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Abstract

The exact calculation of all-terminal reliability is not feasible in large

networks. Hence estimation techniques and lower and upper bounds for

all-terminal reliability have been utilized. Here, we propose using an or-

dered subset of the mincuts and an ordered subset of the minpaths to

calculate an all-terminal reliability upper and lower bound, respectively.

The advantage of the proposed new approach results from the fact that

it does not require the enumeration of all mincuts or all minpaths as re-
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quired by other bounds. The proposed algorithm uses maximally disjoint

minpaths, prior to their sequential generation, and also uses a binary de-

cision diagram for the calculation of their union probability. The numer-

ical results show that the proposed approach is computationally feasible,

reasonably accurate and much faster than the previous version of the al-

gorithm. This allows one to obtain tight bounds when it not possible to

enumerate all mincuts or all minpaths as revealed by extensive tests on

real-world networks.

Keywords: all-terminal network reliability; network availability; binary deci-

sion diagram (BDD); sum of disjoint products; bounds computation.

1 Introduction

Nowadays communication networks are ubiquitous in our daily life, being one of

the critical infrastructures that our society depends on. This leads to concerns

about the reliability and resilience of communication when subjected to failures

and attacks [42]. A communication network failure is defined as an event where

it is not possible to deliver communication services [42]. A network failure

can typically occur due to cable cuts, natural disasters and physical/electronic

attacks. Due to the importance of communication networks in today’s society

there is an interest in knowing the network resilience to a potential failure.

According to [1], reliability is the “probability that an item will perform a

required function under stated conditions for a given time interval”. Thence

the ability of a network to execute a desired network operation is related to

network reliability [11].

In [41] a systematic architectural framework that unifies resilience disci-

plines, strategies, principles and analysis is presented. The ResiliNets strategy,

according to the authors, leads to a set of design principles which can steer the

analysis and design of resilient networks.

In communication networks, edges may fail, and are either in an operational

or failed state. The problem of finding the probability that k specific vertices

remain connected is termed, for k=2, the two-terminal reliability problem; when

k is equal to the number of vertices in the network, the problem is designated

as the all-terminal reliability problem. In the two-terminal reliability problem

the main objective is the calculation of the probability of communication be-

tween two vertices, i.e., two vertices communicate if there exists at least one

operational path that connects the two vertices. For the all-terminal reliability
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problem the main objective is to calculate the probability of communication be-

tween all vertices in the network. These are well-known NP-hard combinatorial

problems [5, 33].

Recently, new networked application domains have emerged that need mis-

sion critical communication networks with high all-terminal availability require-

ments. In particular, our work was motivated by the need to calculate the

all-terminal availability for a potential smart grid communications network [23]

(designated netvkk in Table 2), assumed to be installed in parallel to the Cal-

ifornia Power Grid. The availability of a network (or system) is related to the

fraction of time the network or system is considered to be in its up state. Hence,

if every vertex can communicate with every other vertex the network is consid-

ered to be in its up state. Reliability is a measure of how long the network

is continuously in its up state, performing its intended function (for example

ensuring communication between all its vertices). Furthermore, a network with

a low reliability, because it is unable to ensure the desired continuous up time

duration until a fail state occurs, may have high availability if the fail states are

very short. For historical reasons, we adopt the usual designations in the lit-

erature: two-terminal reliability, k-terminal reliability, all-terminal reliability –

which in fact coincide with the definition of two-terminal availability, k-terminal

availability, all-terminal availability, respectively.

The main contribution of this work is a new algorithm to calculate all-

terminal reliability upper and lower bounds, which uses an ordered subset of

the mincuts to calculate the reliability upper bound and an ordered subset

of minpaths to calculate the reliability lower bound. This algorithm builds

on our earlier work [39], incorporating new heuristics that lead to significant

improvement in the overall performance. Note that the proposed approach

(as the algorithm in [35] for calculating two-terminal reliability bounds) does

not need to enumerate all mincuts or minpaths and generally obtains bounds

with the desired accuracy in a reasonable amount of time. It is important to

stress that for networks with a large number of edges the number of mincuts

is so large (2N−1 − 1, for complete graphs with N vertices) that the time and

memory needed to retrieve all the mincuts are infeasible and so exact calculation

becomes impractical. Similarly the number of trees can grow very fast with the

number of vertices and edges in a graph. For a complete graph the number of

distinct trees with N vertices is NN−2.

This article is organized as follows. In the next section some background

information is presented and related work is reviewed. Then Section 3 starts by
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discussing dynamic upper and lower bounds for all-terminal reliability; in Sub-

section 3.1 a preliminary study, which justifies the improved algorithm proposed

in Subsection 3.2, is presented. Numerical results illustrating the performance

of the algorithm on real-world sample topologies are discussed in Section 4,

followed by the conclusions in Section 5.

2 Background and Related Work

There are several approaches to calculate network reliability as described in

[37]. One of the most popular methods, due to its simplicity, is based on state

space enumeration. Using the pivotal decomposition formula, also known as

link factoring, the problem is iteratively decomposed into two smaller problems

with the main drawback being the possibility of total state space enumeration.

Nevertheless, the computational effort can be reduced by judicious selection

of the edges for factoring [37]. Furthermore, there is the well-known factoring

theorem that leads to an algorithm for the calculation of the network reliability

proposed by Moskowitz [11, 29]. Nonetheless, the algorithm has an exponential

time complexity.

Additional widely used methods for calculating all-terminal reliability focus

either on the minimum pathsets (minpaths) or the minimum cutsets (mincuts)

within a given network. A pathset is defined as a subset of components whose

operation implies system operation [5]. A minpath is a pathset that does not

contain another pathset. A cutset is a set of edges such that if all of them

fail simultaneously, then the system fails. A mincut is a cutset that does not

contain any other cutset [5]. Even if it is possible to enumerate all the minpaths

or mincuts, the all-terminal network reliability usually becomes computational

intractable, due to the fact that it requires the calculation of the probability of a

union of events. Note that the probability of a union of events can be calculated

by decomposing it into a union of disjoint events, i.e., disjoint products, whose

probabilities can then be added.

One of the first algorithms for the calculation of a sum of disjoint products

can be found in [2]. That algorithm significantly reduced the amount of com-

putation required to obtain a disjoint sum, with respect to earlier approaches.

Since then several other algorithms for tackling this problem have been pro-

posed. An alpha-numerical ordering of the state variables, in order to obtain

shorter disjoint sums, is discussed in [24]. The author of [45] claims to have
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obtained a more efficient algorithm by changing the ordering rules of path lists

and of the products in [24]. New forms of arranging the minpaths were also

proposed in [6, 7]. In [19] an efficient algorithm, which inverts the products

of variables instead of inverting single variables as done in previous works, is

presented. An alternative method for calculating the probability of a union of

events can be found in [18], where the proposed method is based on a recur-

sive function which was originally developed for the calculation of the blocking

probability in networks with alternative routing. In [18] the performance of the

new method is compared with [19, 24, 45]. In [4] a new approach is proposed

for pre-processing minpaths, but the authors also acknowledge that there are

cases where the proposed pre-processing will not be able to reduce the number

of disjoint products.

Another approach for the calculation of the probability of a union of events

is the use of the binary decision diagram (BDD) method [9, 10]. The BDD

is a directed acyclic graph with two sink vertices that represent the Boolean

functions 0 and 1. The non-sink vertices are labeled with a Boolean variable ν

and each has two outgoing edges labeled 1 (then) and 0 (else) [9]. The Boolean

operations AND, OR and others can be easily implemented in a BDD and by

transversing the BDD using the then and else vertices it is possible to calculate

the result. The application of BDD trees to the calculation of all-terminal

reliability was proposed in [21]. The authors use a BDD in conjunction with

an edge contraction/deletion procedure to calculate the all-terminal reliability.

The root of the BDD corresponds to the original graph G, and a new level is

added to the BDD when an edge from the graph is contracted/deleted. Finally,

any path from the root of the BDD to a leaf corresponds to a spanning tree

of G.

An alternate approach to determining the all-terminal reliability is using

Monte Carlo simulation which can be very accurate, but at the cost of a high

computational effort [16]. Furthermore, special care must be taken under rare

event scenarios [34]. In fact, the comparison in [15] of four different Monte

Carlo sampling plans for estimating the two-terminal reliability of a network

revealed that the sampling size can be very large, and the performance of the

method depends on the edge probability. The authors of [40] propose the use

of an artificial neural network to estimate the all-terminal network reliability.

They considered two types of networks regarding edge reliability: identical and

variable edge reliability; they conclude that their approach is suitable to be used

in network design due its reasonable computational cost. The same methodol-
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ogy was also used in [3] to calculate the all-terminal reliability of a network

with identical edges reliabilities, improving the results obtained with earlier ap-

proaches. In [20] three estimation techniques, crude Monte Carlo, Permutation

Monte Carlo and Merge Process, were considered and compared with their pro-

posed Cross-Entropy method. By comparing the different strategies the authors

conclude that the Cross-Entropy method is the fastest of all three techniques.

Given the difficulty in determining the exact all-terminal reliability, there has

been considerable work on determining bounds.

The classical approach to calculating upper and lower bounds on the network

reliability is to consider minpaths, while for calculating upper and lower bounds

on the network unreliability mincuts are used [37]. There are two well-known

approaches for the calculation of all-terminal reliability bounds, the Bonfer-

roni bounds [30, 37] and the Esary-Proschan bounds approximation [14]. These

approaches are impractical for the evaluation of real large scale networks due

to the fact that they need to calculate all the minpaths or mincuts which are

in themselves NP-complete problems. Nevertheless, there are algorithms to

approximate the all-terminal reliability of a given network. A bounding approx-

imation algorithm, which uses the probability of failure for a union of events in

minimal cutsets, can be found in [36]. In fact, to reduce the size of the problem,

the authors in [36] use a small portion of the minimal cuts existing in the graph.

Furthermore, the approximation to the probability of the union of events is cal-

culated recursively and the algorithm can calculate upper and lower bounds on

the all-terminal reliability of a given network.

A recent work [47] proposed a greedy factoring process. The bounds are up-

dated by a network factoring procedure, first selecting the edges in the network,

then enumerating all the states of the selected edges and finally evaluating the

all-terminal reliability of the subnetworks associated with the states. A greedy

approach is used for selecting the branches used in the recursively applied factor-

ing process. Six greedy methodologies, all of them using a minimum spanning

tree or a mincut for starting the factoring process, are proposed [47].

A more recent approach [35] computes two-terminal reliability bounds using

a BDD for representing the reliability graph. It starts by considering only dis-

joint mincuts and minpaths, and if the desired bound accuracy is not achieved

then it proceeds to an exhaustive search of mincuts and minpaths. The au-

thors [35] also developed a new heuristic that selects only the most important

minpaths or mincuts for reducing the gap between the upper and lower reliabil-

ity bounds, in an iterative procedure. More details on this work are given in the
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next section, as this work inspired some of the improvements in our algorithm

originally presented in [39]. In [46] the authors seek to determine if a given

network reaches a certain level of all-terminal reliability. Instead of calculating

the all-terminal reliability the algorithm ends as soon as it can confirm if the

required level can be reached (feasible solution) or is unattainable (infeasible

solution). Their approach is based on network decomposition. The algorithm

iteratively reduces the gap between the upper and lower reliability bounds, using

a set of subnetworks derived from the original graph.

3 An improved procedure for the calculation of

all-terminal reliability bounds

Consider a communication network, represented by an undirected graph G =

(V,E), where V = {v1, v2, . . . , vN} is the set of vertices and E = {e1, e2, . . . , eM}
is the set of edges. Each edge corresponds to an unordered pair of different

elements belonging to V. We assume a random failure scenario, where vertices

do not fail and edges fail independently. An edge e has a probability pe of

being operational and probability qe = 1 − pe of being in the failed state. Let

A = {pe1 , pe2 , . . . , peM }, where pei is the probability of edge ei being operational

(that is the link availability). The all-terminal reliability R(G) is the probability

the graph G is connected. One approach for calculating all-terminal reliability

[37] focuses on the minpaths within a given network. For all-terminal reliability

a minpath is a spanning tree. Let the minpaths be denoted Pi, i = 1, 2, . . . , r,

where r is the number of spanning trees and let Ei be the event that all edges

in Pi are simultaneously operational.

Then R(G) is given by

R(G) = Pr(E1 ∪ E2 ∪ · · · ∪ Er). (1)

The calculation of a union of events can be obtained as the sum of the probability

of disjoint events:

R(G) = Pr(E1 ∪ E2 ∪ · · · ∪ Er) (2)

= Pr(E1 ∪ Ē1E2 ∪ · · · ∪ Ē1Ē2 · · · Ēr−1Er) (3)

= Pr(E1) + Pr(Ē1E2) + · · ·+ Pr(Ē1Ē2 · · · Ēr−1Er) (4)
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where Ēj represents the complement of event Ej . The disjoint formulation above

can be used to iteratively define a dynamic lower bound for the all-terminal

reliability:

• RL1
(G) = Pr(E1),

• RL2
(G) = RL1

(G) + Pr(Ē1E2),

• · · ·

• RLi(G) = RLi−1(G) + Pr(Ē1Ē2Ē3 · · · Ēi−1Ei).

The network unreliability U(G) = 1− R(G) can be determined using a similar

approach based on mincuts. Let {Ci, i = 1, 2, . . . , s} denote the set of mincuts

where s is the number of mincuts in the network and let Fi be the event that

all edges in Ci are simultaneously in a failed state.

Then U(G) can be found from

U(G) = Pr(F1 ∪ F2 ∪ · · · ∪ Fs). (5)

In a fashion similar to the all-terminal reliability, one can develop a dynamic

lower bound for the network unreliability using the events associated with the

failure of all the edges in each of the mincuts:

• UL1
(G) = Pr(F1),

• UL2
(G) = UL1

(G) + Pr(F̄1F2),

• · · ·

• ULi
(G) = ULi−1

(G) + Pr(F̄1F̄2F̄3 · · · F̄i−1Fi).

This results in a dynamic upper bound for the all-terminal reliability asRUi
(G) =

1− ULi
(G). Thus the bounds on all-terminal reliability are given by

RLi
(G) ≤ R(G) ≤ RUi

(G). (6)

In the bound calculations each new term of order i, (Ē1Ē2Ē3 · · · Ēi−1Ei) or

(F̄1F̄2F̄3 · · · F̄i−1Fi) can be expressed as a sum of disjoint products, by an

iteration (the i-th) of Abraham’s algorithm [2] or any of its improved ver-

sions [19, 24, 25, 45]. It can also be calculated using a BDD [9, 10] by iteratively

adding the mincuts/minpaths (using the Boolean operations AND and OR) and

transversing the tree using the Boolean vertices then and else.
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Regarding the selection of the algorithm for the calculation of the reliability

upper bound, the number of disjoint products and the fraction of added edges

(number of edges added to the BDD divided be the number of edges of the

network) are similar for sequential mincuts and for disjoint mincuts generation;

this happens because the sequentially generated mincuts, albeit not disjoint, do

not tend to share many edges. However, a BDD was not used for the calculation

of the reliability upper bound because it was verified that the number of vertices

of the BDD sometimes grew very fast with just a few additional mincuts. Hence,

we adopted the algorithm KDH88 from [19] which we observed had, in general,

better performance than BDD, especially when the number of relevant mincuts

was relatively small, which was usually the case.

3.1 Heuristic study

In the context of the two-terminal reliability problem Sebastio et al. [35] pro-

posed a set of heuristics which considers only the most important minpaths or

mincuts for the calculation of the upper and lower bounds on the network relia-

bility. One of the main ideas of Sebastio et al. [35] is to iteratively generate the

minpaths (and mincuts) edge disjoint with the ones obtained in previous itera-

tions, and use them to update the probability of the union of events. The main

drawback of their heuristic is that it is an approximation since it ignores the

probability of intersection of two events. If the desired bound accuracy is not

achieved, then the heuristic proceeds to a process where they generate mincuts

or minpaths until a fixed limit is reached or a maximum run time limit occurs.

Their algorithm selectively includes in the BDDs only the mincuts (minpaths)

which a prior calculation showed would contribute significantly to the upper

(lower) reliability bound; the other mincuts (minpaths) are stored in a heap; if

the desired bound accuracy is not achieved then the algorithm iteratively read-

justs the relevance criteria for including a min-cut (minpath) and considers only

candidates from the heap.

In our previous work [39] it was observed that the mincuts, generated in order

of decreasing probability, contribute with decreasing amount to the reliability

upper bound. Also, it was observed that the contribution of each spanning tree,

sequentially generated, by decreasing probability, had a high variability. Hence,

we investigated whether it would be advantageous to first consider disjoint cuts

and trees, before their sequential enumeration in computation of lower and upper

bounds.
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For the generation of the disjoint mincuts an adaptation of the algorithm

proposed by Vazirani and Yannakakis was used [44]. In the algorithm after the

retrieval of a mincut, the cost of the graph edges that correspond to the retrieved

mincut are changed to infinity and the heap is updated. The algorithm stops

when the cost of the mincut is infinity, which signals that no more mincuts,

which are disjoint with the previous ones, are present in the network. In this

approach, if the desired reliability bound is not reached using all the obtained

disjoint mincuts, then the algorithm continues generating mincuts by decreasing

probability and without repeating disjoint mincuts.

Table 1 presents numerical results for thirteen networks illustrating the dif-

ference between the reliability lower bounds obtained using maximally disjoint

trees and sequential trees (RL(max dis)−RL(seq) column) and the difference be-

tween the upper bounds obtained using disjoint mincuts and sequential mincuts

(RU (disj)−RU (seq) column). The number of mincuts considered in Table 1 was

equal to the total number of disjoint mincuts obtained for each network. Sim-

ilarly the number of trees was equal to the total number of maximally disjoint

trees obtained for each network. Regarding maximally disjoint tree generation,

there is a clear advantage with respect to sequential tree generation, as can be

seen by the positive difference in the corresponding reliability lower bounds. On

the other hand, it can be seen that, with the exception of nobel-germany, where

there is a tie, the disjoint mincut generation presents no advantage over the

sequential mincut generation.

The results of using the procedure to upper bound the reliability are further

illustrated in Figure 1 for the newyork and pioro40 networks (see Table 2) from

the SNDlib library [31]. In computing the results of Figure 1, the same number

of mincuts are added using two different approaches: disjoint mincuts (“Dis”

in Figure 1) and sequentially generated mincuts (“Seq” in Figure 1). It is

possible to observe that the two approaches have only a slight difference in the

evolution of the reliability upper bound. Nevertheless, adding the mincuts using

a sequential procedure results in a slightly lower reliability upper bound for the

same number of mincuts. The latter observation can be explained due to the

fact that the sequentially generated mincuts have a higher probability of failure

than the disjoint ones which results in a greater decrease in the reliability upper

bound for the same number of generated mincuts.

Now considering the construction of the dynamic lower bound on the relia-

bility, we note that when the spanning trees are generated by decreasing prob-

ability, they often share a significant number of edges. Although this makes it
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simpler to calculate their union probability, it usually results in a small addi-

tional contribution to the reliability lower bound. Hence using disjoint spanning

trees, the approach equivalent to the disjoint path approach considered in the

work of Sebastio et al. [35], would seem a promising technique. However, due to

the number of edges in each spanning tree (|N |−1), the number of fully disjoint

trees can be very small and in some topologies after generating the first tree,

no second disjoint tree can be calculated. Therefore it was decided to evaluate

the impact of considering maximally disjoint spanning trees, instead of using

sequentially generated spanning trees, by decreasing probability.

To generate maximally disjoint spanning trees an adaption of Prim’s algo-

rithm [12] was used. The adapted algorithm works iteratively by finding the

minimum spanning tree and changing the corresponding edge weights to infinity

in the graph. The algorithm stops when all the edge costs of the found mini-

mum spanning tree are equal to infinity, which corresponds to the exhaustion

of the maximally disjoint spanning trees in the graph – note that the set of

obtained trees strongly depends on the first selected tree. The results for the

two methods of generating the spanning trees are presented in Figure 2 for the

newyork network from SNDlib. It can be observed that using maximally dis-

Table 1: Illustrating the advantage of considering maximally disjoint trees and
sequential cuts.

Network RL(max dis)−RL(seq) RU (dis)−RU (seq)

polska 2.32e-04 3.77e-13

atlanta 6.96e-03 2.75e-08

newyork 1.83e-02 1.82e-13

nobel-germany 1.28e-04 0.0

geant 9.56e-04 6.81e-12

france 6.47e-03 1.40e-08

nobel-eu 8.92e-04 9.74e-12

pioro40 6.47e-02 4.33e-10

germany50 6.67e-04 1.14e-13

netvkk 2.18e-04 5.30e-14

ta2 3.93e-02 3.19e-08

italia 8.59e-04 4.20e-14

india 5.22e-03 3.31e-14
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(a) newyork network
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Fig. 1: Evolution of the upper bound for the reliability RU when the mincuts
are sequentially generated (Seq) and when the mincuts are disjointly generated
(Dis) for the pioro40 and newyork network.

joint spanning trees results in a significant improvement in the calculation of

the reliability lower bound, since for the same number of spanning trees a higher

value for the lower bound is achieved earlier.

Note that in the results shown in Figure 2, the first three maximally disjoint

trees are in fact fully disjoint while the fourth tree (in the line with the label
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 1
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Spanning tree number

Seq
Max Dis

Fig. 2: Evolution of the reliability lower bound RL when the added spanning
trees are maximally disjoint with previously selected trees (Max Dis) and when
the added spanning trees are sequentially generated by the order of their de-
creasing reliability (Seq) for the newyork network.

Max Dis) shares edges with the previously obtained trees. The improvement

of the reliability lower bound when using maximally disjoint spanning trees to

update the probability in the BDD can be explained if one considers the fraction

of edges added and the number of disjoint products in the BDD. For the case

of maximally disjoint spanning trees the fraction of added edges evolves very

rapidly from 0.30 to 1.0 which corresponds to a number of disjoint products in

the BDD from 1 to 4174. In contrast to the sequential case, where the spanning

trees are added by the order of their reliability, the fraction of added edges

increases slowly. This large difference between the number of disjoint products

is the reason for the rapid increase of the reliability lower bound when using

maximally disjoint spanning trees.

Figure 3 presents the evolution of the reliability lower bound (RL) with the

fraction of added edges, when trees are sequentially generated by the order of

their decreasing reliability. It is possible to observe that the RL changes in

steps with the increase of added edges. Moreover, the increase of added edges

is also related to the number of disjoint products in the BDD as can be seen in

Figure 4. It is possible to observe in Figure 4 – note the logarithmic scale of the

y axis – that there is an exponential increase of the number of disjoint products

with the increase of added edges and thus revealing the NP-hard combinatorial
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Fig. 3: Evolution of the reliability lower bound RL with the fraction of added
edges, that is the number of edges added to the BDD divided by the number of
edges of the network, for the newyork network.
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Fig. 4: Evolution of the number of disjoint products in the BDD with the
fraction of added edges for the newyork network, when the spanning trees are
sequentially generated by the order of their decreasing reliability.

nature of the problem.
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3.2 A Novel Bounding Algorithm

Given the result above, we adopt a strategy of constructing bounds where for

the upper bound the mincuts are examined by decreasing order of occurrence

and for the lower bound trees are added in maximally disjoint fashion. Our goal

is to obtain fast converging bounds in a computationally efficient fashion. The

central ideas of the bounding procedure are as follows.

• First maximally disjoint trees are generated. Then spanning trees are

iteratively generated, by order of their decreasing reliability – the min-

paths corresponding to the maximally disjoint spanning trees, already

considered, are ignored. This results in an increasing lower bound for the

all-terminal reliability.

• Generating mincuts iteratively, by decreasing probability, in order to ob-

tain a decreasing upper bound for the all-terminal reliability.

• Evaluating the contribution of a mincut or a minpath to the bounds im-

provement, and keeping only those whose contribution is considered sig-

nificant – similar to what was proposed in [35].

• Taking advantage of the iterative nature of the algorithm for calculating

the sum of disjoint products, in deciding whether to definitely add a new

mincut.

• Taking advantage of the procedure proposed in [35] for deciding whether

to insert a new minpath in a BDD.

These concepts were implemented in the bounding algorithm proposed here,

which is termed Algorithm ATRB-SB. In order to make the description of

ATRB-SB more concise, we define the following auxiliary functions, and algo-

rithms.

• GraphReduction(R, A) which returns the triplet (G′, A′,Ω). This func-

tion makes pendant, series and possibly parallel reductions of the network,

creating a network G′ = (V ′, E′), with corrected edge probabilities of be-

ing operational given in set A′, and where the multiplicative conditioning

factor is Ω : R(G) = ΩR(G′) [38].

• UpperBound(G′, A′, C, R′L, R′U , α) which returns the triplet (C,Ci, R
′
U ),

where C is the set of selected mincuts. If the mincut generated by Up-

perBound in the i-th iteration (Ci) was considered relevant, then C is
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updated (C now contains Ci), and R′U is also updated. The pseudo-code

is given in Algorithm UpperBound.

• LowerBound(G′,A′, B, R′L, R′U , β) which returns the triplet (B,Pi, R
′
L),

where B is the BDD of the selected minpaths. If the minpath (spanning

tree) generated by LowerBound in the i-th iteration (Pi) was considered

relevant, then B is updated (B now contains Pi), and R′L is also updated.

The pseudo-code is given in Algorithm LowerBound.

Algorithm UpperBound Algorithm for possibly updating the all-terminal
reliability Upper Bound, using mincuts and sum of disjoint products.

Require: A connected undirected graph G′ = (V ′, E′), the edge reliabilities

A′, the already generated mincuts C, the current upper and lower bounds,

R′L and R′U , and the α value.

Ensure: Returns the obtained mincut Ci, the possibly updated set of mincuts

C, and the possibly updated reliability upper bound R′U .

1: generate the i-th mincut Ci using an iterative mincut enumeration algorithm

2: calculate ∆U ′Li
, calculating iteratively the sum of disjoint products

3: if ∆U ′Li
> min((1−R′U ), R′L)α then

4: update U ′L and then do R′U ← (1− U ′L)

5: C ← C ∪ {Ci}
6: end if

7: return (C,Ci, R
′
U )

Algorithm ATRB-SB starts with an undirected connected (otherwiseR(G) =

0) graph and in order to reduce the size of the problem function GraphReduc-

tion is called. The network is pruned of all the spurs (or pendants); a series

reduction is also performed to remove all edges incident on vertices of degree

two [38]. This last modification may also result in the need to make parallel

reductions. The reduction procedure is repeated until all network vertices are

at least of degree three. The edge probabilities of being operational are dully

adjusted and a reliability correction factor (Ω in Algorithm ATRB-SB) is also

calculated as explained in [38]. Using this procedure, some networks can be

completely reduced, as in the case of the abilene network [31] where R(G) = Ω,

while in other networks, like pioro40 [31], no reduction is possible and Ω = 1.

It is in the (hopefully) reduced network that the mincuts and spanning trees,

required for the bounds calculations, are determined.
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Algorithm LowerBound Algorithm for possibly updating the all-terminal
reliability Lower Bound, using minpaths and a binary decision diagram.

Require: A connected undirected graph G′ = (V ′, E′), the edge reliabilities A′,

the current binary decision digram B, the current upper and lower bounds,

R′L and R′U , and the β value.

Ensure: Returns the obtained minpath (spanning tree Pi), the possibly up-

dated binary decision diagram B, and the possibly updated reliability lower

bound R′L.

1: generate the i-th minpath Pi, starting by generating maximally disjoint

spanning trees followed by an iterative spanning tree enumeration algorithm

2: calculate ∆R′Li
according to [35]

3: if ∆R′Li
> min((1−R′U ), R′L)β then

4: update R′L, and insert Pi into B

5: end if

6: return (B,Pi, R
′
l)

In order to iteratively obtain the minpaths, by increasing probability, a k

spanning trees enumeration algorithm is used. The probability Pi of a spanning

tree being operational is given by
∏

e∈Pi
pe. Similarly the probability of all the

edges in cutset Ci being simultaneously in a failed state is given by
∏

e∈Ci
(1−pe).

It is well known that these metrics can transformed into additive metrics, using

logarithms. For minpath enumeration we define the cost of edge e, cpe = − log pe,

and for mincut enumeration we define the cost cce = − log(1 − pe). The cost

of the minpath Pi and mincut Ci become cp(Pi) =
∑

e∈Pi
cpe and cc(Ci) =∑

e∈Ci
cce, respectively. Therefore, generating spanning trees and mincuts by

increasing cost corresponds to generating spanning trees in order of decreasing

total probability (of all edges in the spanning tree being operational) and to

generating cuts by decreasing probability (of every edge in the cut being in a

failed state), respectively.

In the final version of the algorithm maximally disjoint spanning trees are

generated first using an adapted version of Prim’s algorithm as explained pre-

viously. After finding all the maximally disjoint spanning trees, the minimum

spanning trees are iterative generated.

In Step 1 of the auxiliary Algorithm UpperBound the mincuts are generated

iteratively by increasing cost (that is by decreasing order of their probability)

using the algorithm proposed by Vazirani and Yannakakis [44]. The algorithm
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Algorithm ATRB-SB Algorithm for All Terminal Reliability Bounds using
spanning trees, mincuts, sum of disjoint products and a binary decision diagram.

Require: A connected undirected graph G = (V,E), the edge reliabilities A,

the width of the interval between the bounds (∆R), CPU time limit cpumax,

the α and β values.

Ensure: Returns the obtained reliability lower and upper bounds: RL and RU .

1: (G′, A′,Ω)←GraphReduction(R, A)

2: U ′L ← 0; R′L ← 0

3: k ← daverage vertex degree of G′e
4: i← 1, cutstop ← 0, treestop ← 0, cpu1 ← 0

5: C ← ∅ (the current set of mincuts)

6: B ← ∅ (the current empty BDD)

7: while ((R′U −R′L) > ∆R/Ω)∧ (cpui < cpumax)∧ (cutstop = 0∨ treestop = 0)

do

8: if cutstop = 0 then

9: (C,Ci, R
′
U )← UpperBound(G′, A′ C, R′U , α)

10: end if

11: if treestop = 0 then

12: (B,Pi, R
′
L)←LowerBound(G′,A′, B, R′L, β)

13: end if

14: if i 6= 1 then

15: if Ci ∩ P1 = k then

16: cutstop ← 1

17: end if

18: if C1 ⊂ Pi ∧ Pi was sequentially generated then

19: treestop ← 1

20: end if

21: end if

22: cpui ← total CPU time at the end of the i-th iteration

23: i← i+ 1

24: end while

25: RL ← ΩR′L
26: RU ← Ω(1− U ′L)

27: return (RL, RU )

18



proposed by Katoh et al. [17, 22] for the iterative generation of spanning trees

by increasing cost (that is by decreasing order of their reliability) was used in

Step 1 of the auxiliary Algorithm LowerBound. The contribution of cut Ci to

the bounds is calculated in Step 2 of Algorithm UpperBound using algorithm

KDH88, proposed in [19]. This algorithm was selected for two reasons: accord-

ing to its author it is more efficient than the algorithms in [2, 6, 24], and in [18]

it was also verified that this algorithm did perform better than [45]. Moreover,

the performance of KDH88 is not strongly dependent on the order of the min-

path/mincut, hence avoiding the need of ordering the i − 1 minpaths/mincuts

before making them disjoint with the i-th minpath/mincut.

The contribution of spanning tree Pi to the bounds is calculated in Step 2 of

Algorithm LowerBound, using a BDD and the algorithm proposed in [35]. As

illustrated in Subsection 3.1 the BDD is very effective for the calculation of the

reliability lower bound when maximally disjoint spanning trees are considered

first.

The purpose of Step 3 in Algorithm UpperBound is to select only the mincuts

which contribute to a significant change in the probability, where α is a constant

with value chosen between 0 and 1. Furthermore, the same procedure is used

for each minpath – see Step 3 of Algorithm LowerBound – where β is a constant

with value chosen between 0 and 1. If the contribution of mincut Ci (∆U ′Li
)

and of minpath Pi (∆R′Li
) for improving the bounds is considered significant,

U ′L and R′U are updated in Step 4 of Algorithm UpperBound and in Step 4 of

of Algorithm LowerBound, respectively. The idea of considering only relevant

minpaths and mincuts was inspired by [35], but presents the following different

characteristics:

• The value of constants α and β are fixed; because the minpaths and min-

cuts are generated sequentially readjustment was not needed.

• The relevance of the contribution of a mincut or of a minpath is not

considered only in relation with RU or RL, respectively, but with the

minimum of 1 − RU and RL. Hence, one selects candidate mincuts and

candidate min-paths which are relevant for closing the reliability gap.

In Step 1 of Algorithm LowerBound the modified Prim algorithm is used to

generate the maximally disjoint spanning trees, as described in Subsection 3.1;

after the generation of all maximally disjoint spanning trees, a k minimum span-

ning tree enumeration algorithm is used. Relative to the algorithm proposed in

19



[39] the ceiling function was used in Step 3 instead of the floor function due to

the fact that this allows one to include some additional mincuts, resulting in

slight improvement of the final results. Therefore, Algorithm ATRB-SB itera-

tively reduces the width of the bounds using the generated mincuts (in Step 9)

and spanning trees (see Step 12) in conjunction with a sum of disjoint products

algorithm and a BDD, respectively.

Algorithm ATRB-SB has several stopping conditions. The first stopping con-

dition holds when the difference between the upper and lower bounds achieves

the desired error ∆R – this should be the main stopping condition of the algo-

rithm. The second stopping condition is satisfied if the CPU time used exceeds

cpumax – in the experiments cpumax = 3600 seconds. The third stopping condi-

tion is of a topological nature. The first part of the third condition is related to

the intersection of the current mincut with the spanning tree with the largest

probability of being operational, that is, the first generated tree – see Step 15

of Algorithm ATRB-SB. If this intersection results in a set with a size equal to

the ceiling function of the average degree k, this implies the following mincuts

will not contribute significantly to diminishing the upper bound due to the fact

that the mincut reliability will be very small. In fact, it was observed that U ′L,

in most cases, did not change significantly after considering the first few cuts.

The second part of the third stopping condition tests if the first mincut, the one

the largest probability, is contained in the current generated spanning tree – see

Step 18 of Algorithm ATRB-SB. If the latter condition is met it implies that

the following spanning trees (namely in networks with varying edge probabil-

ity) will not contribute significantly to increase the lower bound due to the fact

that their contribution to the reliability bound will be very small. In this case

a large number of spanning trees would be required to effectively increase R′L.

Furthermore, during the generation of the maximally disjoint spanning trees the

stopping condition is not tested (treestop is not updated). After generating all

the maximally disjoint spanning trees the stopping condition is tested as shown

in Algorithm ATRB-SB. Note that the stopping conditions, associated with

the variables treestop and cutstop in the algorithm, may result in limiting the

maximum bound quality. In such a case one may choose to disable them.
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4 Results and discussion

In order to evaluate the performance of the proposed algorithm we studied eleven

real-world topologies taken from SNDlib [31], as well as two additional topologies

representing the Italian telecommunications backbone network labeled italia

from [43] and a topology representing a possible communication network for the

California power grid labeled netvkk from [23]. The power grid network layout

was obtained from California Energy Commission maps1 and the communication

network follows the power grid as detailed in [23]. Note that the power grid

communication network needs to be designed to meet the 99.999% availability

recommended by the U.S. Department of Energy (DOE) [13].

For each network topology, the probability that an edge e is operational pe,

which is equivalent to the edge availability ae, was calculated using the following

equation [28]:

ae = 0.99987de/(250×1.6093) (7)

where de is the distance between the two end vertices of edge e in the network

(calculated assuming that the coordinates of the vertices correspond to their

GPS locations). In Eq. (7) the value 1.6093 converts miles to km. Structural

properties of the considered networks are presented in Table 2. Note that the

networks presented in Table 2 were reduced using the procedure proposed by

Shooman [38]. The number of spanning trees was calculated using the deter-

minant of the Kirchhoff matrix, after removing one column and row, using LU

decomposition [8, 32]. It can be seen that even with this reduction the number

of spanning trees in the network can be very large. Table 2 presents the number

of vertices and edges of the reduced networks, the number of spanning trees,

the average availability of the edges and the standard deviation of the edge re-

liabilities (σAv). Note that a wide range of networks was studied from sparse

networks like polska to denser networks like newyork.

The results presented in this section were determined using three different

algorithms:

• The ATRB-SB results correspond to the implementation of Algorithm

ATRB-SB. In Step 12 Algorithm LowerBound is called. In Step 1 of

LowerBound the maximally disjoint spanning trees, starting with the most

probable one, are first generated. If the desired reliability bound is not

reached, this is followed by the iterative generation of spanning trees cre-

1California Energy Commission: http://www.energy.ca.gov
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Table 2: Network topological information for reduced networks.

Network Vertices Edges
Number of

spanning trees

Average

Availability
σAv

polska 10 16 2501 0.999932 3.33E-5

atlanta 7 11 192 0.996398 0.001888

newyork 15 47 6.2391E5 0.996655 0.001336

nobel-germany 7 12 320 0.999942 2.91E-5

geant 10 21 3.8208E4 0.999501 0.000872

france 11 21 3.8909E4 0.997689 0.001448

nobel-eu 16 26 4.72554E5 0.999871 1.0E-5

pioro40 40 89 5.0612E20 0.996896 0.001345

germany50 39 73 9.0786E16 0.999968 1.60E-5

netvkk 14 26 4.8851E5 0.999961 2.54E-5

ta2 36 69 4.3905E15 0.997551 0.001442

italia 31 68 3.8011E15 0.999947 3.58E-5

india 31 75 8.1762E16 0.999660 1.566E-4

ated in order of increasing cost [17, 22] (that is, by decreasing probability).

In Step 9 Algorithm UpperBound is called. In Step 1 of UpperBound the

mincuts are iteratively generated by increasing cost [44]. Only relevant

mincuts and minpaths are considered, according to Steps 3 and 3 of the

auxiliary algorithms UpperBound and LowerBound, respectively. Recall

that the KDH88 algorithm [19] is used in Step 2 of Algorithm UpperBound

and the BDD2 is used in Step 2 of Algorithm LowerBound.

• The ATRB-2SDP implementation corresponds to the algorithm [39] with

the following improvements: only relevant mincuts and minpaths are con-

sidered, resulting in the inclusion of Steps 3 in Algorithm UpperBound

and 3 in Algorithm LowerBound, both used in Algorithm ATRB-SB. The

ceiling function in Step 3 is used instead of the floor function.

• The ATRB-2BDD implementation corresponds to an approach similar

to the one proposed in [35], adapted for the all-terminal reliability problem.

It corresponds to Algorithm ATRB-SB where a BDD is present in both

2The code used for the BDD implementation was retrieved from
http://vlsi.colorado.edu/∼fabio/CUDD/
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Steps 2 and 2 of Algorithms UpperBound and LowerBound, respectively,

for the calculation of bounds. Additionally, in Step 1 of UpperBound

the disjoint mincuts are first generated, using a modified version of the

Vazirani and Yannakakis algorithm [44], and when exhausted they are it-

eratively generated [44]. In Step 1 of Algorithm LowerBound the fully

disjoint spanning trees, starting with the most probable one, are first gen-

erated, and when exhausted they are iteratively generated [17, 22]. As in

ATRB-SB only relevant mincuts and minpaths are considered, according

to Steps 3 of Algorithm UpperBound and 3 of Algorithm LowerBound.

The stopping conditions of the three algorithms are identical to the ones present

in Algorithm ATRB-SB. All numerical results were obtained using a Intel(R)

Core(TM) i7-3770 CPU @ 3.40GHz processor with 16G of RAM. In all the

results α and β were set to 1E-3.

As already mentioned, ATRB-2BDD is the implementation that is strongly

related to the approach proposed by Sebastio et al. [35], taking into account the

required adaptation for all-terminal reliability calculation. However after gen-

erating the disjoint mincuts and minpaths, the sequential generation of mincuts

and minpaths is introduced, instead of some form of random selection. Note

that in [35] the authors discarded using a k-shortest path enumeration algo-

rithm, because they thought it would not allow the examination of each path

as soon as it is found, when this is in fact possible using any of the following

algorithms [26, 27, 48]. Also the conditions for including or excluding a mincut

or a minpath are the ones in Steps 3 and 3 of Algorithms UpperBound and

LowerBound, respectively, which differ (as already explained) from the equiva-

lent condition in [35]. The cutstop and treestop conditions (not present in [35])

are only evaluated after all the disjoint mincuts and minpaths have been gener-

ated.

Figures 5-9 present the results for Algorithm ATRB-SB using the three dif-

ferent implementations. In the figures we used the keys 2SDP, 2BDD and SB

for the algorithms ATRB-2SDP, ATRB-2BDD and ATRB-SB, respectively. In

Figures 5-7 each CPU value corresponds to the average CPU of ten separate

runs; error bars representing the standard deviation of the observed CPU times

are also included, although in most cases they are barely visible. To avoid over

loading the lines in the graphs not every value of ∆R, and corresponding CPU

time, is represented in the graphics. In Figures 5-7 the first point in each line

represents the ∆R value and execution time for the first iteration. The following
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points shown in the graph satisfy the rule: if an iteration with ∆Rj is shown

in the graph, the next iteration k (k > j) to be shown must satisfy the relation

∆Rj/∆Rk ≥ δ. In the figures δ was considered equal to 1.005. The error bars

are mostly barely visible, but can make the graphs difficult to read (filling the

hollow symbols, and artificially extending the lines when they are more visible).

So in the main graph we present the lines without the error bars and in a small

window is presented the relevant part of the graph with the error bars (in most

cases barely visible). As was previously stated the evolution of the bounds is

done by steps (see Figure 3) and so the final ∆R can be smaller than the desired

value.
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Fig. 5: Evolution of the execution time with ∆R, when the target reliability
gap is 1E-6, for the france network.

In the figures it is possible to observe a CPU difference in the first iteration.

This difference results from the cost associated with calling the BDD construc-

tor, once in the case of ATRB-SB and twice in the case of ATRB-2BDD.

For the france network, the results in Figure 5 show that ATRB-2SDP has a

smaller execution time when ∆R is larger but for a more precise result ATRB-

SB has the lowest CPU time. The performance of Algorithm ATRB-SB and

Algorithm ATRB-2BDD becomes similar for ∆R less than 5E-6; after that

point there is only a slight advantage using Algorithm ATRB-SB. It should be

noted that for the three algorithms the value ∆R goes from 2.4E-06 to less than

1E-6 in a single iteration (the last one). This abrupt change in ∆R is visible
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in the graph, where the last points correspond to ∆R =1.85E-07 in the case

of ATRB-SB, and ∆R =2.027E-07 (in the case of the two other algorithms).

The CPU time of the last iteration is too small to be noticeable in the graph.

Figure 6 presents the results for the netvkk network, which were obtained by

setting ∆R equal 1E-10. It is possible to observe that ATRB-SB and ATRB-
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Fig. 6: Evolution of the execution time with ∆R, when the target reliability
gap is 1E-10, for the netvkk network.
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Fig. 7: Evolution of the execution time with ∆R, when the target reliability
gap is 1E-6, for the newyork network.
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2BDD have similar performance (especially for ∆R >1E-8) being the fastest

in achieving the desired accuracy. As in the previous figure, a ∆R less than

1E-10 is abruptly achieved in the last iteration, where ∆R goes from 4.2E-6

to less than 4E-13. Note that many iterations were carried out without visibly

reducing the reliability gap, hence the step like aspect of the final part of the

graph.

In Figure 7, with ∆R = 1E-6, results are presented for the newyork network.

In this case, ATRB-SB and ATRB-2BDD have almost the same performance,

being the implementations with the lower execution time. Note that ATRB-

2SDP does not reach ∆R = 1E-6 within the allowed maximum CPU time of

3600 seconds. As in the previous two figures, the final iteration results in an

abrupt change in ∆R.

The results presented in Figures 5-7 are for relatively small networks. Nev-

ertheless, they demonstrate that ATRB-SB and ATRB-2BDD are the im-

plementations with best performance.

Figure 8 shows the results for larger networks when the target ∆R is set to

1E-5. It is possible to observe in Figure 8 that the desired error was not achieved

in some networks. In the case of the india35 network, Algorithm ATRB-SB

stopped with ∆R = 9.98E-6, overcoming the desired target of 1E-5, in less

than 4 minutes. However the ATRB-2BDD and ATRB-2SDP algorithms

stopped because of the treestop and cutstop stopping conditions, ending with

with ∆R close to 1E-3. In this case the stopping conditions prevented these two

algorithms from improving their solution.

For the other four networks the maximum allowed execution time of 3600

seconds was reached by both the ATRB-2BDD and ATRB-2SDP algorithms.

However, it should be pointed out that in the case of the pioro40 network the

execution time of ATRB-2BDD was on average 6345 seconds, due to the fact

that it took on average 3600 seconds to complete the last iteration, and the CPU

time limit is only verified per iteration. The results of Figure 8 demonstrate

that ATRB-SB is the algorithm with the best performance for the networks

under study. This can be explained by the use of the maximally disjoint trees

in conjunction with the BDD for the calculation of the reliability lower bound

and with the use of KDH88 for the calculation of the reliability upper bound.

The performance of the different versions can be analyzed further. Figure 9

presents the execution time versus the iteration number for the three methods

when using a ∆R equal to 1E-6 in the france network. Each point is the average

value of ten runs and error bars show the standard deviation of the CPU times.
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Fig. 8: Difference between the upper and lower reliability bounds for selected
networks, with |E| > 60, when the target (∆R) is set to 1E-5.

In Figure 9, for readability of the results, not every iteration is represented. In

this case, after representing the initial 20 iterations, a point is marked for the

25-th iteration and from that point onwards, 25 iterations separate each point

in the graphic. The results in Figure 9 demonstrate that the initial time for
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Fig. 9: Execution time after each iteration for the france network, when the
target reliability gap is equal to 1E-6.
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Table 3: Bounds for several networks with network reduction using Algorithm
ATRB-SB, with ∆R =1E-6.

Network RL RU Time(s) σt(s)

polska 0.999999970 0.999999992 0.0548 0.0135

atlanta 0.999953259 0.999953409 0.0431 1.2E-4

newyork 0.999987480 0.999988007 36.339 0.045

nobel-germany 0.999999922 0.999999992 0.0273 1.5E-4

geant 0.999994046 0.999994692 0.0533 3.2E-4

france 0.999925386 0.999925572 0.1454 9.0E-4

nobel-eu 0.999998857 0.999999529 0.132 0.011

pioro40 0.999003391 0.999999998 3600.64 0.25

germany50 0.999999747 0.999999989 28.630 0.044

netvkk 0.999359484 0.999359542 0.0859 2.9E-3

ta2 0.998359248 0.998604593 3600.12 0.08

italia 0.999999686 0.999999993 0.9176 3.6E-3

india35 0.999992969 0.999999817 1918.34 0.98

methods ATRB-2BDD and ATRB-SB is larger than the time for ATRB-

2SDP. This is related to the CPU time required by the BDD constructor, as

already mentioned. Nevertheless, it is possible to observe for the three methods a

rapid increase of the execution time in the first steps. The stopping condition for

updating the reliability upper bound is achieved quite early (visible as the knee

of the lines in Figure 9). After that point the algorithms only continue updating

the reliability lower bound, which is related to the sequential generation of the

spanning trees. Hence, one can verify that the execution time presents a lower

slope when using the BDD (ATRB-2BDD and ATRB-SB) instead of KDH88

(ATRB-2SDP) for updating the reliability lower bound.

The results for the bounds calculated using Algorithm ATRB-SB, corre-

sponding to the ATRB-SB implementation, presented in Subsection 3.2, using

network reduction, and considering ∆R =1E-6, can be seen in Table 3. Please

note that in columns RL and RU are the rounded down and rounded up values

(to 9 digits) of the obtained lower and upper bounds, respectively. This table

also contains the average execution time in seconds and the corresponding stan-

dard deviation (σt), considering 10 executions of the algorithm, for obtaining

the presented upper and lower bounds. In Table 3 it is possible to observe that
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for larger networks like germany50 and newyork there is a substantial reduction

in the execution time when compared with the previous version of the Algorithm

ATRB-SB in [39]. In the case of the india35 network, Algorithm ATRB-SB

stops with ∆R equal to 6.846E-6 due to the treestop and cutstop conditions af-

ter 1918 seconds. The execution time of ATRB-SB for the germany50 and

italia networks is less than 30 seconds (when ∆R =1E-6), where for the same

networks the other implementations take 3600 seconds for a larger ∆R (1E-5),

as presented in Figure 8.

It is also possible to observe in Table 3 that for the pioro40 and ta2 networks,

the desired error was not achieved given a maximum execution time of 3600

seconds. In fact, it can be seen in Table 3 that the proposed algorithm calculates

the bounds for networks pioro40, germany50, ta2 and italia which can not be

calculated using the method described by Nelson [30] to compute the Bonferroni

bounds as was demonstrated in [39] (for pioro40, germany50, and ta2). Note

that although in the ta2 network the required error (1E-6) was not achieved, the

obtained bounds show that the network reliability for this network has only two

nines (it is larger than 99% but smaller than 99.9%). The precision achieved by

the proposed algorithm is adequate for the all-terminal reliability problem with

the exception of the pioro40 network. As expected, in the case of netvkk, the all-

terminal availability (see Table 3) even if a perfectly available communication

network is assumed within every sub-station, only achieves three nines quite

below the required 99.999% reliability [13].

5 Conclusions

A new improved algorithm for computing all-terminal reliability bounds was

proposed, suitable for networks where the use of the Bonferroni or the Esary-

Proschan bounds is infeasible.

The advantages of using a set of procedures to decrease reliability bounds

computational time was illustrated. Mainly the use of maximally disjoint span-

ning trees, followed by the sequential generation of the minimum spanning trees,

was shown to improve the calculation of the reliability lower bound. It was also

demonstrated that the conjunction of the BDD with the sum of disjoint products

decreases the reliability bounds computational time.

The performance of the new algorithm ATRB-SB was compared with

ATRB-2SDP, an improved version of the algorithm in [39], and it was shown
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that ATRB-SB can calculate bounds with higher precision and with lower

computational time for transport networks than ATRB-2SDP. Additionally,

ATRB-SB was compared with ATRB-2BDD (an algorithm closely related

to the approach proposed in [35]) and it was seen that considering maximally

disjoint spanning trees is more effective than just fully disjoint trees, and that

using KDH88 for calculating the union probability for the mincuts is a good

alternative to the BDD.

In conclusion, the results show the proposed approach is computationally

feasible and reasonably accurate. Hence the corresponding algorithm allows

one to obtain bounds when it is not possible to enumerate all mincuts or all

minpaths.
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