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Abstract

The potential energy surface of exohedral He@C36 is analyzed in detail and

extrapolated to the complete basis set limit using Möller-Plesset perturbation cal-

culations. A limited number of coupled cluster singles and doubles calculations

has also been performed. Exohedral complexes above the hexagonal faces toward

the major axis are found to be the most stable, but the helium atom can move

almost freely from the equator to the poles of C36 without dissociating the complex

due to the disparity of masses. The effective 1D interaction potential has van der

Waals attributes in good agreement with those estimated from He2 and a Girifalco

function for the C36 dimer, supporting three bound states.

1 Introduction

Knowledge of the pair-potentials between atoms and molecules is key for studying a

number of properties, both in the gas and condensed phases. For fullerenes, they

are important for understanding the physical, chemical, and mechanical properties of

fullerites, including their equilibrium with the gaseous phase. [1, 2] Because accurate

fullerene pair-potentials from ab initio electronic structure calculations are extremely

hardware and computer time demanding, we have recently [3] suggested the more eco-

nomical fullerene-helium interactions as probes for the former. We will examine here

the hexohedral complex He@C36, and use it to predict the van der Waals (vdW) at-

tributes of the C36 dimer. The generality of such an approach will then be tested by

considering the most abundant small fullerene after C60. The method is purely ab ini-

tio, contrasting with other approaches where semi-empirical or empirical schemes are
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utilized [4]. It is based on extrapolating raw ab initio energies computed with second-

order Möller-Plesset perturbation theory (MP2) to the complete basis set (CBS) limit.

An interesting asset from our method [5, 6] (the reader is referred to these papers for

references to previous work) which contrasts with other approaches is that the largest

required Hartree-Fock (HF) calculations are more time consuming than the MP2 ones,

thus making it cost-effective and even competitive with Kohn-Sham density functional

theory [7, 8] (KS-DFT) for medium size systems such as the title one.

The structure of the paper is as follows. Section 2 describes the methodology, while

the results are reported and discussed on section 3. The concluding remarks are in

section 4.

2 Method

A well known difficulty in ab initio calculations of vdW interactions is the basis set

superposition error (BSSE). Correcting for this spurious attraction via counterpoise

(CP) correction [9] is unaffordable for systems as large as the title one, since it implies

six calculations per geometrical arrangement. However, we have demonstrated numer-

ically [3, 10] that BSSE can be eluded in an effective way by CBS extrapolation [10].

Thus, no BSSE correction will be attempted, and we follow previous work by extrapo-

lating separately the HF and correlation energies. For the former, we utilize the (T,Q)

Karton-Martin [11] (KM) protocol, which requires raw energies calculated with triple-

zeta (TZ) and quadruple-zeta (QZ) basis sets. For the correlation energy, we use the

generalized uniform singlet- and triplet-pair extrapolation (GUSTE [6]) scheme where

only energies for DZ and TZ (in general X1 and X2) basis sets are required to obtain

the extrapolated energy as

Ecor
∞ =Ecor

X2
+

(

Ecor
X1

− Ecor
X2

) (

Y −3
2 + τ̃53Y

−5
2

)

Y −3
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where Yi =(Xi+α) with i=1, 2, and α=−3/8 is an offset parameter. In turn, τ̃53 is the

unitless ratio of the triplet-pair to singlet-pair interaction coefficients [6], τ53 =A5/A3,

at a reference geometry. This can be determined from a fit of three correlation energies

to

Ecor
X =Ecor

∞ + A3Y
−3 + A5Y

−5 (2)

which requires a single calculation with a QZ basis set† besides the DZ and TZ ones.

The calculated MP2/VQZ energy is shown in Figure 1, together with other results here

reported. One obtains τ̃53 = −1.3483, which is within 1% of the value [3] (−1.3598)

calculated for He@C20. Using the latter would overestimate the total CBS extrapolated

correlation energy of 6345mEh by less than 7mEh (0.1%). As usual [6], τ̃53 will be

assumed invariant over the full interaction potential.

3 Results and discussion

The calculations reported in this work are for He@C36 in the singlet ground state as

MP2 calculations [12] have shown this state to be most stable for the D6h isomer of

C36 here considered. Although such studies [12] have also revealed some multireference

character in the wave function, the results have shown good agreement with single-

reference MP2 ones thus supporting the methodology here utilized. The Molpro suite

of electronic structure programs [13] has been employed for the calculations.

Three representative orientations of the He atom relative to the center of the C36

structure [14] have been first considered, namely along the x, y, and z cartesian axes

(cuts I, II, and III, respectively). Note that the z-axis passes on the center of the

hexagonal face orthogonal to the major axis of C36, while y passes on the center of a

similar face but orthogonal to its minor axis. The cross sections of C36 viewed along

such axes are displayed in the top insert of Figure 1. The calculations have been carried

†This has been carried out on a cluster computer at a computational cost of 247763 s per point.
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using the cc-pVXZ basis set of Dunning [15] with cardinal numbers X =D :2, T :3. As

required by the method, additional HF energies have been calculated with the QZ basis

set. All such calculations have been done in the C2v symmetry point group. To gain a

better understanding of the PES, a further 1463 points have then been calculated with

the DZ basis set for values of R between 4.75 and 20 Å and polar angles 0 ≤ θ/deg ≤ 90

(colatitude) and 0 ≤ φ/deg ≤ 30. In addition, 361 points were computed for R=5.8 Å

over an entire quadrant, a procedure that has also allowed to check the accuracy at

symmetry related geometries. Because such calculations require C1 symmetry and

hence become too expensive, direct CBS extrapolation has not been attempted. Yet,

as we shall see, such an effort can to a large extent be avoided.

Figure 1 shows the HF and MP2 calculations done for cuts I to III, while a sample

of the raw calculations is presented in Table 1. In turn, Table 2 gathers the calculated

vdW attributes of He@C36. Unlike two noble gases, a weak vdW well due to induction

forces may be expected at the HF level. However, a large fraction of it will likely

be due to BSSE. As shown, the geometry of the minimum in the MP2 curves occurs

innermost for cut II and outermost for cut I, in correspondence with the truncated

ellipsoidal shape of C36. To approximate the interaction by an effective spherically

averaged potential, we may first think of treating C36 as a sphere of radius

Rm =
(

R2
m,x + R2

m,y + R2
m,z

)1/2
/
√

3 (3)

Using the DZ data in Table 2 leads to Rm =5.77 Å. Somewhat surprisingly, this is in

good agreement with the empirical estimate of (5.75±0.023) Å obtained by the popular

combination rule for bond distances which expresses the bond length of AB as half the

sum of the A2 and B2 ones. Specifically, we have used Rm =2.99 Å for He2 ( [10], and

references therein), and Rm =(8.55 ± 0.02) Å for the C36 dimer as predicted from the

Girifalco approach to its potential. For this, one requires the fullerene radius which has
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been estimated by using [2]

an/Å = 3.55 (n/60)1/2 (4)

where n is the number of C atoms. Such a procedure yields Rm = 8.46 Å for the C36

dimer and Rm =5.72 Å for C36 − He. If one uses instead the slightly modified effective

radii formula [3],

an/Å = a0 + β (n/60)1/2 (5)

where a0 =0.07 Å and β=3.48 Å are fitting parameters that were determined by impos-

ing the commonly accepted radius of C60 fullerene [1] (a60 =3.55 Å) and approximately

fitting our predicted [3] van der Waals attributes for the C20 dimer, the results are in

the same order Rm = 8.50 Å and 5.75 Å. Regarding the well depth, a simple average

from cuts I to III gives ǫ = 5.62meV.

Also shown in Table 2 are the leading dispersion coefficients obtained from a fit to

the correlation energies (R≥ 6Å). The anisotropy of the interaction is clearly reflected

on their different values for different cuts. Of course, the results should be viewed with

some caution as polarization functions are mostly lacking on the basis sets that were

utilized to calculate the raw energies. Thus, the error bars reflect only the uncertainty

due to the least-squares fitting procedure.

One-dimensional cuts for R = 5.8 Å, an intermediate value for the range 5.25 ≤

R/Å ≤ 5.90 where the wells occur, are shown in Figure 2. The peak at θ = 25 deg

corresponds to He passing over a side of the top hexagonal face for the z → x path while

slightly below the crest (denoted m) is a saddle point (s′′) for the z → y path. After s′′,

the helium atom flies along a C−C bond as shown by the plateau for 50 ≤ θ/deg ≤ 70

lying slightly above dissociation. Topological arguments suggest two other features:

a maximum m′ close to θ = 70 deg (20 deg latitude), and a saddle point s′′ at about

θ=55 deg. Instead, in the z → x path, the helium atom feels an attraction at a similar
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latitude (∼ 55 deg) when lying over the pentagonal face (minimum of p type), passes

over a small maximum (m′′) and ends at a saddle point s slightly higher in energy

than p. Note that hosting He at a pentagonal face is somewhat less stable than the

arrangement with He hosted at the hexagonal face orthogonal to the major axis of

C36. In turn, this is slightly more stable than He@C36 with He hosted at an hexagonal

face toward the minor axis (h′). As for the equatorial motion x → y, the path shows

only small oscillations in energy, with equivalent minima occurring when He seats over

contiguous up-oriented hexagonal faces of the host C36 molecule (h′ minima). Of course,

there will be groups of six equivalent stationary points dictated by symmetry reasons.

For example, we may predict 6 maxima m and 6 saddle points s′′ in the north pole with

another set of 6 of each at the south pole. Due to its cost, no numerical characterization

has been done of the above stationary points by analyzing the Hessian matrix. However,

Figure 3 may help on assigning their nature by showing a 2D (θ, φ) map of the potential

energy globe (PEG) for the interaction at a fixed radius of R=5.8 Å.

As the PEG shows, there is no way of going from the relatively stable but rather

flat equatorial minima [see the (θ = 90deg, φ) cut in Figure 2] to the polar minima

without crossing the hills at a latitude of 30 deg or so as long as the radial coordinate

is kept frozen at 5.8 Å. However, this will not be the case if R is allowed to relax such

that He@C36 attains its minimum energy at each point (θ, φ). In this case, the energy

landscape gets flatter with some of the above stationary points eventually ceasing to

have the above characteristics. Most persist though, in particular the minima h, h′

and p and the interconnecting saddle points. As shown, the stability ordering for

hosting the He atom is predicted to be h > h′ > p. Such an order remains upon

CBS extrapolation. The PEG maps highlight also the symmetry and anisotropy of the

interaction. Note that the He atom can circumnavigate C36 without dissociating, as
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shown by the minimum energy path for the equator-to-pole motion in Figure 4.

Regarding CBS extrapolation, Figure 1 shows that it enhances the minima, which

arise at increasingly shorter distances with basis set size. This may be rationalized as

due to the fast convergence of the HF energy, although the few expensive calculations

done for cut III suggest that the interaction MP2 energies are also well converged for

X =Q. Indeed, using HF/VQZ rather than CBS/HF/VXZ energies would yield similar

total energies, thus making the CBS extrapolation of the correlation energy the most

important step in our method. Although the relative positioning of the minima in

cuts II and III is maintained within a meV on the raw and CBS extrapolated PESs

(as one would expect from the energy shifts in the well depth of 3.06 and 2.94meV

shown in Table 2 when passing from the DZ to TZ basis sets), such a deepening is less

accentuated for cut I. More specifically, the CBS extrapolated minima in cuts II and III

are shifted down on average by 4.5meV (7.46meV) with respect to the raw TZ (DZ)

ones, while the corresponding shifts for cut I are 2.29 and 4.24meV.

Another interesting result refers to well depth extracted from He2 and the Girifalco

1D curve for the dimer of C36, which falls between the values for cuts I and III. If

Eq. (3) were utilized, one would obtain for the spherically averaged CBS curve the value

of Rm =5.56 Å, which is shorter by 0.20 Å (3.5%) than the empirical value. Similarly,

the above procedure would give for the well depth the value of ǫ = 12.06meV. Note,

however, that the parameters of the C − C pair-potentials and the fullerene dimer [1]

were optimized by matching lattice sums to solid-state data for lattice spacing and

heat of sublimation, and hence may resemble more an adiabatic than a spherically

averaged 1D curve. In fact, as already noted, the He atom can circumnavigate C36

adiabatically without dissociating. This is due to the disparity of masses (C36 is 108-

144 times heavier than He), since by the Born-Oppenheimer (BO) approximation the
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He atom will quickly adjust its position to feel maximum stability. Thus, the attributes

of the effective 1D curve will be obtained under two schemes. First, by evaluating the

spherically averaged potential as

V (R) =

∫

V (R, θ, φ) sin(θ)dθdφ/4π (6)

with the integration over the sphere for every R done with good accuracy by the

trapezoidal rule. The results are satisfactorily described up to moderately repulsive

energies (60meV or so) by the effective Lennard-Jones form

V (R) = ǫ
[

(Rm/R)2m − 2 (Rm/R)m
]

(7)

where ǫ=3.26meV, Rm =6.14 Å, and m=10.38 are the optimum parameters obtained

from a least-squares fit to the calculated MP2/VDZ spherically averaged results for

4.75 ≤ R/Å ≤ 8.0. The second procedure to define the parameters of the effective 1D

curve consists of evaluating the well depth and position as adiabatic averages along the

equator-to-pole minimum energy path, which leads to ǫ = 4.70meV at Rm = 6.03 Å.

To the above two DZ estimates, one must then add 7.46meV (the average difference

in cuts II and III from Table 2) or 6.38meV (average difference for cuts I to III) and,

similarly, subtract (0.24 ± 0.03) Å to Rm. This gives a conservative CBS extrapolated

result of ǫ = (10.9 ± 1.3)meV at Rm = (5.83 ± 0.04) Å. Finally, one must account for

the lack of diffuse functions in the VXZ basis set. From the work [3] on He@C20, a

ratio of 0.80 has been found between the CBS well depths estimated with the VXZ

basis set and the doubly diffused AVXZ one. This translates into the final estimate of

ǫ = (13.6 ± 1.3)meV. The associated Lennard-Jones curve in Eq. (7), once ǫ and Rm

have been properly scaled to match such a final set of vdW parameters, is shown by

the dash-dot gray line in Figure 1.

Despite being anisotropic, the BO approximation seems to support the dynamical
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treatment of the He · · ·C36 interaction as if it were governed by an effective 1D poten-

tial, i.e., like a pseudo-diatomic molecule. Thus, we have performed vibrational calcu-

lations using the above LJ curve by treating C36 as a pseudo-atom of mass 432 a.m.u..

Such a procedure predicts three bound vibrational levels (v=0, 1, 2), with energies of 35,

83 and 105 cm−1 above the minimum. Unfortunately, to our knowledge, no data is avail-

able for comparison. Using now the vdW attributes of He@C36 jointly with those [10]

of He2, one obtains for the C36 dimer ǫ=(195± 39)meV at Rm =(8.66± 0.1) Å, which

compare with the empirical values [2] of ǫ=188meV at Rm =8.46 Å (or ǫ=185meV at

Rm =8.50 Å from our protocol [3]). The agreement is striking as the BO approximation

suggests that such effective 1D potential should lie close to the adiabatic curve.

To validate the MP2 results, limited calculations have been done for cuts I to III

using coupled cluster singles and doubles (CCSD) theory (the gold standard of quantum

chemists) with the VDZ basis. The calculations give a T1-diagnostic [18] of ∼ 0.014

suggesting that a CCSD(T) calculation would give results close to the full CI limit.

Unfortunately, because all calculations here reported had to be performed integral

direct to avoid the bottleneck of storing large quantities of data on disk, no perturbative

triple excitations (T) could be included. The predicted stability ordering and location

of the minima are similar to those observed at MP2 level of theory. For example, the

calculated CCSD well depth for cut III is ǫ=6.04meV, thus slightly shallower than the

MP2 prediction. Similarly, for cut I (II), the CCSD interaction energy at R=5.875 Å

(R = 6.125 Å) lies 1.04meV (0.91meV) above the corresponding MP2 result, and we

see no reason of principle why a similar trend should not be observed elsewhere. If the

difference between the CBS/MP2 extrapolated estimates and the MP2/VDZ value is

then added to the CCSD/VDZ result, one obtains a CBS extrapolated well depth for

the effective 1D curve only slightly smaller than obtained by MP2 theory but essentially
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within the error margins reported above. In fact, inclusion of triple excitations as in

CCSD(T) may enhance the agreement.

A final remark on CPU times. As already noted, the GUSTE method required only

MP2 calculations with DZ and TZ basis sets, with QZ calculations also needed for

CBS extrapolating the HF energy. Typical costs (all times refer to an Intel Quad core

2.4 MHz processor) for the HF calculations carried out in C2v symmetry at a point of

cut III are: 1667 (DZ); 19152 (TZ); 191764 s (QZ). For the MP2 ones, the corresponding

times are: 725 (DZ); 32806 s (TZ). They are roughly an order of magnitude larger in

C1 symmetry. Such HF timings fit a N3 law in the number of basis functions (or

X9), while MP2 is expected [8] to obey N5 (or X15); CCSD is a N6 theory. Since

CBS extrapolation bears no additional cost, the expensive part will then be the TZ

correlation calculations. Thus, our CBS/MP2 scheme is predictive and can be cost-

competitive with KS-DFT theory. This is significant since DFT has major problems [8]

with vdW interactions unless embedding empirical information [19].

4 Concluding remarks

By using the present methodology, we hope to perform accurate and predictive quan-

tum chemistry via solution of the electronic Schrödinger equation with conventional

ab initio methods. With multi-reference wave functions, the approach [20] ‡ can yield

accurate potentials for use in reaction dynamics. If single-reference (MP2 or CCSD)

theories are used, systems like He@C20 [3] and He@C36 here discussed can also be

handled at costs competitive with KS-DFT. It will then be interesting to see if other

interactions of relevance in biochemistry and nano-sciences can be treated similarly

(see also Ref. [21]). Clearly, advances made toward more efficient MP2 methods [13,22]

‡Note that the offset parameter α in Eq. (1) appears with a positive sign in Ref. 20. Such a misprint
has no implications on the results there reported.
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and other levels of theory, as well as the joint use of density fitting [23] approximations

and CBS extrapolation, provide other worth exploring avenues. The above is a major

motivation of our work.
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Table 1: Sample raw HF/VXZ and MP2/VXZ calculationsa) of the interaction potential between He and C36 in hartree.

HFb) MP2c)

Cut Rd) X = De) X = T f) X = Qg) X = Dh) X = T i)

I 5.0 −0.474509 −0.753230 −0.832550 −0.308529 −1.510562
5.25 −0.476621 −0.755449 −0.834756 −0.310099 −1.512097
5.5 −0.477531 −0.756439 −0.835750 −0.310686 −1.512646
6.0 −0.478037 −0.757062 −0.836390 −0.310911 −1.512819
7.0 −0.478063 −0.757181 −0.836531 −0.310823 −1.512700

II 5.0 −0.476883 −0.755495 −0.834727 −0.310625 −1.512660
5.25 −0.477645 −0.756400 −0.835644 −0.310099 −1.512934
5.5 −0.477966 −0.756846 −0.836106 −0.311017 −1.512967
6.0 −0.478091 −0.757148 −0.836452 −0.310937 −1.512857
7.0 −0.478061 −0.757183 −0.836531 −0.310820 −1.512696

III 5.0 −0.474761 −0.753335 −0.834727 −0.309013 −1.511132
5.25 −0.476720 −0.755445 −0.834761 −0.310393 −1.512457
5.5 −0.477596 −0.756425 −0.835738 −0.310899 −1.512915
6.0 −0.478093 −0.757060 −0.836388 −0.311039 −1.512964
7.0 −0.478069 −0.757184 −0.836532 −0.310841 −1.512738

a)Carried out in Cs symmetry. b)Calculated energies once added a value of 1365 Eh..
c)Calculated energies once added a value of 1370 Eh..

d)In angstrom. e)Energy at the asymptote (250 Å) = −1365.478060 Eh.
f)Energy at the asymptote (250 Å) = −1365.757175 Eh.

g)Energy

at the asymptote (250 Å) = −1365.836530 Eh.
h)Energy at the asymptote (250 Å) = −1370.310785 Eh.

i)Energy at the asymptote

(250 Å) = −1371.512630 Eh.
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Table 2: vdW attributesa) (geometry and well depth) and leading dispersion coefficients of He@C36.

Rm ǫ C
b)
6 C

b)
8

Cut X Å meV meV Å−6 meV Å−8

I D 6.00 3.40 44±3 3169±149
T 5.92 5.35 19±0.1 9721±5

CBS 5.79 7.64 27±3 12630±174
II D 5.52 6.29 31±5 3711±209

T 5.44 9.35 82±0.1 5705±4
CBS 5.25 13.36 121±2 6670±99

III D 5.85 7.35 28±9 6572±552
T 5.75 10.20 64±5 12568±264

CBS 5.62 15.18 152±15 13245±933

a)From a fit to a realistic form [16]. b)From a fit of Ecor(R ≥ 6 Å) to −
∑

n=6,8 Cnχn(R/ρ)R−n, where χn(R/ρ) are damping functions [16]

with the reference distance used to define the reduced coordinate taken as ρ=5.5 Å. All values are multiplied by 10−3.
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Figure 1: Raw (in black) and CBS extrapolated (thick curves in gray) energies for the

interaction between He and C36: HF (open circles); MP2 (solid dots). For a given line

style, points refer downwards to X =D, T , and Q (pentagon). Also indicated are the

empirical (diamond) and corrected CBS (xyerrorbar) estimates, LJ curve (dash-dot,

gray), and cross sections of C36 in cuts I to III; see the text. The insert highlights the

HF curves.

Figure 2: Raw HF/VDZ and MP2/VDZ energies for the He atom moving along a

meridian in the zx and zy (angle=θ) planes or equatorially (angle=φ) on the xy plane

keeping the distance to the center of fullerene fixed at R=5.8 Å.

Figure 3: PEG for the interaction between C36 and He with R=6.0 Å. Negative energies

in solid and positive in dashed, with first contour at the pole starting at −7.03meV,

and the lowest at equator being −5.03meV, all spaced by 1meV.

Figure 4: Relaxed PEG for hexoedral He@C36 with the minimum energy path in dash-

dot. Key as in Fig. 3, with contours equally spaced by 0.31meV, and lowest contour

at equator being −6.13meV.
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Figure 1, Varandas, Chem. Phys. Lett.
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Figure 2, Varandas, Chem. Phys. Lett.
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Figure 3, Varandas, Chem. Phys. Lett.
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Figure 4, Varandas, Chem. Phys. Lett.
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The potential energy surface of exohedral He@C36 has been accurate calcu-
lated by ab initio methods.

1
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