to take into account such si-

multaneous phenomena. Once experiments were carried

out on steady-sate conditions, where the swelling degree

changes are not significant, we may postulate the fol-

lowing assumptions in order to calculate the integral

diffusion coefficient, Deff : (a) a local equilibrium between
the adsorbed unimers (in aggregate or unimer form) and

unimers (in aqueous solutions) occurs; (b) the formation

and destruction of micelles or aggregates are much faster

than surfactant diffusion [26]; (c) under the steady-state

conditions, the volume change of the gel is ignored [27].

Following these assumptions the steady-state integral

diffusion coefficients of SDS can be calculated on the

basis of the Fick’s first law approximation, taking into

account the steady state rates J and the SDS concen-

tration in equilibrium with the gel C, according to

J ¼ DeffC=l ð5Þ

and using the overall concentration drop across the

membrane, C, as determined by the sorption experi-

ments, in terms of contiguous solutions; the concentra-

tion of the solution in cell B (the receiving compartment)

is taken as zero.

As a first approach, the experimental data of Deff
shown in Figs. 8 and 9 reveal that the integral diffusion

coefficients of SDS in PAAm are dependent on both

cross-linker and monomer concentration. The integral

diffusion coefficients also are of the same order of mag-

nitude of the mutual differential diffusion coefficients,

D0, of SDS in aqueous solutions [10].
In an attempt to show how the diffusion coefficients

depend on the cross-linker concentration, the polymer

volume fraction, u, was calculated using [28]

u ¼ f1þ ½ðQ� 1Þqp=d�g
1 ð6Þ

assuming that all sorbed SDS has a density, d, similar to

that in aqueous solutions [29]. The polymer densities, qp,
of gels AA1–AA5 are 249� 10, 422� 18, 202� 8,
241� 7 and 364� 28 kgm�3, respectively. The polymer

density values were calculated assuming water density in

the gels equal to 1000 kgm�3.

From Eq. (5) we may conclude that in the most

concentrated gels (AAm, 5 M) the polymer volume

fractions change from 0.63 (AA3), 0.43–0.46 in the AA4,

to 0.19–0.21 in AA5. This shows that a possible inter-

Fig. 8. Steady state integral diffusion coefficients of SDS, Deff , in the polyacrylamides with AAm 2.5 M: () AA1; (M) AA2.

Fig. 9. Steady state integral diffusion coefficients of SDS, Deff ,
in the polyacrylamides with AAm 5 M: (j) AA3; (�) AA4; (N)
AA5.
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pretation of the Deff (Fig. 8) may be made on the basis of
the free volume concept.

In the gels with u ¼ 0:63 and approx. 0.43 the Deff
increase with an increase of free volume. However at

concentrations around the cmc the variation of the dif-

fusion coefficients suggests that some aggregates are re-

sponsible for a small variation of D.

When the polymer volume fraction increases to its

highest value, approx. 0.20, there is no alteration of Deff
with the concentration. This may be due not only to

aggregate formation but also to an alteration of the

membrane structure as a function of concentration. A

further possible reason for such behaviour is that ag-

gregates or micelles have high surface charge densities,

they attract counterions and, consequently, the diffu-

sivity of such species in a highly cross-linked gel is much

smaller than that of unimeric surfactant [30].

However, such a tendency does not occur in the gels

AA1 and AA2, that is the dependence of diffusion co-

efficients on concentration does not simply depend on

the free volume as was calculated in Eq. (6). The diffu-

sion coefficients of SDS in the gel AA2 are approxi-

mately constant at c < cmc, showing that the diffusing
species have the same features. Although no alterations

in u occur at concentrations above the cmc, there is an
increase in Deff to values very similar to those obtained
in aqueous solutions, showing that the aggregates are

predominant in the diffusion transport. This explanation

cannot be used for the mechanism transport of SDS in

the gel AA2. Here, the effect of aggregate formation can

be observed earlier, with a clear increase of Deff as a
function of concentration. However, such an increase is

limited by the cmc, and at concentrations above the cmc,

Deff not only tends to be constant but is also lower than
those obtained in AA1. The explanation can be found

both by the formation of aggregates and also in the

characteristics of a less cross-linked gel. At c > cmc, due
to the lower rigidity of the gel structure the possible

SDS/gel interactions may reduce the real free volume

relative to the diffusion process and, as a consequence,

the SDS molecules are stabilised by polar groups of gel

or by the water molecules [31], which act as an obstacle

by steric hindrance retarding the diffusion process.

4. Conclusions

The present results suggest that SDS can change the

swelling properties of the neutral gels. The SDS–water–

gel interactions are dependent on the hydrophilic char-

acter of the network structure as well as of the surfactant

properties. This SDS behaviour is well established in

charged gels [32–34]. In fact, the charged swollen poly-

mer gels form stable complexes with oppositely charged

surfactants [34,35]. The formation of such complexes

results in aggregation of the surfactant ions at concen-

trations below the cmc in solution [36]. Such interactions

generally result, for example, in the collapse of the gel

structure [27] and changes in the structure of surfactant

aggregates [33]. These phenomena were found in this

work, where the interactions depend both on the degree

of cross-linking and the initial monomer concentration.

Water is shown to be crucial for these effects. Of par-

ticular importance are the surface bound, or so-called

non-freezing water molecules, which facilitate binding of

surfactant molecules to the polymer membrane. This has

marked effects on the diffusion of surfactant across

membranes of such polymers.

Although a qualitative analysis has been made in or-

der to explain the variation of the integral diffusion

coefficients further work is needed to find a feasible

quantitative explanation. Such an approach will lead to

a better understanding of the diffusion mechanism in-

volving further processes, including, for example, the

mobility of the gels structure and the type of bonding

between surfactant unimers and/or aggregates and the

hydrogel structure.
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