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Solution behaviour of lead(II) carboxylates in organic solvents
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Abstract

The solution behaviour has been studied of a series of even chain length lead(II) carboxylates (octanoate to octadecanoate) and the odd chain
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ength lead(II) heptadecanoate in a variety of non-complexing organic solvents and in alcohols. In agreement with previous studies
ncreases dramatically above a certain temperature, which depends on solute concentration, chain length and solvent. This solution
s also affected by traces of water. These results are complemented by studies using vapour pressure osmometry, dynamic light s1H
nd13NMR spectroscopy. The results in water-free systems are consistent with the formation of rather ill-defined, polydisperse a
hich increase in size with concentration and decrease with temperature. These show similar local structure to lamellar mesop
ure lead(II) carboxylates, and are suggested to be formed by solvent induced swelling and break-up of these mesophases. In th
ater, a more ordered structure is formed, in which a few water molecules are suggested to be bound to the lead(II) carboxylate
2004 Elsevier B.V. All rights reserved.
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. Introduction

The factors responsible for the formation of aggregates
y amphiphilic molecules in aqueous solutions are well es-

ablished[1–4], and there is a vast literature of experimental
ata which supports theoretical predictions. However, much

ess is understood about aggregation of these molecules in
ater-free organic solvents. The long chain carboxylates of
ivalent metal ions (metal soaps) are an important group of
ompounds, which find applications as emulsifiers, paint dri-
rs, grease thickeners, dispersant agents, etc.[5–8]. They are
lso used in solvent extraction procedures[9], and may find

nteresting materials applications in metal–organic mesogen
ystems[10,11]. They are, in general, insoluble in water, but
issolve in a variety of organic solvents. Although these sys-
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tems have been extensively studied for over 90 years[12–43],
and a number of reviews have been presented[44–48], there is
still a shortage of information on the nature of the aggreg
present, which limits the development of good models o
solution behaviour. Some general features can, howev
described. Firstly, the solubilities of the saturated metal
boxylates at room temperature are generally low, but incr
dramatically above a certain temperature[13,16,31,44]. This
critical temperature shares many of the characteristics o
Krafft point observed with aqueous surfactants[26,31], but
probably has a different origin. We will refer to it as the so
bility temperature (tsol). Secondly, introduction of unsatur
tion or chain branching into the chain decreases the solu
temperature[48], and soaps, such as oleates[23,32], are fre-
quently soluble at room temperature. Thirdly, in nonpola
noncoordinating solvents, evidence has been presented
ebullioscopic measurements[16,18], viscosimetry[23,32],
UV–vis absorption spectra[30,40] and fluorescence dep
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larisation [20] for the existence of aggregates in solution.
However, in contrast to the behaviour of amphiphiles in aque-
ous solutions[3,4] these appear to be ill-defined, and enor-
mous variations are observed in the aggregation numbers ob-
tained by the various techniques. In contrast, in coordinat-
ing solvents, such as pyridine, the carboxylates exist as the
monomers[19], probably due to complexing by the solvent.

The solubility behaviour depends on the metal ion, chain
length of the carboxylate, the presence of any substituents,
and the solvent[31,44,47,48]. These properties may also be
dramatically affected by the presence of any water[22,32,44],
and in some cases, gelation may occur[32,44]. With the
branched chain copper(II) 2-ethylhexanoate, gel formation
has been observed even in the absence of water[35,36].

While molecular dynamics simulations[49] support the
idea of amphiphile aggregation in non-polar, water-free me-
dia, thermodynamic considerations[50] suggest that these are
not well defined micelles, as observed in aqueous solutions,
but are polydisperse, with predominantly small aggregates,
but the presence of some larger ones. Because of the rather
ill-defined nature of these aggregates, there is need for more
detailed experimental data.

In this study, we will discuss the particular case of the
solubility behaviour of some lead(II) carboxylates. These are
available in a high state of purity, and their thermal behaviour
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have been described in detail elsewhere[57]. Measurements
used 488 nm light from a frequency stabilized Ar ion laser.
Samples were contained in scattering cells in a thermostat
bath containing an index-matching liquid. The autocorrela-
tion curves obtained were analysed by an inverse Laplace
transformation to obtain the distribution of relaxation times
using the algorithm REPES[58,59], as incorporated in the
analysis package GENDIST. Details of data analysis have
previously been given[58]. NMR spectral studies used a Var-
ian XL-200 spectrometer operating at 200.06 MHz (1H) or
50.31 MHz (13C), as described elsewhere[60]. In all cases,
TMS was used as reference.

3. Results

3.1. Solubility temperature measurements

As previously noted[31] at room temperature, all the even
chain length lead(II) carboxylates of saturated carboxylic
acids studied showed very low solubility in the solvents
studied, but showed dramatic increases above a certain crit-
ical temperature (tsol). Values oftsol were determined by vi-
sual observation for solutions of the octanoate and decanoate
(PbC8 and PbC10) in a variety of solvents as a function of
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as been extensively studied[51–56]. Some aspects of th
olubility behaviour of these compounds have been p
usly addressed[31]. We will concentrate initially on gener
spects of the solubility behaviour in a variety of solvents
luding the effect of added water. Subsequently, we will a
variety of techniques to attempt to find more informa

n the aggregates present.

. Experimental

The solubility behaviour has been studied of the even c
ength lead(II) carboxylates from the octanoate to the
adecanoate, and the odd chain lead(II) heptadecanoat
onvenience, these will be abbreviated PbCn , wheren is the
otal carbon chain length. The synthesis and characte
ion of these compounds has previously been reported[55],
nd purity was confirmed by differential scanning calori

ry, and good elemental analyses obtained for C, H an
n addition, the absence of water or excess acid (the
ommon impurities) was shown from their infrared spec
olvents were of the purest grade available, and were
s supplied. The general technique used for solubility
erature measurements has previously been described

ail [31]. The error of duplicate measurements is not m
han 2%, and the solubility temperatures are reprodu
o ±0.5◦C. Vapour pressure osmometry measurements
ade on a Hewlett-Packard 302 apparatus at 70◦C. This was

alibrated using solutions of various known concentrat
f benzil (0.025–0.1 M) in toluene. Details of the appar
nd techniques for dynamic light scattering measurem
r

-

oncentration (Table 1). For the two solvents, octanol a
oluene, solution temperatures were also measured as a
ion of chain length for all the lead(II) carboxylates (Table 2).
n all cases, a slight increase intsol with concentration was ob
erved above the critical solubility temperature, in agree
ith previous observations in related systems[16–19,31,34].
or convenience, phase transition temperatures for the
oaps are also included inTable 2. From ebullioscopic mea
urements[16–19], it is suggested that this is accompanied
he growth of carboxylate aggregates. In addition, as p
usly observed for long chain carboxylates of various diva

able 1
olution temperatures (tsol, ◦C) of lead(II) octanoate (PbC8) and decanoa

PbC10) in various solvents as function of solute concentration

Concentration (wt.%)

5 10 15 20

bC8

Toluene 64 68 73 78
Xylene 67 71 76 81
Ethyleneglycol monomethyl ether 72 75 79 83
Glycerol 92 98 104 109
Pentanol 61 66 70 74
Octanol 69 74 77 82

bC10

Toluene 67 72 76 84
Xylene 70 74 78 86
Ethyleneglycol
Monomethyl ether 76 80 84 89
Glycerol 95 101 106 113
Pentanol 67 71 74 78
Octanol 73 78 81 87
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Table 2
Solution temperatures (tsol, ◦C) of lead(II) carboxylates in toluene and oc-
tanol as functions of carboxylate chain length together with phase transition
temperatures for pure soaps

Carbon chain
length

Concentration (wt.%)

5 10 15 20

Toluene
8 64 68 73 78

10 67 72 76 84
12 72 77 81 86
14 78 83 89 93
16 81 87 92 98
17 86 92 97 104
18 92 98 104 109

Octanol
8 69 74 77 82

10 73 78 81 87
12 77 83 87 91
14 81 85 89 94
16 86 90 94 99
17 91 95 102 106
18 94 101 107 113

Solid→
mesophase I

Mesophase I→
mesophase II/liquid

Mesophase II→
liquid

Phase transitions in pure soapsa

8 80 82 109
10 84 96 112
12 94 105 107
14 102 110
16 104 112
17 106 114
18 108 115
a Average values from data in[8].

metals[31], for the same solvent,tsol increases with the car-
boxylate chain length. Both solute–solute and solute–solvent
interactions are expected to be involved in this case[31].
Also, in agreement with results on related systems[31,34],
tsol depends markedly on the solvent. This will be considered
in more detail inSection 4, but we note particularly hightsol
values are observed in glycerol, possibly due to its strongly
hydrogen bonded structure.

3.2. Effect of added water

The effect of adding water on the solubility temperatures
was observed for 5% solutions in various solvents. Typical
data are shown inFig. 1, and show an initial decrease in tem-
perature, which then reaches a constant value. At the high-
est water concentrations, solutions become slightly cloudy,
suggesting phase separation, although it was difficult to de-
termine accurately the maximum water solubility. However,
it is clear that the water concentration in these solutions is
considerably higher than in the pure solvents. For compar-
ison, the solubility of water in pure toluene and xylene at
25◦C are 0.21% and 0.038%, respectively[61]. Further, al-
though, as suggested by a referee, addition of water can lead
to hydrolysis of long chain carboxylates and produce ba-

Fig. 1. Plots of solution temperature against percentage of water for solutions
of lead(II) decanoate (5 wt.% solutions) in toluene (�), xylene (©), glycerol
(�) and octanol (�).

sic soaps[8], no evidence for this was found in the present
study.

3.3. Vapour pressure osmometry

Solutions of PbC8 (0.025–0.1 M) in toluene were studied
by vapour pressure osmometry at 70◦C. A graph of�R/C
against concentration (C) was linear (Fig. 2), and by extrap-
olation to zero concentration and use of calibration coeffi-
cient determined with benzil in the same solvent, a molecular
weight of 773 was determined. Care is needed in interpreta-
tion of data from vapour pressure osmometry in this type of
system[18], particularly as the aggregation is concentration
dependent. However, the value is significantly higher than the
molecular weight of monomeric PbC8 (493), supporting the
existence of some aggregation in solution. The experiment
was repeated in the same concentration range in the pres-
ence of water (5% (v/v)), and from the intercept of the graph
(Fig. 2) a molecular weight of 1467 was calculated. Results
are summarised inTable 3, and do indicate differences in
aggregation behaviour between PbC8 in pure toluene and in
toluene in the presence of water.

F ns of
l

ig. 2. Vapour pressure osmometry data for various concentratio
ead(II) octanoate in solution in toluene: (�) alone; (©) with 5% water.
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Table 3
Vapour pressure osmometry results on solutions of lead(II) decanoate in
toluene

Calculated molecular
weight

Theoretical values for PbC10 493
Value for solution (0.025–0.1 M) in toluene at

70◦C
773

Value for solution (0.025–0.1 M) in toluene
with 5% (v/v) water

1467

3.4. Dynamic light scattering measurements

Further indications of differences in aggregation in the
presence and absence of water came from dynamic light scat-
tering (DLS). DLS measurements were made on solutions of
PbC10 in toluene at various concentrations and temperatures.
Decay time distributions for various concentrations at 75◦C
are shown inFig. 3a. The presence of peaks at long relax-
ation times clearly shows that the samples are polydisperse.
However, the most intense peak has the shortest relaxation
time (Γ fast), and is sharp and fairly well defined. Although
the difficulties of separating effects of aggregate growth from
inter-aggregate interactions in light scattering data from such
systems have been highlighted[62], qualitative information
on aggregate size was obtained for this peak. If we assume
that the relaxation time corresponds to a diffusion process,
diffusion coefficients can be calculated from the relationship

Dfast = Γfast

q2

The scattering vector,q, is given by

q = 4πno sin(θ/2)/λo

whereno is the solvent refractive index,θ is the scattering an-
g ◦ nts
w size
o her-
i

F uene
a and
1

Table 4
Hydrodynamic radii determined from dynamic light scattering for solutions
of lead(II) decanoate in toluene at various temperatures

Temperature (◦C) Concentration (wt.%) RH (nm)a

75.0 5.07 257
75.0 9.92 391
75.0 13.11 448
90.0 13.11 316

100.0 13.11 213
75.0 13.11 (with water) 132

a Calculated from diffusion coefficient for the fastest peak in the decay
time distribution.

assuming a spherical structure by using the Stokes–Einstein
relationship[58]

Rh = kT

6πηDo

whereη is the solvent viscosity, taken as 0.354 cP for toluene
at 75◦C [63]. Results are presented inTable 4, and from
extrapolation to zero concentration, a limiting effective hy-
drodynamic radius of 184 nm was calculated for these aggre-
gates. This can be compared with results on cobalt hydroxy
monooleate in heptane solutions, where az-averaged radius
of gyration of 320 nm was determined for dilute solutions
[32].

Using the same relationships, apparent hydrodynamic
radii were calculated for the fast component at various tem-
peratures (Table 4). Although the polydispersity and asym-
metry of these aggregates means the values only have quali-
tative significance, the results clearly suggest that aggregates
grow with concentration, in agreement with results of ebul-
lioscopic measurements[16–19]and theoretical predictions
[50], and that they get smaller on increasing temperature.

The effect of adding water on the scattering was observed
at 75◦C (Fig. 3b). Although detailed analysis of the com-
plex behaviour observed is beyond the scope of this work,
in agreement with the vapour pressure osmometry results it
i n the
s
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C
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le (90 ) andλo is the laser wavelength. Diffusion coefficie
ere calculated, and from these indications of aggregate
btained. Although the aggregates are unlikely to be sp

cal, we can estimate a limiting hydrodynamic radius (Rh)

ig. 3. Decay time distributions for solutions of lead(II) decanoate in tol
t 75◦C: (a) as a function of solute concentration: bottom to top: 5, 10
5 wt.% solutions; (b) 15 wt.% solution in the presence of water at 75◦C.
s clear that quite dramatic differences are seen betwee
ystem in the absence and presence of water.

.5. Multinuclear NMR spectral studies

The1H NMR spectrum was run of a solution of PbC10 in
oluene (d8) at 80, 90 and 100◦C (Table 5). Peaks were ob
erved in the same region as those observed in molten le
ecanoate at 110◦C[64], and very small changes in chemi

able 5
H NMR spectral data for lead(II) decanoate as neat compound and
olution in perdeuterotoluene

ssignment Chemical shift (ppm relative to TMS)

80◦C 90◦C 100◦C 80◦C with D2O

H3 0.950 0.928 0.898 0.929
H2(n) 1.372 1.443 1.507 1.339
H2(3) 1.840 1.842 1.882 1.740
H2(2) 2.473 2.498 2.515 2.158
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Fig. 4. 1H NMR spectrum of lead(II) decanoate in perdeuterotoluene at
80◦C in the presence of D2O.

shift were observed on increasing temperature. On addition
of a small quantity of D2O, only minor changes were ob-
served in the positions of these peaks, although these were
most marked for CH2(2) and CH2(3) groups, and in addition,
an additional broad peak, due to trace water and HOD, was
observed around 4.3 ppm (Fig. 4, Table 5).

(CH3CH2(9)CH2(8)CH2(4 − 7)CH2(3)CH2(2)CO2)2Pb

Further information on the carboxylate structure in solution
came from13C NMR spectra. Spectral data measured for
PbC10 in toluene at 80◦C are presented inTable 6, together
with assignment of the peaks, and13C spectra previously
reported for this compound in the solid, lamellar L� and
molten liquid phases[60]. The chemical shifts of all the
peaks, except the carboxylate and adjacent methylene group
are shifted relative to those of the solid soap. Such changes
are usually attributed to the introduction of conformational
disordering in the alkyl chain[65]. The chemical shifts in
solutions are intermediate between those in the solid and liq-
uid phase, and are closest to those for the mesophase. Direc
comparison is difficult, because the spectra were recorded
at different temperatures and conformational disordering is

Table 6
13C NMR spectral data for lead(II) decanoate as neat compound and 20%
solution in perdeuterotoluene

A

C

C

C

C

C
C
C

temperature dependent. In addition, with toluene solutions
there may be a contribution from the “ring current” of the
solvent. However, this is unlikely to affect the relative chem-
ical shift changes, and the results are consistent with aggre-
gates being formed, with conformationally disordered chains,
and with local structures similar to those in the lamellar
mesophase.

Spectra were also run on solutions in the presence of water,
and data is included inTable 6. The positions of the major-
ity of peaks were unchanged. However, a shift was seen in
the position of the CH2(2) band. As with the other peaks,
this signal is dependent on conformation, and in the solid
state is split into two[60], with one component at higher
field and one at lower field than the solution in the pres-
ence of water. The solution results suggest changes in the
structure due to head group hydration on incorporation of
water.

4. Discussion

Although a number of experimental studies have con-
firmed the existence of aggregates when amphiphiles are
dissolved in water-free organic solvents[16–48], Rucken-
stein and Nagarajan have suggested from detailed thermody-
n ly
d re-
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p , with
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ssignment Chemical shift (ppm relative to TMS)

Solid
(60◦C)a

L�

phasea
Liquid
(125◦C)a

Solution (20% in C7D8)

Anhydrous With H2O

O2 183.8 182.7 183.5 184.4 84.4

H2(2) 40.8 40.5 40.1 40.4 39.5
38.9

H2(3) 27.7 25.7 25.3 26.2 26.2
27.1

H2(4–7) 32.7 30.2 29.4 30.5 30.1
31.3

H2(8) 34.2 31.9 31.5 32.5 32.5
H2(9) 24.9 22.0 22.0 23.1 23.1
H3 14.8 14.0 13.2 14.3 14.3
a From[54].
,

t

amic considerations[50] that these are likely to be main
imers and trimers, with a small fraction of larger agg
ates. The present results confirm the presence of po
erse, ill-defined aggregates. Molecular weight average
olydisperse systems depend upon the technique used
olligative properties, such as vapour pressure osmom
iving number average values, and scattering methods g
eight average values[66]. Although, as discussed inSection
, caution needs to be exercised in analysis of vapour
ure osmometry data when aggregate size is concent
ependent, and the actual values determined in the pr
tudy on lead(II) carboxylates in toluene solution proba
nderestimate aggregate size, they are consistent with
eing mainly small, and rather ill-defined aggregates pre

n contrast, light scattering results predominantly from
argest species present in solution[66], and although the a
olute values of aggregate sizes determined in the pr
tudy must be treated with caution due to the difficultie
reating polydisperse systems, the dynamic light scatt
ata do confirm the existence of some percentage of l
ggregates in these systems. Further, these grow on incr
oncentration. Although from the present data it is difficu
stimate the percentage of the larger aggregates, the r
re consistent with the majority of surfactant molecules b
resent as small aggregates.

From consideration of results on the phase behavio
ead(II) carboxylate/alkane systems[67], together with th
resent NMR data, it is possible to propose a model for
olution of the amphiphile in water-free organic solvents.
hough differences are observed in structural assignmen
eports show that upon heating pure long chain lead(II)
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boxylates, one or more lamellar mesophases are observed
between the solid and isotropic liquid[51–56]. Transition
temperatures for these are given inTable 2. On adding un-
decane (hendecane) to lead(II) dodecanoate, the lamellar L�

phase (incorrectly assigned to a V2 phase in[51,53–55]) is
suppressed[67], and a decrease is observed in the temper-
ature of the mesophase-to-liquid transition. The results are
consistent with a swelling of the lattice due to incorporation
of alkane in the mesophase, and fusion of this on heating.
This is similar to the model proposed by Little[26], and in
general, similar swelling is likely with all non-coordinating
solvents, which at high solvent mole fractions will lead to
break-up of the lattice and formation of a liquid phase. The
temperature of this transition will depend upon both the de-
gree of penetration of the solvent and specific solute–solute
and solvent–solvent interactions. In the liquid phase, repul-
sion between the head group and organic solvents dictates
that the carboxylates will normally be present as aggregates.
However, as discussed elsewhere[16,18,19], it is likely that
these aggregates will have structures related to those of the
mesophases present in the pure compound, i.e. they will have
a lamellar structure. The present13C NMR results are consis-
tent with this, and small angle neutron scattering experiments
are planned to obtain more information on these aggregates.

Within this model, the dramatic increase in solubility at
a s the
t inary
p ther
t aque
o car-
b ase
t erved
e

e, in
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i pos-
s see
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