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On the triplet state of poly(N-vinylcarbazole)

J. Pina a, J. Seixas de Melo a,*, H.D. Burrows a, A.P. Monkman b, S. Navaratnam c,d

a Department of Chemistry, University of Coimbra, Rua Larga, P3004-535 Coimbra, Portugal
b Department of Physics, University of Durham, Durham DH1 3LE, UK

c Free Radical Research Facility, Daresbury Laboratory, Warrington WA4 4AD, UK
d Biosciences Research Institute, University of Salford, M4 4WT, UK

Received 4 October 2004; in final form 3 November 2004

Available online 18 November 2004
Abstract

Triplet state properties including transient triplet absorption spectrum, intersystem crossing yields in solution at room temper-

ature and phosphorescence spectra, quantum yields and lifetimes at low temperature as well as singlet oxygen yields were obtained

for poly(N-vinylcarbazole) (PVK) in 2-methyl-tetrahydrofuran (2-MeTHF), cyclohexane or benzene. The results allow the determi-

nation of the energy value for the lowest lying triplet state and also show that triplet formation and deactivation is a minor route for

relaxation of the lowest excited singlet state of PVK. In addition, they show the triplet state is at higher energy than reported heavy

metal dopants used for electrophosphorescent devices, such that if this is used as a host it will not quench their luminescence.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Poly(N-vinylcarbazole) (PVK) is an important non-

conjugated organic polymer, whose initial studies (re-

viewed in [1]) concentrated on its application in

photocopiers. Although its use in this has now been

superseded by other materials, it is still an important

and well-studied organic polymer, whose use has been

suggested for areas ranging from electroluminescence

[2] to photorefractive systems [3]. For many of these
applications, a knowledge of the photophysics is impor-

tant, and fluorescence properties, particularly excimer

formation kinetics and dynamics were extensively stud-

ied and discussed during the 1970s and 1980s of the past

century [4–8]. In addition, a number of studies were re-

ported on phosphorescence, delayed fluorescence and

triplet energy transfer at low temperatures in films and

solid solutions of PVK [9–11]. Although PVK was the
first reported electroluminescent polymer [2], the devel-
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opment of efficient light emitting conjugated polymers

[12] led to a loss in interest in the use of this system in
devices. In these polymer light emitting diodes (PLEDs),

emission comes from the singlet states of the conjugated

polymers and electron correlation effects on electron-

hole recombination limit efficiency to a maximum of

25–50% [13], with the rest being lost as nonemitting tri-

plet states. However, it was shown that by the use of

phosphorescent heavy metal complexes, initially in or-

ganic LEDs [14] and subsequently in polymeric ones
[15] that it is possible to capture this triplet energy and

produce light emitting devices with very high efficiencies.

This has led to a renewed interest in the application of

PVK and related carbazole polymers in this area, since

both theoretical calculations [16] and experimental

measurements [17] show that these make excellent hosts

for the triplet emitters. Knowledge of the triplet proper-

ties of these polymers is a prerequisite for optimising
their efficiency.

Although the earlier reports on the photophysics of

PVK did contain much valuable information, a number

of important questions remain unanswered. This Letter
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addresses these and presents a complete characterization

of PVK triplet state, including quantitative determina-

tion of the intersystem crossing, phosphorescence and

singlet oxygen yields. It is to our best knowledge the first

time that the triplet state of PVK can be considered to

be completely characterized.
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Fig. 1. Phosphorescence emission spectra of PVK in 2-MeTHF at 77

K. Delay after flash 0.5 ms (full line) and 10 ms (dash line).
2. Experimental

Poly(N-vinylcarbazole) (Acros organics) and other

solutes were of the purest grades available, and were

used without further treatment. The solvents were of

spectroscopic or equivalent grade and were used without

further purification.

Luminescence spectra were recorded on Jobin-Ivon

SPEX Fluorolog 3–22 spectrometers using the 1934 D

phosphorimeter acessory. The phosphorescence quan-
tum yield was determined using benzophenone

(/Ph = 0.84) as a standard [18]. All spectra were cor-

rected for the instrumental response of the equipment.

Triplet–singlet difference absorption spectra and yield

were obtained using an Applied Photophysics laser flash

photolysis equipment pumped by the third harmonic of

a Nd:YAG laser (Spectra Physics) with excitation wave-

length of 355 nm. First-order kinetics was observed for
the decay of the lowest triplet state. The transient spec-

tra (300–650 nm) were obtained by monitoring the opti-

cal density change at 5–10 nm intervals, averaging at

least 10 decays at each wavelength.

The triplet formation quantum yields of PVK in 2-

MeTHF were determined by energy transfer to b-caro-
tene. All measurements were carried out at 20 ± 2 �C
and the solutions were degassed with argon.

The triplet quantum yield, /T, determination was

made according to the equation [19,20]:

/T ¼ /ref
T

DODS

DODRef

� kSObs

kSObs � kSO
� k

ref
Obs � kRef

O

kRef
Obs

; ð1Þ

where kSObs is the observed rate constant (kT = 1/sT) for
decay of b-carotene triplet state in a solution with

PVK, kRef
Obs is the observed rate constant (kT = 1/sT) for

b-carotene triplet state in a solution of benzophenone

plus b-carotene, kSO and kRef
O are the rate constants of

the triplet state of PVK and benzophenone in the ab-

sence of b-carotene, DODS is the absorbance of b-caro-
tene triplet at 540–550 nm in the solution of PVK plus
b-carotene, DODRef is the absorbance of b-carotene tri-

plet at 540–550 nm in the solution of benzophenone plus

b-carotene.
In all cases the signal was assigned to a triplet state

because:

(i) it was sensitized by the triplet donor benzophenone

(triplet energy 3.0 ± 0.1 eV),
(ii) it sensitized b-carotene triplet,
(iii) it decayed by first-order kinetics with microsecond

lifetimes.

Triplet state absorption spectra were also character-

ised by pulse radiolysis using the Free Radical Research

Facility, Daresbury, UK. Here, 200 ns to 2 ls high en-
ergy electron pulses from a 12 MeV linear accelerator

were passed through solutions in a 2.5 cm optical path-

length quartz cuvette attached to a flow system. This has

been described in detail elsewhere [21]. All solutions

were bubbled with argon for about 30 min before

experiments.

Singlet oxygen yields, measured at the FRRF (Dares-

bury laboratories), were obtained by direct measure-
ment of the phosphorescence at 1270 nm followed the

irradiation of an aerated solution of the polymer in

cyclohexane with excitation at 266 nm from a Nd:YAG

laser with a setup elsewhere described [22]. Biphenyl in

cyclohexane (/D = 0.73) was used as standard [18].
3. Results and discussion

Fig. 1 shows the delayed fluorescence and phospho-

rescence spectra of PVK in 2-methyltetrahydrofuran

(2-MeTHF) at 77 K. The two spectra shown were ob-

tained with two different delays after the exciting flash.

Notice that the intensity of the delayed fluorescence de-

creases with the increase in this delay. The spectra is

vibrationally resolved showing an onset of phosphores-
cence at 400 nm (3.1 eV), a maximum at 448 nm and

additional peaks at 420 and 472 nm, with shoulders at

�510 and 550 nm, corresponding to a vibronic progres-

sion with separation �175 meV. An identical spectrum

was previously reported for PVK under similar experi-

mental conditions [9]. For carbazole itself the phospho-

rescence maximum (434 nm) is blue-shifted. The

quantum yield for PVK phosphorescence (/ph) resulting
from the integration of the phosphorescence band and

using benzophenone as standard under the same exper-

imental conditions gives a value of /Ph = 0.085.
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Fig. 2. Phosphorescence decay of PVK in 2-MeTHF. Shown as inset

are values corresponding to the fits to a first (full line) and second (dot

line) order decay law.

300 350 400 450 500

0.0000

0.0035

0.0070

∆O
.D

.

λ (nm)

Delay after flash
 0.30 µs
 0.50 µs
  1.0 µs
 2.0 µs
 3.0 µs

Fig. 3. Transient T–T spectra of PVK in 2-MeTHF at room

temperature.
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The phosphorescence decay obtained under the
above conditions is found to be inconsistent with first

order decay kinetics (Fig. 2). A second order fit leads

to a decay with 4.2 s as the major component (Fig. 2).

As previously reported for PVK in films [23], the addi-

tional fast component may result from triplet–triplet

(T–T) annihilation leading to some residual delayed flu-

orescence. This is not likely to influence the phosphores-

cence lifetime. However, the quantum yield for triplet
formation (/T) will be equal to or greater than the phos-

phorescence yield, and the presence of T–T annihilation

suggests this is a lower limit for /T. Notice that others

have found in the same experimental conditions a phos-

phorescence lifetime of 7.7 s, but this resulted from the

averaged value of several PVK samples with different

molecular weights and polydispersity [9]. Although

some discrepancy exists between the two absolute val-
ues, the long-lived nature of the phosphorescence is to-

tally compatible with the lowest lying triplet state

being of p,p* origin [24]. Since it is known that the low-

est singlet excited state is also of p,p* origin, it is likely

that the S1 �� ! T1 intersystem crossing process

should be highly forbidden. This could explain in part

the limited amount of quantitative data available on

the triplet state of PVK.
The transient triplet–singlet difference absorption

spectrum of PVK in 2-MeTHF solution at room tem-

perature was generated by laser excitation at 355 nm,

and shows a maximum at 389 nm, with further vibronic

structure (Fig. 3) and lifetime sT = 1.56 ls. This was

identified as a triplet because it was quenched by oxygen

and was sensitized by the triplet donor benzophenone

and it sensitized b-carotene triplet.
Attempts were also made to obtain the T–T absorp-

tion spectrum in benzene solution using the pulse radio-

lysis-energy transfer technique [25]. Here, the triplet

states of conjugated organic polymers (S) can be selec-

tively produced by energy transfer from appropriate

sensitizers (A) following pulse radiolysis of benzene

solutions in the reaction sequence
Bzþ e� �> 1Bz� þ 3Bz� þ e�

1Bz� ! 3Bz�

1Bz� þA ! Bzþ 1A�

1A� ! 3A�

3Bz� þA ! Bzþ 3A�

3A� þ S ! Aþ 3S�
subject to the kinetically demanded concentration ra-

tio [Bz] � [A] � [S]. In this case, in the presence of

the sensitisers methoxyacetophenone (triplet energy

3.1 eV, [18]) or 1,2-dichlorobenzene (triplet energy

3.5 eV [18]) very similar transient absorptions around
390 nm were seen to those on laser excitation, con-

firming assignment to the triplet absorption. No tran-

sients were observed with sensitisers of lower energy,

giving a limit to the triplet energy of PVK in solution

at room temperature of 3.0 ± 0.1 eV, in very good

agreement with the phosphorescence data. This is

somewhat higher but more reliable than the previously

reported value of 2.5 eV [26].
From the laser flash photolysis experiments, a value

for the triplet yield was obtained by the energy transfer

method as described in Section 2, giving a value

/T = 0.047. Even though the experimental errors associ-

ated with this value are normally fairly high (typi-

cally ± 50%), the reason that this is markedly lower

than the phosphorescence yield is not completely clear.

However, it is possible that, because of the short triplet
lifetime of PVK in solution, scavenging by the b-caro-
tene is incomplete.

A study was made of the sensitized yield of singlet

oxygen formation following laser excitation at 355 nm

of a solution of PVK in cyclohexane. From the singlet

oxygen phosphorescence at 1270 nm, and comparison

with biphenyl, a singlet oxygen yield (/D) of 0.15 was

obtained at room temperature. The overall data for
the triplet state formation (/T) and deactivation (/Ph

and /D) suggests that formation of the triplet state of
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PVK is an inefficient channel for relaxation of the lowest

excited singlet state.

The S1 and T1 states are both of p,p* origin and,

according to El-Sayed rules [27], this is consistent with

the low intersystem crossing yield observed for PVK.

The highly resolved phosphorescence and transient
T–T spectra are compatible with the rigid structure

of the carbazole ring. However, the photophysical

behaviour contrasts with that of the parent carbazole,

where from the fluorescence yield (/F = 0.41), lifetime

(sF = 12.4 ns) [28] and intersystem crossing triplet

yield (/T = 0.36) [29] it can be seen that the rate con-

stants for the different deactivation processes (kF, kIC
and kISC) are of similar orders of magnitude. Also
for carbazole the /Ph value is higher (0.24) [30] than

in PVK although the phosphorescence decay is similar

(6.8 s) [31]. All of the above points to the existence of

either a degree of delocalization between carbazole

units on PVK, or another pathway of deactivation

of the triplet state compared with carbazole itself.

The markedly lower values for the triplet and phos-

phorescence yields suggest some level of interaction
between neighboring carbazole units, and since there

is no evidence for excimer formation in the triplet

state, it is likely, as has previously been suggested

for PVK in solid solutions [9–11], that efficient triplet

energy transfer takes place both in the solid state and

solution between the carbazole moeities. With triplet

states, this is likely to involve Dexter transfer [32]

through electron exchange. The feasibility of such a
mechanism is supported by the observation of very ra-

pid electron transfer between carbazole units on PVK

chains [33].
4. Conclusions

In conclusion, we have demonstrated that PVK has a
triplet energy of 3.0 eV, which is higher than that of

commonly used heavy metal phosphorescent dopants,

such as Irppy3 (2.4 eV) [34], which means that it cannot

quench the triplet state of the dopant. Further, we have

shown that singlet–triplet intersystem crossing is rela-

tively inefficient in this polymer. This means that if the

polymer is used in devices, any singlet states formed

on charge recombination can efficiently transfer energy
to dopants by processes such as Forster energy transfer

[35].
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