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Abstract

A recently proposed scheme that enables a potential energy surface corresponding to a calculation with a large target basis set to be
obtained from small basis set calculations via scaling of the electron correlation at a single-pivotal geometry is generalized to include an
arbitrary number of such geometries. If the correlation is extrapolated to the complete basis set limit at the pivotal geometries and used
for the scaling, the method can yield accurate potentials at costs up to factors nearly fifty times cheaper than required otherwise. The
approach, free from parameters alien to the ab initio methods, is tested on N2, O2, and F2.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

The cost of solving the electronic Schrödinger equation
point-by-point to generate a potential energy surface
(PES) is well known to grow as N s

pnm
b with m J 4, where

nb is the number of orbitals in the basis set, and Np a typical
number of points required to represent a one-dimensional
(1D) cut in the sD configuration space of the molecule. Of
course, many such ‘diatomic-like’ cuts will be required to
map the PES of a polyatomic molecule, e.g., one for each
fixed set of Jacobi angles. An even stronger factorial scaling
of the cost with the number of active electrons (ne) arises if
the multi-reference configuration interaction (MRCI)
method which is based on the preceding complete-active-
space self-consistent-field (CASSCF or CAS for brevity)
approach is utilized as for a fixed number of electrons the
number of determinants in a full CI (the CAS wave function
is a FCI in the active orbital space) scales [1] as nne

b . Obtain-
ing an accurate PES with as low as possible computational
cost remains therefore an important challenge in quantum
chemistry. Without any lack of generality, the ‘economical’
approach here suggested will be tested on the important N2,
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O2, and F2 molecules. The highly successful internally con-
tracted MRCI approach with the popular quasi-degenerate
Davidson correction [CAS/MRCI(Q) or simply MRCI(Q)]
[2,3] will be employed for the calculations.

A significant enhancement to progress in ab initio calcu-
lations for small molecules has become possible after the
introduction of the so-called correlation-consistent (cc)
basis sets by Dunning and collaborators [4] such as the
augmented one aug-cc-pVXZ [5] (or AVXZ). Built in a sys-
tematic manner intended to relate the correlation energy to
the cardinal number X, such basis sets prompted the search
for laws to extrapolate the energy to the complete basis set
(CBS) limit (e.g., Refs. [6–10]).

The extrapolation of the correlation energy finds sup-
port on its dependence on the partial wave quantum num-
ber for two-electron atomic systems and second-order pair
energies in many-electron atoms [11,12]. The simplest and
most popular two-parameter law for extrapolation of the
correlation energy is [6]

Ecor
X ¼ Ecor

1 þ
A3

ðX þ aÞ3
ð1Þ

where Ecor
X is the correlation energy obtained with the

X-tuple basis set of (aug)cc quality, and Ecor
1 and A3 are

parameters usually determined from the calculations for
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the two highest affordable values of X, often 5 and 6; a is an
offset parameter fixed from some auxiliary condition.

Generalized three-parameter extrapolation rules have
also been suggested

EX ¼ E1 þ
A3

ðX þ aÞ3
þ An

ðX þ aÞn ð2Þ

In particular, by choosing An, with n = 4, to depend on A3,
we have suggested [8] an effective two-parameter rule that
predicts the estimated CBS correlation energy limit with
a root mean squared deviation (rmsd) of only a few milli-
hartree for a set of 33 systems studied by the popular sin-
gle-reference Møller–Plesset (MP2), and coupled cluster
[CCSD and CCSD(T)] methods. Recently, we have shown
that both the full correlation and its dynamical part can be
rather accurately described via a refinement of the above
law, termed as uniform singlet- and triplet-pair extrapola-
tion (USTE [10]) method. With n = 5 and a = 3/8, the aux-
iliary relation assumes the form [10]

A5 ¼ A5ð0Þ þ cA5=4
3 ð3Þ

where A5(0) = 0.0037685459 and c ¼ �1:17847713E�5=4
h for

the dynamical correlation.
For the uncorrelated Hartree–Fock and CAS (uncorre-

lated in the sense of lacking dynamical correlation) ener-
gies, several schemes have been advanced (Refs. [13,10],
and references therein). We will use the form

ECAS
X ¼ ECAS

1 þ A expð�bX Þ ð4Þ

where ECAS
1 , A, and b are parameters to be determined from

a fit to the raw CAS energies, typically the ones calculated
for the three or more highest affordable cardinal numbers.
Such extrapolations are known to attain a high accuracy
when raw energies up to X = 6 are utilized, and we utilize
one such variant [10]. The situation is less clear when only
raw data up to X = Q is available, although we will con-
sider later also the two-point extrapolation formula pro-
posed by Karton and Martin [13], A + B/X5.34.

Note that the extrapolation of ECAS
X and Ecor

X with X is
geometry-dependent, and hence such a procedure for cal-
culating a molecular PES must be carried out pointwise.
This can be a mammoth task even for the fastest computers
if the raw data requires basis sets with large cardinal num-
bers. Although the USTE [10,14] scheme has shown great
promise in extrapolating from (T,Q) cardinal number
pairs, we explore in this work ways for a further drastic
reduction in labor by obtaining the dynamical correlation
at the MRCI(Q)/AVQZ basis set level via a correlation
scaling (CS) procedure recently suggested by Varandas
and Piecuch [15]. This is based on scaling at a single
geometry in configuration space (hereby called as pivotal
geometry or simply pivot) the difference between the total
energy E and the energy of some reference wave function,
Eref, which represents the correlation energy or part of it.
In the case of the MRCI(Q) method here employed, the
reference wave function is obtained in the preceding CAS
calculations (see Ref. [15] for alternative choices using
other quantum methods).

The approach here suggested involves six steps: (a) cal-
culation of the PES at, say Np points, with the X � 2 and
X � 1 basis sets using MRCI(Q), and N = 1–4 such calcu-
lations with the target basis set of rank X at some pre-cho-
sen pivots (see later); (b) Np � N calculations of the CAS
(here taken as the reference) PES at the target X basis set
level; (c) prediction by extrapolation [10,13] to X =1 of
the CAS/CBS PES; (d) prediction by extrapolation to
X =1 of the dynamical correlation energy at the pivots
by using the USTE/(T,Q) method [10]; (e) prediction of
the CBS dynamical correlation at the remaining Np � N

points by CS using the X = T (or X = D) and the CBS
dynamical correlation energies at the N pivots; (f) calcula-
tion of the full CBS PES by adding the CAS/CBS and
extrapolated dynamical correlation energies from steps (c)
and (d,e). For brevity such CAS/CBS + CSN/USTE ener-
gies will be denoted heretofore without apparent confusion
by CSN/USTE. For specificity, we indicate after the acro-
nym USTE the cardinal number pair associated to the
raw dynamical correlation energies utilized for the
extrapolation.

In the following, we will consider AVQZ as an expensive
basis set, as it is perhaps the largest affordable basis for
small molecules. Thus, except for the MRCI(Q)/AVQZ
calculations at N = 1–4 pivotal geometries, the bulk calcu-
lations employ only the modest AVDZ and AVTZ basis
sets. The quality of the CSN/USTE(T,Q) potentials so
obtained will then be tested through vibrational calcula-
tions, which provide a most severe test of the method as
the results depend on relative energies. The Letter is orga-
nized as follows. In Section 2, we describe the correlation
scaling-extrapolation procedure to obtain the PES at the
target basis set, while the results are reported and discussed
in Section 3. The concluding remarks are in Section 4.
2. Generalized correlation scaling-extrapolation method

Let without any lack of generality from the computa-
tional point of view consider a PES as a bunch of 1D cuts
through its configuration space. Let the appropriate coor-
dinate (radial or angular or any suitable combination of
both) defining the one-dimensional domain along such a
cut be denoted as R. Suppose now that MRCI(Q) or some
other correlated calculations using basis sets indexed by
m � k and m are performed (m ” X for AVXZ, but it can
be an arbitrary index for basis sets that do not belong to
the cc family [15]) within such a domain. The extrapolated
MRCI(Q) for the target (m + ‘)th basis set will be obtained
from

Emþ‘ðRÞ ¼ Eref
mþ‘ðRÞ þ ½1þP

ðNÞ
mþ‘;mðRÞ�DEcor

m ðRÞ ð5Þ

where a first choice for PðNÞmþ‘;mðRÞ would be an interpolating
polynomial of degree N � 1 through N points {yi = y(Ri)}
as given by the Lagrange classical formula
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ðNÞ
mþ‘;mðRÞ ¼

ðR� R2ÞðR� R3Þ � � � ðR� RN Þ
ðR1 � R2ÞðR1 � R3Þ � � � ðR1 � RN Þ

y1

þ ðR� R1ÞðR� R3Þ � � � ðR� RN Þ
ðR2 � R1ÞðR2 � R3Þ � � � ðR2 � RN�1Þ

y2

þ � � �

þ ðR� R1ÞðR� R2Þ � � � ðR� RN�1Þ
ðRN � R1ÞðRN � R2Þ � � � ðRN � RN�1Þ

yN ð6Þ

In turn, the unitless points to be interpolated are defined by

yðRÞ ¼
½SðRÞm;m�k � 1�½SðRiÞmþ‘;m � 1�

SðRiÞm;m�k � 1
ð7Þ

where the index i specifies a pivotal geometry where the
scaling is performed, k and ‘ are suitable positive integers,
and the auxiliary function S(R) assumes the form

SðRÞm;m�k ¼ DEcor
m ðRÞ=DEcor

m�kðRÞ ð8Þ

with Eref
m�kðRÞ being the energy of the reference wave func-

tion (here taken as the CAS wave function) for the m � k
basis set, and DEcor

m�kðRÞ ¼ Em�kðRÞ � Eref
m�kðRÞ the associ-

ated dynamical correlation energy. Corresponding defini-
tions apply to DEcor

m ðRÞ and Eref
mþ‘ðRÞ in the above

equations, with the latter being the energy of the reference
wave function calculated with the (m + ‘)th target basis set.
Thus, if there are N energies calculated with the (m + ‘)th
basis set, there will be N terms in Eq. (6), each a polynomial
of degree (N � 1) and each constructed to be zero at all Ri

values but one where it is here constructed to be yi = y(Ri).
In fact, Eq. (5) is perhaps the simplest mathematical
expression that one can suggest to interpolate the energies
based on scaling the correlation energy (or part of it if
other wave function model is employed) from basis set m

to basis set m + ‘ at the pivots. In particular, the scaling
function ½1þP

ðNÞ
mþ‘;mðRÞ� in Eq. (5) satisfies the following

attributes: (i) ½1þP
ðNÞ
mþ‘;mðRÞ� ! 1 for all values of R when

m!1 as y(R)! 0 due to S(R)m,m�k! 1 and
S(R)m+‘,m! 1, and the fact that the numerator of Eq. (7)
vanishes faster than the denominator; (ii) the value of
½1þP

ðNÞ
mþ‘;mðRÞ� at any of the pivots equals the ratio of

DEcor
mþ‘ and DEcor

m . If N = 1, the method corresponds to
the scheme proposed elsewhere [15]. In this case, there is
a single pivot which can be the equilibrium geometry Re

or any other point on the PES. Thus, the MRCI(Q) or
some other PES Em+‘(R) is extrapolated from the PESs
Em(R) and Em�k(R), the corresponding reference energies
Eref

mþ‘ðRÞ,Eref
m ðRÞ and Eref

m�kðRÞ, and N correlated energies cal-
culated at the selected pivots (reference geometries)
R1,R2, . . . ,RN, namely Em+‘(R1),Em+‘(R2), . . . ,Em+‘(RN).

Although mathematically rigorous, the Lagrange for-
malism may yield artifacts outside the range of interpolated
data, particularly when high-order polynomials are used in
the interpolation procedure. We have therefore tested also
a procedure based on switching forms. Although tanh
functions are most popular for this purpose, we employ
more flexible forms that warrant continuity up to a pre-
chosen order ~m� 1 in the derivatives, where ~m is a positive
number greater than 1, here taken as 2. For the two-pivot
case (partition of the R-domain for R 6 Rout in two sectors:
one characterizing regions up to the first pivot, Rref, the
other characterizing the outer part, R > Rref), one may
write:

yðRÞ ¼ yref þ Dyoutf1� exp½�bðR� RrefÞ~m�g R P Rref ð9Þ
yðRÞ ¼ yref R < Rref ð10Þ

where Dyout = yout � yref, and b is chosen such that
y(Rout) � yout within an acceptable tolerance (typically
0.1%). For example, a typical value of b for N2 is
1.5 Å�1, although other values close to it could work
equally well or perhaps slightly better. Note that yout is
the value obtained from Eq. (7) at the pivot Rout, with cor-
responding definitions applying for the other yi values.
Note further that Rref has been taken as the experimental
equilibrium geometry, and Rout as a geometry sufficiently
far from equilibrium to represent the limiting behavior.
Thus, for a diatomic, the above switching function can im-
pose a scaling trend such as to warrant reproduction of the
correct energy at the dissociation asymptote. For the three-
sector case where there are an inner (Rinn), an intermediate
(Rref), and an outer (Rout) pivots, we may write:

yðRÞ ¼ y inn R 6 Rinn ð11Þ
yðRÞ ¼ yref þ Dy innf1� exp½�binnðR� RrefÞ~m�g

Rinn 6 R 6 Rref ð12Þ
yðRÞ ¼ yref þ Dyoutf1� exp½�boutðR� R refÞ~m�g

R > Rref ð13Þ

where Dyinn = yinn � yref, Dyout = yout � yref, and binn and
bout are parameters chosen as above to satisfy the bound-
ary conditions. For example, for N2, typical b values are
binn = 55.0 Å�1 and bout = 1.5 Å�1. Of course, if the inner-
most and outermost pivots (yinn and yout) correspond to the
extreme calculated points along the R-coordinate, only
Eqs. (12) and (13) apply. Forms with more pivots can sim-
ilarly be developed.

The ability of the CS method to predict the PES corre-
sponding to larger basis sets from smaller basis set calcula-
tions with sub-millihartree accuracies suggests that the
procedure can be combined with available schemes to
extrapolate the PES to the CBS limit. Two distinct
approaches can be followed. The first consists of treating
the extrapolated USTE(T,Q) energies at the pivots as
Em+‘(Ri) (i = 1 � N), and apply the above CS method.
Alternatively, one could extrapolate at every point to
X =1 using the raw AVTZ energies and the AVQZ ones
estimated via the USTE(T,Q) scheme (or else the raw
MRCI(Q)/AVQZ energies at the pivots). Since the fit of
a ~n-parameter law to ~n-points is an ill-posed problem in
the sense that in no way the procedure can be tested (i.e.,
relies on the exactness of both the numerical data and
underlying physical law), we will adopt here the first
scheme. If the other had been chosen, it might be advisable
to employ instead the USTE(D � Q) extrapolation scheme
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[10] as this is expected to be stabilized by the use of three
fitted points. The method is ‘analytic’ to the order imposed
by the power ~m in Eqs. (9)–(13) at one pivot, here chosen as
Rref, and up to the allowed matching tolerance at the other
pivots. Although this can be controlled such that the
boundary conditions are matched to a desired accuracy,
one may wish to avoid extreme cases since they originate
abrupt changes in y(R). Indeed, any small discontinuities
in y(R) and its derivatives should not be troublesome as
the raw ab initio energies and therefore their derivatives
exhibit also some inescapable numerical noise. Thus, we
may for all purposes consider as smooth the resulting
PES, being probably adequate for direct dynamics studies.
In fact, any such small errors will likely pass unnoticed if
the derivatives are calculated numerically as often done
in dynamics. Finally, we emphasize that both the single-
pivot and multi-pivot methods (if based on the Lagrange
formalism) are analytic, with the latter showing in principle
no handicap if extrapolations in R will not occur. In fact,
hybrid approaches using both the Lagrange and switch-
ing-function formalisms may also be envisaged. We further
note that the method has no empirically adjustable param-
eters, and hence contrasts with other single-pivot schemes
[16–18] that extrapolate the correlation energy but choose
the scaling to fit some well known experimental attribute
of the molecule such as available atomization or dissocia-
tion energies.

3. Results and discussion

All MRCI(Q)/AVXZ (X = D,T,Q) calculations have
been performed using MOLPRO [19]. As test systems, we
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and hence it has not been considered. The results are best
appreciated from Table 1 where the rmsd between the pre-
dicted and raw energies calculated at the target basis set
level are collected. For example, in the case of N2 at the
(3,2;4,2) CS level, the rmsd varies from 0.438 (0.438) for
a single pivot [15] to 0.358 (0.243), 0.259 (0.097), and
0.132 (0.100) mEh for scaling at two, three, and four pivots
using the Lagrange (switching function) formalism.
Clearly, the results depend on the location of the pivots,
which could be optimized to reduce the rmsd. Since this
may be considered to be expensive, as there is no obvious
way of finding the optimum location prior to detailed ab ini-

tio calculations, we have excluded such a step for general-
ity, except in what concerns the obvious equilibrium and
(the chosen) dissociation geometries. Thus, the pivots have
in all cases been fixed at: Re for the single-pivot (CS1) case;
Re and 5 Re for CS2; 0.7 Re, Re, and 5 Re for CS3; 0.7 Re,
Re, 1.4 Re, and 5 Re for CS4. Our choice corresponds in CS2

to divide the space into two sectors (up to equilibrium and
beyond it, up to the chosen asymptote). For CS3, an addi-
tional pivot has been considered at the repulsive wing of
the potential (here taken as the shortest calculated bond
distance), while in CS4 the outer branch has been subdi-
vided in two parts with the fourth pivot (point #15) being
chosen as the middle point of the 29 that were calculated.

The dependence of the rmsd on the pivotal geometries
may explain its non-monotonic decrease with their number.
For example, for the (4,2;4,3) scheme using the Lagrange
(switching) interpolation procedure, the rmsd for N2 are
1.196 (1.196), 0.262 (0.446), 0.198 (0.341), and 0.253
(0.235) mEh. Since the predictions for distances shorter
than the first pivot and larger than the last can be erratic
in the Lagrange approach, only the switching function
results will be examined. Note that CS2 suffices to mimic
the diatomic atomization energy at the target basis set
level. We further observe that slightly smaller errors are
generally obtained when the Davidson correction is not
included.

Extrapolation to the CBS limit can now be considered
by using the extrapolated USTE(T,Q) correlation energies
at the pivots as the results at the target X =1 basis set.
For brevity, we consider only the (4,3;USTE,4) correlation
scaling scheme, where USTE stands now for USTE(T,Q).
Note that the error due to the USTE(T,Q) extrapolation
scheme has been shown elsewhere [10] to be rather small
when judged from the USTE(5, 6) results. At equilibrium,
they amount to [10] �0.737, �0.572, and �0.155 mEh for
N2, O2, and F2, with similarly good results extending up
to dissociation. Once the extrapolated (4,3;USTE,4)
dynamical correlation energies have been predicted, the full
extrapolated curve can be obtained by adding the reference
CAS/CBS energy as predicted by our own rule [10]. This
consists of extrapolating the raw CAS energies obtained
with the four largest affordable AVXZ basis sets
(X = T,Q, 5,6) with the three-parameter exponential law
in Eq. (4), and take as the recommended result the average
of the value so obtained with the largest affordable raw
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CAS energy (X = 6). Thus, we expect the CSN/USTE(T,Q)
potentials to be rather accurate, with an accuracy most
likely superior to the raw AV6Z energies. They are shown
in Figs. 2–4 for the ground electronic states of N2, O2, and
F2, with the calculated points (not shown) connected for
clarity by cubic splines.

Also shown for N2 in Fig. 2 are the extrapolated CAS
and raw MRCI(Q) correlation energies, as well as the turn-
ing points [21] obtained from the RKR inversion of spec-
troscopic data. The notable feature is the good agreement
between the extrapolated curve and the empirical RKR
points. Another visible trend from the insert of this figure
is the more abrupt approach to dissociation with increasing
cardinal number. This may be rationalized from the well
known basis set superposition error (BSSE), which tends
to make the potential more attractive for poor basis sets
but vanishes for an infinite basis set. The shape of the
potential manifests on the calculated vibrational term val-
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Fig. 3. As in Fig. 2 but for the ground electronic state of O2.

are valid only after the innermost fitted point, and should illustrate the
‘roughness’ (as manifested by the ups and downs relative to the
dissociation asymptote) of the raw ab initio points at intermediate bond
distances, although attenuated in the scale of the figure.
ues that are collected in Table 2. To reduce at a minimum
any influence of fitting the calculated data to an analytic
function, all ro-vibrational calculations here reported have
been carried out on spline-fitted curves, suitably extrapo-
lated to the asymptotes as implemented in Ref. [22].
Although the number of calculated raw energies may be
too small for accurate spectroscopic calculations, it should
suffice to warrant the trends here reported. As seen from
Table 2, all CSN/USTE(T,Q) potentials reach AV7Z or
even higher quality. Although basically equivalent when
judged from their rmsd, it is interesting to note that CS1/
USTE(T,Q) yields typically as accurate results as the more
elaborate CSNP2/USTE(T,Q) ones. This may not be sur-
prising since limited CI methods such as MRCI(Q) are well
known to suffer from size-extensivity errors [23], and hence
such deficiencies may extend to the CSN/USTE(T,Q) ener-
gies. We emphasize though that only MRCI(Q) calcula-
tions using the modest AVDZ and AVTZ basis sets, and
1 to 4 points using AVQZ, have been performed.

The potential curves for the ground electronic state of
molecular oxygen are depicted in Fig. 3. Besides some
trends that are akin to N2, the striking feature is perhaps
the occurrence of a small barrier in the CAS/CBS curve
(this result is common to all raw CAS/AVXZ curves), a
fact that is also very much present in the case of F2 to be
discussed later. Since this barrier is small and does not
show up in the MRCI(Q)/AVXZ curves, we have ignored
it at first. The calculated vibrational term values are gath-
ered in Table 2. Interestingly, the CS1/USTE(T,Q) poten-
tial gives results as good as CSNP2/USTE(T,Q) when
judged from the RKR turning points [24]. Somewhat sur-
prisingly, we observe only a very small improvement when
going from the raw AV5Z to AV6Z terms values. Although
this might lead to conclude that the results were converged



Table 2
Vibrational term values Gv of N2, O2, and F2

System v Theoreticala exp.f

AVDZ AVTZ AVQZ AV5Z AV6Z CS1 b CS2 c CS3 d CS4 e

N2 0 29.6 17.1 9.4 6.8 6.0 4.4 4.8 4.2 4.1 1175.8
1 89.0 51.3 27.9 20.1 17.7 12.7 13.9 12.4 12.2 3505.7
2 149.3 85.4 46.3 33.3 29.3 20.9 22.9 20.7 20.4 5806.9
3 210.7 119.7 64.6 46.6 40.9 29.1 31.8 29.1 28.7 8079.5
4 273.1 154.1 82.8 59.7 52.2 37.1 40.5 37.4 36.9 10323.3
5 336.5 188.7 100.9 72.8 63.5 45.0 49.1 45.6 45.0 12538.3
10 673.3 365.5 190.8 137.1 117.8 82.8 89.5 85.0 84.0 23180.2
15 1051.6 551.7 280.3 199.6 169.1 117.5 125.6 120.8 119.6 33094.4
rmsdg 1032.5 526.5 263.3 186.0 156.5 107.7 114.7 110.7 109.7

102.6 109.6 105.5 104.5
O2 0 22.4 15.0 4.1 2.2 2.2 0.0 �0.1 �0.4 �0.3 787.4

1 68.6 44.5 12.0 6.1 6.0 �0.7 �1.0 �1.7 �1.3 2343.8
2 117.1 73.3 19.7 9.7 9.6 �1.7 �2.3 �3.2 �2.5 3876.6
3 167.5 101.4 27.3 13.0 12.9 �2.9 �3.8 �4.9 �4.0 5386.0
4 219.8 128.9 34.6 16.1 16.0 �4.3 �5.6 �6.9 �5.6 6872.3
5 273.8 155.7 41.8 19.0 18.9 �6.1 �7.6 �9.1 �7.4 8335.6
10 564.3 280.0 75.7 30.7 30.2 �17.9 �21.1 �22.9 �19.4 15310.9
15 882.6 390.8 107.4 39.0 35.5 �36.0 �40.9 �42.7 �37.5 21718.2
rmsdg 772.3 332.4 91.2 32.1 29.1 34.0 38.0 39.4 35.1

51.1 55.2 56.7 52.3
F2 0 53.8 8.3 5.8 3.0 2.1 1.2 1.0 0.9 0.9 458.3

1 156.3 20.5 12.1 3.9 1.0 �1.6 �2.2 �2.5 �2.4 1352.2
2 259.9 34.6 19.3 5.7 0.9 �3.5 �4.5 �5.0 �4.7 2222.5
3 364.7 50.4 27.4 8.6 1.8 �4.5 �6.1 �6.7 �6.2 3068.5
4 470.8 68.2 36.6 12.7 4.0 �4.4 �6.6 �7.3 �6.6 3889.8
5 578.5 88.2 47.1 18.3 7.6 �3.0 �5.9 �6.6 �5.7 4685.8
10 1138.1 219.4 119.6 67.6 47.1 22.5 15.6 14.9 17.1 8256.8
15 1729.2 410.3 231.7 157.1 126.4 81.7 70.2 69.6 72.6 11057.9
rmsdg 1428.0 374.1 206.7 134.3 109.8 71.5 62.6 62.3 64.4

86.3 72.9 72.5 78.2

a Deviations, Gexp
v � Gcalc

v . Under the headings AVXZ are the results obtained for the raw MRCI(Q)/AVXZ calculations.
b Based on the CS1/USTE(3,4) method from the present work.
c As in (a) but for CS2/USTE(T,Q).
d As in (a) but for CS3/USTE(T,Q).
e As in (a) but for CS4/USTE(T,Q).
f The zero-point energy has been taken from Huber and Herzberg [20], and added to the G(v) values reported in Refs. [21,24] for N2, and O2,

respectively. See Ref. [28] for F2.
g Rmsd with respect to the experimental term values: v 6 24 for N2; v 6 22 for O2; v 6 22 for F2. The first entry refers to the actual tabulated results,

which employed CAS energies extrapolated from our own rule [10], i.e., using up to X = 6 raw energies, while the (T,Q) two-parameter rule of Karton and
Martin [13] has been utilized for the second entry; see the text.
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to within a few cm�1 at X = 6, this is clearly not the case
when judging from the empirical RKR data. Besides, we
should have in mind that only the first 23 vibrational levels
have been counted for the statistics. We recall that a direct
least-squares fit [25] to 90 ro-vibrational spectroscopic term
values [26] and the 23 RKR points reported by Krupenie
[24], let to an O2 potential that reproduces the input data
with a rmsd of 0.6 cm�1 for the 90 ro-vibrational energies
(1.4 cm�1 with respect to the 18 vibrational energies), and
22 cm�1 for the RKR points. Somewhat coincidentally,
perhaps, we obtain a rmsd of similar order of magnitude
from our CSN/USTE(T,Q) curves. Table 3 gathers the
rotational constants of O2 for vibrational states up to
v = 21. Despite typical deviations with respect to experi-
ment of only 0.005 cm�1 (they are typically smaller by
10�3 cm�1 for the potentials based on the CAS/CBS ener-
gies from the two-parameter (T,Q) rule of Karton and
Martin [13]; see later), the results obtained from all CSN/
USTE(T,Q) potentials are better than the raw MRCI(Q)/
AV5Z and AV6Z ones. A final remark to note that remov-
ing the barrier in the CAS/CBS curve (thin dash-dot line in
Fig. 3) has no noticeable effect in the vibrational energies.

The calculated curves for molecular fluorine are plotted
in Fig. 4. As shown in the insert of this figure, all CAS and
MRCI(Q)/AVXZ (X = D,T,Q, 5,6) calculations show
instabilities beyond a reduced bond distance of about R/
Re = 2.5, i.e., R = 3.53 Å. In an attempt to investigate
whether this could be due to the step size used for the cal-
culations, we have performed a dense grid calculation using
the AVDZ basis set. No changes have been observed. We
have also carried out two-state averaged CAS/AVDZ cal-
culations in an attempt to explore whether such instabilities
could be assigned to a nearby perturbing state of the same
symmetry. At this level of theory, the first excited state



Table 3
Rotational constants for the various vibrational states of O2 in cm �1

v Theoreticala Experimental

AVDZ AVTZ AVQZ AV5Z AV6Z CS1 CS4 Ref.
[26]

Ref.
[29]

Ref.
[30]

Ref.
[31]

Ref.
[32]

Ref.
[33]

Ref.
[34]

Ref.
[35]

0 1.3972 1.4153 1.4273 1.4298 1.4298 1.4326 1.4326 1.4377 1.4377 1.4378
1 1.3805 1.3996 1.4116 1.4142 1.4142 1.4170 1.4169 1.4218 1.4219 1.4220
2 1.3639 1.3840 1.3960 1.3986 1.3986 1.4014 1.4013 1.4060 1.4061 1.4068
3 1.3474 1.3685 1.3805 1.3831 1.3831 1.3859 1.3858 1.3904 1.3904 1.3886
4 1.3311 1.3530 1.3650 1.3676 1.3676 1.3704 1.3703 1.3747 1.3747 1.3736 1.3742
5 1.3148 1.3377 1.3495 1.3522 1.3522 1.3550 1.3549 1.3583 1.3590
6 1.2985 1.3224 1.3341 1.3369 1.3369 1.3396 1.3396 1.3427
7 1.2824 1.3071 1.3188 1.3215 1.3215 1.3243 1.3242 1.3262
8 1.2663 1.2919 1.3035 1.3063 1.3062 1.3090 1.3089
9 1.2502 1.2767 1.2882 1.2910 1.2909 1.2937 1.2936 1.2978

10 1.2342 1.2614 1.2729 1.2758 1.2756 1.2784 1.2784 1.2823
11 1.2181 1.2462 1.2576 1.2605 1.2603 1.2631 1.2631 1.2659 1.26
12 1.2020 1.2309 1.2424 1.2453 1.2450 1.2478 1.2477 1.2506 1.250
13 1.1859 1.2155 1.2271 1.2301 1.2296 1.2324 1.2323 1.2351 1.235
14 1.1696 1.2001 1.2117 1.2148 1.2141 1.2170 1.2169 1.2193 1.221
15 1.1532 1.1845 1.1962 1.1993 1.1985 1.2014 1.2013 1.2034 1.202
16 1.1367 1.1688 1.1806 1.1837 1.1829 1.1858 1.1857 1.1877 1.186
17 1.1199 1.1529 1.1648 1.1679 1.1670 1.1700 1.1699 1.1717 1.171
18 1.1029 1.1367 1.1487 1.1518 1.1510 1.1540 1.1539 1.1557 1.156
19 1.0856 1.1203 1.1322 1.1354 1.1348 1.1378 1.1377 1.139
20 1.0678 1.1036 1.1155 1.1187 1.1183 1.1213 1.1213 1.121
21 1.0495 1.0865 1.0984 1.1017 1.1014 1.1046 1.1045 1.104

a Notation as in Table 2.
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appears well enough separated, and hence can hardly be
responsible for such a disturbance. Moreover, the lower
adiabatic curve continued to reveal a similar pattern, with
a small bump appearing at moderate bond distances. To
overcome the difficulty (which, as a matter of fact, can
hardly be remedied in direct dynamics calculations using
a one-state calculation), we have first attempted to fit both
the raw MRCI(Q) and CSN/USTE(T,Q) curves using the
dispersion-type form V(R) = a + b/R6 + c/R8, where a is
fixed at the corresponding asymptotic energy (taken as
R � 7 Å), and b and c are parameters determined by, say,
reproducing the two far most geometries prior to the dis-
ruption of the potential curve (R = 2.40 and 2.54 Å).
Unfortunately, no solution free from artifacts (this would
basically require both b and c to be negative such as to
avoid developing a maximum before dissociation; a itself
is also negative when one considers the total electronic
energy) could be found. We then turned to the exponential
form V(R) = a + bexp(cR), with the parameters fixed as
suggested above. The same procedure has been used to
fix the CAS/CBS curve. The results are shown in Fig. 4,
while the calculated vibrational term values are in Table
2. As in the cases of N2 and O2, the results are of high accu-
racy when compared with the empirical data. We observe
that most vibrational levels that would be obtained in a
more pragmatic way by ignoring outliers (the points that
violate the form of a smooth potential curve) do not differ
significantly from those here reported.

Some further remarks on the accuracy of the present
scheme may be extracted from Fig. 5, which compares
the results obtained from the present approach with those
obtained by utilizing dynamical correlation energies scaled
pointwise from MRCI(Q) calculations with the two large
affordable basis sets, namely using USTE(5,6). First, we
observe that except for short distances in the repulsive wing
of the potential curve, the absolute error seldom reaches an
unsigned value larger than 125 cm�1 for both N2 and O2,
and 40 cm�1 for F2. When looking at relative energies, such
values reduce in the above order to 50 and 25 cm�1.

Table 4 gathers the calculated equilibrium geometries as
obtained from a parabolic fit to the three points with



Table 4
Deviations of raw and extrapolated equilibrium geometriesa and dissociation energiesb of N2, O2, and F2 with respect to the experimental valuesc,d

System/time AVDZe AVTZe AVQZe CS1e CS2e CS3e CS4e exp.f

DRe DDe DRe DDe DRe DDe DRe DDe DRe DDe DRe DDe DRe DDe Re De

N2 0.026 42.28 0.011 16.72 0.008 7.57 0.006 2.01 0.006 2.17 0.006 2.17 0.006 2.17 1.09768 �364.046
0.006 1.66 0.006 1.71 0.006 1.71 0.006 1.71

CPU timeg 0.30 0.60 1.99
O2 0.020 20.29 0.013 8.22 0.009 3.48 0.007 0.74 0.007 0.69 0.007 0.69 0.007 0.68 1.20752 �191.540

0.006 0.52 0.006 0.46 0.006 0.46 0.006 0.46

CPU timeg 0.22 0.44 1.59
F2 0.041 14.15 0.014 5.38 0.009 3.85 0.006 2.76 0.006 2.67 0.006 2.67 0.006 2.67 1.41193 �62.663

0.006 2.79 0.006 2.69 0.006 2.69 0.006 2.69

CPU timeg 0.03 0.17 1.13

Also indicated are the CPU times for a MRCI/AVXZ calculation at the equilibrium geometry (pivot #1).
a DRe ¼ Rcalc

e � Rexp
e , where the superscripts ‘calc’ and ‘exp’ stand in an obvious correspondence for calculated and experimental.

b DDe ¼ Dcalc
e � Dexp

e .
c Bond distances are in angstrom, energies in millihartree, and times in minutes.
d The corresponding deviations (DRe,DDe) for the MRCI(Q)/AV5Z and MRCI(Q)/AV6Z calculations are (0.007,4.79) and (0.007,3.66) for N2,

(0.008,2.23) and (0.007,1.64) for O2, and (0.007,3.39) and (0.007,3.17) for F2.
e Notation of theoretical methods as in previous Tables.
f Refs. [20,28].
g The CPU times, in minutes, are for a MRCI(Q) calculation. For MRCI(Q)/AV5Z and MRCI(Q)/AV6Z calculations, they are: 8.95 and 39.90 for N2;

7.79 and 36.31 for O2; 6.45 and 31.5 for F2. The CPU times for CAS/AVDZ to CAS/AV6Z calculations are: 0.01, 0.07, 0.55, 3.78 and 20.60 for N2; 0.01,
0.07, 0.55, 3.81 and 20.80 for O2; 0.01, 0.07, 0.57, 3.72 and 20.65 for F2.
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lowest energy. Note that by choosing pivot #1 to coincide
with the experimental equilibrium geometry by no means
implies that the latter will coincide with the minimum of
the extrapolated curves. This is seen to exceed experiment
by 0.006–0.007 Å while the well depths are 0.7–2.2 mEh

(0.4–1.4 kcal mol�1) too shallow when compared with
experiment [20]. Our results are found to compare well with
explicitly correlated MR-CI estimates (often corrected for
the basis set superposition error): e.g., Ref. [27] for N2

which also gives references to earlier work. One should
recall at this stage that we have ignored core-correlation
effects by considering only 10 (2s and 2p) correlated elec-
trons. Additionally, we could not account for the inescap-
able intrinsic error of the wave function model or the
corrections due to relativistic effects and breakdown of
the Born-Oppenheimer approximation. One hopes, that
consideration of such effects will enhance the predictive
capabilities of our scheme.

A final issue concerns the cost of the present approach
when used to calculate a PES. Its efficiency with respect
to a scheme based on the pointwise extrapolation from
MRCI(Q)/AV5Z and MRCI(Q)/AV6Z energies can be
assessed by the ratio

g ¼
Np sMRCIðQÞ

6 þ sMRCIðQÞ
5

� �

Np sMRCIðQÞ
D þ sMRCIðQÞ

T þ sCAS
5 þ sCAS

6

� �
þ NsMRCIðQÞ

Q þ ðN p � NÞsCAS
Q

ð14Þ
where Np and N have the meaning assigned in Section 1, and
sX are the timings of the various calculations (indicated as
superscript). Typical CPU times obtained from a single cal-
culation at the geometry of pivot #7 are gathered in Table 4.
Because the CAS/AV5Z and CAS/AV6Z calculations
(including the ROHF cycle [19]) are rather expensive, the
above ratio is g � 2. An obvious way to further enhance
the efficiency of our method is by using an extrapolation
scheme for the CAS energy that employs raw energies with
cardinal numbers no larger than X = Q. For this, we have
tested the two-parameter formula of Karton and Martin
[13]. Although still yielding reasonable values, a generaliza-
tion of our extrapolation rule [10] that uses such data seems
to underestimate the best CAS/CBS energies, while a fit
using Eq. (4) usually leads to an overestimation. As Table
4 shows, the (Re,De) attributes of the potentials so obtained
are typically within the accuracy of a MRCI(Q)/AV7Z cal-
culation or so when judged from the experimental data,
although some differences occur in the spectroscopy of O2

for which we could not find a simple explanation. The g ra-
tios vary now from 29 for N2 with 4 pivots to over 48 for F2

with 1 pivot. Note that the CPU time savings are still large
when comparing a CS1/USTE(T,Q) potential based on a
(T,Q) extrapolation of the CAS energy with a raw
MRCI(Q)/AV5Z calculation. The ratios are in this case of
g = 6.0, 6.3, and 6.2 for N2, O2, and F2, respectively. In
summary, the CSN/USTE(T,Q) potentials here reported
can achieve a performance only matched by MRCI(Q)/
AV6Z or even higher quality potentials, but at a much low-
er computational cost. This, added to the fact that AVQZ
basis sets are often just affordable for many systems of inter-
est, makes the present scheme also promising in such cases.
4. Conclusions

We have generalized our previously reported scheme
[15] that enables a potential energy surface corresponding
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to a calculation with a large basis set to be obtained from
small basis sets calculations. The idea of scaling the corre-
lation energy at a single pivot has accordingly been
extended to include an arbitrary number of pivots. The
application of the method to achieve the one-electron basis
set limit has also been explored. Although the multi-pivot
schemes have shown to yield curves that mimic the raw
ab initio curve calculated at the target basis set level better
than CS1 by factors of fivefold or more, this by no means
implies that the potentials so generated lead to a better
agreement with the available spectroscopic data. This has
partly been ascribed to the theoretical method utilized to
calculate the raw data, namely the MRCI(Q) method
which is known to suffer from size-extensivity errors. Irre-
spective of the number of pivotal geometries used for cor-
relation scaling, the new methods suggest that highly
accurate potentials can be obtained with modest basis sets
that are often considered obsolete for quantitative pur-
poses. This may lead to savings in computer time up to a
factor of about 50 smaller than when attempting the direct
solution of the non-relativistic electronic Schrödinger equa-
tion using MRCI(Q)/AVXZ methods. Although the
method has been tested on diatomic curves, there is no rea-
son of principle why it should not work for polyatomic
molecules. For example, in the case of an A–BC interac-
tion, the common strategy is to scan cuts for fixed values
of the Jacobi angle, which very much resemble diatomic
potentials. Of course, maxima may occur along such cuts
as indeed it also happens in some diatomic systems, e.g.,
the A1P state of CO. Work under way for this system indi-
cates though that the method can yield equally successful
results. Finally, the method may offer a promising route
for accurate dynamics on-the-fly.
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