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Abstract

A new recursive heuristic is proposed to calculate a short-
est simple path, from a source node to a destination node,
that visits a specified set of nodes in a network. To pro-
vide survivability to failures along the path, the proposed
heuristic is modified to ensure that the calculated path
can be protected by a node-disjoint backup path. Addi-
tionally, the case when both paths in the disjoint path
pair are required to visit specific sets of nodes is stud-
ied and effective heuristics are proposed. An evaluation
of the solutions of the heuristics is conducted by com-
paring with results from an integer linear programming
(ILP) formulation for each of the considered problems,
and also with previous heuristics. The ILP solver may
require a significant amount of time to obtain a solution,
especially in large networks, which justifies the need for
effective, computationally efficient heuristics for solving
these problems.

Keywords: Resilient routing, visiting a given set of
nodes, min-sum, heuristics, node-disjoint path pair, path-
based formulation.

1 Introduction

Communication networks have a very important role in
today’s society. Many services require uninterrupted ser-
vice even in the presence of challenges [20]. An overview
on resilience, strategies for attaining resiliency and surviv-
ability in communication networks can be found in [24].

Network service providers, depending on service level
agreements, may need to ensure distinct levels of re-
siliency per service, which leads to the introduction of the

concept of Quality of Resiliency classes [5,6,23]. Network
recovery can be ensured using protection (pre-designed
restoration) or rerouting (restoration after fault detec-
tion).

Routing with path protection seeks to obtain a pair of
node (or arc) disjoint paths (the active path and the pro-
tection path). In this context it is important to evaluate
the survivability level of a given network, also in a ge-
ographical manner, which is of paramount important in
the case of disaster-based resilience. Related with this
last aspect in [21] a relevant set of graph metrics that
characterize path diversity in a given graph, also taking
into account geographic aspects, are proposed. The eval-
uation of the fitness of geographic graph generators for
representing realistic physical networks is studied in [3].

Sometimes it is necessary to establish a path with spec-
ified nodes. These nodes may have been chosen due
to inter-operator’s agreements, or due to network man-
agement and operational constraints, such as transiting
optical nodes that support wavelength conversion. An
emerging scenario where specific nodes may be required
for some network flows is deep packet inspection of traffic
where a subset of network nodes are equipped with deep
packet security monitoring capabilities. These security in-
spections may help to prevent disasters due to malicious
attacks on the network or end users. For an overview of
network resilience issues see [18] and for an overview of
security challenges in communication networks see [12].

Very few works address the problem of calculating a
shortest path from a source node to a target node that
visits a given set of nodes. This problem was first pointed
out by Kalaba [16] and the first attempt to solve this
problem is due to Saksena and Kumar [22], where the
authors sought to develop an exact algorithm, using Bell-
man’s optimality principle, for calculating a shortest path
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(possibly with cycles) that visits a specified set of nodes.
In their approach, they consider the optimal path must
be composed of segments that belong to the set of short-
est paths between the nodes in the set of specified nodes
and the shortest paths between the specified nodes and
the source and target nodes. However their algorithm
(designated hereafter SK66) is not correct. Dreyfus [11]
questioned their approach because it did not necessarily
obtain the minimum cost solution. Bajaj [1] introduced
relevant modifications to correct the algorithm by Sak-
sena and Kumar [22]. Additionally he also proposed an
algorithm for solving the problem when the order of the
nodes to visit is known – in both cases cycles are allowed.

Ibaraki in [15] considered separately the problem of
calculating a shortest loopless path that visits a given
set of nodes and a shortest path (possibly with cycles)
that visits a set of specified nodes. Two approaches to
obtain a shortest loopless path visiting a given set of
nodes, one based on dynamic programming and the other
based on the branch and bound principle, are proposed by
Ibaraki [15]. Computational results in [15] suggest that
the algorithm based on dynamic programming is less effi-
cient than the algorithm based on branch and bound prin-
ciple. However for the case of a single mandatory node
v, the optimal solution can be easily obtained through an
algorithm that computes two disjoint shortest paths, as
is the case of Suurballe algorithm [26], adding two ficti-
tious nodes to the graph and also splitting the mandatory
node into two nodes v′ and v′′. One fictitious node is to
be connected through fictitious links to the source and to
the destination nodes and the other fictitious node is to
be connected to v′ and to v′′. After two disjoint shortest
paths between the fictitious nodes are computed, the de-
sired path will be the concatenation of the two paths after
removing the fictitious nodes and the respective connec-
tion links from those paths.

Vardhan et al. [28] propose an algorithm to find a sim-
ple path where the sequence of the nodes to visit is given.
The authors point out that if the ordering of the set of
nodes to visit is relaxed, then a re-ordering of the nodes
using a depth first transversal can improve the perfor-
mance of the algorithm. Note that the cost of the path is
not taken into account in their approach.

In the context of planning a travel route, arriving in
time to meet a deadline can be the main concern. Wu et
al. [29] formulate a problem with the objective to calcu-
late a path that has 100% probability of punctual arrival
and also has the fewest number of road links. Reducing
the number of road links should reduce the number of
crossings and/or traffic lights which may lower the travel

time and its variability. They extend their approach to
consider the case where travellers add several fixed loca-
tions to visit. To solve this problem they propose a for-
mulation that requires sub-tour elimination, which they
implement by adding constraints. They compare their
approach with the enumeration method, for one, two and
three specified locations to visit, and claim their formu-
lation requires less CPU time.

In [4] the authors evaluated the GeoDivRP routing pro-
tocol with minimum-cost and the delay-skew requirement.
The geodiverse routes required by this protocol are cal-
culated by the heuristic iWPSP. These routes are a set
of k geodiverse paths, where each path is separated by
a distance d, with respect to the reference shortest path,
while ensuring the skew value (the difference in delay time
across the set of paths) is satisfied. To achieve this goal,
and using (initially) the shortest path as reference, iW-
PSP selects an intermediate node (waypoint) where an
additional path must pass, to ensure geodiversity. Each
geodiverse path is obtained through the concatenation of
two shortest paths between the waypoint and two pre-
viously obtained end nodes. These end nodes are the
source neighbour and destination neighbour nodes that
are d distance separated from the source and destination
nodes, respectively.

Andrade [7,8] developed new formulations for address-
ing the determination of a shortest loopless path, without
cycles, from a source node s to a destination node t, that
visits only once all nodes of a specified set. Three formu-
lations are presented in [8]: Q2, Q3 and Q4 – note that
Q2 and Q3 had already been introduced in [7]. Model Q2
is based on an adapted version of the cycle elimination
constraints of the spanning tree polytope; model Q3 is a
primal-dual based mixed integer formulation; and model
Q4 is derived from a flow-based compact model for the
Steiner traveling salesman problem (TSP). The numeri-
cal results presented in [7] show that the new primal-dual
based mixed integer formulation, designated Q3, is more
effective than Q2. Numerical experiments in [8] show
that Q3 is the best compromise model, in terms of execu-
tion time and in handling large instances for solving the
problem.

In [11], Dreyfus proposes an approach for obtaining a
shortest path (possibly with cycles), from a source node
to a target node that visits a given set of nodes, and
concludes that the problem can not be easier than the
traveling salesman problem of dimension k, where k − 2
is the number of given nodes to be visited.

In [13] algorithm SK66 was adapted to ensure only
loopless paths were considered admissible, and some mod-
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ifications were introduced to improve the original algo-
rithm effectiveness in the context of loopless path cal-
culation; this new improved version was designated SK.
The problem of finding a protected loopless path visiting a
given set of nodes was also addressed in [13]. Based on SK
two new heuristics were proposed (ASK and BSK); hav-
ing verified that ASK was computationally more effective
than BSK, but that BSK often found solutions ASK was
unable to obtain, algorithm ABSK [13] was proposed,
where ASK is used followed by BSK if necessary.

In [14] the algorithm VSN was proposed to visit a set
S of nodes (in a path from s to t). The main idea of
algorithm VSN is to build an auxiliary graph, with node
set {s, t} ∪ S, where a shortest paths visiting all nodes in
the graph can be obtained using a k-shortest path enu-
meration algorithm like Yen’s [31]. A solution can only
be found in a short time if the the number of nodes of
S is small (less than 9), otherwise generating paths un-
til finding paths visiting all nodes may take a very long
time. The obtained path is expanded into a path in the
original network. If the resulting expanded path does not
contain any cycle it is a feasible solution to the min-cost
loopless path visiting specified nodes, and the algorithm
ends. If the obtained path contains a cycle, the k-shortest
paths method keeps generating paths as long as they have
the same minimum cost. If these actions do not result in
finding a loopless path visiting all nodes in S, then the
strategy is to successively delete one arc from the original
network, and repeat the above procedure (which starts
by recomputing the auxiliary graph) until a solution is
found, or a certain number of arcs have been deleted, or
no paths from s to t can be obtained in the auxiliary
graph. In order to provide survivability, a trap avoid-
ance approach, inspired by [30], was incorporated in the
VSN heuristic, resulting in the VTA and MSVTA heuris-
tics [14]. VTA ensures the calculated active path can be
protected by a node-disjoint path, and MSVTA obtains
a min-sum node-disjoint path pair where each path must
visit a different set of specified nodes.

The contribution of this work is a recursive heuristic to
calculate a shortest path that visits a given set of nodes,
designated PSN, and its extension PPSN to provide a
node-disjoint backup, which were first proposed in [17].
Here, and based on the mentioned recursive heuristic, the
problem of calculating a min-sum pair of node-disjoint
simple paths, each visiting a set of nodes, is also ad-
dressed, and two new heuristics are proposed for solving
it.

Experimental results in [17] and [14] showed that SK
and ABSK were the algorithms with the worst perfor-

mance. Hence in the present work we will evaluate the
proposed heuristic only with respect to the ones intro-
duced in [14]. Moreover an improved version of PPSN,
designated PSNTA for determining a protected path vis-
iting specified nodes is proposed. This problem is also
formulated as path-based optimization model, and results
are presented that justify the use of the heuristic in large
networks.

The remainder of the paper is structured as follows.
In Section 2 the notation is introduced, the problems are
formally defined and a path-based optimization model is
presented. In Section 3 a new and effective heuristic is
proposed for the computation of a loopless path visiting
specified nodes. The algorithm is then modified to take
into account the constraint that the obtained path must
be protected by a node-disjoint path. This approach is
further extended to address the problem of calculating a
min-sum pair of node-disjoint simple paths, each visiting
a set of nodes. The trap avoidance approach, proposed
in [14], is also explored for node-disjoint path pair calcu-
lation. Computational results are presented in Section 4.
Section 5 concludes the paper.

2 Notation and problem formulations

This work addresses three problems. The first one is the
calculation of a shortest loopless path, from a source to a
destination node, visiting a given set of nodes, designated
as problem P0. The second problem, designated as prob-
lem P1, consists in solving P0 with the constraint that the
obtained path can be protected by a node-disjoint path.
The third problem P2, consists in obtaining a min-sum
node-disjoint simple path pair, such that each path must
visit a different given set of nodes. A loopless path must
visit each of its nodes only once. Hence, unless explicitly
stated otherwise, all paths are considered to be loopless.

2.1 Notation

We adopt the following notation. A directed graph
G = (V,A) is defined by a set of vertices (or nodes) V =
{v1, . . . , vn}, and a set of directed arcs A = {a1, . . . , am},
where n and m are the number of nodes and arcs, re-
spectively, of G. Each arc ak = (vi, vj), with vi, vj ∈ V
(vi 6= vj), is an ordered pair of elements belonging to V ;
vi is the tail (or source) of the arc and vj is its head (or
destination). Arc (vi, vj) is said to be emergent from node
vi and incident on node vj .

A path from a source node s to a destination node t,
(s, t ∈ V ), is represented by p = 〈s ≡ v1, v2, . . . , vk ≡ t〉,
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with (vi, vi+1) ∈ A,∀i ∈ {1, . . . , k − 1}, where k is the
number of different nodes in the path. A path from a
node vi to a node vj may also be represented by pvivj .
If a path between a given pair of nodes does not exist,
it is represented by the empty set (∅). A segment is a
continuous sequence of nodes that are part of a path.

The sets of nodes (arcs) of path p will be represented by
Vp (Ap). The concatenation of paths pvivj and pvjvl is the
path pvivj �pvjvl from vi to vl, which coincides with pvivj
from vi to vj and with pvjvl from vj to vl. Let p and p̂ be
two paths such that the first (last) node of p is the last
(first) node of p̂. Let p©� p̂ represent the concatenation of
those paths which will coincide with p � p̂ or (exclusive)
p̂ � p. Moreover p©� ∅ (or ∅©� p) results in p. Given a path
p such that p = p̂©� ṗ, the operation of removing p̂ from
p, resulting in path ṗ, will be represented by p 6©� p̂ or by
p̂ 6©� p.

A pair of paths from s to t is represented by (p, q). The
paths are node-disjoint if and only if Vp∩Vq = {s, t}. Two
paths that can be concatenated, like pvivj and pvkvi , are
node-disjoint if Vpvivj

∩Vpvkvi
= {vi}, that is if they only

share the possible concatenation node. Each arc (vi, vj) ∈
A is associated with a strictly positive cost w(vi, vj), and
the cost Dp of a path p is the sum of the costs of the arcs
constituting the path: Dp =

∑
(vi,vj)∈Ap

w(vi, vj).

Let Pst represent the set of all paths from s to t in the
network. The set of nodes that must be visited by the
active or working path is designated by S. In the case
the backup path must also visit a set of specified nodes
this set is denoted by B.

The algorithms require the following additional nota-
tion. Let Pp designate the set of shortest paths between
each distinct pair of nodes in S, excluding all other nodes
in S and in {s, t}. Also, Pp contains a shortest path from
s to the nodes in S and a shortest paths from the nodes in
S to t, in both cases calculated excluding all other nodes
in S together with t and s, respectively. The elements of
Pp are, potentially, segments of the solution of the prob-
lem P0. The rest of the notation, closely related with
algorithms, will be defined as needed.

2.2 Formulation of Problems

Problem P0, which finds a shortest loopless path p∗1, from
s to t, visiting a set of specific nodes S, can be stated as
follows:

p∗1 = arg min
p1∈Pst

Dp1 (1)

s.t. Vp1 ∩ S = S (2)

An ILP formulation to obtain p∗1 can be found in [8] and
is used in the numerical results section for comparative
evaluation of the heuristics.

Problem P1 seeks to obtain a shortest path p∗1, visiting
the set of nodes S, such that it can be protected by a
node-disjoint path p∗2, and can be written as:

(p∗1, p
∗
2) = arg min

p1,p2∈Pst

Dp1 (3)

s.t. Vp1 ∩ S = S, Vp1 ∩ Vp2 = {s, t} (4)

In [13] we proposed an ILP formulation for obtaining
(p∗1, p

∗
2), which is an adaptation of the formulation in [7,8]

with the additional constraint that the obtained path can
be protected by a node-disjoint path.

Problem P2 seeks to obtain a pair of node-disjoint sim-
ple paths, each visiting a specified set of nodes S and B
respectively, such that the sum of the costs of the paths
is minimum.

(p∗1, p
∗
2) = arg min

p1,p2∈Pst

Dp1 +Dp2 (5)

s.t. Vp1 ∩ S = S, Vp2 ∩B = B

Vp1 ∩ Vp2 = {s, t} (6)

An ILP formulation to obtain (p∗1, p
∗
2) in equations (5)-(6)

can be found in our previous work [14], which is also an
adaptation of the formulation in [7, 8].

The formulations of optimization problems P1 in [13]
and P2 in [14] are arc-flow models. However, one can
formulate a path-based optimization model for the prob-
lems. Here we present the formulation for P1 to illustrate
the complexity. Let PS

st represent the set of all paths
from s to t that visit the specified set of nodes S and let
P S̄

st be the set of paths from s to t that do not visit the
nodes in S. Let ds,t denote the volume of traffic demand
from s to t and let ce be the unit cost of capacity on edge
(link) e ∈ A. The variable te is the amount of traffic de-
mand routed on edge e ∈ A. The decision variable ys,t,k
is equal to the demand routed on the kth path in PS

st.
Similarly, zs,t,k is equal to the demand on the kth backup

path in P S̄
st. We define binary flow variables ws,t,k which

are equal to 1 if the kth path of PS
st is selected for the

working path, otherwise it is 0. Similarly, bs,t,k is set to 1

if the kth path of P S̄
st is chosen for the backup path and

is 0 otherwise. Also, δe,k is an indicator parameter that
is equal to 1 if the kth path of PS

st uses link e, otherwise
it is zero. Correspondingly, βe,k is an indicator parame-

ter that is equal to 1 if the kth path of P S̄
st uses link e,

otherwise it is zero. In like fashion, ψv,k is an indicator
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parameter which is equal to 1 if the kth path of P S̄
st uses

node v and ηv,k is an indicator parameter which is equal

to 1 if the kth path of P S̄
st uses node v.

min
∑
e∈A

cete (7)

s.t. ∑
k∈PS

st

ws,t,k = 1 (8)

ys,t,k = ws,t,kds,t ∀k ∈ PS
st (9)∑

k∈PS̄
st

bs,t,k = 1 (10)

zs,t,k = bs,t,kds,t ∀k ∈ P S̄
st (11)∑

k∈PS
st

δe,kys,t,k +
∑

k∈PS̄
st

βe,kzs,t,k ≤ te

∀e ∈ A (12)∑
k∈PS

st

ψv,kws,t,k +
∑

k∈PS̄
st

ηv,kbs,t,k ≤ 1

∀v ∈ V \ S \ {s, t} (13)

ys,t,k ≥ 0, zs,t,k ≥ 0

ws,t,k, bs,t,k, ψv,k, ηv,k binary variables.

In the problem above, the objective function is to min-
imize the cost of routing the traffic demand. The con-
straints (8) - (9) ensure that the demand is routed through
the specified nodes and only one working path is selected.
Constraints (10) - (11) route the demand on the disjoint
backup path along a single path. Constraint (12) relates
the working and backup traffic routed on a link to the
total traffic on a link. The set of constraints given by
(13) ensure the paths selected are node disjoint. Lastly
there are constraints to ensure the decision variables are
nonnegative and binary as appropriate. Note that pre-
processing for the optimization problem consists of using
a k-shortest path algorithm to determine Ps,t then pro-

cessing the paths into the sets PS
st and P S̄

st depending on
the set S. Typically, given the preprocessing, the path
formulations of ILP problems are more computationally
efficient than the arc formulations. However the compu-
tation time grows quickly with the path set size, thereby
limiting the size of network that can be studied. One can
also try to scale the model by solving the optimization
problem over a reduced search space by limiting the size
of PS

st and P S̄
st, but the results will be not be guaran-

teed to be optimal. For example one can simply restrict

the size of the two sets to a maximum size L or limit
them based on network structural properties such as a
hop count limit.

Here we provide some illustrative numerical results
showing how the accuracy and computation time changes
with a hop count limit on the path sets. We consider the
Polska network topology from SNDlib, which consists of
|V | = 12 nodes and |A| = 18 edges. We conducted numer-
ical experiments by randomly selecting a set of specific
nodes S and then considering every (s, t) pair not con-
taining nodes in S and solving the optimization problem
above using Matlab. This was repeated for 30 random se-
lections of S and the results averaged over all cases. The
demand ds,t and link cost ce were both set to 1. Fig. 1
shows the percent of feasible solutions found as the hop
count limit for PS

st and P S̄
st increases for different sizes of

|S|. Note that for |S| = 1 at a hop count of 8 all the
solutions can be found. However as the number of speci-
fied nodes S increases the hop count limit must increase
to find all of the feasible solutions. In fact for this net-
work, the hop count limit must be the maximum of 11 to
find all of the feasible solutions for |S| = 2, 3. The com-
putational time is largely determined by the hop count
limit. Fig. 1 shows the computational time of solution of
the optimization problem (k-shortest path computation
is not included) for |S| = 1 on a MacBook Pro 2.6GHz
Intel Core I7. The effect of increasing the size of S is
to slightly reduce the computational time as the number
of infeasible solutions increases with |S|. For example
with the maximum hop count of 11, the computational
times corresponding to |S| = 1, 2, 3 are 3.592, 3.534, 3.261
seconds respectively. Note the attempts to solve the op-
timization problem trading off optimality by using the
hop count limit to control the computation time for large
networks were unsuccessful as the sizes of PS

st and P S̄
st

increase rapidly with the size of the network. For exam-
ple, we were unable to get results for the Italia network
from [27] for hop counts greater than 8 within 24 hours.
Clearly, this approach can not be applied for large net-
works.

In the remainder of the paper we use the formulations of
the problems P1 and P2 above given in [14] to evaluate the
performance of the heuristics proposed here. For problem
P0, as in [14], we used the Q3 formulation [8] to evaluate
the accuracy of the heuristics.
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Figure 1: Polska network results

3 Heuristic for the computation of a
Path with Specified Nodes, with or
without protection

The main idea of the heuristic is to recursively construct
the path p′, which starts with a segment which is the
minimal cost path among the elements of Pp (set of paths
between the nodes in S or between these nodes and s and
t). Then the heuristic builds the rest of the path by suc-
cessive concatenation of shortest paths in P ′p (initially a
copy of Pp), such that, in each iteration, the new added
segment is the one with the lowest cost among those that
can be concatenated with the current segment of p′. This
approach may fail because the path under construction
can not lead to a valid solution. In this case the algo-
rithm backtracks, removing the last added segment to the
path under construction. This segment will be forbidden,
from this point onwards, for the rest of the construction
of the path. As this strategy does not ensure a good
solution, several elements in Pp are tried out (up to a
chosen value Upperbound) to be the starting segment of
p′, as can be seen in Algorithm 1. Notice that Algorithm
1 makes extensive use of a shortest path calculation de-
noted shortestPath and we utilize Dijkstra’s algorithm for
the calculation. In function shortestPath the first two ar-
guments are the source node and target node, and the
third argument is the set of nodes that induces the sub-
graph of G where a shortest path is calculated.

Algorithm 1 (PSN) first calculates Pp. Specifically, the
first for loop in Algorithm 1 (lines 3-7) determines a short-
est paths between all node pairs in S. The second outer

for loop (lines 8-13) finds shortest paths from s and t
to the nodes in S. These paths are added to the set of
shortest routes between nodes in S to form the set Pp.
The following while loop in Algorithm 1 (lines 18-30) de-
termines the set of all valid paths Pst, by selecting the
starting segment of p′, and initializes the input parame-
ters of the recursive function Pcompute defined by Algo-
rithm 2. Note that the calculated path p′, obtained in
line 25, is the concatenation of the initial chosen segment
with the output of the recursive function Pcompute. The
algorithm ends (line 32) by selecting the lowest cost path
in set Pst.

As already mentioned, Algorithm 2 (function Pcom-
pute), builds the path from source node s to destination
node t, by successive concatenation of segments, or ends
with an incomplete path which can be the empty path.
Let p′(r) represent a segment of the final path obtained
through the concatenation of r segments; V ′S is the set of
mandatory nodes not in p′(r), including s and t nodes;
FP is the set containing sets FP (r) of segments that are
forbidden to be concatenated with p′(r); P ′p is the set
containing sets P ′p(r) of candidate segments that may be
concatenated with p′(r).

The stopping conditions of Algorithm 2 are in lines 2-3:
all the specified nodes are in the path or it is no longer
possible to find a valid path. Then the algorithm en-
ters in a cycle (lines 4-14) to determine the next segment
to be concatenated with p′(r). The selected segment in
each iteration, the one of minimum cost among possi-
ble candidates (see line 13) is evaluated by functions ex-
istsCycle and goodSeg. These functions are described by
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Algorithm 1: Heuristic for the computation of a Path
with Specified Nodes (PSN) or a Protected Path with
Specified Nodes (PPSN)

Data: G = (V,A), s, t, S ⊂ V .
Result: p∗st, lowest cost path in Pst visiting S.

1 begin
2 Pst ← ∅, Ps ← ∅, counter ← 0, p∗st ← ∅
3 for vi ∈ S do
4 Pvi ← ∅
5 for vj ∈ S ∧ vj 6= vi do
6 pvivj ←

shortestPath(vi, vj , V \S \ {s, t}∪ {vi, vj})
7 Pvi ← Pvi ∪ {pvivj}

8 for vi ∈ S do
9 if Pvi = ∅ then return

psvi ← shortestPath(s, vi, V \ S \ {t} ∪ {vi})
10 pvit ← shortestPath(vi, t, V \ S \ {s} ∪ {vi})
11 Pvi ← Pvi ∪ {pvit}
12 Ps ← Ps ∪ {psvi}
13 if Ps = ∅ ∨ ∀vi ∈ S 6 ∃pvit ∈ Pvi then
14 return

15 Pp ← ∪vi∈S∪{s}Pvi

16 P ′p(1)← Pp

17 while Pp 6= ∅ ∨ counter < UpperBound do
18 pvivj ←

arg minpvivj∈Pp

∑
(vm,vn)∈pvivj

w(vm, vn)

19 p′(1)← pvivj
20 Pp ← Pp \ {pvivj}
21 V ′S ← S ∪ {s, t} \ {vi, vj}
22 P ′p(1)← P ′p(1) \ {pvivj}
23 FP (r)← ∅, r = 1, 2, . . . , |S|
24 P ′p (r)← ∅, r = 2, . . . , |S|
25 p′ ← pvivj©� Pcompute(p′(1), s, t, V ′S , P

′
p, FP )

26 P ′p(1)← P ′p(1) ∪ {pvivj}
27 if p′ is a valid path from s to t then
28 Pst ← Pst ∪ {p′}
29 counter ← counter + 1

30 if Pst 6= ∅ then
31 p∗st ← arg minpst∈Pst

∑
(vm,vn)∈pst w(vm, vn)

32 return

Algorithms 3 and 4, respectively.

If the while cycle ends with an empty path, i.e., no
segment was found to concatenate with p′(r), Algorithm
2 backtracks – see lines 19-22 – removing the last added

Algorithm 2: Pcompute
(
p′(r), s, t, V ′S , P

′
p(r), FP

)
Data: G = (V,A); s and t; p′(r) which is the

concatenation of r segments; V ′S ; FP , set of
sets FP (r) of forbidden concatenation
segments for p′(r); P ′p, set of sets P ′p(r) of
candidate concatenation segments of p′(r).

Result: The concatenation of each segment of p′

with a first selected segment until p′ is: a
loopless path starting at s, passing through
all nodes in S, and ending at t with a
disjoint protection path (if required); or an
incomplete path.

1 begin
2 if V ′S = ∅ then return ∅ pvlvk ← p′(r)
3 if 6 ∃ pvivl ∨ pvkvj ∈ P

′
p(1) \ FP (1) then return

∅ cycles← true
4 while cycles /* search feasible segment */

5 do
6 if vl 6= s ∧ vk 6= t then
7 P ′′p ←

{
pvivj ∈ P ′p(r) \ FP (r) :

8 (vi = vk ∧ vj ∈ V ′S) ∨ (vl = vj ∧ vi ∈ V ′S)}
9 if vl = s then

10 P ′′p ←
{
pvkvj ∈ P

′
p(r) \ FP (r) : vj ∈ V ′S

}
11 if vk = t then
12 P ′′p ←

{
pvivl ∈ P

′
p(r) \ FP (r) : vi ∈ V ′S

}
13 pvivj ← arg minP ′′p

∑
(vm,vn)∈pvivj

w(vm, vn)

14 if pvivj = ∅∨(
¬existCycle(pvivj , p

′(r), s, t, V ′S , P
′
p, FP )∧

15 goodSeg(pvivj , p
′(r), s, t, V ′S , P

′
p, FP )

)
then

16 cycles← false

17 if pvivj = ∅ ∧ r = 1 then return ∅ if pvivj = ∅
/* backtracking */

18 then
19 pvlvk ← p′(r) \ p′(r − 1)
20 FP (r − 1)← FP (r − 1) ∪ {pvlvk}
21 FP (r)← ∅
22 if vl ∈ Vp′(r−1) then V ′S ← V ′S ∪ {vk} else

V ′S ← V ′S ∪ {vl} return
pvlvk 6©� Pcompute

(
p′(r − 1), s, t, V ′S , P

′
p, FP

)
23 else
24 if vi ∈ V ′S then V ′S ← V ′S \ {vi} else

V ′S ← V ′S \ {vj} P ′p(r + 1)← P ′p(r) \ {pvivj}
25 p′(r + 1)← pvivj©� p′(r) /* add segment */

26 return
pvivj©� Pcompute

(
p′(r + 1), s, t, V ′S , P

′
p, FP

)
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Algorithm 3: existCycle
(
pvivj , p

′(r), s, t, V ′S , P
′
p, FP

)
Data: G = (V,A); s and t; p′(r), path with r

segments; V ′S ; P ′p, set of sets P ′p(r); FP , set of
sets FP (r); pvivj , candidate segment under
evaluation.

Result: False, if the new segment pvivj is
node-disjoint with p′(r), otherwise is true.
In the latter case, if a new segment from vi
to vj can be computed then P ′p(r) is
updated, otherwise pvivj becomes forbidden
(both P ′p(r) and FP (r) are updated).

1 begin
2 if ∃vk 6= vi, vj : vk ∈ pvivj ∧ vk ∈ p′(r) then
3 p′vivj ←

shortestPath(vi, vj , V \ V ′S \ Vp′(r) ∪ {vi, vj})
4 P ′p(r) ← P ′p(r) \ {pvivj}
5 if p′vivi = ∅ then FP (r)← FP (r) ∪ {pvivj}

else P ′p(r) ← P ′p(r) ∪ {p′vivj} return true

/* there was a cycle */

6 else return false /* no cycle */

segment from the solution being built, not before adding
the segment to the set FP (r−1) of forbidden segments for
p′(r−1). Otherwise the obtained segment is concatenated
with p′(r), creating p′(r + 1) and the relevant sets are
updated.

In Algorithm 3 (function existCycle), given a candidate
path segment pvivj to be concatenated with p′(r), the
routine returns false if the resulting path does not con-
tains a cycle; otherwise, if a new segment from vi to vj ,
node-disjoint with p′(r), is successfully calculated then it
replaces the previous segment in P ′p(r); if no such path
could be obtained, the segment from vi to vj becomes a
forbidden segment (is moved from P ′p(r) to FP (r)).

Algorithm 4 (function goodSeg) evaluates if the con-
catenation of pvivj with p′(r) will prevent a path from s
to t to be obtained. If that is the case pvivj is moved
from P ′p to FP (r). Furthermore, if P1 is the problem
being solved, this function also evaluates if the segment
resulting from the concatenation of pvivj and p′(r) allows
one to obtain a path from s to t which is node-disjoint
with the path being built. The inclusion of this additional
test converts algorithm PSN into the algorithm that cal-
culates Protected Path with Specified Nodes (PPSN). In
this case, at the end of the algorithm the backup path
can be calculated as a shortest path node-disjoint with

Algorithm 4: goodSeg
(
pvivj , p

′(r), s, t, V ′S , P
′
p, FP

)
Data: G = (V,A); s and t; p′(r), path with r

segments; V ′S , set of mandatory nodes to be
included; P ′p, set of sets P ′p(r); FP , set of sets
FP (r); pvivj , to be evaluated

Result: True, if the new segment pvivj
concatenated with p′(r) may possibly lead
to a solution, otherwise is false and P ′p(r),
FP (r) are updated.

1 begin
2 pvlvk ← pvivj©� p′(r)
3 if (vl = s ∧ vk = t ∧ |V ′S | − 1 6= 0)
4 ∨(vl 6= s∧
5 shortestPath(s, vl, V \ V ′S \ Vpvlvk

∪ {vl, s}) = ∅)
6 ∨ (vk 6= t∧
7 shortestPath(vk, t, V \ V ′S \ Vpvlvk

∪ {vk, t}) = ∅)
8 ∨ (path requires protection∧
9 shortestPath(s, t, V \ V ′S \ Vpvlvk

∪ {s, t}) = ∅)
10 then
11 P ′p(r)← P ′p(r) \ {pvivj}
12 FP (r)← FP (r) ∪ {pvivj}
13 return false /* not good */

14 else
15 return true /* possibly good */

the path constructed by PPSN.
If the objective is to solve problem P2 then two actions

are required:

• the active path is calculated in the network where
the nodes in set B have previously been removed;

• a shortest path calculation in line 9 of Algorithm 4
(function goodSeg) is replaced by PSN, in a network
where the nodes in set B have been added back and
the nodes in set |S| have been removed.

This allows one to verify if a node-disjoint path (visiting
the second set of nodes) with the one under construction
exists, resulting in the algorithm MSPSN.

In Fig. 2 an illustrative example of Algorithm PSN is
presented, with s = 0, t = 5 and S = {2, 3, 4}. On the
left and right sides of each figure are the original graph
and the subgraph, respectively. The arcs selected to be
in the path are chosen in the subgraph and marked by
a full line in both graphs. In Fig. 2(a) each arc of the
subgraph corresponds to the paths in Pp (see line 15 of
Algorithm 1). Then, according to line 18 of Algorithm
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1), the first selected arc in the subgraph is the one of
minimum cost, arc (3, 5) which corresponds to arc (3,5)
in the original network. Then function Pcompute is called
to build the remaining path. This function looks for the
next minimum cost arc that can be concatenated (at left
or right) with the existing sub-path. The second selected
arc in the subgraph is (2,3) concatenated to candidate
path – arc (2,3) corresponds to sub-path 〈2, 8, 3〉 in the
original network.

The third candidate arc to be considered is (4,2) – see
Fig. 2(b). However from node 4 it is not possible to reach
node 1 (the source); this problem is detected by function
goodSeg) – see line 5 of Algorithm 4. Therefore arc (4,2)
in the subgraph can not be added to the solution under
construction and must be discarded. As there is no alter-
native to continue building the path, the algorithm needs
to backtrack.

At line 19 of Algorithm 2, the last added segment (path
pvlvk = 〈2, 8, 3〉), represented by arc (2,3) in the sub-
graph, is identified for removal from the candidate path
– see Fig. 2(c). After updating the relevant sets, the seg-
ment pvlvk is removed from the present solution, using
backtracking, at line 22 of Algorithm 2.

Next, the selected candidate arc is (4,3) which is con-
catenated to the present solution; this is followed by arc
(2,4), also concatenated to the path by function Pcom-
pute. Then Pcompute is called once more to link the
source node to the candidate path, obtaining the solu-
tion shown in Fig. 2(d), which in this case is the optimal
solution 〈1, 6, 2, 7, 4, 9, 3, 5〉 of cost 12. In [17] an addi-
tional example can be found, where cycles are detected
and solved.

3.1 Algorithms obtained using the trap
avoidance approach

The trap avoidance approach proposed in [14], which
combined with algorithm VSN resulted in algorithms
VTA and MSPTA for solving problems P1 and P2, re-
spectively, was also used in the present work.

In the case of problem P1, once a candidate active path
is calculated, the nodes in S are removed but the arcs in-
cident on intermediate nodes (not in S) of the candidate
active path have their cost increased by a sufficient large
amount before the backup path is calculated (using Dijk-
stra’s algorithm [9] in this modified graph). If the active
and backup path share a node (the conflicting node), then
an arc incident to the shared node is selected for removal
before attempting again to obtain a candidate active path
(for more details see [14]). This process is repeated until

no active path can be obtained or a node-disjoint path
is calculated. This algorithm will be designated PSNTA
and is detailed in Algorithm 5.

If the problem to be solved is P2, the process is similar,
but the nodes in set B are removed before calculating
the active path and the backup path is calculated using
algorithm PSN with B being the set of nodes to visit in
the modified network. This variant will be designated
MSPTA. The corresponding algorithm can be obtained
modifying Algorithm 5 as follows: remove nodes B from
G in line 7 and replace a shortest path calculation by
PSN, with specified node set B, in line 15.

Note that the introduction of the trap avoidance ap-
proach requires also the modification of Algorithm 4,
where lines 8-9 need to be eliminated.

4 Results

In this work we will compare VSN, VTA and MSVTA
(proposed in [14]) with PSN, PPSN/PSNTA and
MSPSN/MSPTA respectively.

Five networks (newyork, norway, india35, pioro40
and germany50) from the SNDlib [19] repository, were
used to evaluate the heuristics; the cost of each edge
was the first module cost as given in SNDlib. An
additional set of networks, with 500 nodes, arc cost
between 1 and 100 and with an average degree of
around 7 (sum of the in and out degrees), was generated
with the Doar-Leslie model [10] using Georgia Tech
Internetwork Topology Models software (GT-ITM) [2]
(http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html).
If the generated networks contained spurs, they were
removed before solving problems P0, P1 and P2 (this
resulted in removing between 4 and 8 nodes), thus en-
suring the networks studied were biconnected. Although
these networks now have a number of nodes between
492 and 496, they will be referred in the text as the
500 node networks. To evaluate the performance of the
proposed heuristics in physical networks, like the ones
considered in [3], two more networks were considered:
the CORONET CONUS network with 75 nodes and
99 edges (http://www.monarchna.com/topology.html)
and the TeliaSonera network [25] with 21 nodes and 25
edges; the cost of each edge was set to the distance in km
(rounded to an integer) between the GPS coordinates
of end nodes The CORONET CONUS will be simply
designated CORONET here. In Table 1 are the main
characteristics of the used networks, where the average
node betweenness is unweighted.

10



Algorithm 5: Heuristic for the computation of a pro-
tected Path with Specified Nodes using Trap Avoid-
ance based approach (PSNTA)

Data: G = (V,A), s, t, S ⊂ V .
Result: p∗st, lowest cost path in Pst visiting S, that

can be protected by a node-disjoint path
(bst).

1 begin
2 FA← ∅ /* forbidden arcs */

3 try ← true
4 p∗st ← ∅ /* initially no solution */

5 bst ← ∅
6 while try = true do
7 G′ ← G(V,A \ FA) /* subgraph */

8 p← PSN(G′, s, t, S)
9 if p = ∅ then

10 try ← false /* failed */

11 else
/* Trap avoidance procedure */

12 G′ ← G /* saves G */

13 Removes from G arcs of p incident in S
14 Increases cost of all arcs (in G) incident in

v ∈ Vp \ S \ {s, t}
15 b← shortest path from s to t in G
16 if Vp ∩ Vb = {s, t} then

/* p and b are node-disjoint */

17 p∗st ← p /* feasible solution */

18 bst ← b /* backup path */

19 try ← false /* to end cycle */

20 else
21 a← arc incident in conflicting node
22 FA← FA ∪ a
23 G← G′ /* Restores G */

24 return (p∗st, bst)

The number of specified nodes was considered to be
equal to 2, 4, 8, 10 and 20, corresponding to a small,
medium and large size of S. The elements in each set S
were randomly generated, considering 20 different seeds.
For each set S of given nodes, 100 node pairs were ran-
domly generated for each network. However, for newyork
and norway, only |S| = 2, 4 was considered, due the
smaller number of nodes in these networks; also for in-
dia35, pioro40, germany50 and CORONET the maxi-
mum value of |S| was 10, for TeliaSonera was 8, and only
for the 500 node networks was the value |S| = 20 consid-

Average node Average node
Name |V | |A| degree diam. betweenness
newyork 16 49 6.13 3 5.38
norway 27 51 3.78 7 27.70
india35 35 80 4.57 7 33.03
pioro40 40 89 4.45 7 45.13

germany50 50 88 3.52 9 74.68
500 0 492 1760 7.15 6 579.47
500 1 496 1675 6.75 6 606.79
500 2 494 1667 6.75 6 603.19
500 3 494 1703 6.89 6 598.36
500 4 492 1791 7.28 6 573.54

CORONET 75 99 2.64 17 201.81
TeliaSonera 21 25 2.38 9 30.57

Table 1: Topological characteristics of the networks used

ered. Note that since the nodes in S are randomly gener-
ated, if |S|+ |{s, t}| is a significant percentage of the total
number of nodes, many of the problems will have no solu-
tion; moreover if the average node degree is low, for many
randomly generated problems, no solutions can be found.
The seeds were selected (by trial with the ILP solver) to
ensure that solutions exist for a large number of the 100
randomly generated node pairs, namely in the case of the
SNDlib networks. Although in optical networks the size
of S will in general be smaller in other contexts (for exam-
ple wireless sensor networks) the number of given nodes
may be larger.

Twenty samples were obtained for each network, and
95% confidence intervals around the estimated mean were
calculated, appearing in the graphs as error bars.

The computational platform was a Desktop with 16 GB
of RAM and an Intel(R) Core(TM) i7-3770 CPU @
3.40GHz processor, with Kubuntu 14.04 and the CPLEX
solver, version 12.6 [32]. In order to obtain solutions in a
reasonable time, a limit of 5 minutes per node pair for the
CPLEX solver was established. In PSN and PPSN, the
recursive function PCompute was implemented in itera-
tive form, and the backtracking was limited, depending
on |S| and network size, seeking to attain compromise be-
tween the resolution ratio and accuracy of the solutions.

Results will be presented sequentially for Problems P0,
P1, P2, for the SNDlib networks followed by the 500 node
networks in Sections 4.1, 4.2 and 4.3, respectively. Then
in Section 4.4, results obtained with PSN for CORONET
and TeliaSonera networks are presented, to illustrate the
potential of the proposed heuristic to solve problem P0.
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4.1 Results regarding solving Problem P0

The results obtained when solving Problem P0 are shown
in Fig. 3 and Fig. 4 for the networks from SNDlib [19]
and for the 500 node networks, respectively.

The number of feasible solutions found by solving prob-
lem P0 for the five SNDlib networks is very close to 100%
for PSN – see Fig. 3(a). Algorithm VSN has a slightly
lower performance than PSN, which is more visible for
germany50 network.

Regarding the accuracy of the obtained solutions, the
relative error (with respect to the solution found by the
ILP solver) is shown in Fig. 3(b), where VSN has less than
3% average relative error for |S| = 2, 4, 8, 10; PSN for
|S| = 2 has consistently the smallest relative error, how-
ever its error grows with |S| and is usually larger than the
relative error of VSN for |S| = 4, 8, 10; for PSN the high-
est relative error of the path cost, on average, is around
6% for the germany50 network, when |S| = 10.

The CPU time of both heuristics is similar for |S| =
2, 4; for |S| = 8 the CPU time of PSN is slightly lower
than the CPU time of VSN, and both are much smaller
than the CPU time of CPLEX, as can be seen in Fig. 3(c).
The advantage of the new approach (PSN), regarding
CPU time, is clear for |S| = 10 where the CPU of PSN
is at least one order of magnitude smaller than the CPU
time required by CPLEX, while VSN for the germany50
network requires only slightly less CPU time than the
solver – see Fig. 3(c).

For all randomly generated S and node pairs, the per-
centage of feasible solutions is 100% for the 500 networks
for PSN and was very close to 100% for VSN (only 8, of
the 104 node pairs of tested cases, were not solved by the
VSN heuristic), hence the corresponding figure is omitted.

The relative error of the solutions found by VSN is (in
general) below 5% for |S| = 2, 4, 8, 10 – see Fig. 4(a). In
the case of PSN and for |S| = 2 the error is very small
(and much smaller than the one observed for VSN); PSN
and VSN present similar errors (below 3%) for S = 4; the
PSN error is below 6%, 7% and 10%, for |S| = 8, |S| = 10
and |S| = 20 respectively.

For |S| = 20 no results are shown for VSN in Fig. 4(a)
and Fig. 4(b) because, as can be seen in Fig. 4(b) for
|S| = 10, the CPU time of VSN is on average larger than
CPLEX.

Regarding the CPU time both heuristics perform quite
well with respect to the CPLEX solver, being at least
two orders of magnitude faster for |S| = 2, 4 For |S| = 8
VSN starts to present a CPU time only slightly lower
than CPLEX, and for |S| = 10 it uses too much CPU
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Figure 3: Loopless path with specified nodes, results for
five SNDlib [19] networks
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time. In contrast, algorithm PSN requires less than a 0.5
seconds of CPU time in average (|S| = 20), while CPLEX
may require an average of tens of seconds. Note that, in
some of the few instances where CPLEX ended without a
solution, due to the imposed CPU time limit of 5 minutes,
PSN was able to find a solution.

In conclusion, for the SNDlib networks VSN solves
slightly fewer problems than PSN, but presents solutions
with smaller relative error for |S| = 4, 8, 10; however for
|S| = 10 it can use a CPU time very close to CPLEX.
In the case of the 500 node networks, PSN has the best
feasible solution ratio, requires less CPU time than VSN
(and CPLEX), but presents a larger relative error for
|S| = 8, 10. Moreover PSN is still effective when |S| is
equal to 20, when VSN is no longer a viable approach.

4.2 Results regarding solving Problem P1

The results obtained solving Problem P1 for the networks
from SNDlib [19] are shown in Fig. 5 and for the 500 node
networks results are in Fig. 6.

In Fig. 5(a), for |S| = 2, 4 the heuristics present in most
cases similar results (the confidence intervals overlap) re-
garding the feasible solution ratio. However, the vari-
ant resulting from combining PSN with the trap avoid-
ance approach (PSNTA) is the one with best performance
(more feasible solutions), especially in the case of the ger-
many50 network and for |S| = 10.

The relative error of the feasible solutions found by
PSNTA and PPSN is below 1.1% for |S| = 2, and is
on average below 7% for all heuristics. In Fig. 5(b), it
can be observed that PSNTA has consistently the largest
relative error among the three heuristics for |S| = 4, 8, 10,
although the confidence intervals of PSNTA and PPSN
usually overlap.

Regarding CPU time, Fig. 5(c) shows that PPSN
presents smaller CPU times than PSNTA and VTA, espe-
cially for |S| = 8, 10 and for the pioro40 and germany50
networks.

The results for the 500 node networks created using
the GT-ITM software are given in Fig. 6. As in the case
of Problem P0, the feasible resolution ratio is very close
to 100% for all heuristics, and once again no figure is
presented.

The relative error of the feasible solutions is below 4%
for VTA and |S| = 4, 8, 10. For PPSN and PSNTA the
relative error of the cost of the active path (AP) of the
feasible solutions increases with the number of specified
nodes to visit, as can be seen in Fig. 6(a). Note that for
|S| = 2, PPSN and PSNTA present a very small error,
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Figure 4: Loopless path with specified nodes, results for
five 500 node networks

while VTA presents an average relative error of around
3%. However, for |S| = 4, 8, 10, 20, the relative error is
below 3%, 6%, 7% and 10%, respectively, for both PPSN
and PSNTA. This increase of the relative error of PPSN
and PSNTA with |S|, while VTA experiences little fluctu-
ation, is consistent with the behavior of the underlaying
heuristics, PSN (for PPSN and PSNTA) and VSN for
VTA one.

The CPU time per node pair required by CPLEX in
the 500 node networks is on average around 10 seconds
for |S| = 20 – see Fig. 6(b). Note that VTA, for |S| = 8 it
requires a CPU time close to the CPU time for CPLEX
and for |S| = 10 requires significantly more CPU time
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Figure 5: Protected loopless path with specified nodes,
results for five SNDlib [19] networks
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Figure 6: Protected loopless path with specified nodes,
results for five 500 node networks

than CPLEX. This results from the fact these networks
have both more nodes and a larger average node degree
than the SNDlib networks, which makes it possible to
have much more attempts to recalculate paths with |S|+1
arcs in the auxiliary sub-graphs with |S|+ 2 nodes.

For |S| = 2, 4 all heuristics have small CPU times, with
a slight advantage to PSNTA. For |S| = 8, 10 the CPU
time of PSNTA and PPSN is below 0.1 while the CPU
time of CPLEX is significantly larger (around 5 seconds).
For |S| = 20 the CPU time of PSNTA and PPSN is below
1 second while CPLEX requires a little over 10 seconds,
per node pair.

In summary, PSNTA requires less CPU time for the
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same error and resolution ratio as PPSN, particularly for
larger values of |S|; VTA can be the best choice for S =
4 because its solutions have smaller relative error than
PSNTA or PPSN; for large networks and |S| ≥ 8, VTA
should be avoided because it uses too much CPU time.

4.3 Results regarding solving Problem P2

Results illustrating the relative behavior of the heuristics
proposed for solving problem P2 can be found in Figs. 7–
8.

In the case of the networks from the SNDlib [19],
MSPTA is the heuristic with highest feasible solution ra-
tio – see Fig. 7(a). For |S| = 2 it presents a percentage of
feasible solutions larger than 90%; for |S| = 4 the ratio of
feasible solutions is between 78.5% (pioro40) and 96.4%
(newyork).

Regarding the accuracy of the obtained solutions, the
error is on average below 6% for S = 2 and is less than
4% for |S| = 4. For MSPTA, the heuristic with a larger
number of feasible solutions, the error is less than 4.5%
and 3% for |S| = 2 and |S| = 4, respectively.

The largest average CPU time (15 seconds) was ob-
served for CPLEX in the pioro40 network, for |S| = 2:
for some node pairs the 5 minute per CPU pair limit only
allowed us to obtain a sub-optimal solution and in other
(less frequent cases) no information was obtained. In this
case the heuristics required in average less than 0.01 sec-
onds. The average CPU time of the heuristics grows with
|S| – see Fig. 7(c) – but that does not happen with
CPLEX. For |S| = 4, there are a much larger number of
node pairs for which the problem in infeasible, when com-
pared to |S| = 2, and the ILP is quite effective identifying
most of those infeasible problems.

For problem P2 and the 500 node networks (as in the
case of problems P0 and P1) the percentage of feasible so-
lutions found by the heuristics is very close to 100%, and
hence no figure is used to present the feasible resolution
ratio in Fig. 8.

For several node pairs only a sub-optimal solution of
P2 was calculated by CPLEX, and for a few node pairs
– at least one in each of the networks for each value of
|S| – CPLEX was unable to find any solution (optimal or
sub-optimal) under the 5 minute CPU time limit.

The heuristic MSPTA, which requires less CPU time –
see Fig. 8(b) – solved all problems, except for three node
pairs (one for each value of |S|) in one of the five tested
networks.

The heuristic with a more stable behavior regarding
the error of the cost of the obtained feasible solutions is
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Figure 7: Min-sum cost disjoint path pair, each with spec-
ified nodes, results for five SNDlib [19] networks
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Figure 8: Min-sum cost disjoint path pair, each with spec-
ified nodes, results for five 500 node networks

MSVTA, with an error always below 5% – see Fig. 8(a).
However for |S| = 2 both MSPTA and MSPSN present a
relatively smaller error: less than 2%.

Regarding CPU time, CPLEX takes an average of tens
of seconds to solve problem P2 while the most compu-
tationally efficient heuristic MSPTA needs less than 0.1
second. For |S| = 4 and |S| = 8 this heuristic presents an
average error of less than 4.5% and 8%, respectively.

4.4 Results for CORONET and TeliaSonora

Networks with nodes of degree two can be simplified, as
explained in [3]. In case of mandatory nodes with degree

two, a pair of adjacent arcs (or of adjacent edges, for undi-
rected networks) must be in the solution. Both CORO-
NET and TeliaSonera networks could have been highly
simplified as can be deduced from their average node de-
gree. However as this simplification may lead to parallel
arcs, we opted to change the edge arcs (edges) cost to
zero before executing PSN, without reducing these net-
works. Finally the cost of the obtained path is adequately
corrected.

Fig. 9 presents results for PSN, considering different
backtracking limits and rules for the UpperBound in the
algorithm. In Fig. 9 the labels have following meaning:

• Original Param.: backtracking was limited as in the
previously presented results; in the case of these net-
works it corresponds to the total number of arcs in
the auxiliary subgraph. The UpperBound value, as
in the previous results, was determined using the fol-
lowing rule: the algorithm would stop as soon as
2 + |S| solutions were obtained, or after having tried
4|S| initial arcs.

• Fast: backtracking was limited to the (|S|+ 2)2 arcs
in the auxiliary subgraph. The UpperBound value
was determined using the following rule: the algo-
rithm would stop as soon as the first solution was
obtained or after having tried the total number of
arcs in the auxiliary subgraph.

• Medium: backtracking was limited to the same value
as in Fast. The UpperBound value was determined
using the following rule: the algorithm would stop as
soon as the first five solutions were obtained or after
having tried the total number of arcs in the auxiliary
subgraph.

• Slow: backtracking was limited to the square value
of the total number of arcs in the auxiliary subgraph.
The UpperBound is the total number of arcs in the
auxiliary subgraph.

As can be seen from the results, the heuristic was well
tuned for the SNDLib and 500 node networks, because
it presented good compromise solutions regarding execu-
tion time, resolution rate and the error for the obtained
solutions.

The results are extremely good for the TeliaSonera net-
work, as can be observed in Fig. 9, because it is a small
network of very low node degree. The results for the
CORONET network show that the backtracking value
can be important for solving some problems, but with

16



 50

 60

 70

 80

 90

 100

2 4 8 10 2 4 8

F
ea

si
b
le

 s
o
lu

ti
o
n
 r

at
io

 (
%

)

 

Original Param.
Fast

Medium

Slow

TeliaSoneraCORONET

(a) Feasible solutions ratio of PSN with respect to CPLEX

 0

 5

 10

 15

 20

2 4 8 10 2 4 8

P
at

h
 c

o
st

 r
el

at
iv

e 
er

ro
r 

(%
)

 

Original Param.
Fast

Medium

Slow

TeliaSoneraCORONET

(b) Relative error of the feasible solutions found by PSN

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

 10

2 4 8 10 2 4 8

C
P

U
 t

im
e 

p
er

 n
o
d
e 

p
ai

r 
(s

)

 

Original Param. 
Fast

Medium

Slow
cplex

TeliaSoneraCORONET

(c) CPU time per node pair

Figure 9: Loopless path with specified nodes, results for
CORONET and TeliaSonera networks for PSN heuristic

very high cost in terms of CPU time. The UpperBound
limit is not as relevant to solve the most difficult prob-
lems.

Finally PSN can obtain a valid solution in a very short
time, possibly with some error. Hence it has potential to
be applied in a distributed manner in order to find a path
visiting a set of specified nodes.

5 Conclusions and Future work

Three problems were addressed in this work:

P0: to find a shortest simple path, from a source node to
a target node, visiting a set of specific nodes;

P1: to obtain a shortest simple path, visiting a set of
specified nodes, such that it can be protected by a
node-disjoint path;

P2: to obtain a pair of node-disjoint simple paths, each
visiting a specified set of nodes, such that the sum of
the cost of the paths is minimum.

A path-based formulation of optimization problem P1

is given, along with numerical results showing the diffi-
culty in solving the problem, thus providing motivation
for the heuristics.

A new recursive heuristic (PSN) is proposed to solve
P0 [17]. The extension of PSN to provide a node-disjoint
backup path, designated PPSN, which conditions the
adding of each node to visit, to the existence of a node-
disjoint backup path, was presented; alternatively, the
use of a trap avoidance approach, combined with PSN
to solve problem P1, was also proposed and the resulting
algorithm was designated PSNTA. Algorithms MSPSN
and MSPTA were then developed to solve problem P2,
the first one conditions the addition of each node to visit
on the successful calculation of the backup disjoint path,
and the second utilizes a trap avoidance approach seeking
to obtain a pair of node disjoint paths.

The performance of the proposed heuristics was evalu-
ated with respect to algorithms VSN, VTA and MSVTA,
introduced in [14] for solving problems P0, P1, P2, re-
spectively.

Algorithm PSN seems to be adequate for finding solu-
tions for a set S with larger dimension than VSN, and
also in networks of greater dimension. The accuracy of
the solutions, evaluated using an optimization problem
solution, diminishes with increasing |S| for PSN. A simi-
lar but less pronounced effect is observed in VSN, but it
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solves fewer problems than PSN (and can not be used for
large values of |S|).

For solving problem P1, PSNTA is the best compromise
heuristic. It solves more problems and requires similar
or less CPU time than the other two studied heuristics,
although it has a slightly larger error in the cost of AP,
especially when compared with VTA. However the latter
requires too much CPU time when |S| = 10.

In larger networks algorithm MSPTA requires signifi-
cantly less CPU time than MSPSN, and is slightly less
accurate than the former. MSPTA also solves more prob-
lems in the SNDlib networks than MSPSN or MSVTA. In
the case of the 500 node networks, the three heuristics are
effective, however |S| = 8 seems to be the maximum value
of |S| that can be used with MSVTA. Hence one may con-
clude that MSPTA is the best compromise heuristic for
solving problem P2.

The CPU time of all the heuristics, with respect to the
optimization problem solver, was (almost) always at least
an order of magnitude smaller, and often two and even
three times (namely for smaller values of |S|). The heuris-
tics can obtain solutions for instances that may require
too much time to solve by an integer linear programming
optimization problem solver.

Future work will be extending the heuristic for calculat-
ing maximally node-disjoint path pairs, each with a dif-
ferent set of specified nodes. Furthermore this algorithm
has potential for being applied in a distributed manner
throughout a network, with appropriate signaling, until
a valid solution is obtained. This subject however needs
further investigation.
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