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set of paths of min-sum cost
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Abstract A Shared Risk Link Group (SRLG) is a set of links which share a common risk
of failure. Routing protocols in Generalized MultiProtocol Label Switching (GMPLS), us-
ing distributed SRLG information, can calculate paths avoiding certain SRLGs. For sin-
gle SRLG failure an end-to-end SRLG-disjoint path pair can be calculated, but to ensure
connection in the event of multiple SRLG failures a set with more than two end-to-end
SRLG-disjoint paths should be used. Two heuristic, the Conflicting SRLG-Exclusion Min
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Sum (CoSE-MS) and the Iterative Modified Suurballes’s Heuristic (IMSH), for calculating
node and SRLG-disjoint path pairs, which use the Modified Suurballes’s Heuristic (MSH),
are reviewed and new versions (CoSE-MScd and IMSHd) are proposed, which may im-
prove the number of obtained optimal solutions. Moreover two new heuristics are proposed:
kCoSE-MScd and kIMSHd, to calculate a set of k node and SRLG-disjoint paths, seeking
to minimize its total cost. To the best of our knowledge these heuristics are a first proposal
for seeking a set of k (k > 2) node and SRLG-disjoint paths of minimal additive cost. The
performance of the proposed heuristics is evaluated using a real network structure, where
SRLGs were randomly defined. The number of solutions found, the percentage of optimal
solutions and the relative error of the sub-optimal solutions are presented. Also the CPU
time for solving the problem in a Path Computation Element (PCE) is reported.

Keywords diverse routing · SRLG-disjoint · node-disjoint · min-sum

1 Introduction

Nowadays, due to the very high bandwidth provided by optical networks, the volume of
traffic carried in these networks is extremely large. As such, a failure even during a short
period of time can leave a very large number of users without service. This can represent a
loss of revenue and reputation for the service provider. Hence not only are networks built
with automatic recovery schemes but there is also a trend for investing in technologies that
may enable the networks recovering from faults before they are perceived by the users.

Restoration is a type of recovery scheme to be used when the affected services can toler-
ate Quality of Service (QoS) degradation (such as increased delay or even packet loss) due
to the network recovery mechanism. With restoration no backup bandwidth is pre-reserved,
and the recovery path (or paths) are only computed and signaled after fault detection. Protec-
tion is the preferred recovery solution whenever faults, in certain network elements, should
not be perceived by the supported service. In this case an active path (AP), the path that
carries traffic under normal conditions, is established and signaled simultaneously with the
backup path (BP), which carries traffic when some failure affects the AP.

Recovery can be global, when an end-to-end disjoint BP is calculated; or local if the
node closest to the point where the fault occurred, is responsible for the AP recovery [1].
There is also the possibility of dividing a path in segments (that may partially overlap) and
ensure locally the protection of each of those segments [2,3].

A useful concept in network protection is the concept of Shared Risk Link Group
(SRLG). An SRLG is a set of links sharing some physical resource (cable, conduit, node,
etc.) the failure of which results in the failure of all links of the group [4,5,6]. Note that a link
may be affected by different risks, and as such may belong to different SRLGs. An SRLG is
a general concept that also allows to capture geographically correlated faults, which may re-
sult from the links being located in the same seismic or flooding area. The routing protocols
in Generalized MultiProtocol Label Switching (GMPLS) networks support distribution of
information regarding the SRLG network [6]. The Internet Engineering Task Force (IETF)
is working towards a standard for the Resource ReserVation Protocol-Traffic Engineering
(RSVP-TE) [7,8] to support automatic collection of SRLG information [9] for the traffic
engineering (TE) link1 formed by a Label Switched Path (LSP).

1 As defined in [10] “A TE link is a “logical” link that has TE properties. The link is logical in a sense
that it represents a way to group/map the information about certain physical resources (and their properties)
into the information that is used by Constrained SPF for the purpose of path computation, and by GMPLS
signaling.”.
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A Path Computation Element (PCE) [11] is a computational unit (in a MPLS or GMPLS
network) that calculates a path at the request of a Path Computation Client (PCC). A PCE is
a network element that determines one or multiple paths in the network domain to which it
belongs. To determine a path, a PCE must resort to the Traffic Engineering Database (TED)
containing information on the network status. The route calculation can be performed in a
centralized or distributed approach [11]. For distributed approaches, in [12] the advantages
of pre-reservation mechanisms, when resource status in the network elements differ from
the information in the TED, are discussed. A centralized PCE usually has higher processing
capabilities, and its response time can be on the order of seconds since the system responds
to requests from network management and not directly to changing network conditions.
However, if the PCE in question is located “on router” – as it can happen in a distributed
model – the calculation power and memory resources available to the PCE are limited, but
at the same time it should be able to provide a rapid response. For end-to-end protection in
GMPLS networks considering SRLG information the PCE must be capable of calculating
SRLG-disjoint path pairs, in a single failure scenario, or a set of k SRLG-disjoint paths in
a k− 1 failures scenario. This shows the importance of developing efficient algorithms for
determining SRLG-disjoint paths.

The calculation of a pair of paths disjoint in the arcs (in the nodes) with minimum addi-
tive cost, can be used to minimize the cost of resources used in dedicated global protection.
This problem, called min-sum, is solved in polynomial time by using the algorithms of Su-
urballe [13] or Bhandari [14]. When the goal is to share backup bandwidth, the considered
problem formulation is usually the min-min problem, where one seeks to determine the min-
imal cost Active Path (AP) for which a Backup Path (BP) can be obtained. This problem is
NP-complete [15]. If the total used bandwidth should be minimized the problem is rather
difficult to solve, because the amount of backup bandwidth used by a BP depends on the se-
lected AP [16]. In the context of sharing bandwidth methods, the use of network resources
by the AP can be considered more important than for the BP. This can lead to min-sum prob-
lems with asymmetric weights, wherein the AP cost is considered ω times more important
than the cost of BP [17]. This problem is also NP-complete [15]. In [18] an algorithm, des-
ignated as α + 1 protection, is proposed for a partial bandwidth protection scheme, where
α is the ratio of the protection bandwidth (of the backup path) to the full bandwidth (of
active path). A closely related problem is the min-sum problem in a dual-cost network, that
is a network where every edge has two costs with an arbitrary relationship, which is also
NP-Complete [19]. In [20] an exact algorithm for solving this problem was proposed, and
in [21] a new approach for finding k-disjoint paths with differentiated path cost is presented.

If SRLG information is available, more realistic resilient routing models can be con-
sidered where the min-sum and min-min problems are formulated by considering that the
paths must be SRLG-disjoint. In this case, the min-sum problem becomes NP-complete [22].
Hence, various heuristics have been proposed for their resolution, some of which are re-
viewed in section 2. The determination of a set of k SRLG-disjoint paths was considered
in [23], where the minimization of the cost of the resulting set was not an objective.

In this work we develop two heuristics for calculating a set of k node and SRLG-disjoint
paths, seeking to minimize its total cost. To the best of our knowledge these heuristics are a
first proposal for seeking a set of k (k > 2) node and SRLG-disjoint paths of minimal additive
cost. The performance of the proposed heuristics is evaluated using a real network structure,
where SRLGs were randomly defined. The number of solutions found, the percentage of
optimal solutions and the relative error of the sub-optimal solutions, are presented. The CPU
time for solving the problem in a specific type of PCEs, is also reported. Results will show
that the proposed heuristics are effective procedures in terms of discovered solutions and of
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the relative error of the sub-optimal solutions cost, taking into account the computational
limitations of the PCEs.

The major contributions of the paper are the following:

– Development of new versions of two previous heuristics for calculating SRLG-disjoint
pairs of minimal additive cost (COSE-MScd and IMSHd) which may improve the num-
ber of obtained optimal solutions.

– Proposal of two new heuristics for tackling a difficult combinatorial problem concerning
the calculation of a set of k (k > 2) node and SRLG-disjoint path pairs of minimal
additive cost. To the best of our knowledge these heuristics are the first effective proposal
for tackling this problem, which has great potential interest in GMPLS networks.

– Presentation of the ILP formulation of the addressed problem, enabling the evaluation
of the optimality of the solutions obtained by the heuristics, in realistic test networks.

– An extensive experimentation study in a real network provided by Portugal Telecom
Inovação, enabling the evaluation of the quality of the solutions provided by the two
heuristics, by comparison with exact solutions and the running times in a realistic ap-
plication scenario. These CPU times were obtained considering a real PCE with clear
computational limitations, a Desktop using the heuristics and the ILP solution given by
a CPLEX solver.

The remaining of the paper is organized as follows. In section 2 a brief review of lit-
erature concerning the determination of SRLG-disjoint paths is presented. In section 3 the
notation is introduced and the problem of finding a set of k node and SRLG-disjoint paths
of minimal additive cost, is formulated. A review of IMSH and CoSE-MS algorithms (nec-
essary for the comprehension of the developed algorithms) is in section 4. The proposed
heuristics are described in section 5 and results using a real network are given in section 6.
The conclusions are given in section 7.

2 Related work

There is a vast literature related to survivable routing problems considering SRLG informa-
tion. Although an overview of this broad area is out of the scope of this paper we present here
a brief review of references concerning the determination of SRLG-disjoint paths, while a
more detailed description of works more closely related to the proposed heuristics will be
presented in section 5.

A simple approach for solving the min-min SRLG-disjoint path pair problem is the
calculation of the shortest path (the AP), followed by the removal of all the links in SRLG
conflict with the AP (that is the links that belong to an SRLG in common with the AP)
before the calculation of the BP in this pruned network. If no BP can be found, it is said that
the algorithm has fallen into a trap. Traps are said to be real [24] if no SRLG-diverse path
pair exists due to connectivity issues; however if an SRLG-disjoint path pair exists in the
network, but the algorithm can not find it, the algorithm has fallen into an avoidable trap.
The number of (avoidable) traps that this type of algorithm falls into can be mitigated by
using a k-shortest path enumeration algorithm for generating AP candidates, and then using
a similar approach for seeking the BP. This is a form of the Iterative Two Step Approach
(ITSA) [25].

The Trap Avoidance (TA) algorithm, proposed in [24], is very effective at avoiding traps.
For each new connection request it considers two copies of the network. The first copy is
used to calculate the candidate AP with a shortest path algorithm, and the second is used
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to calculate the corresponding BP. In the second network (which always starts as a copy of
the original network) the TA algorithm removes all AP directed links and changes to a large
value the cost of the arcs of the reversed links of the AP and also the cost of the all links
that share an SRLG with the AP. Because shared path protection is being used, the costs
of the remaining links are changed to the bandwidth required (in each of them) to protect
the candidate AP. The BP is then calculated in the modified network and a set T , which
represents the links of the BP which have an SRLG in common with the links in the AP,
is obtained. If T is empty the algorithm ends with the solution AP/BP. If T is not empty,
the authors define the most risky active link (of the AP) belonging to the set T and remove
it from the first copy of the network. Then algorithm TA begins a new iteration to obtain a
min-min SRLG-disjoint path pair. So the AP is calculated in a successively pruned network,
and the number of iterations of TA is limited by the number of links in the network.

The Conflicting SRLG-Exclusion (COSE) [26] is also an efficient heuristic for address-
ing the min-min problem, considering SRLGs. It extends the Conflicting Link Exclusion
(CoLE) algorithm [15], replacing the conflicting link set (the set of links to be successively
excluded in trying to solve the min-min problem) by the calculation of the Conflicting SRLG
Set (CoSE). In [27,28] the COSE heuristic was modified to solve the min-sum SRLG-
disjoint problem and the resulting heuristic was designated Conflicting SRLG-Exclusion
Min-Sum (CoSE-MS). This heuristic is reviewed in detail in sub-section 4.3. The Iterative
Modified Suurballe’s Heuristic (IMSH) [29] also seeks to solve a min-sum problem consist-
ing of the calculation of an SRLG-disjoint pair of paths, with minimum additive cost, and is
reviewed in detail in sub-section 4.2.

In [30] several approaches are proposed for solving the survivable routing problem in
optical networks with shared protection, considering SRLGs. They formulate the associated
min-sum problem as an Integer Linear Programming (ILP) process, which is not scalable
with the network size. Hence the authors propose two heuristics, designated Iterative Two-
Step-Approach (ITSA) and Maximum Likelihood Relaxation (MLR). Their simulation re-
sults show that the ITSA scheme can achieve the best performance at the expense of more
computation time, while MLR can be considered a compromise between computation effi-
ciency and performance.

In [23] the algorithm weighted-SRLG (WSRLG) based on a “k-shortest path algorithm
with SRLG” is considered, where costs are assigned to the links taking into account the cost
of the link and the sum of number of links in the SRLGs the link belongs to (designated as
the link SRLG members). The “k-shortest path algorithm with SRLG” first calculates the
shortest path in the network; then prunes the links of that path and the links belonging to the
SRLGs in the path, and calculates a shortest path in the resulting network; this process is
repeated until no additional paths can be calculated. The WSRLG algorithm makes a binary
search of the weights used to define the cost of the links, depending on the size of the set of
SRLG-disjoint paths most recently obtained by the “k-shortest path algorithm with SRLG”.
The algorithm ends when the binary search is considered to have converged. Then, among
the set of obtained paths, it selects the one the size of which is closer to the target size, and
among those of equal size the one with minimal additive cost.

The authors in [31] consider SRLGs and Shared-Risk Node Groups (SRNGs), and define
shared risk resource group (SRRG) failures. They propose graph transformation techniques
which converts the SRRG-disjoint path pair problem into a node-disjoint path pair problem,
for certain restricted SRRGs, and hence provide a polynomial time solution for specific
cases.

In [32] it is considered that once an SRLG failure event occurs, its associated links fail
with some probabilities, thus resulting in the definition of a Probabilistic SRLG (PSRLG).
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This framework, representing probabilistic correlated failures, is considered by the authors
to be more adequate for coping with erroneous SRLG data, that may occur due to traffic
engineering and recovery mechanism. Additionally, mathematical formulations and heuris-
tics for the problem of diverse routing with minimum joint failure probability were de-
veloped [32]. Diaz et al. [33] remark that the approach proposed in [32] focuses on risk
minimization and ignores traffic engineering issues. A solution designated as the joint path
pair load balancing (JPP-LB) scheme is hence proposed [33], which seeks to balance risk
minimization in a multi-failure scenario and traffic engineering constraints.

In [34,35], a two-step approach is used to solve the optical network diverse provisioning
problem. In the first step, the diverse routing problem is formulated using ILP to find optimal
SRLG-diverse routes with the minimum objective value (either cost or distance). Addition-
ally, the ILP formulation was extended in order to address the multiple-objective optimiza-
tion problem of obtaining maximally SRLG-diverse routes, when no SRLG-disjoint solution
exists. The second step consists of a Dense Wavelength Division Multiplexing (DWDM)
system selection, regenerator placement and wavelength assignment, without changing the
cost determined in the previous step.

The design of disaster-resilient optical datacenter networks is addressed in [36], where
the authors use the concept of Shared Risk Group (SRG) to define potential disaster zones.
To ensure disaster protection in optical networks, active and backup light paths as well
as multiple locations of content/services must be SRG-disjoint. In [36] an integrated ILP
formulation to design datacenter networks while ensuring single disaster survivability is
proposed, which solves simultaneously the problem of content placement, resilient routing
and content disaster protection. The authors also propose ILP relaxations and heuristics to
solve problems for large networks.

A new ILP formulation to solve the resilient grid/cloud dimensioning problem, com-
prising both network and server resources, for large-scale decentralized distributed systems
is proposed in [37]. The concept of SRLG is used to represent the survivability require-
ment, where the links model either optical network links (network failures), or represent the
connection to the data center (server failures). They consider both failure-dependent (FD)
rerouting, where backup routes (and server locations) may be chosen differently for different
failure cases, and failure-independent (FID) routing with a single backup path and destina-
tion for all failure cases. They conclude that, in the problem they considered, FD does not
bring significant benefits compared to FID.

3 Notation and problem formulation

3.1 Notation

The heuristics in section 5 use the following notation. Let the graph G = (V,A) be defined
by a set of nodes V , V = {v1, . . . ,vn}, and a set of arcs A, A = {a1, . . . ,am}.

An arc connects two vertexes in a given order, and is an ordered pair of elements be-
longing to V . If vi,v j ∈V , with vi 6= v j and a = (vi,v j) ∈ A, it is said that the vi is the tail (or
source) of the arc and v j is its head (or destination). Arc (vi,v j) is said to be emergent from
node vi and incident on node v j. Arcs (vi,v j) and (v j,vi) are symmetrical arcs.

The cost of using an arc (vi,v j) ∈ A in a path is given by l(vi,v j), and is assumed to be
strictly positive.

A path is a continuous sequence of nodes (all different) from one node source, s, to
a destination node t, (s, t ∈ V ), and is represented by p = 〈s ≡ v1,v2, . . . ,vu ≡ t〉, where



Two heuristics for calculating an SRLG-disjoint set of paths of min-sum cost 7

(vi,vi+1)∈A,∀i∈{1, . . . ,u−1}, u being the number of nodes in the path. Let Vp be the set of
nodes in the path p and Ap be the set of arcs that form the path, Ap = ∪∀i∈{1,...,u−1}(vi,vi+1).
A segment is a continuous sequence of arcs that are part of a path. The set of arcs symmet-
rical of the arcs in Ap is Āp.

The additive cost of a path p is the sum of the costs of the arcs constituting the path,
cp =∑(vi,v j)∈Ap l(vi,v j). If a path between a given pair of nodes does not exist, is represented
by the empty set ( /0), and its cost is infinite.

Given a node pair (s, t), a pair of paths from s to t is represented by (p,q). The paths are
node disjoint if and only if Vp∩Vq = {s, t}.

A set of k paths with the same node source s and destination t is represented by S,
where k = |S|. The paths in the set S (from s to t), are mutually node disjoint, if and only if:
∩p∈SVp = {s, t}.

The additive cost of a pair of paths (p,q) is given by the sum of the cost of the paths
forming the pair, c(p,q) = cp + cq. If (p,q) = ( /0, /0), the cost of the pair of paths is infinite
(c( /0, /0) = ∞). The cost of a set of paths S is given by the sum of the cost of the paths in this
set, cS = ∑p∈S cp.

Let Y , with Y = {y1,y2, . . . ,yr} designate the set of failure risks that may affect the arcs
of the network, where r is the number of risks in the network. The set of arcs of the network
that become unavailable when the failure associated with risk yi occurs is the SRLG gi,
i = 1, . . . ,r. Let R′ be the set of all SRLGs of the network. R′ = {g1,g2, . . .gr} where r is
the number of SRLGs in the network.

Let R(vi,v j) or R(a) with a = (vi,v j) ∈ A be the set of SRLGs which contain arc a =
(vi,v j) (R(a) = {gu : a∈ gu}). From the above definitions: R′=∪a∈AR(a). The set of SRLGs
affecting a path p is designated by Rp and is given by Rp = ∪a∈Ap R(a). A path pair (p,q) is
SRLG-disjoint if Rp∩Rq = /0. The arcs that are in SRLG conflict with the arcs along a path
p are the arcs in (∪g∈Rp g)\(Ap∪ Āp).

Let Pst represent the set of all paths from s to t in the network.
The set of k paths, from s to t, which are node and SRLG-disjoint of minimal additive

cost is designated by S∗.

3.2 Problem formulation

The problem of calculating the set of k paths, from s to t, which are node and SRLG-disjoint
of minimal additive can be stated as follows:

S∗ = arg min
S⊂Pst

cS (1)

such that: ∩p∈S∗Vp = {s, t} (2)

∩p∈S∗Rp = /0 (3)

|S∗|= k (4)

The Integer Linear Programming formulation for obtaining S∗ is given here, because the
exact results obtained using this formulation will be used to evaluate the performance of the
heuristics. The formulation is inspired on the one by [22]. The formulation requires some
additional notation:

– δ (i)+: set of arcs in A emergent from node vi ∈V .
– δ (i)−: set of arcs in A incident on node vi ∈V .
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– hg,(i, j), with g ∈ R′ and (vi,v j) ∈ A, indicates if SRLG g contains arc (vi,v j)

hg,(i, j) =

{
1 if g ∈ R(vi,v j),
0 otherwise; (5)

– x(i, j),u is the binary decision variable of arc (vi,v j) ∈ A associated with path pu (u =
1,2, . . . ,k), where,

x(i, j),u =
{

1 if arc (vi,v j) ∈ Apu ,
0 otherwise; (6)

– zg,u is the binary decision variable of the SRLG which affects path pu (u = 1,2, . . . ,k),
where,

zg,u =

{
1 if g is associated with path pu, that is, if g ∈ Rpu ,
0 otherwise; (7)

The problem of obtaining a set of node and SRLG-disjoint solution paths of minimal
cost, from node s to t can be formulated as follows.

min ∑
(vi,v j)∈A

l(vi,v j)

(
k

∑
u=1

x(i, j),u

)
(8)

such that: ∑
(vi,v j)∈δ (i)+

x(i, j),u− ∑
(v j ,vi)∈δ (i)−

x( j,i),u =


1 : vi = s,
−1 : vi = t,

0 : vi ∈V\{s, t}
(9)

vi ∈V, u = 1,2, . . . ,k

∑
(vi,v j)∈A

hg,(i, j)x(i, j),u ≤ |A|zg,u g ∈ R′, u = 1,2, . . . ,k (10)

k

∑
u=1

zg,u ≤ 1, g ∈ R′ (11)

k

∑
u=1

∑
(vi,v j)∈δ (i)+

x(i, j),u ≤ 1, vi ∈V\{s}, (12)

x and z are the binary decision variables.

– Constraint (9) ensures that arcs (vi,vi) selected by x(i, j),u, are a path pu (u = 1,2, . . . ,k)
from s to t.

– Constraint (10) implies that if g affects path pu, then any arc belonging to g can be in pu;
otherwise no edge in g can be in pu. The coefficient |A| is used, because pu can contain
several arcs associated with a given SRLG.

– Constraint (11) ensures that no SRLG affects more than one path in a set S∗ with k paths.
– Constraint (12) ensures the paths are node disjoint.

4 Review of IMSH and CoSE-MS

Since modified versions of heuristics IMSH and CoSE-MS were used as a basis for de-
veloping of our heuristics, they are reviewed in this section. Note that both the Modified
Suurballe’s heuristic and the modified Bhandari’s heuristic (MBH), are used in CoSE-MS.
Both auxiliary heuristics are also over-viewed in the next subsection.



Two heuristics for calculating an SRLG-disjoint set of paths of min-sum cost 9

4.1 Auxiliary heuristics

In [29] a modification of Suurballe’s algorithm [13] is proposed, designated as Modified
Suurballe’s Heuristic (MSH), which can be applied to the u-th shortest path for obtaining
a pair of edge and SRLG-disjoint paths. Here it is revisited for obtaining node and SRLG-
disjoint path pairs.

In MSH a new modified graph, G′ = (A′,V ′), is derived from to G where pu was calcu-
lated. Because node and SRLG-disjoint paths are sought, the first step is the replacement in
G′ of all the intermediate nodes of pu by an arc. So for all vi ∈ Vpu\{s, t}, vi is replaced by
arc (v′i,v

′′
i ) with null cost, and all the arcs in δ (i)+ will now emerge from v′′i and all the arcs

in δ (i)− will now be incident on v′i. This corresponds to using one of the vertex-splitting
methods described by [14].

In G′ the arcs in Apu and Āpu ∩A′ are removed before adding the arcs Āpu with null cost;
then the cost of the arcs in the graph which are in SRLG conflict with the arcs along the path
pu is increased by M (sum of the costs of all the arcs in the network). The shortest path in
this network, q′u, is calculated and the divided nodes from pu (if present in q′u) are collapsed
into the original node. As in Suurballe’s algorithm every directed arc in q′u the reversal
of which appears in pu is designated as an interlacing arc. These interlacing arcs must be
removed from paths pu and q′u to get a pair of least cost node-disjoint paths. The obtained
path pair (p′u, p′′u) is only considered an admissible solution if p′u and p′′u are SRLG-disjoint.
An illustrative example of the MSH behavior can be found in appendix A.

The MBH proposed by [27] can only be applied to the shortest path in G, because
it uses negative costs. The version of the MBH used in this work seeks to obtain node-
disjoint path pairs of min-sum cost. Hence, in the G′ graph (identical to G) where p1 was
calculated, MBH starts by splitting the nodes as described for the MSH. Then, as in MSH
the arcs in Ap1 and Āp1 ∩A′ are removed, the arcs in Āpu (directed arcs from t to s in p1) are
added, but each with the symmetrical of the cost of the corresponding symmetrical arc in p1.
Then the shortest path in this new network, q′1, is calculated, using the modified Dijkstra’s
algorithm [14]. Finally one must remove the interlacing arcs on paths p1 and q′1 to get a pair
of least cost node-disjoint paths. Although, as in the MSH the calculated path pair may not
be SRLG-disjoint, MBH tends to find solutions with lower cost than MSH.

4.2 Review of IMSH

The Iterative Modified Suurballe’s Heuristic sequentially generates v shortest path using
Yen’s algorithm [38]; then for each obtained pu (u-th shortest path, u = 1, . . . ,v) it uses the
MSH to calculate a pair of SRLG-disjoint paths based on each pu, and keeps a record of the
path pair with current lowest additive cost. The algorithm ends after generating v shortest
paths or earlier if the recorded SRLG-disjoint path pair (current best solution) was obtained,
(p,q) is such that c[(p,q)]≤ 2× pu. Although in [29] a proof is presented that the condition
c[(p,q)] ≤ 2× pu, ensures the optimality of (p,q), the example in appendix C, shows that
this condition may not hold if the SRLG are randomly generated. Hence in our tests the
number of generated seed paths is defined by the maximum number of allowed iterations
(imax) or the number of existing paths in the network.
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4.3 Review of CoSE-MS

The CoSE-MS algorithm operates by solving problems which are represented by P(I,E,H),
where I is the inclusion set of SRLGs, E the exclusion set of SRLGs and H the union of all
the exclusion sets of the problems that originated the current problem P. Together E and H
represent the set of SRLG that have to be excluded from the network before the calculation
of candidate seed path: the first contains the most recent SRLG signaled for exclusion and
the second all the previously excluded SRLGs. If the candidate seed path does not allow to
obtain an SRLG-disjoint path pair, new problems are generated, but the SRLGs in set I can
not be excluded in the new problems to be generated. The algorithm successively divides
the SRLGs into disjoint subsets: the exclusion SRLGs (E∪H) and the inclusion SRLGs (I).
The problems are stored in a stack (SP), and CoSE-MS will try to solve problems until the
stack is empty, or until a certain number (imax) of problems have been solved.

The initial problem will have I, E and H equal to /0, and is pushed into a previously
empty stack (SP) of unsolved problems. In each iteration the heuristic gets (and removes)
the problem from the top of stack SP; let that problem be the current problem P(Ic,Ec,Hc).
Its resolution is described next.

The seed path pc of the current problem is calculated in graph Gc, corresponding to
the original network graph G where all arcs affected by SRLGs in the set E ∪H have been
removed. If pc can not be found the problem resolution ends with no solution.

If pc is the shortest path in the original network graph G, that is if (Ic,Ec,Hc) = ( /0, /0, /0)
then the MBH is used; otherwise the MSH is used. In both cases, MBH or MSH, will modify
a copy G′ of the original network G.

If the seed pc results (using MBH or MSH) in the path pair (p′c, p′′c ), and that path pair is
SRLG-disjoint, then a solution was found – the algorithms will store the best solution found
so far.

If no path pair can be obtained using pc as seed path, or the resulting path pair (p′c, p′′c ) is
not SRLG-disjoint, the conflicting SRLG set, Tc is calculated, and new problems are gener-
ated. The conflicting SRLG set Tc is the subset of Rpc\Ic such that no path exists from s to t
in the network graph G after the removal of the arcs in the SRLGs in Tc. The set Tc can be cal-
culated using the algorithm “Finding a conflicting SRLG set for a given active path pc from
node s to node t” in [26] (also in appendix of [27,28]). Let Tc = {gc

1,g
c
2, . . .g

c
|Tc|}, then the

following new problems are generated in CoSE-MS: P( /0,{gc
1},Ec∪Hc), P({gc

1},{gc
2},Ec∪

Hc), . . ., P({gc
1,g

c
2, . . . ,g

c
|Tc|−1},{g

c
|Tc|},Ec∪Hc), and pushed into the stack SP of problems.

When the solution of problem Pc is a node-disjoint, but not SRLG-disjoint path pair
(hence a solution not admissible), each of the new problems derived from Tc has one more
SRLG to be excluded than Pc, and the convergence of the heuristic is ensured.

5 Proposed Heuristics

5.1 New version of MSH and IMSH

When the SRLGs are not strictly local (see appendix C), in MSH a seed path pc may result in
a path pair (p′c, p′′c ) which is not SRLG-disjoint, even though the path q′c obtained in G′ had
no arc of cost greater than M. So although pc and q′c may be SRLG-disjoint, after removing
the interlacing arcs the resulting path pair may have one or more SRLGs in common.

Also note that if in the network G′ (after the transformations required by the MSH) there
are alternative shortest paths with cost lower than M, there are two possible scenarios for
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each candidate shortest path: a) the path contains reversed arcs of pc; b) the path does not
contains reversed arcs of pc. In case a) the resulting path pair will have the lowest cost (for
the used pc) but the resulting path pair may not be SRLG-disjoint; in case b) the cost of the
path pair will be higher than in case a) but the resulting path pair will be SRLG-disjoint.

If the cost of arcs in the network are strictly positive, and that is usually the case in
real networks, then we propose the following variant of MSH, designated by MSHd, which
instead of setting a null cost to arcs of Āpc will set the cost of these arcs equal to −∆ (where
∆ =min(vi,v j)∈A l(vi,v j)/(2|V |), is a very small number), given preference to the path in case
a). If the resulting path pair is SRLG-disjoint, MSHd ends, otherwise if there was interlacing
removal, the edges with cost −∆ are changed to +∆ in order to obtain a solution of type b),
in case it exists.

The version of IMSH which uses MSHd instead of MSH, is designated by IMSHd.

5.2 New version of CoSE-MS

For some node pairs, CoSE-MS generates a large number of problems. This suggested that
it could be improved, by changing the calculation of the set of SRLG in conflict, Tc. In fact
when the resulting path pair (p′c, p′′c ) is node-disjoint but not SRLG-disjoint, the conflicting
SRLG set should depend on Rp′c ∩Rp′′c and not only on Rpc . This resulted in the following
new approach to the calculation of Tc:

– If the problem is ( /0, /0, /0) or no node disjoint path pair could be obtained, the conflicting
SRLG set is calculated as described in section 4.3.

– Otherwise, if the resulting path pair (p′c, p′′c ) is node-disjoint but not SRLG-disjoint, Tc
will be given by (Rpc ∩X)\Ic, where X = Rp′c ∩Rp′′c .

The version of CoSE-MS with this new procedure for calculating Tc and with MSHd
replacing MSH, is designated by CoSE-MScd.

In [28] the MSH and the MBH returned ( /0, /0) whenever the resulting path pair was not
SRLG-disjoint. In the present resolution procedure, when the resulting path pair is node-
disjoint but not SRLG-disjoint, the path pair is returned by MSHd and MBH, so that X can
be calculated.

5.3 Two new heuristics, kIMSHd and kCoSE-MScd

In this subsection two heuristics for calculating a set of k node and SRLG-disjoint paths, of
minimal additive cost, will be presented.

These heuristics, designated kIMSHd and kCoSE-MScd, require three main steps:

1. Calculation of a set of node and SRLG-disjoint path pairs, which will be used as the
seed set.

2. For each element of the seed path calculated in the previous step, a set of k node and
SRLG-disjoint paths is calculated; if that dimension k is not attained, the set (or sets) of
greater dimension are stored.

3. The set of minimal cost is selected among all those sets of size k (or among the sets of
largest dimension, less than k, that could be found).

Obtaining a set of k node and SRLG-disjoint may not be possible, because either it does
not exist, or because the heuristics were unable to find such a set. In this case the heuristics
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will return the best solution they could find, even if its size was not k. The application that
invoked the heuristics should then decide whether to reject or accept that solution.

The heuristics kIMSHd and kCoSE-MScd differ in step 1. In heuristics kIMSHd and
kCoSE-MScd the seed set is obtained storing all the node and SRLG-disjoint path pairs that
are generated during the execution of heuristics IMSHd and CoSE-MScd, respectively.

Data: Digraph G = (V,A); source node s; target node t; arc cost l(vi,v j); R(vi,v j),
the SRLG associated with each arc (vi,v j) ∈ A; seed set of node and
SRLG-disjoint paths Sc

Result: Set of node and SRLG-disjoint paths S, obtained using the seed set Sc, with
|S|= |Sc|+1 or S = /0 if it was not possible to enlarge Sc.

1 G′← G a copy of G is used, with (G′ = (V ′ =V,A′ = A)
// Network transformation

2 The vertex-splitting of all intermediates nodes of the paths in Sc is done (as described
for the MSH in section 4.1)

3 ASc = ∪p∈Sc Ap
4 ĀSc = ∪p∈Sc Āp
5 In G′ the arcs in ASc and ĀSc ∩A′ are removed before adding the arcs ĀSc with null

cost.
6 The cost of the arcs in the graph that are in SRLG conflict with the arcs in Sc is

increased by M (sum of the costs of all the arcs in the network)
// Shortest Path is the transformed network

7 q′←shortest path from s to t in G′ // Using Dijkstra’s algorithm [39]

8 if q′ exists then
// Remove possible existing interlacing arcs

9 Create a graph GI induced by the arcs in q′ and Sc
10 Remove from GI all pairs of symmetrical arcs
11 In this modified graph, GI , calculate the set S of |Sc|+1 node disjoint paths
12 if ∩p∈SRp 6= /0 // If the paths in S are not SRLG-disjoint

13 then
14 S← /0 // No solution

15 end
16 end
17 else
18 S← /0 // No solution

19 end
Heuristic kMSH: Algorithm of kMSH, which given a set Sc of u seed paths, node and
SRLG-disjoint, returns a set S of u+1 node and SRLG-disjoint paths, or an empty set if
it was unable to enlarge Sc

Step 2 corresponds to an extension of of MSH, and the corresponding heuristic is kMSH.
The heuristic kMSH corresponds to the application of MSH to a set with v paths, mutually
node and SRLG-disjoint, seeking to obtain a set of v+1 paths, mutually node-disjoint and
possibly SRLG-disjoint, while minimizing its total cost (similarly to the algorithm in [14]
for obtaining a set of k node disjoint paths of minimal total cost).

In line 6 of the algorithm of kMSH, the arcs in SRLG conflict with the arcs in Sc are
(∩g∈RSc

g)\(ĀSc ∩A), with ASc = ∪p∈Sc Ap and RSc = ∪p∈Sc Rp.
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Data: Digraph G = (V,A); source node s; target node t; arc cost l(vi,v j); R(vi,v j), the SRLG
associated with each arc (vi,v j) ∈ A; k, k > 2 size of the set; maximal number of iterations imax.

Result: Set of node and SRLG-disjoint paths S, of minimal cost
1 i← 0
2 ∆ = (min(i, j)∈A l(i, j))/(2|V |) // Assumes min(i, j)∈A l(i, j)> 0
3 P← /0 // Stack of node and SRLG-disjoint path pairs
4 S← /0 // Best set of node and SRLG-disjoint paths

// Storing all node and SRLG-disjoint path pairs generated in IMSHd
5 while i≤ imax do
6 i← i+1 // i-th seed path
7 (p′i, p′′i )← ( /0, /0) // Initially there is no solution
8 pi←MPS(G,s,t,l) // i-th shortest path using MPS
9 if p′i exists then

10 (p′i, p′′i )←MSHd(G,s,t,l,R,pi,∆) // Possibly a node and SRLG-disjoint pair
11 end
12 if (p′i, p′′i ) 6= ( /0, /0)∧ (Rp′i

∩Rp′′i
) = /0 then

13 push(P,(p′i, p′′i )) // Stores node and SRLG-disjoint path pair
14 end
15 end

// Using the sets in P as seed paths, when i = 2
16 while ¬ empty(P) do
17 i = 2 // Initial size of the set
18 Si← top(P) // Gets the path pair at the top of P
19 pop (P) // Removes the element at the top of P
20 while i < k∧Si 6= /0 do
21 Si+1 =kMSH(G,s, t, l,R,Si) // Tries to add a new path
22 i← i+1
23 end
24 if Si = /0 then
25 i← i−1 // Si is the largest set from cycle in lines 20--23
26 end

// Verifies the need to update the best set
27 if {i = k∧ [|S|< k∨ (|S|= k∧ cSi < cS)]}∨{i < k∧ [(|S|= |Si|∧ cSi < cS)∨|S|< |Si|]} then
28 S← Si // Updates the best set
29 end
30 end
Heuristic kIMSHd: Seeks to obtain a set of node and SRLG-disjoint paths of minimal
additive cost, using as seed paths the node and SRLG-disjoint path pairs that would be
generated in IMSHd

5.3.1 kIMSHd Heuristic

The kIMSHd heuristic starts by generating and storing in a stack (P in the algorithm of
kIMSHd) all the path pairs, which are node and SRLG-disjoint, generated in iterations i =
1, . . . , imax of IMHS (see lines 5-15 of kIMSHd). Then each of the path pairs stored in that
stack is used as the seed set in kMSH; this heuristic must be invoked k− 2 times, using as
input the set that resulted from the previous call of kMSH; the process is interrupted (for the
current seed set) if the outcome of kMSH is an empty set – see the cycle in lines 20-23 of
kIMSHd. Finally kIMSH returns the set of minimal cost among the largest obtained sets (of
size less than or equal to k).

In [40] the authors state that the use of the theoretical worst-case complexity of QoS
routing algorithms should be considered with care, because this is not the best indicator
for the execution times in most practical problems. In [41] the authors reinforce the same
view, namely regarding the use of algorithm MPS in multiple criteria shortest path models.
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Data: Digraph G = (V,A); source node s; target node t; arc cost l(vi,v j); R(vi,v j), the SRLG
associated with each arc (vi,v j) ∈ A; k, k > 2 size of the set; maximal number of iterations imax.

Result: Set of node and SRLG-disjoint paths S, of minimal cost
1 S← /0 // Set of node and SRLG-disjoint paths
2 ∆ = (min(i, j)∈A l(i, j))/(2|V |) // Assumes min(i, j)∈A l(i, j)> 0
3 P← AllPairs(G,s, t, l,R,∆ , imax) // Stack of seed path pairs using CoSE-MScd

// Using the sets in P as seed paths, when i = 2
4 while ¬ empty(P) do
5 i = 2
6 Si← top(P)
7 pop (P)
8 while i < k∧Si 6= /0 do
9 Si+1 =kMSH(G,s, t, l,R,Si) // Tries to add a new path

10 i← i+1
11 end
12 if Si = /0 then
13 i← i−1 // Si is the largest set from cycle in lines 8-11
14 end

// Verifies the need to update the best set
15 if {i = k∧ [|S|< k∨ (|S|= k∧ cSi < cS)]}∨{i < k∧ [(|S|= |Si|∧ cSi < cS)∨|S|< |Si|]} then
16 S← Si // Updates the best set
17 end
18 end
Heuristic kCoSE-MScd: Seeks to obtain a set of node and SRLG-disjoint paths of mini-
mal additive cost, using as seed paths the node and SRLG-disjoint path pairs generated in
CoSE-MS

MPS sorts the edges according to their reduced cost; this results that each time a k-th shortest
path is selected, the generation of each new candidate path requires no network modification,
unlike in Yen’s algorithm. Hence, although Yen’s algorithm has lower worst case complexity
than MPS [38,42], we preferred to use MPS [43,44] because extensive experimental results
show that this algorithm is more efficient than Yen’s in practice [44,45]. In the pseudo-
code of the kIMSHd heuristic, MPS represents the k-shortest path enumeration algorithm
proposed in [43], in its loopless version.

5.3.2 kCoSE-MScd Heuristic

The kCoSE-MScd heuristic is similar to kIMSHd, with the difference that the set of path
pairs in stack P corresponds to the node and SRLG-disjoint path pair obtained using CoSE-
MScd. This is represented here by the auxiliary heuristic AllPairs described in appendix B.
The remaining steps of kCoSE-MScd (from line 4 until the end of kCoSE-MScd) are iden-
tical to the block of lines from 16 until the end of kIMSHd,

6 Experimental Results

Here the results obtained in terms of the quality of the solutions and the running times of
the heuristics, applied to a real network with randomly generated SRLGs, are presented. To
the best of our knowledge, no other algorithm seeking to minimize the total cost of a set
of k node and SRLG-disjoint paths (k > 2), was previously proposed. Nevertheless in [23]
the authors claim that the Weighted-SRLG path selection algorithm (WSRLG) can obtain
“cost-effective disjoint paths”, and this is the reason why results will also be presented for
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WRLG, with ε = 10−15 (error for the binary search of the weight factor for the SRLG, and
the smallest possible value due to floating point number representation).

Firstly the test conditions for analyzing the quality of the solutions and for determin-
ing the execution times are described. Secondly the results for assessing the quality of the
solutions obtained are presented, followed by the execution times of the proposed heuristics.

6.1 Test conditions and performance measures

The test network corresponds to the largest bi-connected component of an SDH network
with 231 nodes and 471 edges (each arc will be represented by two symmetrical arcs), pro-
vided by Portugal Telecom Inovação. In order to study the quality of the solutions obtained
by each of the heuristics, up to 235 SRLGs where considered. Given that the average node
degree of the network was 4, it was decided that no SRLG should have more than 4 edges.
Like in [23,46,47] the SRLGs were also randomly generated. Also note that even if the
SRLGs were strictly local (all links of any SRLG share an end-point) the problem of calcu-
lating k (k ≥ 2) SRLG-disjoint paths is in general still NP-complete [48] (with some excep-
tions). Each edge was randomly associated with between 0 and 4 SRLGs, using a uniform
distribution. The SRLGs were randomly built as each edge was associated with the previ-
ously calculated number of SRLG identifiers (randomly selected among the SRLG still with
less than 4 edges). Ten different sets of random seeds were used, resulting in ten different
R(a),a ∈ A, with |R′| ∈ [231,235].

In the results presented, the maximal number of iterations considered (for kIMSHd) or
maximum number of auxiliary problems solved (in kCoSE-MScd) were i max = 5,10,20,50,
100,200,500,1000. The number of paths in each set was k = 3,4. For k = 5 only 2.2% of
the node pairs have a node and SRLG-disjoint solution, so this value k was not considered.

In order to study the quality of the solutions obtained by each heuristic using each of
the 10 instances of the network, we tried to obtain a solution (set of k = 2,3,4 node and
SRLG-disjoint solutions with minimal additive cost) for all source destination pairs of each
image, considering the maximal number allowed problems or iterations. Then the cost of the
obtained path pair (k = 2) or set (k = 3,4) was compared to the cost of the optimal solution
obtained by a the resolution of the ILP problem in section 3.2 using CPLEX (version 12.3).
With this information it was possible to obtain the average number of solutions found by the
heuristics, the average number of optimal solutions, and the relative error of the sub-optimal
solutions.

If the heuristics return a set of size less than the desired value k, this is considered as not
having solved the problem (and not having found any solution). So, for a given value of k,
only a set of size k is considered an admissible solution, and only those solutions (optimal
or sub-optimal) are considered in the statistics presented in the figures of this section. There
is no way to calculate an upper bound on imax (or CPU time) using any of the heuristics,
that would allows us to state whether there is no solution for a given problem, except in
very specific cases (like in cases where there are less than k node-disjoint paths between the
considered end nodes).

The CPU times were measured in two different platforms: a Path Computation Element
(PCE), model UNICOM-V5, G2 LE CPU (PowerPC compatible core) with 330 MHz core
clock, 128 MB of RAM; and a Desktop with a Intel R© Core

TM
i7 870 CPU, with a 2.93 GHz

core clock, 3.6 GB of RAM. A dynamic library in pq2 (for PowerPC microprocessors) was
created with the developed heuristics, and linked with the test programs that were to run
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Figure 1 Average number (%) of solutions found for k = 2 by CoSE-MS, CoSE-MScd, IMSH, IMSHd, and
WSRLG for imax = 5,10,20,50,100,200,500,1000

in the PCE. The CPU times in the Desktop were obtained for CPLEX and the heuristics to
evaluate the trade-off between CPU time and accuracy of the heuristics.

For the CPU times in the PCE, 1000 different end nodes were randomly selected in each
network and the CPU time was registered for each value of imax. Regarding the CPU times
in the Desktop, 5000 different end nodes were randomly selected in each network, and the
CPU time was registered for each value of imax. The amplitude bars in the figures in the next
subsection represent 95% confidence intervals, using the average values obtained for the 10
networks.

6.2 Quality of the solutions

To evaluate the quality of the solutions obtained, some results are presented. Note that algo-
rithm WSRLG, using ε = 10−15 will only perform a maximum of 50 iterations. However,
in the figures, the results will be presented for all considered values of imax.

In Figures 1 and 2, although IMSHd leads in average to slightly more solutions than
IMSH, taking into account the strong overlapping of the confidence intervals, in practice
there are no significant differences between the two heuristics in this respect. A similar
statement can be made when comparing CoSE-MScd with CoSE-MS.

Considering imax = 50, the number of optimal solutions found by IMSH and IMSHd
is over 95%, while it is between 80-85% for CoSE-MS and CoSE-MScd and it is close to
65% for WSRLG. IMSH and IMSHd keep improving the number of obtained solutions and
of optimal solutions with the increase in the maximum number of allowed iterations, while
CoSE-MS and CoSE-MScd seem to stagnate their performance after imax = 100.

The major conclusion from these results (Figures 1 and 2) is that WSRLG (k = 2) has
the lowest performance in terms of obtained solutions and optimal solutions by comparison
with the other heuristics.
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Figure 2 Average number (%) of optimal solutions found for k = 2 by CoSE-MS, CoSE-MScd, IMSH,
IMSHd, and WSRLG for imax = 5,10,20,50,100,200,500,1000
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Figure 3 Relative error (%) of the sub-optimal solutions found for k = 2 by CoSE-MS, CoSE-MScd, IMSH,
IMSHd, and WSRLG for imax = 5,10,20,50,100,200,500,1000

For each node pair (s, t), for which a sub-optimal solution S with cost cS was obtained,
the relative error of the pair, re, was calculated as follows:

re =
cS− cS∗

cS∗
(13)

where S∗ represents the node and SRLG-disjoint set of minimal additive cost given by cS∗ .
In each network, the relative errors (re) for every node pair with a sub-optimal solution were
added and divided by total number of sub-optimal solutions in that network, resulting in the
point estimate for a given network of the error of the sub-optimal solutions. The average
error in Figures 3, 6 and 9 is the average of the ten values corresponding to the ten SRLG
distributions.
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Figure 4 Average number (%) of solutions found by kCoSE-MScd, kIMSHd, and WSRLG when k = 3 for
imax = 5,10,20,50,100,200,500,1000
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Figure 5 Average number (%) of optimal solutions found by kCoSE-MScd, kIMSHd, and WSRLG when
k = 3 for imax = 5,10,20,50,100,200,500,1000

The sub-optimal solutions of IMSH and IMSHd present the smaller average relative
error, always below 5%, and below 1.2% for imax ≥ 50, as can be seen in Figure 3. The
average relative error of CoSE-MScd is slightly smaller than the corresponding average of
CoSE-MS, and about 5% for imax≥ 50. Although the width of the confidence intervals of the
relative error is quite wide for all the heuristics, leading to significant interval overlapping,
WSRLG is the algorithm with worst average relative error of the solutions.

In Figure 1 (k = 2) the number of solutions found for imax = 50 is over 99% for IMSH,
IMSHd, COSE-MS and CoSE-MScd. In Figure 4 (k = 3) the number of solutions found is
smaller than the number in Figure 1, as would be expected. The number of solutions found
by kIMSHd and kCoSE-MScd, when a set of k = 3 node and SRLG-disjoint solutions are
sought, is nevertheless quite high and significantly higher than for WSRLG, especially for
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Figure 6 Relative error (%) of the sub-optimal solutions found by kCoSE-MScd, kIMSHd, and WSRLG
when k = 3 for imax = 5,10,20,50,100,200,500,1000

imax ≥ 50. The heuristics kIMSHd and kCoSE-MScd found 96% and 91% of the existing
solutions, respectively, when imax = 50, while WSRLG did not reach 80% of the existing
solutions. In the case of kIMSHd the number of solutions found keeps increasing with imax
until 99% for imax = 1000. However the number of optimal solutions found is in average
between 55% and 60% both for kIMSHd and kCoSE-MScd, and their performance does not
seem to improve significantly for imax ≥ 100, as can be seen in Figure 5. In fact, for imax =
50, kIMSHd and kCoSE-MScd found in average 58.5% and 57% of the existing optimal
solutions, respectively. In that figure kIMSHd presents a slightly higher average value of
optimal solutions than kCoSE-MSCd, but their confidence intervals partially overlap.

The quality of the sub-optimal solutions for k = 3 is shown in Figure 6. It can be ob-
served, that the average error of kCoSE-MScd and of kIMSHd is very similar, and in the in-
tervals 7.0%-7.4% and 7.2%-7.9%, respectively, while the average error of the sub-optimal
solutions of WSRLG is close to 14%.

In Figures 7 and 8 the number of solutions found and the number of optimal solutions
when the set size is k = 4 are presented. It can be seen that IMSHd still manages to find, in
average, solutions for over 96% of the node pairs, but now it requires 200 iterations instead
of 50 as in Figure 4, when k = 3; kCoSE-MScd finds over 80% of the solutions for imax≥ 10,
and about 83%for imax ≥ 100. The percentage of the existing optimal solutions found by the
heuristics has also decreased, but kIMSH still manages to find 50% of those solution, for
imax = 50. kCoSE-MScd finds 48% of the optimal solutions for imax = 50. WSRLG only
finds less than 75% of the existing solutions and about 36% of the existing optimal solutions
(see Figures 7 and 8), and is clearly the heuristic with worst performance, concerning these
metrics.

The average relative error of the sub-optimal solutions in Figure 9 is now 12.7%-13.2%
for kCoSE-MScd, 13.4%-15.0% for kIMSHd and almost 40% when imax = 5,10,20 and
around 36% when imax ≥ 50 for WSRLG. The width of the confidence intervals is also
larger for WSRLG.

Considering the fixed number of tested networks, increasing imax would not narrow the
confidence intervals for the relative error, as can be seen in Figures 3, 6 and 9, except for
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Figure 7 Average number (%) of solutions found by kCoSE-MScd, kIMSHd, and WSRLG when k = 4 for
imax = 5,10,20,50,100,200,500,1000
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Figure 8 Average number (%) of optimal solutions found by kCoSE-MScd, kIMSHd, and WSRLG when
k = 4 for imax = 5,10,20,50,100,200,500,1000

IMSH (or IMSHd) for k = 2 (where the number of sub-optimal solutions significantly de-
creases with imax) – and these are the heuristics with smaller relative error. For k = 3,4 the
relative error of some of the solutions will remain large, regardless of increasing imax, as the
average number of sub-optimal solutions increases slightly or remains fairly unchanged for
imax ≥ 50.

So, although the number of optimal solutions found by kIMSHd and kCoSE-MScd (for
k = 3,4) is not as high as for IMSHd and CoSE-MScd (for k = 2), the total number of
solutions found is still very high and the average relative error of the sub-optimal solutions
is acceptable (7%-15%). Namely, both kIMSHd and kCoSE-MScd perform significantly
better than WSRLG, regarding the total number of solutions and their accuracy (number of
optimal solutions and average relative error of the sub-optimal solutions).
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Figure 9 Relative error (%) of the sub-optimal solutions found by kCoSE-MScd, kIMSHd, and WSRLG
when k = 4 for imax = 5,10,20,50,100,200,500,1000

6.3 CPU time

Firstly the relative performance of the heuristics regarding the CPU time in the PCE using a
shared library will be presented and discussed.

In Table 1 (and the following tables) the values in the line with imax = 50 are emphasized
because CoSE-MScd performance does not seem to improve significantly for imax > 50 and
it also corresponds to the maximum number of iterations of WSRLG.

From table 1 it can be seen that IMSHd uses slightly more time than IMSH. That can be
considered the cost for IMSHd tending to obtain in average more solutions and more optimal
solutions than IMSH. In the case of CoSE-MScd, the slight increase in CPU time due to the
use of MSHd instead of MSH (observed in IMSHd versus IMSH) is largely compensated
by the smaller number of auxiliary problems generated, resulting from the new calculation
of the set of Conflicting SRLG, as explained in sub-section 5.2 (and illustrated in line 31 of
auxiliary algorithm AllPairs). In fact from Table 1 the average number of auxiliary problems
solved by CoSE-MScd is less than 100, because the CPU time is stable for imax ≥ 100, in
contrast with CoSE-MS, where the CPU time grows with imax.

Table 1 Average CPU (seconds) time for k = 2 in a Path Computation Element (330MHz, 128MB), for a
total of 1000 node pairs randomly chosen in each network

imax IMSH CoSE-MS IMSHd CoSE-MScd WSRLG

5 75.5±2.1 17.3±1.6 77.6±1.5 12.4±0.9 31.2±0.4
10 89.8±2.3 27.2±2.8 93.5±1.7 16.3±1.3 60.0±0.8
20 117.4±2.7 45.5±5.3 124.7±2.2 21.2±2.1 118.3±1.7
50 195.9±4.4 95.1±11.7 214.6±3.9 23.9±2.9 293.7±5.2
100 319.0±8.2 169.3±20.9 356.7±8.6 24.1±3.2 293.7±5.2
200 551.2±17.8 302.0±36.2 624.2±19.8 24.1±3.1 293.7±5.2
500 1207.9±50.8 644.7±78.9 1385.9±57.1 24.1±3.1 293.7±5.2

1000 2238.8±103.5 1166.8±136.4 2590.4±120.9 24.2±3.1 293.7±5.2
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Table 2 Average CPU time (seconds) for k = 3 in a Path Computation Element (330MHz, 128MB), for a
total of 1000 node pairs randomly chosen in each network

imax kIMSHd kCoSE-MScd WSRLG

5 114.3±3.7 56.0±0.7 33.6±0.3
10 167.9±3.1 104.8±1.2 64.6±0.5
20 255.6±3.7 193.3±2.2 126.9±1.1
50 528.9±7.2 411.0±5.8 313.7±2.8
100 997.3±13.1 682.3±16.0 313.6±2.8
200 1957.8±28.0 1006.5±37.7 313.6±2.8
500 4926.4±64.0 1314.1±76.3 313.6±2.8

1000 10015.1±138.9 1384.3±84.3 313.7±2.8

Table 3 Average CPU time (seconds) for k = 4 in a Path Computation Element (330MHz, 128MB), for a
total of 1000 node pairs randomly chosen in each network

imax kIMSHd kCoSE-MScd WSRLG

5 138.1±3.9 76.4±0.8 34.2±0.3
10 207.5±2.4 145.2±1.5 65.7±0.6
20 337.5±4.2 269.9±2.7 128.9±1.3
50 736.5±10.5 577.5±7.6 318.6±3.2
100 1416.3±20.4 960.8±21.6 318.5±3.2
200 2802.8±42.5 1416.2±50.5 318.5±3.2
500 7088.4±112.0 1841.6±103.0 318.5±3.2

1000 14271.9±263.9 1935.3±112.5 318.5±3.2

WSRLG uses less CPU time then IMSHd, except for imax = 20,50, and for imax = 50
WSRLG requires over 25% more CPU time than IMSHd. CoSE-MScd is the heuristic with
better performance regarding CPU time. Requiring less than 25 ms per node pair for imax ≥
50) in the used PCE, CoSE-MScd is adequate for calculating node and SRLG-disjoint path
pairs in the control plane of a GMPLS network.

From Tables 2 and 3 it can be seen that WSRLG uses less CPU time than kIMSHd
or kCoSE-MScd, and does not seem to use much more CPU time when k (the size of the
set) goes from 3 to 4. Although WSRLG used less CPU than kIMSHd or kCoSE-MScd,
as shown in subsection 6.2, it obtains significantly fewer solutions and significantly fewer
optimal solutions than kIMSHd or kCoSE-MScd, and the sub-optimal solutions of WSRLG
also present the average largest relative error.

The CPU in Tables 2 and 3 are not adequate for the control plane (for imax ≥ 50), unless
newer technology PCE with higher capabilities can be used. However the CPU time is ade-
quate for answering the request for a protected end-to-end path (considering SRLG) in the
management plane. In this context kIMSHd should be the preferred heuristic, because for
imax = 50 the number of solutions is 96% and 93% for k = 3 and k = 4, respectively, and the
relative error of the sub-optimal solutions is not too high.

In Figures 10, 11 and 12 the lines present CPU times corresponding to in Tables 1, 2 and
3, respectively. The y axis values indicate the estimated number of pairs (in %) for which an
optimal solution was obtained for 1000 random node pairs. Notice the logarithmic scale in
the x axis with the total CPU time in the PCE for the considered 1000 random node pairs.
The first point in each curve corresponds to the CPU time and number of pair with optimal
solutions after the first five iterations (and similarly for the following points corresponding
to the next considered values for imax). It can be seen that WSRLG has apparently less
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Figure 10 Considering 1000 random pairs, estimated average number (%) of pairs with optimal solutions
found for k = 2 by CoSE-MS, CoSE-MScd, IMSH, IMSHd, and WSRLG and corresponding total CPU time
in the PCE for imax = 5,10,20,50,100,200,500,1000
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Figure 11 Considering 1000 random pairs, estimated average number (%) of pairs with optimal solutions
found by kCoSE-MScd, kIMSHd, and WSRLG when k = 3 and corresponding total CPU time in the PCE
for imax = 5,10,20,50,100,200,500,1000

points than the other heuristics, but this explained by the fact that after 50 iterations the
CPU time remains unchanged. Similar effect can be observed for CoSE-MScd and for k = 2
in Figure 10. It can be seen that for the same CPU time IMSH/IMSHd and kISMH perform
better than any other heuristic, particularly for CPU times above 110 seconds.

As seen in Table 4, on the Desktop the CPU times of both IMSHd and CoSE-MScd,
considering imax = 50, are significantly smaller then the ones required by CPLEX. Of course
this comes at the cost of finding only about 96% of the optimal solutions.

For k = 3,4, and considering imax = 50, the CPU times of the heuristics, in Table 5, are
still significant smaller then the CPU required by CPLEX.
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Figure 12 Considering 1000 random pairs, estimated average number (%) of pairs with optimal solutions
found by kCoSE-MScd, kIMSHd, and WSRLG when k = 4 and corresponding total CPU time in the PCE
for imax = 5,10,20,50,100,200,500,1000

Table 4 Average CPU time (seconds) for k = 2 in a Desktop (i7 CPU 870 @2.93GHz, 3.6GB), for a total of
5000 node pairs randomly chosen in each network and imax = 50

k IMSHd CoSE-MScd WSRLG CPLEX

2 29.8±0.5 18.3±1.9 51.4±0.4 1713.3±108.2

Table 5 Average CPU time (seconds) for k = 3,4 in a Desktop (i7 CPU 870 @2.93GHz, 3.6GB), for a total
of 5000 node pairs randomly chosen in each network, and imax = 50

k kIMSHd kCoSE-MScd WSRLG CPLEX

3 82.9±0.7 70.7±1.3 55.3±0.5 1705.9± 77.1
4 113.9±1.0 96.0±1.4 56.3±0.5 2122.7±183.8

The CPU time required by the CPLEX solver is less than 1 second per node pair, in the
Desktop used, for k = 2,3,4. However note that in a PCE the CPLEX solver is not an option,
and hence the practical interest of the developed heuristics.

7 Conclusion

The concept of shared risk link group allows an upper layer to establish a protected connec-
tion, selecting an active path and a backup path which should be SRLG-disjoint. Routing
protocols in GMPLS, using distributed SRLG information, can calculate paths avoiding cer-
tain SRLGs. For single SRLG failure end-to-end SRLG-disjoint paths can be calculated,
but for ensuring against multiple SRLG failures a set of end-to-end SRLG-disjoint paths
should be used. Two heuristics, the Conflicting SRLG-Exclusion Min Sum (CoSE-MS) and
the Iterative Modified Suurballes’s Heuristic (IMSH), for calculating SRLG-disjoint path
pairs, which use the Modified Suurballes’s Heuristic (MSH), were reviewed and new ver-
sions (CoSE-MScd and IMSHd) were proposed which may improve the number of optimal
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solutions found. In the case of IMSHd this is achieved at the cost of a slight increase in CPU
cost; in the case of CoSE-MScd the modification in the calculation of the conflicting SRLG
set resulted in less problems to solve and in a significant decrease in CPU time, which makes
it adequate for use in the control plane of a GMPLS network.

A generalization of MSH for obtaining a set of k node and SRLG-disjoint paths, given
a set of k− 1 seed paths, which we designate as kMSH was introduced. The heuristics
kCoSE-MScd and kIMSHd were then proposed for calculating a set of node and k SRLG-
disjoint paths, seeking to minimize its total cost. To the best of our knowledge these heuris-
tics are a first proposal for seeking a set of k (k > 2) node and SRLG-disjoint paths of mini-
mal additive cost; the two heuristics have a similar structure, but the first uses CoSE-MScd
to collect a seed set of node and SRLG-disjoint path pairs and the second uses IMSHd for
that same purpose.

The performance of the proposed heuristics was evaluated using a real network, where
SRLGs were randomly defined. The number of solutions found, the percentage of optimal
solutions and the relative error of the sub-optimal solutions were presented and discussed.
The quantity and quality of the solutions obtained using kIMSHd and kCoSE-MScd is sig-
nificantly better than the ones obtained by WSRLG, although the later uses less CPU time.

For k = 2 CoSE-MScd is a good compromise solution for use in the control plane of a
GMPLS network. But if a PCE with higher performance becomes available, IMSHd (with
imax = 50) could be a more accurate alternative.

For k = 3,4, considering the number of allowed iterations equal to 50, and given the
percentage of node pairs for which was possible to obtain a solution and the relative error
of the sub-optimal solutions, the IMSHd is an effective practical resolution procedure which
provides a good compromise between CPU time and the solution quality, for calculating an
optimal/sub-optimal set of node and SRLG-disjoint paths in the context of a request in the
management plane using a PCE.

A Example illustrating MSH

In the network in Figure 13 there are three SRLGs, marked as ellipses: g1 = {(1,3),(3,1),(1,4),(4,1)},
g2 = {(3,7),(7,3),(4,7),(7,4)} and g3 = {(5,8),(8,5),(6,8)}. The label of each arc corresponds to its cost.

The original network graph G′, and the shortest path from node 1 to node 8 is shown in Figure 13. The
directed network G′, after the network transformation of the MSH (as described in sub-section 4.1) is shown
in Figure 14. In Figure 15 the interlacing arc (3,6) is removed and the solution is shown in Figure 16.
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Figure 13 Directed network G, where s = 1 and t = 8. The seed path is p1 = 〈1,3,6,8〉, and three different
SRLG are marked
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Figure 14 Directed network G′, after dividing the network using the MSH transformation
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Figure 15 Shortest path q′1 = 〈1,2,6′,3′′,7,8〉 in G′
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Figure 16 Solution (p,q) = (〈1,2,6,8〉,〈1,3,7,8〉).

B Auxiliary heuristic AllPairs

The heuristic kCoSE-MScd requires a version of CoSE-MS that stores all node and SRLG-disjoint pairs
discovered, during the imax iterations or until the stack of problems is empty. This task is performed by the
heuristic AllPairs.

Given a seed path of problem Pc, calculated in the network where the arcs affected by the SRLGs Ec∩Hc,
have been removed, the MBH or MSH seek to obtain an SRLG path pair of min-sum cost. If no such pair
is found, the conflicting SRLG set must be found. The set Tc is calculated as described in 4.1. The function
SRLG Exclusion(Ic, pc) in line 28 of AllPairs, corresponds to algorithm “Algorithm. Finding a conflicting
SRLG set for a given active path p from node s to node t” in [26] and is now used only when no node-disjoint
path pair can be found.
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Data: Digraph G = (V,A); source node s; target node t; arc cost l(vi,v j); R(vi,v j), the SRLG
associated with each arc (vi,v j) ∈ A; maximal number of iterations imax.

Result: Stack of node and SRLG-disjoint paths P
1 i← 0
2 ∆ = (min(i, j)∈A l(i, j))/(2|V |) // Assumes min(i, j)∈A l(i, j)> 0
3 P← /0 // Empty stack of node and SRLG-disjoint path pairs P
4 S← /0 // Empty stack of problems
// (p,q) is presently the best solution found of cost c(p,q)

5 (p,q)← ( /0, /0) // (p,q) is presently the best solution found of cost ∞

6 P0← ( /0, /0, /0), push (S,P0) // First problem in stack S
7 i← 0 // Counting the problems solved
8 while ¬empty(S)∧ i < imax do
9 Pc(Ic,Ec,Hc)← top (S) // Pc is the present problem

10 pop (S) // Removes Pc from the top of the stack
11 i← i+1 // Updates the counter of problems solved
12 pc← shortest path from s to t in the present problem
13 if cpc 6= ∞ // If a shortest path exists in the present problem
14 then
15 if Pc = P0 then
16 (p′c, p′′c )←MBH(G,s, t, l,R, pc)
17 end
18 else
19 (p′c, p′′c )←MSHd(G,s, t, l,R, pc,∆)
20 end
21 X ← Rp′c ∩Rp′′c
22 if X = /0∧ (p′c, p′′c ) 6= ( /0, /0) // p′c and p′′c are SRLG-disjoint
23 then
24 push(Sp,(p′c, p′′c )) // Stores node and SRLG-disjoint path pair
25 end
26 else
27 if Pc = P0 ∨ (X = /0∧ (p′c, p′′c ) = ( /0, /0)) then

// If P = P0 or there is no node-disjoint path pair
28 Tc←SRLG Exclusion (Ic, pc)
29 end
30 else

// There is a node-disjoint but not SRLG-disjoint path pair
31 Tc← (X ∩Rpc )\Ic

32 end
// Let Tc be the set {g1,g2, . . . ,g|Tc |}

33 H← Ec ∪Hc
34 P1(I1,E1,H1)← P( /0,{g1},H)
35 push (S, P1)
36 j← 2
37 while j ≤ |Tc| do
38 Pj(I j,E j,H j)← P(I j−1 ∪E j−1,{g j},H)
39 push (S, Pj)
40 j← j+1
41 end
42 end
43 end
44 end
Heuristic AllPairs: Auxiliary of kCoSE-MScd, returns a stack of node and SRLG-disjoin
path pairs.

In line 31 of AllPairs is the new procedure for obtaining the conflicting SRLG set Tc, used when a node
disjoint path pair, which is not SRLG-disjoint, exists (as described in section 4.1).
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Figure 17 Network for illustrating the failure of the optimal condition in [29]

C Illustrating the failure of the IMSH optimal condition

In [29] the following proof is presented of the optimality of the best current path pair (p,q), which we
reproduce here using our notation.

Let (p,q) be the current optimal SRLG diverse path pair found and its cost be c(p,q). In the i-th
iteration, let cpi be the cost of the shortest path computed using Yen’s algorithm [38]. Let (p′i, p′′i )
be the SRLG diverse path pair computed using modified Suurballe’s heuristic, if such a path pair
exists. Let (p′i, p′′i ) be more optimal than the current optimal (p,q), i.e,

cp′i
+ cp′′i

< c(p,q) (14)

Now cp′i
,cp′′i
≥ cpi . Since, without loss of generality, if cp′i

< cpi the optimal SRLG path pair must
have already been computed using p′i as the seed path. Therefore,

2cpi ≤ cp′i
+ cp′′i

(15)

From Eq. 14 and 15 we get,

2cpi < c(p,q)

cpi < c(p,q)/2

Therefore if the cost of the current seed path in the i-th iteration is greater than or equal to c(p,q)/2
then the optimal SRLG diverse path pair is (p,q).

The problem with this proof, is in the statement “Since, without loss of generality, if cp′i
< cpi the optimal

SRLG path pair must have already been computed using p′i as the seed path.” which does not hold for generic
randomly generated SRLG.

Let p′i = p j, j < i, be the shortest of the current pair obtained in the i-th iteration (cp′i
≤ cp′′i

). When p j

was used as seed path it may have resulted in a path pair which is not SRLG-disjoint, due to the interlacing
removal. Hence p′i = p j, j < i may appear later, in an SRLG-disjoint path pair resulting from using a seed
path pi, and this contradicts the previous statement. We next will illustrate, using an example that, in networks
with randomly generated SRLGs, that this is the reason why the proof fails.

In the Figure 17 an undirected network is represented. The SRLGs are: g1 = {(1,7),(8,11)}, g2 =
{(1,2),(1,9)} and g3 = {(1,7),(1,9)}. Initially the best solution is (p,q) = ( /0, /0) of cost ∞. Algorithm
IMSH would have the following iterations:

Iteration 1: p1 = 〈1,2,3,4,11〉 of cost 4, Rp1 = {g2} . The shortest path in the modified network is q′1 =
〈1,7,3,2,8,11〉 of cost 20 (in G′). These paths are SRLG-disjoint, but an interlacing exists, and after
removing that interlacing the resulting path pair is:

– p′1 = 〈1,2,8,11〉 of cost 11, Rp′1
= {g1,g2};

– p′′1 = 〈1,7,3,4,11〉 of cost 12, Rp′′1
= {g1,g3}.
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Because Rp′1
∩Rp′′1

= {g1} the path pair is not SRLG-disjoint and hence is not admissible.
Iteration 2: p2 = 〈1,2,8,11〉 of cost 11, Rp2 = {g1,g2} . The shortest path in the modified network is q′2 =
〈1,5,6,11〉 of cost 160 (in G′), Rq′2

= /0. There is no interlacing, and the resulting path pair is:
– p′2 = 〈1,2,8,11〉 of cost 11, Rp′2

= {g1,g2};
– p′′2 = 〈1,5,6,11〉 of cost 160, Rp′′2

= /0;
which is SRLG-disjoint. The best solution is updated: (p,q) = (〈1,2,8,11〉,〈1,5,6,11〉), and c(p,q) =
171.

Iteration 3: p3 = 〈1,7,3,4,11〉 of cost 12, Rp3 = {g1,g3,} . The shortest path in the modified network is
q′3 = 〈1,5,6,11〉 of cost 160, Rq′3

= /0. There is no interlacing, and the resulting path pair is:
– p′3 = 〈1,7,3,4,11〉 of cost 12, Rp2 = {g1,g2};
– p′′3 = 〈1,5,6,11〉 of cost 160, Rp2 = /0;

which is SRLG-disjoint. The best solution is not updated because c(p′3,p
′′
3 )
= 172 is greater than c(p,q) =

171.
Iteration 4: p4 = 〈1,7,3,2,8,11〉 of cost 21, Rp4 = {g1,g3} . The shortest path in the modified network is

q′4 = 〈1,2,3,4,11〉 of cost 3 (in G′), Rq′4
= {g2}. These paths are SRLG-disjoint, but an interlacing exists,

and after removing that interlacing the resulting path pair is:
– p′4 = 〈1,7,3,4,11〉 of cost 12, Rp′4

= {g1,g3};
– p′′4 = 〈1,2,8,11〉 of cost 160, Rp′′4

= {g1,g2};
Because Rp′4

∩Rp′′4
= {g1} the path pair is not SRLG-disjoint and hence is not admissible.

Iteration 5 p5 = 〈1,9,10,11〉 of cost 156.
Because c(p,q) ≤ 2cp5 (171≤ 2×156) the algorithm would end considering that the best solution found
so far, of cost 171, is the optimal solution.

It can be easily seen that at the 6-th iteration, with p6 = 〈1,5,6,11〉 of cost 160, Rp6 = /0, in the modified
graph q′6 = 〈1,2,3,4,11〉 of cost 4 (which coincides with p1), Rp1 = Rq′6

= {g2}, would result in the path
pair:

– p′6 = 〈1,2,3,4,11〉 of cost 4, Rp′6
= {g2}

– p′′6 = 〈1,5,6,11〉 of cost 160, Rp′′6
= /0 ;

which is SRLG-disjoint an has cost 164. In this case cp′6
< cp6 and the optimal solution was not found when

the seed path was p1 = p′6.
However, in a network where the SRLGs are strictly local (that is all the edges in each SRLG have the

same node in common), if pi and q′i are SRLG-disjoint, the interlacing removal will never result in a non
SRLG-disjoint solution (as in iteration 1 of this example).
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