FACULDADE DE MEDICINA DA UNIVERSIDADE DE COIMBRA

TRABALHO FINAL DO 6ºANO MÉDICO COM VISTA À ATRIBUIÇÃO DO GRAU DE MESTRE NO ÂMBITO DO CICLO DE ESTUDOS DE MESTRADO INTEGRADO EM MEDICINA

ANA JORGE DE OLIVEIRA CARDOSO LOPES

ANEMIA DA DOENÇA CRÓNICA
ARTIGO REVISÃO

ÁREA CIENTÍFICA DE HEMATOLOGIA

TRABALHO REALIZADO SOB A ORIENTAÇÃO DE:
PROFESSOR DOUTOR JOSÉ MANUEL NASCIMENTO COSTA
PROFESSORA DOUTORA ANA BELA SARMENTO RIBEIRO

FEVEREIRO 2011
ÍNDICE

RESUMO ... v
ABSTRACT .. vii
LISTA DE ABREVIATURAS ... ix
INTRODUÇÃO ... 1
1. DEFINIÇÃO, EPIDEMIOLOGIA E PATOLOGIAS ASSOCIADAS À ANEMIA DA DOENÇA CRÔNICA ... 4
2. ETIOPATOGENIA/FISIOPATOLOGIA DA ANEMIA DA DOENÇA CRÔNICA 8
 2.1. REGULAÇÃO DA HOMEOSTASIA DO FERRO ... 13
 2.1.1. Metabolismo do ferro .. 13
 2.1.2. Alterações na homeostasia do ferro ... 17
 2.1.3. Papel da hepcidina ... 19
 2.2. DIMINUIÇÃO DA PROLIFERAÇÃO DAS CÉLULAS PRECURSORAS ERITRÓIDES 23
 2.3. DIMINUIÇÃO DA SOBREVIDA DOS ERITRÓCITOS REGULAÇÃO DA HOMEOSTASIA DO FERRO ... 24
 2.4. ALTERAÇÃO NA PRODUÇÃO DA ERITROPOIETINA ... 25
3. PATOLOGIAS QUE PREDISPÕEM AO DESENVOLVIMENTO DA ANEMIA DA DOENÇA CRÔNICA ... 27
 3.1. DOENÇA RENAL CRÔNICA .. 27
 3.2. INSUFICIÊNCIA CARDÍACA ... 31
 3.3. ARTRITE REUMATÓIDE ... 35
 3.4. DOENÇA INFLAMATÓRIA INTESTINAL ... 36
 3.5. OUTRAS DOENÇAS .. 38
3.5.1. Neoplasias..38
3.5.2. Infecção VIH..40
3.5.3. Doença Pulmonar Obstrutiva Crónica..40
3.5.4. Diabetes ...41
4. DIAGNÓSTICO - CARACTERÍSTICAS CLÍNICAS E LABORATORIAIS42
 4.1. AVALIAÇÃO/CARACTERÍSTICAS CLÍNICAS ..42
 4.2. AVALIAÇÃO LABORATORIAL ..45
5. DIAGNÓSTICO DIFERENCIAL ..51
6. TRATAMENTO ..55
 6.1. TRANSFUSÃO DE ERITRÓCITOS ..56
 6.2. SUPLEMENTOS DE FERRO ..58
 6.3. AGENTES ESTIMULANTES DA ERITROPOIESE ..62
 6.4. OUTRAS TERAPÊUTICAS ...67
CONCLUSÃO ..69
 ALGORITMO ...72
BIBLIOGRAFIA...73
RESUMO

A anemia da doença crónica é a anemia mais prevalente, a seguir à anemia por défice de ferro. Trata-se de uma anemia hipoproliferativa, que se desenvolve no decurso de uma doença sistémica ou inflamatória, como resultado da activação aguda ou crónica do sistema imune. Foi descrita pela primeira vez, em 1930, mas só em 1950 foi caracterizada por Cartwrigh e Wintrobe. Na prática clínica, este tipo de anemia surge frequentemente em doentes hospitalizados e/ou associada a uma diversidade de patologias, nomeadamente doenças infecciosas, neoplásicas e auto-imunes.

A anemia da doença crónica caracteriza-se por ser leve a moderada, normocítica e normocrómica, e por diminuição da concentração do ferro sérico, embora a quantidade de ferro a nível medular esteja normal ou mesmo aumentada.

Os mecanismos fisiopatológicos são múltiplos, sendo de destacar a alteração da regulação da homeostasia do ferro, a diminuição da proliferação das células precursoras de eritrócitos, a diminuição da sobrevida dos eritrócitos e a alteração na produção de eritropoietina face ao grau de anemia. Em todo este processo é de salientar o papel do sistema imune, nomeadamente dos monócitos, dos macrófagos e dos linfócitos T activados, assim como o aumento de citocinas pró-inflamatórias como o TNFα, IFNγ, IL-1β, IL-6, entre outras.

O diagnóstico diferencial com a anemia por défice de ferro é importante, no entanto, estas duas condições podem coexistir, pelo que é essencial uma avaliação laboratorial criteriosa. Alguns parâmetros a avaliar são o ferro e a transferrina sérica, o índice de saturação da transferrina, a ferritina sérica, o receptor solúvel da transferrina, a razão entre o receptor solúvel da transferrina e o log ferritina e os níveis de citocinas.
O tratamento deste tipo de anemia passa pelo tratamento da doença de base. Quando este não é exequível é necessário recorrer a um conjunto de opções terapêuticas, sendo de destacar as transfusões de concentrados de eritrócitos, a administração de factores de crescimento eritróide, de terapêuticas anti-citocinas e de suplementos de ferro. A utilização destes agentes depende do grau da anemia, da doença subjacente e do estado geral do doente.

Este trabalho procura fazer uma revisão teórica sobre os mecanismos celulares e moleculares envolvidos na etiopatogenia da anemia da doença crónica, as patologias que predispõem ao seu desenvolvimento, e a sua caracterização clínica e laboratorial, de modo a obter um diagnóstico correcto e o diagnóstico diferencial com outras condições similares. Por último, visa discutir a importância da terapêutica, em que situações é necessária, quais as opções disponíveis e os seus consequentes benefícios e riscos.

Palavras-chave: Anemia da doença crónica, citocinas, doenças associadas, eritropoietina, hepcidina, metabolismo do ferro.
ABSTRACT

Anemia of chronic disease is the second most prevalent anemia, along with anemia resulting from a deficit of iron. This is a hipoproliferative anemia, developed in the course of a systemic or inflammatory disease as a result of an acute or chronic activation of the immune system. It was described for the first time in 1930, although it was only characterized by Cartwright and Wintrobe in 1950. In clinical practice, this type of anemia usually appears in hospitalized patients and/or associated with a variety of pathologies, namely infectious, neoplastic and autoimmune diseases.

Anemia of chronic disease is mild to moderate, normocytic and normochromic, and characterized by a low serum iron concentration, although the amount of iron at blood marrow level may be normal or even increased.

The underlying pathophysiological mechanisms are multiple, with particular focus on the change in the iron homeostasis, decreased proliferation of the erythrocyte precursor cells, erythrocytes decreased survival and abnormalities in the production of erythropoietin depending on the severity of the disease. In this whole process, the role of the immune system should be emphasized, namely monocytes, macrophages and activated T lymphocytes, as well as increased pro-inflammatory cytokines such as TNFα, IFNγ, IL-1β, IL-6, among others.

The differential diagnosis for iron deficiency anemia is important, nonetheless these two conditions can coexist, and therefore a thorough laboratory evaluation is essential.

Iron and serum transferrin, the rate of transferrin saturation, serum ferritin, the soluble transferrin receptor, the soluble transferrin receptor and ferritin log ratio and the cytokine levels are some of the parameters to evaluate.
The treatment of this anemia requires the treatment of the underlying disease. When such treatment is not possible, it is necessary to rely on a set of therapeutic options, particularly the transfusion of red cell concentrates, the administration of erythroid growth factors, anti-cytokine therapies, and iron supplements. The use of these agents depends on the degree of anemia, the underlying disease and general condition of the patient.

This study attempts to undertake a theoretical review of the cellular and molecular mechanisms involved in the pathogenesis of anemia of chronic disease, the pathologies that predispose to its development and its clinical and laboratorial characterization, in order to obtain a correct diagnosis and differential diagnosis with other similar conditions. Finally, the study aims to discuss the importance of therapy, in which situations it is needed, what are the available options and their consequent benefits and risks.

Key words: Anemia of chronic disease, associated diseases, cytokines, erythropoietin, hepcidin, iron metabolism.
LISTA DE ABREVIATURAS

ADC - Anemia da doença crónica
AR - Artrite reumatóide
BNP - Peptídeo natriurético
CHCM - Concentração hemoglobina corpuscular média
DMT-1 - Transportador de metais divalentes-1
DPOC - Doença pulmonar obstrutiva crónica
EPO - eritropoietina
HCM - Hemoglobina corpuscular média
HIF - Factor indutor de hipóxia
IECA’s - Inibidores da enzima de conversão da angiotensina
IL - Interleucina
PCR - Proteína C reactiva
RDW – “Red Cell Distribution Width” (Índice de anisocitose)
SRE - Sistema retículo-endotelial
TFG - Taxa de filtração glomerular
TfR - Receptor da transferrina
Th - Linfócitos T helper
TIBC - Capacidade total de ligação ao ferro
TNF - Factor de necrose tumoral
VCM - Volume corpuscular médio
VIH - Vírus da imunodeficiência humana
VS - Velocidade de sedimentação
INTRODUÇÃO

A anemia é a alteração hematológica que surge com maior frequência ao nível das doenças sistêmicas. No entanto, é importante avaliar se esta surge no contexto de um distúrbio primário, que envolve o sistema hematopoiético, ou se é secundária a uma doença sistémica subjacente ou ao seu tratamento. Contudo, a presença de doença sistémica não exclui a possibilidade de outra causa para a anemia, por exemplo, é frequente a associação com mielodisplasia e patologia reumatológica, assim como com tumores de células germinativas e doenças hematológicas malignas. A distinção de origem primária ou secundária da anemia é importante para um correcto procedimento. De facto, quando surge secundariamente, a correcção da doença subjacente ou a remoção do tratamento em causa é, na maioria dos casos, suficiente para corrigir esta alteração hematológica (Spivak, 2000).

Há mais de 150 anos que se reconhece a existência de relação entre infecções crônicas, alterações reumatológicas e outros estados inflamatórios com a anemia (Kushner, 2006). No entanto, a anemia da doença crónica (ADC), também designada por anemia da inflamação ou anemia da inflamação crónica (Price, 2010), é descrita pela primeira vez em 1930 e, só em 1950, é caracterizada por Cartwrigh e Wintrobe (Zarychanski & Houston, 2008).

A ADC representa aproximadamente 27,5% de todos os casos de anemia (Figura 1) (Lambert & Beris, 2006). Trata-se de uma anemia normocítica, normocrómica, na qual se verifica diminuição da concentração do ferro sérico e da capacidade total de ligação ao ferro (TIBC), apesar da quantidade de ferro a nível do sistema retículo-endootelial (SRE) estar normal, ou até mesmo aumentada (Cançado & Chiattone, 2002). O desenvolvimento deste tipo de anemia é mediado por um conjunto de citocinas pró-inflamatórias, citocinas anti-inflamatórias, proteínas de fase aguda, radicais livres,
células do SRE (Weiss, 1999) e por uma molécula chave, a hepcidina (Guidi & Santonastaso, 2010). Os níveis desta proteína encontram-se aumentados na ADC, como resultado do aumento da actividade inflamatória e, consequentemente, dos níveis de citocinas pró-inflamatórias, o que não acontece na anemia derivada de um quadro de hemólise, por perda intensa de sangue ou por défice de ferro em que a sua síntese diminui.

Figura 1 – Distribuição da incidência das principais causas de anemia.
(Adaptado de Lambert & Beris, 2006)

O aumento de hepcidina leva à retenção do ferro nos macrófagos, hepatócitos e enterócitos duodenais (local onde ocorre a absorção do ferro), impedindo o normal efluxo de ferro para o plasma. Além disso, reduz a absorção do ferro da dieta (Means, 2004), uma vez que bloqueia a acção da ferroportina (Guidi & Santonastaso, 2010). A hipoferremia que se desenvolve é uma estratégia de defesa importante já que procura impedir o crescimento e a invasão bacteriana (Means, 2004). Deste modo, a concentração de hepcidina no sangue e na urina pode constituir uma ferramenta útil no diagnóstico diferencial com outros tipos de anemias, nomeadamente com a anemia por défice de ferro (Guidi & Santonastaso, 2010; Wians, et al., 2001). Contudo, uma abordagem metódica inicial deve incluir um hemograma completo, contagem de reticulócitos e o estudo do ferro sérico, que inclui a concentração de ferro sérico, a capacidade total de ligaçao do ferro (TIBC), a ferritina sérica e o receptor de
transferrina sérico. O cálculo da razão sTfR/log ferritina é mais um elemento importante para o diagnóstico diferencial das anemias (Hillman & Ault, 2002).

Muitas vezes a anemia é diagnosticada apenas com base em exames laboratoriais de rotina, já que os doentes são, na sua maioria, assintomáticos, e quando há sintomas o mais comum é a fadiga, que é muito inespecífico (Mayhew, 2006). No entanto, quando presente, esta alteração hematológica contribui para o agravamento dos sintomas da doença subjacente, maior celeridade na sua progressão, pior prognóstico e aumento da taxa de mortalidade. Devido ao impacto que tem na saúde, custos médicos e produtividade impõe uma detecção rápida e seguimento adequado (Smith, 2010).

Segundo Zarychanski e Houston (2008), se a ADC constitui uma medida fisiológica de adaptação deve-se esperar que surjam efeitos adversos associados à tentativa da sua correcção. Importa reconhecer que qualquer resposta adaptativa, às vezes, pode ser excessiva ou insuficiente e, portanto, mal adaptativa. No entanto, a decisão de instituir uma terapêutica deve ser bem ponderada e deve ter em conta a patologia de base. Como referido, na maioria dos casos, o tratamento da patologia subjacente é suficiente para corrigir a anemia (Zarychanski & Houston, 2008). Por exemplo, a terapêutica com ferro deve ser afastada em doentes com infecção crónica ou com uma neoplasia, contrariamente ao que acontece nos doentes com artrite reumatóide em que esta é vantajosa (Weiss, 1999).

Neste sentido, este trabalho procura fazer uma revisão teórica actualizada da literatura sobre os mecanismos celulares e moleculares envolvidos na etiopatogenia da anemia da doença crónica e as patologias que predispõem ao seu desenvolvimento, bem como a sua caracterização clínica e laboratorial, de modo a obter um diagnóstico correcto e diagnóstico diferencial com outras condições similares. Por último, visa
discutir a importância da terapêutica, em que situações é necessária, quais as opções disponíveis e os seus consequentes benefícios e riscos.

1. DEFINIÇÃO, EPIDEMIOLOGIA E PATOLOGIAS ASSOCIADAS À ANEMIA DA DOENÇA CRÓNICA

A ADC é uma anemia hipoproliferativa e hiporregenerativa, que surge associada à falência de produção dos eritrócitos na medula óssea. Como tal, é usualmente uma anemia normocítica e normocrómica que se encontra associada a produção de reticulócitos baixa e desajustada (Hillman & Ault, 2002; Adamson, 2008). Pode co-existir e/ou apresentar características que a assemelhem a outro tipo de anemia. Contudo, em certos casos, nomeadamente em situações de elevada concentração de IL-6, em adultos jovens com artrite reumatóide juvenil e em crianças, pode ser microcítica e hipocrómica, tornando o diagnóstico diferencial difícil entre ADC e anemia por défice de ferro (Fitzsimons & Brock, 2001). De facto, nas situações referidas, a anemia por défice de ferro pode surgir associada à ADC, em virtude das reservas corporais serem limitadas e ser elevada a necessidade de ferro devido ao crescimento (Ganz, 2006; Kushner, 2006).

Este tipo de anemia caracteriza-se por baixa produção de eritrócitos na presença de baixa concentração de ferro sérico e diminuição da capacidade de ligação do ferro (transferrina baixa), apesar das reservas deste elemento ao nível do SRE estarem normais ou aumentadas. É uma anemia leve a moderada (Hb 7-12 g/dl), que surge no contexto de várias patologias, infecções, doenças infecciosas e algumas neoplasias (Ganz, 2006) (Tabela 1).

Apesar de a ADC ser a segunda anemia mais prevalente, a seguir à anemia por défice de ferro (Figura 1), (Lambert & Beris, 2006; Weiss & Goodnough, 2005) é o tipo
de anemia mais comum nos doentes hospitalizados (Guidi & Santonastaso, 2010; Weiss, 1999). Pode surgir em cerca de 8-95% de doentes com infecções, neoplasias ou doenças auto-imunes. Esta percentagem pode aumentar nos doentes sob tratamento de quimioterapia/radioterapia (Weiss, 2009).

Tabela 1 – Prevalência das doenças associadas à ADC.

<table>
<thead>
<tr>
<th>Doenças associadas</th>
<th>Prevalência %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infecções (agudas e crônicas)</td>
<td>18-95</td>
</tr>
<tr>
<td>- Vírus (incluindo VIH)</td>
<td></td>
</tr>
<tr>
<td>- Bactérias</td>
<td></td>
</tr>
<tr>
<td>- Fungos</td>
<td></td>
</tr>
<tr>
<td>- Parasitas</td>
<td></td>
</tr>
<tr>
<td>Neoplasias</td>
<td>30-77</td>
</tr>
<tr>
<td>- Tumores Sólidos</td>
<td></td>
</tr>
<tr>
<td>- Hematológicas</td>
<td></td>
</tr>
<tr>
<td>Doenças Auto-imunes</td>
<td>8-71</td>
</tr>
<tr>
<td>- Artrite reumatóide</td>
<td></td>
</tr>
<tr>
<td>- Lúpus eritematoso sistémico e doenças do tecido conjuntivo</td>
<td></td>
</tr>
<tr>
<td>- Vasculite</td>
<td></td>
</tr>
<tr>
<td>- Sarcoidose</td>
<td></td>
</tr>
<tr>
<td>- Doença inflamatória intestinal</td>
<td></td>
</tr>
<tr>
<td>Rejeição crónica após transplantes de órgãos</td>
<td>8-70</td>
</tr>
<tr>
<td>Doença renal crónica e inflamação</td>
<td>23-50</td>
</tr>
</tbody>
</table>

(Adaptado de Weiss & Goodnough, 2005)

A prevalência da anemia aumenta com a idade e é maior nos idosos do sexo masculino (Mayhew, 2006). Torna-se muitas vezes difícil identificar a causa, já que em muitas situações ela é multifactorial, no entanto, estima-se que uma das causas de anemia mais frequente seja a ADC (Figura 1) (Lambert & Beris, 2006; Mayhew, 2006).
A prevalência da anemia relacionada com o envelhecimento e com as neoplasias é 77% no sexo masculino e 68% no feminino, sendo a ADC a causa subjacente em 77% dos casos (Weiss, 2009).

Esta alteração hematológica encontra-se associada a um declínio físico, aumento do risco de quedas, fraqueza, diminuição da massa muscular, disfunção neurológica e cardiovascular, depressão, demência, hospitalização e dependência de cuidados continuados e mortalidade (Figura 2) (Ferruci & Balducci, 2009; Smith, 2010).

Existem evidências de que o envelhecimento está associado à diminuição fisiológica nos níveis das hormonas tiroideias e da testosterona em circulação, tornando os indivíduos mais susceptíveis ao desenvolvimento de anemia. A própria idade é um factor de risco para mielosupressão, pelo que os idosos estão mais susceptíveis a desenvolver anemia no decurso do tratamento por quimioterapia e radioterapia. Por outro lado, o envelhecimento está associado com o aparecimento de uma diversidade de patologias crónicas, com um estado pró-inflamatório (nível mais elevado de citocinas pró-inflamatórias como a IL-6 e proteínas de fase aguda) e ainda com a diminuição da eritropoiesse (Ferruci & Balducci, 2009).

Figura 2 - Anemia e co-morbididades.
(Adaptado de Smith, 2010)
A lista das doenças associadas à ADC é extensa e continua a aumentar à medida que surgem novas investigações (Guidi & Santonastaso, 2010). Como se descreve na Tabela 1, encontra-se normalmente associada a doenças inflamatórias crónicas, designadamente artrite reumatóide (AR) e doença inflamatória intestinal. A primeira é uma doença sistémica auto-imune, de causa desconhecida, que afecta principalmente o sistema osteo-articular. Pode, no entanto, afectar diversas estruturas e sistemas, sendo a anemia a manifestação extra-articular mais frequente (30 a 70%) e a ADC o tipo mais comum (Voulgarí et al., 1999). A segunda engloba a Doença de Crohn e a Colite Ulcerosa, afecta principalmente o trato gastrointestinal, mas pode envolver, com frequência, outros sistemas. A anemia é uma manifestação extra-intestinal comum, surge em 6 a 74% dos doentes, sendo a ADC e a anemia por défice de ferro os tipos mais frequentes (Bergamaschi et al., 2010).

Um caso particular de ADC é a anemia da Doença Renal Crónica (DRC), que partilha algumas características desta, apesar de haver outros mecanismos envolvidos como o défice de produção de eritropoietina e a acção deletéria das toxinas urémicas (Weiss & Goodnough, 2005). Na perspectiva de Cançado e Chiattone (2002), a doença renal crónica não deve ser apontada como causa deste tipo de anemia embora possa coexistir num doente que tenha ADC (Cançado & Chiattone, 2002). Neste contexto, o desenvolvimento de anemia está associado ao aumento do risco de doença coronária, hipertrofia ventricular esquerda, hospitalização por doença cardíaca, morte por insuficiência cardíaca congestiva e morte por outras causas (Toto, 2003).

Além do referido, na origem deste tipo de anemia pode estar a doença hepática (cirrose alcoólica), a insuficiência cardíaca, a Doença Pulmonar Obstrutiva Crónica (DPOC) e a diabetes (Guidi & Santonastaso, 2010; Mayhew, 2006). Em doentes com insuficiência cardíaca, nomeadamente com disfunção sistólica ou diastólica, inicial ou já
avançada, o aparecimento de anemia constitui um factor independente de aumento da mortalidade e hospitalização (Drakos et al., 2009).

A doença celíaca pode estar também subjacente à ADC. Um estudo realizado para avaliar a sua prevalência nesta doença mostrou que este tipo de anemia afecta um número relativamente significativo de doentes com doença celíaca (17%) na altura do diagnóstico e, muitas vezes, está associada a défice de ferro (Bergamaschi et al., 2008).

É frequente a ADC surgir no âmbito de situações agudas, nomeadamente em doentes internados nos cuidados intensivos, no contexto de sépsis ou infecção severa (Weiss, 2009). A patogenia é idêntica relativamente às situações anteriormente descritas, no entanto desenvolve-se mais rapidamente e a destruição dos eritrócitos é mais extensa. Pensa-se que devido à sua rápida progressão, outros mecanismos, ainda desconhecidos, poderão estar envolvidos. Neste contexto, a ADC pode ser designada por anemia da inflamação ou da doença crítica (Ganz, 2006; Smith, 2010; Weiss, 2009).

2. ETIOPATOGENIA/FISIOPATOLOGIA DA ANEMIA DA DOENÇA CRÓNICA

A ADC surge no decurso de doença sistêmica ou inflamatória, como resultado da activação aguda ou crónica do sistema imunitário (Weiss, 1999). Neste processo estão implicadas diversas células imunitárias, como linfócitos T e macrófagos, que estão envolvidos na produção de um conjunto variado de citocinas inflamatórias, proteínas de fase aguda e de radicais livres (Weiss, 1999).

De destacar o papel da IL-6, uma citocina que regula a resposta imune e hepática de fase aguda, a inflamação e a hematopoiese. É produzida por uma variedade de células em resposta a infecção, trauma ou alteração imunológica. No contexto de ADC,
o aumento desta citocina induz a síntese hepática de hepcidina (Raj, 2009), uma “hormona” peptídica de 25 aminoácidos que, após ser produzida e libertada no sangue, se liga à ferroportina, uma proteína envolvida na exportação do ferro.

A hepcidina impede o transporte de ferro dos enterócitos duodenais e das células do SRE para o plasma, contribuindo para a diminuição dos níveis séricos de ferro (Figura 3) (Price & Schrier, 2010). Outras citocinas e proteínas de fase aguda estão implicadas no desvio do transporte do ferro, que é armazenado pelo sistema reticuloendotelial, reduzindo, assim, o ferro disponível para o normal processo da eritropoiese (Guidi & Santonastaso, 2010).

Figura 3 – Papel da IL-6 e da hepcidina no desenvolvimento da Anemia da Inflamação.
(Adaptado de Raj, 2009)

Além das alterações dos níveis séricos do ferro, ocorre diminuição da proliferação e diferenciação das células precursoras eritróides pela acção de proteínas de fase aguda e citocinas, indutoras da apoptose, tais como o INF-γ, INF-α, TNF-α e IL-1. A própria limitação na disponibilidade do ferro, bem como outros mecanismos que envolvem a Eritropoietina (EPO) e outros factores hematopoiéticos comprometem o processo normal de eritropoiese (Weiss, 2009). Acresce que a semi-vida dos eritrócitos se encontra reduzida como consequência do stresse oxidativo e da peroxidação lipídica, promovendo a eritrofagocitose (Weiss & Gasche, 2010). Verifica-se, ainda, alteração da produção de EPO e diminuição da resposta da medula óssea a este factor de crescimento dos eritrócitos (Tabela 2) (Cançado & Chiattone, 2002).
Tabela 2 – Prevalência das doenças associadas à ADC.

<table>
<thead>
<tr>
<th>Factor Chave</th>
<th>Mecanismo</th>
<th>Via Celular</th>
<th>Efeito Sistémico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor Chave</td>
<td>Mecanismo</td>
<td>Via Celular</td>
<td>Efeito Sistémico</td>
</tr>
<tr>
<td>TNF-α ou IL-1</td>
<td>Induz a transcrição da ferritina</td>
<td>Aumento do armazenamento de ferro no SRE</td>
<td>Hipoferremia, Hiperferritinemia</td>
</tr>
<tr>
<td></td>
<td>Diminuição da semi-vida do eritrócito (mediada pelo TNF-α)</td>
<td>Desconhecido (poderá dever-se a lesões causados aos eritrócitos por radicais livres)</td>
<td>Eritrofagocitose</td>
</tr>
<tr>
<td>IL-6</td>
<td>Induz a transcrição ou tradução da ferritina</td>
<td>Aumento do armazenamento de ferro no SER</td>
<td>Hipoferremia, Hiperferritinemia</td>
</tr>
<tr>
<td></td>
<td>Estimula a formação da hepcidina</td>
<td>Absorção e exportação do ferro a partir dos macrófagos diminuída pela hepcidina</td>
<td>Hipoferremia</td>
</tr>
<tr>
<td>INF-γ ou LPS</td>
<td>Estimula a síntese de DMT-1; diminui a expressão de ferroportina-1</td>
<td>Aumento da captação de ferro e diminuição da recirculação do ferro nos macrófagos (p.ex. derivado da eritrófagocitose)</td>
<td>Hipoferremia</td>
</tr>
<tr>
<td>IL-10</td>
<td>Induz a expressão do receptor da transferrina; estimula a tradução da ferritina</td>
<td>Aumento da captação e armazenamento do ferro nos macrófagos</td>
<td>Hipoferremia, Hiperferritinemia</td>
</tr>
<tr>
<td>Eritrofagocitose</td>
<td>Diminuição da semi-vida dos eritrócitos, através da captação dos eritrócitos lesados devido ao TNF-α</td>
<td>Restrição da recirculação do ferro através dos macrófagos</td>
<td>Hipoferremia Anemia</td>
</tr>
<tr>
<td>Diminuição da eritropoiese</td>
<td>Inibição da proliferação e diferenciação das células CFU-E e BFU-E</td>
<td>Indução da apoptose; Diminuição da expressão do receptor da eritropoietina; Diminuição da formação do Factor de células estimulantes</td>
<td>Anemia com níveis aumentados de estanho-protoporfirina</td>
</tr>
<tr>
<td></td>
<td>Inibição da aminolevulinato eritroide sintase</td>
<td>Eritropoiese com restrição de ferro</td>
<td>Anemia com níveis aumentados de ácido levulinico</td>
</tr>
<tr>
<td>α1-antitripsina</td>
<td>Limitação da captação do ferro pelas células eritroides</td>
<td>Redução da proliferação das células CFU-E e BFU-E</td>
<td>Anemia</td>
</tr>
<tr>
<td>Células tumorais ou microorganismos</td>
<td>Infiltração na medula óssea</td>
<td>Deslocamento das células progenitoras</td>
<td>Anemia, pancitopenia ou ambas</td>
</tr>
<tr>
<td></td>
<td>Produção de mediadores solúveis</td>
<td>Inflamação local e formação de citocinas e radicais livres</td>
<td>Anemia, pancitopenia ou ambas</td>
</tr>
<tr>
<td></td>
<td>Consumo de vitaminas</td>
<td>Inibição da proliferação das células progenitoras</td>
<td>Deficiência sistémica de folato ou cobalamina</td>
</tr>
<tr>
<td>Hipoferremia</td>
<td>Devido ao desvio do ferro para o SRE mediado por citocinas e à diminuição da absorção do ferro</td>
<td>Comprometimento da biossíntese do grupo Heme e da resposta da eritropoietina; Diminuição da proliferação das células CFU-E</td>
<td>Anemia</td>
</tr>
<tr>
<td>Diminuição da resposta à eritropoietina</td>
<td>Inibição da produção da eritropoietina mediada por IL-1 e TNF-α</td>
<td>Redução da transcrição da eritropoietina; Lesão das células produtoras de eritropoietina mediada por radicais livres;</td>
<td>Diminuição dos níveis de eritropoietina em circulação</td>
</tr>
<tr>
<td>Hipoferremia</td>
<td>Diminuição da resposta da eritropoietina das células progenitoras devido à restrição de ferro</td>
<td>Comprometimento da biossíntese do grupo Heme e proliferação das células progenitoras</td>
<td>Anemia e hipoferremia</td>
</tr>
<tr>
<td>INF-γ, IL-1, TNF-α</td>
<td>Diminuição da resposta das células progenitoras à eritropoietina</td>
<td>Diminuição da expressão do receptor da eritropoietina nas células CFU-E e interferência com a transdução do sinal da EPO, lesão dos progenitores de eritroides mediado por citocinas e radicais;</td>
<td>Anemia</td>
</tr>
</tbody>
</table>

(Adaptado de Weiss & Goodnough, 2005)
Na tabela 2 e figura 4 estão representados os principais mecanismos envolvidos na fisiopatologia da ADC. Como se pode verificar na figura 4-A a invasão por microorganismos, a emergência de células malignas ou a desregulação autoimmune conduz à activação das células T CD3+ e dos monócitos. Estas células, por sua vez, activam mecanismos imunitários efectores mediante a produção de citocinas como o INF-γ, TNF-α, IL-1, IL-6 e IL-1 (dos monócitos ou macrófagos). A IL-6 e os lipossacarídeos (LPS) estimulam a produção hepática da proteína de fase aguda – hepcidina, que inibe a absorção do ferro a nível do duodeno (Figura 4-B). O INF-γ, o LPS ou ambos, aumentam a expressão do transportador de metal divalente 1 – DMT1 nos macrófagos e estimulam a captação do ferro ferroso (Fe2+) (Figura 4-C). A citocina anti-inflamatória IL-10 aumenta a expressão do receptor da transferrina, aumentando a captação do ferro ligado à transferrina nos monócitos. Além disso os macrófagos activados fagocitam e degradam os eritrócitos senescentes para a reciclagem do ferro, um processo que é promovido pelo TNF-α mediante a destruição das membranas dos eritrócitos e estimulação da fagocitose. O INF-α e LPS diminuem a expressão do transportador de ferro do macrófago – ferroportina 1, impedindo a saída do ferro dos macrófagos, um processo também afectado pela hepcidina. Ao mesmo tempo, o TNF-α, IL-1, IL-6 e IL-10, aumentam a expressão de ferritina e promovem o armazenamento e retenção do ferro nos macrófagos.
Em conclusão, estes mecanismos conduzem à diminuição da concentração do ferro em circulação limitando a disponibilidade deste elemento para as células eritróides. Além disso, como podemos verificar na figura 4-D, o TNF-α e o INF-γ inibem a produção de EPO no rim. Por outro lado, o TNF-α, INF-γ e IL-1 inibem directamente a diferenciação e proliferação das células precursoras eritróides. Além disso, a disponibilidade limitada de ferro e a diminuição da actividade biológica da EPO
levam à inibição da eritropoiese e desenvolvimento de anemia (figura 4-E) (Weiss & Goodnough, 2005).

2.1. REGULAÇÃO DA HOMEOSTASIA DO FERRO

2.1.1. Metabolismo do ferro

O ferro é um micronutriente fundamental para o processo de eritropoiese e para o próprio metabolismo celular e respiração aeróbia (Muñoz et al., 2009b). Entra na constituição de proteínas envolvidas no transporte e armazenamento de oxigénio, como a hemoglobina e a mioglobinina, no metabolismo energético e cadeia transportadora de electrões, na síntese de DNA e na protecção contra radicais livres (catalase e peroxidase) (Nemeth, 2006). Além disso, é essencial na imunidade celular, desempenhando um papel na proliferação e função dos linfócitos e células NK (Muñoz et al., 2009b).

A maior parte do ferro no organismo encontra-se ligada ao heme da hemoglobina (65%). Cerca de 10% encontra-se nas fibras musculares (mioglobinina) e outros tecidos (enzimas e citocromos). O restante ferro corporal permanece armazenado no fígado, macrófagos do SRE e medula óssea (Muñoz et al., 2009b).

A absorção do ferro é estritamente regulada ao nível do duodeno e é equilibrada pelas perdas que ocorrem como consequência da normal descamação da mucosa intestinal, menstruação e outro tipo de perdas sanguíneas. De facto, é indispensável a manutenção da homeostasia do ferro, pois, a sobrecarga deste é tóxica para o organismo uma vez que promove a formação de radicais livres de oxigénio altamente reactivos que podem levar à morte da célula e, consequentemente, à disfunção orgânica (Muñoz et al., 2009b; Nemeth, 2006).
A quantidade média de ferro corporal num indivíduo adulto é de 2-4g (Raj, 2009) e as necessidades diárias de ferro são 20 a 30 mg por dia. Apenas 10% deste valor provêm da dieta. A maior parte do ferro tem origem no turnover interno, ou seja, na degradação dos eritrócitos senescentes ou danificados, que são destruídos ao nível dos macrófagos do SRE. O ferro é posteriormente recuperado do heme e exportado para o plasma (Figura 5) (Muñoz et al., 2009b; Nemeth, 2006).

![Figura 5 - Ciclo diário do ferro.](image)

A absorção do ferro tem lugar na superfície apical dos enterócitos sob a forma de heme (10%) ou na forma iónica, livre (90%). Primeiro, antes de entrar na célula, o
ferro na forma férrica (Fe$^{3+}$) é convertido pela acção da ferrireductase em ferro ferroso (Fe$^{2+}$) e transportado para dentro da célula pela acção de um transportador de metal divalente (DMT-1). O ferro sob a forma de heme entra no enterócito pela acção de uma proteína de membrana recentemente descrita, a HCP-1. Uma vez dentro da célula, a maior parte do ferro proveniente do heme é convertido em ferro ferroso pela acção da heme-oxidase e entra numa via comum à do ferro livre proveniente da dieta (Figura 6).

Figura 6 – Regulação da absorção do ferro.
Dcytb – reductase do ferro; DMT1 – transportador de metal divalente 1; HCP1 – proteína de membrana (Adaptado de Guidi & Santonastaso, 2010)

Posteriormente, o ferro que se encontra a nível do epitélio intestinal pode seguir duas vias: i) ser exportado para a circulação ao nível da membrana basolateral pela ferroportina-1 e oxidado pela acção da hephaestina para, posteriormente, se ligar à transferrina plasmática; ii) permanecer na célula para uso ou armazenamento (Figura 6). Neste caso nunca é absorvido e acaba por se perder através da descamação do epitélio intestinal.
A hephaestina está presente nas células intestinais, enquanto nos hepatócitos e macrófagos é a ceruloplasmina, a ferroxidase que está envolvida na saída do ferro. A ferroportina-1 encontra-se em todos os tecidos que exportam ferro para o plasma e além dos enterócitos duodenais é expressa nos macrófagos que intervêm na reciclagem do ferro, nos hepatócitos que armazenam ferro, e ainda, nas células da placenta (Muñoz et al., 2009b; Nemeth, 2006). Esta é a única molécula conhecida com função de transportar o ferro para fora da célula, sendo considerado, por isso, essencial à homeostasia do ferro (Nemeth, 2009).

Além da forma iônica, vários factores podem influenciar a absorção intestinal do ferro, como a sua concentração, a presença de infecção, gravidez, os níveis de expressão de DMT-1 e ferroportina, entre outros (Tabela 3).

Tabela 3 – Factores que influenciam a absorção do ferro.

<table>
<thead>
<tr>
<th>Factores que favorecem a absorção</th>
<th>Factores que reduzem a absorção</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferro Heme</td>
<td>Ferro Inorgânico</td>
</tr>
<tr>
<td>Forma Ferrosa (Fe$^{2+}$)</td>
<td>Forma Férrica (Fe$^{3+}$)</td>
</tr>
<tr>
<td>Ácidos (HCl, vitamina C)</td>
<td>Bases (antiácidos, secreções pancreáticas)</td>
</tr>
<tr>
<td>Agentes solubilizantes (açúcares, aminoácidos)</td>
<td>Agentes precipitantes (fitatos e fosfatos)</td>
</tr>
<tr>
<td>Deficiência em Ferro</td>
<td>Excesso de Ferro</td>
</tr>
<tr>
<td>Eritropoiese ineficaz</td>
<td>Diminuição na Eritropoiese</td>
</tr>
<tr>
<td>Gravidez</td>
<td>Infecção</td>
</tr>
<tr>
<td>Hemocromatose Hereditária</td>
<td>Chá</td>
</tr>
<tr>
<td>Aumento da expressão da DMT-1 e da ferroportina nos enterócitos duodenais</td>
<td>Diminuição da expressão da DMT-1 e da ferroportina nos enterócitos duodenais</td>
</tr>
<tr>
<td></td>
<td>Aumento dos níveis de Hepcidina</td>
</tr>
</tbody>
</table>

(Adaptado de Hoffbrand et al., 2006)

Quando o ferro é libertado para a circulação liga-se à transferrina plasmática que o transporta para as células alvo, as células eritróides, mas também para as células do sistema imunitário e células hepáticas, onde pode ser armazenado sob a forma de ferritina ou hemossiderina, o que representa uma pequena fracção do ferro corporal.
O ferro ligado à transferrina constitui o maior reservatório deste elemento no organismo.

Depois de circular ligado à transferrina, o ferro entra na célula alvo por um processo de endocitose mediada por receptores. Podemos identificar 2 tipos de receptores (TfR), que medeiam a ligação do complexo transferrina-ferro, o TfR1, presente em todas as células, e o TfR2, restrito a hepatócitos, enterócitos duodenais e células eritróides (Muñoz et al., 2009b). Segundo Nemeth (2010), o TfR2 encontra-se principalmente expresso no figado e o ferro associado à transferrina liga-se a estes receptores quando os TfR1 se encontram ocupados. A elevada expressão dos receptores TfR1 nas células precursoras eritróides assegura o nível de ferro adequado às necessidades hematopoiéticas (Muñoz et al., 2009b). Após endocitose do complexo da transferrina ligada ao ferro e receptor, a acidificação do endossoma permite a dissociação do ferro deste complexo, um processo coadjuvado pela acção da ferrireductase STEAP 3 recentemente identificada (Weiss, 2009).

2.1.2. Alterações na homeostasia do ferro

Na ADC, as citocinas pró e anti-inflamatórias, bem como as proteínas de fase aguda cooperam no sentido de aumentar a retenção do ferro ao nível dos macrófagos, ao mesmo tempo que as citocinas e a hepcidina impedem a saída do ferro (Weiss, 2009). Os macrófagos podem obter ferro por diversas vias, nomeadamente pela captação mediada pela transferrina, pela NRAMP-1, pela lactoferrina, pelo receptor da hemoglobina e por eritrofagocitose (Gasche et al., 2010). O NRAMP-1 é um transportador de ferro transmembranar que interfere com os níveis de ferro intracelular e confere resistência a infecções por microorganismos intracelulares (Gasche et al., 2010).
O aumento da expressão da DMT-1 e TfR nos macrófagos, a redução da expressão da ferroportina-1 nos enterócitos e macrófagos e o aumento da síntese de ferritina (Muñoz et al., 2009b) pode levar à alteração da homeostase do ferro. Estas modificações conduzem à retenção do ferro ao nível das células do SRE, limitando a disponibilidade deste para as células precursoras eritróides, resultando em hipoferremia e diminuição da saturação de transferrina (Guidi & Santonastaso, 2010; Weiss, 2009).

Neste contexto, é importante referir o papel dos linfócitos Th1 e Th2. Os primeiros produzem INF-γ, IL-2 e TNF-β, citocinas que activam os macrófagos que, por sua vez, produzem IL-1, TNF-α e IL-6, responsáveis pelo, efeito tóxico celular. Estas citocinas induzem a síntese de ferritina e o armazenamento do ferro nos macrófagos – a IL-1 e o TNF-α devido ao aumento da expressão do TfR nos fibroblastos, e a IL-6 pelo aumento da expressão do TfR nos hepatócitos (Weiss, 1999).

A IL-1 promove também o aumento da lactoferrina, uma molécula semelhante à transferrina produzida pelos neutrófilos. Esta apresenta maior afinidade pelo ferro, especialmente em pH mais baixo, retém o ferro nos macrófagos, impedindo a sua transferência às células hematopoiéticas, e a mobilização dos locais onde se encontra armazenado (Cançado & Chiattone, 2002). Além disso, a lactoferrina pode regular a proliferação e activação dos linfócitos, células NK e monócitos. Esta molécula liga-se a receptores específicos, expressos na membrana dos macrófagos, sendo o complexo formado endocitado. Uma vez no interior da célula intervém na citotoxicidade contra os agentes patogénicos intracelulares, mediante a formação de radicais livres de oxigénio, protegendo o macrófago da peroxidação lipídica (Weiss, 2009).

O TNF-α contribui para a ADC ao induzir a sequestração de ferro no baço e reduzir a transferência de ferro do duodeno, efeitos que se devem ao aumento da formação da ferritina ou perda da função de transporte da ferroportina-1 (Raj, 2009).
A IL-6 promove a ligação da transferrina ao ferro sérico, e consequente captação do ferro, resultando na diminuição do ferro sérico em consequência do aumento da expressão dos receptores TfR nos hepatócitos (Raj, 2009).

Os linfócitos Th2 produzem IL-4, IL-5, IL-10 e IL-13, que estão envolvidas numa forte resposta humoral e parecem inibir algumas funções dos macrófagos. Estas citocinas são capazes de aumentar a captação do ferro e estimular o seu armazenamento nos macrófagos (Weiss, 1999), nomeadamente a IL-10. Esta citocina anti-inflamatória aumenta a expressão dos receptores da transferrina nos macrófagos e a síntese da ferritina (Muñoz et al., 2009b; Weiss & Goodnough, 2005).

Além do mencionado, os radicais livres produzidos durante a inflamação, como o H₂O₂ e o NO, as proteínas de fase aguda, como a α1-antitripsina e a α2-macroglobulina, e as hormonas tiroideias parecem, também, estar implicados na alteração da homeostasia celular do ferro durante a inflamação. As proteínas de fase aguda, ao inibirem o receptor TfR, impedem a captação do ferro nas células eritroides e hepatócitos, mas não nos monócitos. Por outro lado, as hormonas tiroideias parecem estimular a síntese de ferritina (Weiss, 1999).

2.1.3. Papel da hepcidina

A hepcidina, inicialmente designada por LEAP-1 ou peptideo-1 antimicrobiano expresso pelo fígado, é uma molécula chave na regulação da homeostasia do ferro que foi descoberta por Krause et al. (2000) e Park et al. (2001) (ambos citados por Means, 2004).

O gene da hepcidina localiza-se no cromossoma 19 (Price & Schrier, 2010) e codifica um prepropeptideo de 84 aminoácidos, que sofre clivagem, dando origem à prohepcidina. A prohepcidina após clivagem origina a forma activa, a hepcidina (Guidi &
Santonastaso, 2010; Nemeth, 2009; Price & Schrier, 2010), um peptídeo constituído por 25 aminoácidos rico em cisteína (Muñoz et al., 2009b).

A hepcidina é uma proteína de fase aguda do tipo II, similar à ferritina, com actividade antibacteriana. É produzida essencialmente no fígado e excretada na urina (Haurani, 2006), embora os macrófagos e adipócitos também a possam sintetizar. No entanto, a contribuição destas células, tanto a nível local como sistémico, ainda não está devidamente clarificada. A produção desta molécula é regulada por um conjunto de factores, como sejam, os níveis de ferro hepático, a inflamação, a hipóxia e a anemia (Muñoz et al., 2009b).

Na inflamação, assim como em situações de aumento nas reservas hepáticas de ferro, é estimulada a produção da hepcidina (Guidi & Santonastaso, 2010; Huang et al., 2009), ao contrário do que sucede na hipóxia, anemia, deficiência de ferro e expansão eritopoiética, situações que requerem um aporte elevado de ferro para a síntese da hemoglobina, e que, por isso iníbem a sua produção (Figura 7) (Guidi & Santonastaso, 2010).

Todavia, além do ferro armazenado nas reservas, o ferro ligado à transferrina também parece intervir na regulação da hepcidina. Ambos podem mediar a expressão da hepcidina mediante a utilização de uma proteína morfogenética do osso (BMP). Esta última pode ser regulada pela hemojuvelina (HJV), uma proteína de membrana que parece ser o co-receptor especializado na regulação do ferro. A forma solúvel da hemojuvelina actua como antagonista, provavelmente ao ligar-se às BMP’s. No entanto, o mecanismo desta interacção ainda não está completamente esclarecido (Nemeth, 2010).
Durante a inflamação ocorre activação dos macrófagos, que ao serem estimulados, libertam IL-6, que actua ao nível dos hepatócitos (Raj, 2009) e induz a transcrição da hepcidina por um mecanismo que envolve a via de sinalização STAT-3. A produção da hepcidina pode ser induzida, em menor grau, pela IL-1 e LPS (Guidi & Santonastaso, 2010; Iolascon, et al., 2009) e inibida pelo TNF-α (Weiss & Goodnough, 2005). Contudo, há autores que referem que a IL-1 não induz a síntese de hepcidina (Ganz, 2006; Kushner, 2006 e Raj, 2009).

O aumento da IL-6 conduz à libertação rápida, em poucas horas, da hepcidina, culminando na hipoferrémia característica da inflamação (Ganz, 2009). Além disso, a sua concentração é regulada pelo ferro, atividade eritropoiética e inflamação (Figura 8) (Nemeth, 2010). Por outro lado, a hepcidina regula uma proteína codificada pelo gene

Figura 7 – Regulação do transporte do ferro nos enterócitos e macrófagos pelas citocinas inflamatórias e hepcidina. IL–Interleucina; TNF–Factor de necrose tumoral; INF–Interferão; LPS–Lipopolissacarídeo; Linhas a tracejado – inibição; Linhas a cheio – estimulação (Adaptado de Guidi & Santonastaso, 2010).
MTP1, a MTP1, mais conhecida por ferroportina 1, descrita por Abboud e Haile (2000, citado por Haurani, 2006). Quando a hepcidina é libertada no sangue liga-se à ferroportina, ao nível da membrana basolateral dos enterócitos duodenais, macrófagos e hepatócitos, levando à sua entrada na célula e posterior degradação nos lisossomas (Ganz, 2006; Guidi & Santonastaso, 2010; Muñoz et al., 2009b). Assim, o fluxo de ferro para o exterior da célula, mediado pela ferroportina 1, é inibido (Ganz, 2006; Raj, 2009) e, como consequência, ocorre diminuição da absorção duodenal de ferro e bloqueio na libertação do ferro ao nível dos macrófagos (Raj, 2009; Weiss & Goodnough, 2005) e, provavelmente, dos hepatócitos (Ganz, 2006).

Figura 8 – Regulação do ferro plasmático pela interacção hepcidina-ferroportina.
(Adaptado de Nemeth, 2010)

Deste modo, o ferro, que em circunstâncias normais seria libertado para o plasma, encontra-se, assim, retido intracelularmente, contribuindo para o estado de
hipoferrémia, apesar das reservas corporais se encontrarem normais ou até mesmo aumentadas (Raj, 2009, Weiss & Goodnough, 2005). Este é considerado um mecanismo de defesa, já que ao ser armazenado, a disponibilidade do ferro no plasma para os microorganismos invasores é limitada. Além disso, a hipoferrémia compromete o normal processo da eritropoiese resultando na anemia associada a infecção e inflamação (Raj, 2009).

2.2. DIMINUIÇÃO DA PROLIFERAÇÃO DAS CÉLULAS PRECURSORAS ERITRÓIDES

Na ADC, a proliferação e diferenciação das células precursoras eritróides está comprometida devido à acção das citocinas inflamatórias como o INF-α, γ e β, TNF-α, e IL-1. O INF-α é o que exerce uma acção mais eficaz (Guidi & Santonastaso, 2010; Weiss & Goodnough, 2005; Weiss & Gasche, 2010), verificando-se uma correlação inversa entre os níveis desta citocina e a concentração da hemoglobina e contagem dos reticulócitos neste tipo de anemia (Gasche et al., 2010; Weiss & Goodnough, 2005).

Os mecanismos envolvidos neste processo são a indução da apoptose mediada pelas citocinas, em parte relacionada com a formação de ceramida, a diminuição da expressão dos receptores de EPO nas células progenitoras eritróides, a diminuição da formação e actividade da EPO e a diminuição da expressão de outros factores hematopoiéticos. As citocinas exercem, ainda, um efeito directo ao nível das células progenitoras ao conduzirem à formação de radicais livres instáveis como NO e H₂O₂, inibindo a sua proliferação (Guidi & Santonastaso, 2010; Weiss & Goodnough, 2005; Weiss & Gasche, 2010).
Outro mecanismo envolvido compreende a α1-antitripsina, uma proteína de fase aguda que se liga ao receptor da transferrina nas células progenitoras eritróides e impede a captação de ferro, e consequentemente, o crescimento e diferenciação celulares (Weiss, 2009; Weiss & Gasche, 2010).

2.3. DIMINUIÇÃO DA SOBREVIDA DOS ERITRÓCITOS

Os eritrócitos têm uma sobrevida média em circulação de 100-120 dias, após o qual são destruídos a nível do SRE, enquanto novos eritrócitos são repostos através do processo contínuo de eritropoiese mediado por factores de crescimento (Hillman & Ault, 2002).

A remoção precoce dos eritrócitos circulantes e a sua posterior destruição resultam da acção das citocinas inflamatórias e radicais livres (Weiss & Goodnough, 2005). Com efeito, no decurso da inflamação aguda ou crónica verifica-se aumento da concentração das citocinas inflamatórias, sobretudo do TNF-α, que resulta no aumento da eritrofagocitose e, por conseguinte, na diminuição da semi-vida dos eritrócitos (Gasche et al., 2010; Guidi & Santonastaso, 2010), que varia de 80 a 90 dias, de acordo com Cançado e Chiattone (2002).

Outros factores podem condicionar o aumento da destruição eritrocitária, designadamente a febre (que pode levar a lesão na membrana eritrocitária), a libertação de hemolisinas (em algumas neoplasias) e a libertação de toxinas produzidas pelas bactérias (Cançado & Chiattone, 2002).
2.4. ALTERAÇÃO DA PRODUÇÃO DA EPO

O processo de eritropoiese é regulado e mediado por diversos factores humorais e factores de crescimento celulares. A EPO tem neste processo um papel fulcral, permitindo ajustar a eritropoiese às necessidades dos tecidos (Figura 9) (Hillman & Ault, 2002), ao promover a proliferação e diferenciação das células precursoras eritróides. Nos adultos, é produzida principalmente pelo rim e uma pequena parte pelo fígado. Apesar da percentagem de GV diferir entre sexos, sendo mais elevada no sexo masculino, como consequência da produção de androgénios, o mesmo não acontece com a concentração de EPO, que é semelhante.

A produção de EPO é estritamente regulada, sendo a hipóxia o único estímulo conhecido. No entanto, o aumento na massa de eritocitos ou da viscosidade do plasma
suprime a sua produção, independentemente da eventual hipóxia tecidual. No entanto, a concentração de EPO no plasma não pode ser vista como uma simples medida da oxigenação dos tecidos, porque há várias condições, como a doença renal parenquimatosa, a hiperviscosidade, neoplasias, inflamação, infecção e doença crónica hepática, que impedem a produção de EPO (Spivak, 2000). Normalmente, verifica-se uma correlação inversa linear entre as concentrações de EPO e os níveis de hemoglobina e uma relação semilogarítmica entre a resposta da eritropoietina (log) e o grau de anemia (linear) (Spivak, 2000; Weiss & Goodnough, 2005).

Na maioria dos casos de ADC, os níveis de EPO são desajustados em comparação com o grau de anemia, com exceção da doença inflamatória intestinal (Weiss & Gasche, 2010). Um dos mecanismos envolvidos na alteração dos níveis de EPO é o aumento das citocinas IL-1, TNF-α e INF-γ que, ao mediarem a formação de espécies reactivas de oxigénio, conduzem à lesão das células produtoras de EPO, inibem a transcrição génica e, consequentemente, a formação de EPO no rim (Weiss & Goodnough, 2005; Weiss & Gasche, 2010).

Na presença de TNF-α e INF-γ em circulação, as concentrações de EPO necessárias para restaurar a produção das unidades formadoras de eritrócitos, a nível da medula óssea, são mais elevadas. Além disso, as funções biológicas da EPO podem ser comprometidas devido à diminuição da expressão dos receptores de EPO nas células progenitoras eritróides, mediada imunologicamente, assim como pela diminuição da disponibilidade de ferro para a síntese do heme (Weiss & Gasche, 2010).
3. PATOLOGIAS QUE PREDISPÕE AO DESENVOLVIMENTO DA ADC

3.1. DOENÇA RENAL

A anemia é uma manifestação comum nos doentes com doença renal crónica, sendo considerada um factor de risco para o desenvolvimento de doença cardiovascular (Toto, 2003). De facto, a anemia pode induzir alterações estruturais e funcionais ao nível da parede do ventrículo, que conduzem à hipertrofia ventricular esquerda, que pode evoluir para miocardiopatia descompensada. Esta predispõe à insuficiência cardíaca, doença cardíaca isquémica e, por último, pode levar à morte prematura (Miranda et al., 2009). À medida que diminui a taxa de filtração glomerular (TFG), aumenta a prevalência de anemia, sendo que para uma TFG>60 ml/min a prevalência é de 27%, e para uma TFG<15 ml/min é de 76% (Smith, 2010). Em doentes com TFG entre 50-25 ml/min a concentração de hemoglobina diminui 2,5 g/dl (Miranda et al., 2009). Investigações recentes sugerem que a anemia se desenvolve mais precocemente do que se pensava, especialmente na nefropatia diabética.

Nos indivíduos que vão iniciar diálise, tanto a tensão sistólica elevada como a anemia foram reconhecidos como factores de risco independentes para o desenvolvimento de hipertrofia ventricular esquerda. A diminuição de 0,5 g/dl na concentração de hemoglobina aumenta em 32% o risco de desenvolvimento de hipertrofia ventricular esquerda (Toto, 2003). Um estudo efectuado em doentes em diálise mostrou que a diminuição de 1g/dl nos valores de hemoglobina se encontra associada ao aumento da mortalidade. Além disso, em doentes submetidos a transplante renal a anemia associa-se ao comprometimento da função do enxerto com consequente falência de mesmo (Smith, 2010).
A origem da anemia na DRC é multifactorial e envolve o défice de EPO, a diminuição da resposta à EPO, a diminuição da sobrevida dos eritrócitos, o défice de ferro e o estado de inflamação crónica (Figura 10) (Guidi & Santonastaso, 2010; Toto, 2003). Nesta patologia, a eritropoiese encontra-se diminuída devido aos efeitos das toxinas urêmicas ao nível da medula óssea, diminuição da produção da EPO pelos rins ou presença de inibidores desta (Miranda et al., 2009). A produção inadequada de EPO é a causa mais conhecida.

Como mencionado, a EPO é uma “hormona” produzida nas células endoteliais dos capilares peritubulares do rim. A sua síntese é regulada por um mecanismo de feedback, relacionado com a capacidade total de transporte do O₂ e pelo factor libertado em situações de hipóxia, o HIF (“Hipoxia Inducible Factor”). Este factor, continuamente libertado nos tecidos submetidos a baixas tensões de O₂, liga-se a uma sequência do gene da EPO e activa a transcrição. Além de aumentar a expressão da EPO, parece regular várias vias de sinalização que levam à eritropoiese eficaz.
envolvendo a transferrina, a ferroportina e, possivelmente, a hepcidina (Guidi & Santonastaso, 2010). A principal causa da alteração na produção da EPO é a própria insuficiência renal, bem como os efeitos anti-proliferativos derivados da acumulação das toxinas urémicas (Raj, 2009).

A resistência à EPO encontra-se associada a um estado inflamatório, nomeadamente ao aumento dos reagentes de fase aguda e marcadores inflamatórios. Cerca de 30% dos doentes com DRC evidenciam aumento da Proteína C reactiva (PCR). Por outro lado, a IL-6 regula a produção da PCR no fígado e parece bloquear a resposta à EPO nos doentes com doença renal em estádio avançado. Tanto esta citocina como o TNF-α estão associados à diminuição da resposta à EPO, no entanto, é a IL-6 a que mais frequentemente se encontra associada a este efeito. Nos doentes em diálise, a identificação de níveis elevados de PCR e ferritina sérica e a baixa concentração da transferrina sérica apontam para resistência à EPO. A avaliação do fibrinogénio e do nível dos receptores solúveis da transferrina também é importante neste contexto. Quando estes dois valores se encontram elevados, a taxa de resposta à EPO é de 29%, pelo contrário, quando são baixos a resposta é de 100%.

No âmbito da DRC, podemos ainda encontrar valores elevados de ferritina, apesar de existir um défice de ferro. Estas alterações resultam do facto desta proteína aumentar nas doenças inflamatórias, por diminuição da sua disponibilidade para as células precursoras eritróides (Raj, 2010).

Além das citocinas inflamatórias influenciam a resposta à EPO, também induzem a apoptose das células precursoras eritróides e condicionam a produção da hepcidina. Por sua vez, esta interfere com a proliferação eritróide devido à reduzida disponibilidade de ferro que induz (Figura 10). Apesar do papel da hepcidina ainda não estar completamente esclarecido, a sua concentração na doença renal é inversamente
proportional à TFG e parece estar fortemente associada a valores baixos de EPO. Estas observações estão de acordo com um modelo que evidencia que concentrações elevadas de hepcidina são inibidas, directa ou indirectamente, pela EPO (Guidi & Santonastaso, 2010).

Estudos recentes têm sido efectuados para estudar a contribuição da hepcidina e da alteração do metabolismo do ferro no desenvolvimento da anemia nos doentes com DRC. Um estudo efectuado por Tomosugi et al., (2006) que procurou dosear os níveis de hepcidina em doentes em diálise, mostrou não haver correlação entre a hepcidina e a IL-6 nestes doentes na ausência de doença inflamatória adicional. Um outro estudo, de Zaritsky et al., (2009) mostrou que os níveis de ferritina sérica, do receptor solúvel de transferrina e de TFG estão correlacionados com o nível sérico da hepcidina em doentes com DRC nos estádios 2 a 4. A análise destes 2 estudos, entre outros citados por Price e Schrier (2010), sugere que nos doentes com DRC, na ausência de doença inflamatória adicional, a hepcidina é regulada pelos níveis corporais de ferro e em menor grau pela eritropoiese e pela inflamação. Sendo assim, a hepcidina não parece ter um papel principal no aparecimento da anemia associada a esta patologia (Price & Schrier, 2010).

Além disso, o estado de inflamação crónica nos doentes com doença renal parece ocorrer devido a um conjunto de factores, nomeadamente, urémia, contaminação do dialisado, incompatibilidade da membrana de diálise, alteração na clearance das citocinas, existência de infecção subdiagnosticada, acumulação de produtos finais glicosilados, diminuição da capacidade anti-oxidante do plasma, aterosclerose, existência de patologia auto-imune concomitantemente e transferência de fragmentos de endotoxinas a nível intestinal. Porém, apesar de existir uma associação entre o grau de inflamação e a resistência à EPO, o efeito desta varia largamente entre os doentes e, mesmo doente, ao longo do tempo (Raj, 2009).
A longo prazo, os efeitos da anemia e consequente hipóxia crónica acarretam lesões estruturais, por exemplo, nas células tubulares renais, levando à sua posterior apoptose. A hipóxia estimula a fibrose das células tubulares, dos fibroblastos intersticiais e células endoteliais da microvascularização renal. As condições prolongadas de hipóxia condicionam a produção constante do HIF, que contribui para a fibrose renal. Gera-se um ciclo vicioso com a progressiva fibrose intersticial, diminuição do fluxo sanguíneo e atrofia tubular, onde os macrófagos desempenham um papel importante (Guidi & Santonastaso, 2010).

3.2. INSUFICIÊNCIA CARDÍACA

A anemia tanto pode ser causa como consequência de insuficiência cardíaca (Figura 11), como mencionado. Silverberd et al. (2000) foram os primeiros a descrever o papel da anemia nesta patologia e demonstraram uma relação entre sintomas clínicos desfavoráveis, alteração na função renal e baixos valores na concentração da hemoglobina (Okonko & Anker, 2004).
A prevalência de anemia nos doentes com insuficiência cardíaca congestiva varia entre 4% a 68%, com um valor médio de 18%. Os doentes na classe IV do NYHA, refractários à terapêutica, apresentam maior propensão a desenvolver anemia, sendo a prevalência neste grupo de aproximadamente 80%. Nos doentes na classe I ou II do NYHA, a prevalência é <10%. Um estudo realizado por Silverberg et al. (2000) mostrou uma concentração de hemoglobina média de 13,6 g/dl em doentes na classe I da NYHA e de 10,9 g/dl em doentes na classe IV da NYHA (Drakos et al., 2009). Apesar da severidade desta patologia ser um factor importante a considerar, outros factores podem estar associados à prevalência acrescida de anemia, tais como, existência concomitante de doença renal crónica, história de hipertensão arterial, idade avançada, sexo feminino, baixo peso, existência de inflamação, estado avançado da doença e etnia africana ou americana (Drakos et al., 2009; Okonko & Anker, 2004).
Como mencionado, a etiologia da anemia na insuficiência cardíaca é, geralmente, multifactorial (Figura 11) (Drakos et al., 2009). Os estudos de Nanas et al. (2006) mostram que 70% dos doentes com esta patologia numa fase avançada tem anemia por défice de ferro, enquanto a ADC está presente em 19% dos doentes (Matsumoto et al., 2010). Num estudo realizado por Ezekowitz et al. (2003) a causa específica da anemia ficou por esclarecer em 58% dos doentes, acabando por se classificar de “anemia da doença crónica”. Isto poderá indicar verdadeiros casos de ADC ou falência na identificação da causa (Okonko & Anker, 2004). Neste contexto, a anemia pode resultar de diversas causas que englobam défice de ferro ou de outros nutrientes, insuficiência renal, hemodiluição, inflamação e efeitos secundários dos Inibidores da Enzima de Conversão da Angiotensina (IECA’s).

O défice de ferro pode ser atribuído a perdas gastrointestinal decorrentes da terapêutica com aspirina e outros anticoagulantes, contudo pode dever-se a um defeito na libertação do ferro das células. Os valores da ferritina sérica e transferrina podem estar modificados devido a alterações inflamatórias, daí que se torne essencial recorrer a marcadores que não sejam influenciados pela inflamação, como o receptor da transferrina. Um estudo efectuado para avaliar o status de ferro ao nível da medula óssea em 37 doentes com anemia e insuficiência cardíaca em fase avançada, confirmou a existência de défice de ferro em 73% dos doentes, 5,4% apresentavam anemia por hemodiluição e 2,7% por iatrogenia terapêutica. Em 18,9% dos doentes não foi identificada uma causa específica, tendo-se considerado o diagnóstico de ADC (Drakos et al., 2009). Por outro lado, os estudos de Ezekowitz et al. (2003) referem uma prevalência de 21% de défice de ferro em doentes com anemia. Por sua vez, Cromie et al. (2002) não identificaram uma deficiência específica como causa da anemia, no estudo que envolveu 39 doentes, dos quais 28 tinham anemia normocítica, 8 microcítica.
e 3 macrocítica. Apenas 1 doente apresentava um valor de ferritina sérica baixo e nenhum apresentava défice de ferro (Okonko & Anker, 2004).

Relativamente ao papel da inflamação no desenvolvimento de anemia na insuficiência cardíaca, verificou-se aumento dos níveis das citocinas inflamatórias e da PCR com diminuição nos valores da concentração de hemoglobina. As principais citocinas envolvidas são o TNF-α, IL-1 e IL-6 que actuam por vários mecanismos, tais como diminuição da produção de EPO, indução de resistência à EPO ao nível da medula óssea e diminuição da disponibilidade de ferro para a eritropoiese. Estudos efectuados em ratos com insuficiência cardíaca revelaram diminuição no número de células progenitoras eritróides e na sua capacidade de proliferação em cerca de 40% a 50%. Estes efeitos estão correlacionados com o aumento da expressão TNF na medula óssea, células NK e linfócitos T (Drakos et al., 2008).

Para a melhor compreensão da anemia na insuficiência cardíaca Matsumoto et al. (2010) realizaram um estudo com 61 doentes em que avaliaram a concentração sérica de hepcidina, a relação entre as concentrações de hepcidina sérica e de IL-6 e alguns parâmetros relacionados com o estudo do ferro e eritropoiese. Concluíram que as concentrações de hepcidina nos doentes com anemia e insuficiência cardíaca são baixas comparativamente com os controlos. Além disso, os valores não se correlacionavam com a concentração de IL-6 mas com as reservas de ferro e eritropoiese. Estes resultados mostram que este tipo de anemia tem sido sobrevalorizado nos doentes com insuficiência cardíaca e pode corresponder a um mecanismo secundário (Matsumoto et al., 2010).
3.3. ARTRITE REUMATÓIDE

A anemia é uma manifestação extra-articular frequentemente associada à artrite reumatóide, surgindo em 31,5% dos doentes (Raj, 2009). A etiologia da anemia é multifatorial, e determinados factores, como a actividade da doença, a má nutrição e alguns fármacos (anti-inflamatórios não esteróides e fármacos modificadores da doença) desempenham um papel importante (Voulgari et al., 1999). Apesar do défice de ferro poder ser a causa subjacente à anemia, devido à hemorragia gastrointestinal consequente à terapêutica com anti-inflamatórios não esteróides, mais de 70% das situações são consideradas como ADC (Raj, 2009). Já segundo Cançado e Chiattone (2002), a percentagem de doentes com AR e com ADC varia entre 27% e 58%.

O mecanismo subjacente ao aparecimento deste tipo de anemia nos doentes com AR ainda não se encontra totalmente clarificado, mas pensa-se que reflecte o efeito de citocinas inflamatórias no processo de eritropoiese, diminuição na produção da EPO e alteração no metabolismo normal do ferro (Raj, 2009).

Foi realizado um estudo para avaliar o papel das citocinas pró-inflamatórias como o TNF-α, a IL-1β, a IL-6, assim como a possível contribuição da IL-10 na ADC, em doentes com artrite reumatóide. Procurou-se também investigar o efeito destas citocinas no desenvolvimento das células precursoras eritróides (BFUe e CFUe). A amostra englobava 232 doentes, com mais de 18 anos, que preenchiam os critérios da artrite reumatóide do Colégio Americano de Reumatologia de 1987 dos quais se verificou que 105 tinham anemia e destes 72 ADC (Voulgari et al., 1999).

Os resultados deste estudo revelaram aumento da concentração sérica do TNF-α, IL-1β e IL-6 nos doentes com anemia, e um efeito inibitório destas citocinas na proliferação das BFUe e CFUe nas culturas de células da medula óssea. O TNF-α parece afectar o metabolismo do ferro, enquanto os seus efeitos na produção da EPO e
na expressão dos receptores da EPO ainda não estão totalmente esclarecidos. A IL-1β afecta o metabolismo do ferro e diminui a produção da EPO in vitro e, possivelmente, modela os receptores de EPO. Esta citocina mostrou ainda diminuir a proliferação das BFUe e CFUe nas culturas de células da medula óssea em menor grau que o TNF-α (Voulgari et al., 1999).

A IL-6 inibe também as BFUe e CFUe nas culturas de células da medula óssea. Neste estudo, o aumento significativo das concentrações séricas de IL-6 nos doentes com anemia ocorreu paralelamente ao aumento da VS e PCR (Voulgari et al., 1999). Além do soro, quantidades elevadas desta citocina podem ser observadas no líquido sinovial de articulações afectadas pela AR. O aumento de factores inflamatórios como a PCR e o TNF podem ser devidos à produção exagerada de IL-6 nestes doentes (Raj, 2009).

À semelhança dos doentes sem anemia, os doentes com anemia apresentam baixos níveis séricos de IL-10. A razão deste valor é desconhecida, contudo, admite-se estar na sua origem a diminuição na produção, aumento da degradação ou excreção e existência de um possível inibidor desta citocina. O mecanismo pelo qual a IL-10 está envolvida no desenvolvimento da ADC ainda se encontra por esclarecer (Voulgari et al., 1999).

3.4. DOENÇA INFLamatória INTESTINAL

A anemia tem sido reconhecida como um sintoma chave na doença inflamatória intestinal (Gasche et al., 2010). As causas mais frequentes de anemia na doença inflamatória intestinal são o défice de ferro, devido a perda crónica de sangue, ou diminuição da absorção deste, e a ADC. Outras causas possíveis incluem um défice de vitamina B12 ou ácido fólico e mielossupressão induzida pela terapêutica (Tabela 4).
O que se verifica em muitos casos é que a etiologia é atribuível não a uma causa em exclusivo, mas a um conjunto de causas já que, no mesmo doente, pode ocorrer perda sanguínea, inflamação, má absorção de vários nutrientes e o uso de terapêuticas potencialmente mielosupressoras (Bergamaschi et al., 2010). Durante muito tempo, o ratio hematócrito/hemoglobina foi o único parâmetro laboratorial que fazia parte dos scores para avaliar a actividade da doença de Crohn (Gasche et al., 2010).

Num estudo efectuado por Bergamaschi et al. (2010), tendo por base uma amostra de 263 doentes com doença inflamatória intestinal, pretendeu-se avaliar a prevalência e a patogenia da anemia em doentes com esta patologia. Os resultados mostraram que, na altura do diagnóstico, quase 2/3 dos doentes tinham anemia e esta percentagem era relativamente mais elevada nos doentes com doença de Crohn comparativamente aos doentes com Colite ulcerosa. Além da anemia ser comum nos doentes com doença inflamatória intestinal, a prevalência e a severidade desta está

Tabela 4 – Etiologia da anemia na doença inflamatória intestinal.

<table>
<thead>
<tr>
<th>Comum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia por défice de ferro</td>
</tr>
<tr>
<td>ADC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ocasional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Défice de cobalaminan</td>
</tr>
<tr>
<td>Défice de ácido fólico</td>
</tr>
<tr>
<td>Induzida por drogas (sulfasalazina, 5-ASA, azatriopina)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excepcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemólise</td>
</tr>
<tr>
<td>Síndrome mielodisplásico</td>
</tr>
<tr>
<td>Anemia aplástica</td>
</tr>
<tr>
<td>Défice de glucose-6-fostato desidrogenase</td>
</tr>
</tbody>
</table>

(Adaptado de Gasche et al., 2010)
relacionada com a actividade da doença. A ADC é mais frequente na altura do diagnóstico, em consonância com maiores índices de inflamação, enquanto a anemia por défice de ferro e restantes causas surgem com maior frequência durante o follow-up da patologia.

Este estudo mostrou ainda níveis elevados de prohepcidina sérica nos doentes com doença inflamatória intestinal em comparação com os controlos saudáveis cujo valor se correlaciona com o aumento da PCR. Ao avaliar os doentes com doença de Crohn os níveis deste precursor da hepcidina são mais elevados nos doentes com doença activa e estão associados ao aumento dos valores da ferritina sérica.

Recentemente foram identificados níveis elevados de TNF-α no soro de doentes com doença de Crohn. Como referido, esta é uma citocina pró-inflamatória que está implicada no desenvolvimento da ADC. Inibe a proliferação das células progenitoras eritróides e interfere no metabolismo do ferro por promover a sua retenção ao nível dos macrófagos, impedindo a absorção a nível intestinal. O reconhecimento do papel chave desta citocina nesta patologia permitiu o desenvolvimento de agentes eficazes anti TNF-α (Bergamaschi et al., 2010).

3.5. OUTRAS DOENÇAS

3.5.1. Doenças Neoplásicas

A existência de anemia em doentes com neoplasia aumenta o risco relativo de morte em 65%. A anemia que surge neste contexto, muitas vezes negligenciada, pode ter diversas causas, como perda sanguínea, iatrogenia, hemólise, défice nutricional, lesão tumoral na medula óssea, quimioterapia ou histiocitose hematofágica. No entanto, a causa mais frequente é a produção de citocinas inflamatórias que inibem a produção de EPO, impedem a proliferação das células precursoras eritróides e alteram o
metabolismo do ferro mediante à activação da hepcidina (Figura 12) (Smith, 2010). Além de citocinas inflamatórias, as células tumorais também produzem radicais livres que danificam a membrana dos eritrócitos, contribuindo para a anemia nestes doentes (Guidi & Santonastaso, 2010).

Figura 12 - Inflamação, cancro e anemia. Nas doenças inflamatórias e/ou neoplásicas, as citocinas libertadas pelos leucócitos activados e outras células actuaem por múltiplos mecanismos que contribuem para a redução dos níveis de hemoglobina: (A) Indução da síntese de hepcidina no fígado (em especial pela IL-6 juntamente com endotoxinas). Por sua vez, a hepcidina liga-se à ferroportina, que permite a saída do ferro dos macrófagos do SRE e do epitélio das células intestinais. A ligação da hepcidina conduz à internalização e degradação da ferroportina; a sequestração do ferro correspondente ao nível dos macrófagos limita a disponibilidade deste para os precursores eritróides. (B) Inibição da libertação de EPO. (C) Inibição directa das células progenitoras eritróides (em especial pelo TNF-α, INF-γ e IL-1β). (D) Aumento da hematofagocitose pelos macrófagos do SRE (pelo TNF-α). SRE= Sistema reticulo endotelial. (Adaptado de Zarychanski & Houston, 2008)
3.5.2. Infecção VIH

Na infecção VIH a anemia ocorre com alguma frequência em doentes que se encontram sob terapêutica com zidovudina (Smith, 2010), sendo considerada um indicador de prognóstico negativo (Spivak, 2000). Além disso, a incidência da anemia aumenta com a progressão da doença para síndrome de imunodeficiência adquirida, verificando-se uma correlação entre a contagem de linfócitos T CD4 e os níveis de hemoglobina. O risco de morte é 70% superior nos doentes com SIDA e anemia, comparativamente àqueles que não apresentam anemia.

As causas para o seu desenvolvimento incluem, além da produção de citocinas inflamatórias e supressão da hematopoiese, a diminuição da produção da hemoglobina, défices nutricionais associados a doença renal e efeitos mielotóxicos da zidovudina ou outros medicamentos (Smith, 2010). Apesar da produção da EPO poder ser corrigida pela zidovudina, a anemia não tende a melhorar com esta terapêutica (Spivak, 2000).

3.5.3. Doença Pulmonar Obstrutiva Crónica

A DPOC encontra-se normalmente associada a policitemia, no entanto, a anemia também pode surgir nesta patologia. Um estudo referido por Smith (2010), mostrou que 21% dos doentes com DPOC apresentavam anemia, a qual surge devido à inflamação e resistência à EPO decorrente da acção das citocinas inflamatórias. A presença de anemia contribui para um agravamento da dispneia e da tolerância ao exercício, compromete a progressão da doença e associa-se ao aumento da morbilidade e mortalidade (Guidi & Santonastaso, 2010).
3.5.4. Diabetes

A Diabetes é a principal causa de insuficiência renal crónica e está associada ao aumento da morbidade e mortalidade por doença cardiovascular (Mehdi & Toto, 2010). A anemia pode surgir em estádios mais avançados desta doença com as suas complicações típicas, como por exemplo, a nefropatia e neuropatia diabética. Por outro lado, na presença de anemia, o risco de retinopatia diabética duplica. Além disso, a anemia surge mais cedo na DRC associada à diabetes do que na DRC simples (Smith, 2010). Nos doentes com diabetes e DRC os valores da concentração de hemoglobina são semelhantes aos de doentes com DRC sem diabetes, apesar de serem mais baixos.

Neste contexto, a diabetes pode conduzir à anemia devido à deficiência de ferro (absoluta ou funcional), de EPO e, ainda, à diminuição da resposta à acção da EPO (Mehdi & Toto, 2010). Certos medicamentos prescritos no tratamento da diabetes, como a metformina e as glitazonas, podem contribuir para o aumento do risco de anemia (Smith, 2010).

A deficiência absoluta de ferro, caracterizada por depleção das reservas de ferro, e evidenciada por um nível sérico de feritina <100ng/ml e saturação da transferrina <20%, pode resultar da diminuição no aporte deste microelemento da dieta, diminuição da absorção intestinal e hemorragia gastrointestinal.

A deficiência funcional de ferro mais comum na diabetes é definida por um valor sérico de ferritina <100ng/ml e diminuição da saturação da transferrina na presença de reservas de ferro adequadas. Esta última resulta do aumento da produção de citocinas inflamatórias como a IL-6, que induz a produção da hepcidina e diminuição da resposta dos tecidos à EPO. Além disto, a função da EPO está comprometida impedindo o transporte de ferro armazenado nos macrófagos para a circulação sanguínea.
O decréscimo dos níveis de EPO está associado à diminuição de unidades funcionais do rim com a consequente redução da produção desta hormona (Mehdi & Toto, 2010). A própria neuropatia diabética, devido à alteração na enervação autónoma do rim, pode condicionar diminuição dos sinais indutores da produção de EPO (Smith, 2010). Neste sentido, a diminuição da resposta dos tecidos à EPO traduz-se na necessidade de administrar doses elevadas desta hormona para elevar os níveis de hemoglobina, na ausência de défice de ferro. As causas possíveis para esta alteração são a inflamação sistémica e as lesões microvasculares (Mehdi & Toto, 2010).

4. DIAGNÓSTICO - CARACTERÍSTICAS CLÍNICAS E LABORATORIAIS

4.1. AVALIAÇÃO/CARACTERÍSTICAS CLÍNICAS

A apresentação clínica da anemia é diversa e varia em função da severidade, da rapidez de instalação, da idade e das características do doente (Hillman & Ault, 2002; Bermejo & López, 2009). Geralmente, como não se verifica correlação entre a severidade da doença e a causa da anemia, é fundamental proceder-se a uma história clínica cuidada e detalhada (Spivak, 2000). Esta abrange um questionário ao doente acerca do início dos sintomas, quando os há, já que, na maioria das situações, é descoberta em hemogramas de rotina (Mayhew, 2006). Na história deve constar os antecedentes de transfusões sanguíneas, o tipo de hábitos nutricionais, o consumo de álcool, drogas, a exposição prévia a toxinas, história de viagens e sintomas associados a doenças crónicas ou agudas como febre, perda de peso e sudorese nocturna. Se possível é importante avaliar hemogramas antigos.

Além da história clínica, um exame físico meticuloso pode auxiliar no diagnóstico (Hillman & Ault, 2002). Os sinais físicos presentes variam em função do
início e do grau de instalação da anemia. Quando a anemia se estabelece gradualmente, desenvolve-se compensação a nível da curva de dissociação da hemoglobina, do débito cardíaco e redistribuição no volume sanguíneo. Assim, ao exame físico pode encontrar-se um choque de ponta de maior intensidade, um pulso amplo e taquicardia durante o exercício. À ausculta cardíaca é possível identificar-se um sopro sistólico, mais audível no apéx ou ao longo do bordo esternal, e com irradiação para o pescoço, secundário ao aumento da turbulência sanguínea. À inspecção é visível uma palidez da pele e das mucosas (Figura 13) (Hillman & Ault, 2002).

Figura 13 – Palidez da pele e mucosas num doente com anemia. (emedicine.medscape.com)

Na ADC, os sintomas encontram-se frequentemente associados à doença subjacente e não à anemia propriamente dita. Neste contexto, a anemia desenvolve-se nos primeiros 30 a 90 dias, normalmente mantém-se estável e reverte após o tratamento da doença de base. Verifica-se uma correlação entre a anemia e a actividade e intensidade da doença subjacente. Assim, a anemia é considerada um bom parâmetro para avaliar a evolução da doença, monitorizar o curso clínico e avaliar a eficácia do tratamento instituído para a doença em causa (Cançado & Chiattone, 2002).

O sintoma mais prevalente entre os doentes com anemia é a fadiga. Constitui um dos sintomas importantes ao nível dos cuidados paliativos, com uma prevalência de
75% a 90%, associada à dor e anorexia. A fadiga é descrita como perda de energia que não é reposta pelo descanso, diminuição da capacidade mental e sensação de fraqueza generalizada, que afecta a vida diária dos doentes e a sua qualidade de vida. Contribui para a diminuição da tolerância ao exercício, imobilidade e, em situações mais graves, à depressão (Mayhew, 2006).

Na anemia moderada os únicos sintomas presentes podem ser astenia, aumento do batimento cardáico e dispneia de esforço. Na anemia mais severa, e na sequência de exercício físico, pode surgir palpitações, dispneia, cefaleias e cansaço fácil. No entanto, as manifestações clínicas dependem da idade do doente. Assim, num doente mais jovem os sintomas surgem para concentrações de hemoglobina inferiores a 7 a 8 g/dl ou hematocrito inferior a 20-25%; enquanto em doentes idosos podem surgir sintomas para valores de hemoglobina entre 10 e 12 g/dl. Se estes doentes forem portadores de doença cardiovascular aterosclerótica pode haver agravamento das queixas isquémicas, incluindo angina e claudicação. Nos doentes com doença cardíaca prévia pode, no contexto de anemia, desenvolver-se insuficiência cardíaca (Hillman & Ault, 2002).

Na ADC associada a défice de ferro os sinais e sintomas podem incluir, além da fadiga, cefaleias, irritabilidade, parestesias, glossite, queilose angular e coiloníquia (Figura 14). Pode ainda surgir um distúrbio alimentar, PICA, que se caracteriza por desejo de comer substâncias invulgares como gelo e terra (Bérmejo & López, 2009).

![Figura 14 – Coiloníquia. A figura mostra o aspecto das unhas em colher típicas, quebradiças e enrugadas.](image-url)
4.2. AVALIAÇÃO LABORATORIAL

Apesar da história clínica e o exame físico sugerirem a presença de anemia, a avaliação laboratorial completa é essencial para estabelecer, com rigor, o diagnóstico e identificar a etiologia (Hillman & Ault, 2002). De acordo com a Organização Mundial de Saúde (OMS), define-se anemia quando a hemoglobina (Hb) é inferior a 12.0g/dl em mulheres pré-menopáusicas, e inferior a 13 g/dl em homens e mulheres pós-menopáusicas (Weiss, 2010; Smith, 2010).

A avaliação inicial do doente inclui o pedido de um hemograma completo que inclui a concentração de hemoglobina, o hematócrito e os índices eritrocitários como o volume corpuscular médio (VCM), a hemoglobina corpuscular média (HCM), o índice de anisocitose (RDW) e a concentração de hemoglobina corpuscular média por volume de eritrócitos (CHCM). As variações nos índices eritrocitários evidenciam, normalmente, perturbação na maturação eritrocitária ou deficiência de ferro. Na interpretação do hemograma é importante ter em conta alguns factores fisiológicos que podem falsear os resultados, nomeadamente a idade, o sexo, a gravidez, o tabagismo e a altitude (Adamson & Longo, 2008).

Outros exames relevantes englobam a contagem de reticulócitos, que fornece uma medida fiável da produção dos eritrócitos, e o estudo do ferro sérico com o doseamento do ferro sérico, a capacidade total de ligação ao ferro (TIBC), a ferritina sérica e o nível sérico dos receptores da transferrina.

O doseamento do ferro sérico permite quantificar o total de ferro ligado à transferrina em circulação. O TIBC (Total Iron Binding Capacity) é uma medida indirecta da quantidade de ferro ligado à transferrina. Este pode ser útil para calcular a percentagem de saturação da transferrina (valor do ferro sérico/TIBC).
O nível sérico de ferritina, uma proteína esférica de fase aguda constituída por 24 subunidades, é vantajoso, na medida em que permite avaliar as reservas corporais de ferro (Hillman & Ault, 2002). No entanto, em determinadas situações, como inflamação ou neoplasia, pode estar aumentada e, não reflectir de modo preciso as reservas corporais de ferro (Cançado & Chiattone, 2002). Este facto levou ao uso do ratio concentração sérica do TfR/log ferritina - que apresenta algumas limitações e não teve grande aceitação, como sublinhou Theurls et al. (2009). Segundo estes autores, o aspirado da medula óssea corado com azul de Prussia é considerado, o método mais fiável para determinar as reservas de ferro na medula óssea (Figura 15).

Esta técnica de coloração pode ser relevante porque permite determinar a quantidade de ferro armazenado nível medular (Wians et al., 2001). De acordo com Hillman e Ault (2002), se o diagnóstico é claro, por exemplo, numa anemia associada a inflamação ou mediante a existência de doença renal, este exame não é necessário. No entanto, se não se conseguir avaliar o nível sérico de ferritina ou este valor nos suscitar dúvidas diagnósticas, o aspirado da medula óssea corado com azul da Prússia é aconselhável (Figura 15) (Hillman & Ault, 2002). Apesar de ser considerado o exame “gold standard” para avaliar as reservas de ferro é moroso e dispendioso (Wians et al., 2001).
A concentração do receptor da transferrina possibilita a avaliação do status do ferro em geral e é uma boa medida para distinguir a anemia por défice de ferro da anemia da doença crónica. O receptor da transferrina é uma proteína transmembranar que liga a transferrina e está presente na superfície das células que requerem grandes quantidades de ferro como as células precursoras eritróides e células do SRE (Wians et al., 2001). A protoporfirina, um intermediário na via de síntese do heme, encontra-se aumentada na ADC. Esta alteração pode resultar do comprometimento da síntese do heme por inadequado suprimento de ferro aos precursores eritróides com, consequente, acumulação de protoporfirina nos eritrócitos (Adamson, 2008).

O esfregaço de sangue periférico pode fornecer algumas informações adicionais sobre a natureza da anemia que podem auxiliar no diagnóstico diferencial (Hillman & Ault, 2002). No entanto, alguns autores consideram controversa a sua contribuição para o diagnóstico diferencial, para além de reconhecerem que a análise da morfologia dos eritrócitos constitui uma prática generalizada e sobrevalorizada (Harrington et al., 2008). O esfregaço sanguíneo, além de poder revelar pequenas populações de células microcíticas ou macrocíticas não evidentes no hemograma, permite avaliar alterações no.
tamanho e na forma dos eritrócitos, anisocitose e poiquilocitose, respectivamente (Figura 16) (Hillman & Ault, 2002).

![Image](image.jpg)

Figura 16 – Esfregaço de sangue periférico. A figura representa um esfregaço em que os glóbulos vermelhos são normocrómicos e normocíticos, sendo visível algumas células com formas anómalas (poiquilocitose) e com diferentes tamanhos (anisocitose).

A mensuração dos níveis séricos de EPO em doentes com valores de hemoglobina inferiores a 10 g/dl pode ser útil (Weiss & Goodnough, 2005), bem como o doseamento das citocinas em circulação nomeadamente da IL-1, IL-6, TNF-α e INF-γ.

A ADC é, em geral, uma anemia normocítica, normocrómica, leve (concentração de hemoglobina de 9,5 g/dl) a moderada (concentração de hemoglobina de 8g/dl) (Weiss & Goodnough, 2005). Raramente o valor da hemoglobina é inferior a 8 g/dl e, na maioria dos casos, varia entre 9-12 g/dl. O hematócrito, na maioria dos casos, oscila entre 25% e 45% (Cançado & Chiattone, 2002). Em muitos casos, este tipo de anemia pode coexistir com outras causas de anemia, nomeadamente défice de ferro (Mayhew, 2006).

Assim, podemos classificar uma anemia como ADC quando a concentração sérica de ferro, assim como a percentagem de saturação da transferrina estão reduzidas, traduzindo o desvio do ferro para o SRE (Weiss & Goodnough, 2005). Relativamente a

A ferritinémia pode encontrar-se normal ou aumentada, reflectindo o armazenamento de ferro e a sua posterior retenção nas células do SRE (Weiss & Goodnough, 2005). Para investigar a regulação do metabolismo do ferro na ADC, Theurl et al., (2009) referem um estudo realizado em ratos com doença inflamatória associada a anemia crónica, o qual revelou aumento da expressão da ferritina ao nível do baço mas não no fígado. Isto pode ser explicado pelas diferenças específicas nos níveis de ferritina nos tecidos que diminuem paralelamente à diminuição da expressão da ferroportina no baço, mas não no fígado (Theurl et al., 2009).

A realização do esfregaço sanguíneo revela a existência de eritrócitos normocíticos, normocrómicos, apesar de em 50% dos casos serem hipocrómicos e em 20 a 50% microcíticos. No entanto, a microcitose não é tão acentuada como a que se verifica na anemia por défice de ferro (Cançado & Chiattone, 2002).

Na ADC, além das alterações laboratoriais já referidas, pode verificar-se aumento do fibrinogénio, da PCR, da ceruloplasmina, do cobre plasmático, da velocidade de hemossedimentação (VS), e diminuição da haptoglobina e da albumina (Cançado e Chiattone, 2002). O aumento do cobre plasmático é uma consequência do aumento da ceruloplasmina. Esta é uma ferroxidase importante na exportação do ferro celular. Por outro lado, a retenção do ferro pelos macrófagos sugere que a sua actividade possa estar inibida. No entanto, demonstrou-se que a actividade da ceruloplasmina não se encontra alterada neste tipo de anemia (Kushner, 2006).
Devido ao papel central que a hepcidina desempenha na patogénese da ADC, a quantificação desta no plasma e na urina poderá ser útil no diagnóstico diferencial (Nemeth, 2006). A utilização da hepcidina, como exame potencialmente vantajoso no diagnóstico, só recentemente começou a ser exequível, a par do desenvolvimento de novas técnicas para a sua pesquisa ao nível do plasma e da urina. Estas metodologias incluem a utilização de ELISA mediante o uso de hepcidina marcada com biotina ou de hepcidina radioactiva e ensaios de espectrometria de massa.

Porém, importa mencionar que são necessários mais estudos clínicos para avaliar a importância da hepcidina no diagnóstico e prognóstico nas diferentes formas de anemia uma vez que o valor da hepcidina ainda não está totalmente clarificado. Algumas limitações prendem-se com as variações diurnas da hepcidina, valores mais elevados de manhã e mais baixos à tarde, e com a sensibilidade relativa ao teor de ferro disponível na dieta.

Já foram descritos doseamentos da pró-hepcidina no plasma, mas, estes valores não se correlacionam com a real concentração da hepcidina no plasma, o que os torna inadequados na substituição do doseamento da hepcidina biologicamente activa (Nemeth, 2009).

Além da importância no diagnóstico, o doseamento das concentrações da hepcidina pode auxiliar na instituição do tratamento e definir quais os doentes que necessitam de terapêutica com ferro oral e aqueles em que o tratamento com ferro por via endovenosa é mais favorável. Vários estudos mostraram uma correlação inversa entre os valores de hepcidina e a absorção do ferro marcado radioactivamente, o que sugere que estes doentes beneficiam com o tratamento com ferro parenteral (Nemeth, 2009)
5. DIAGNÓSTICO DIFERENCIAL

A ADC é uma anemia hipoproliferativa e hiporregenerativa, sendo importante diferenciá-la de outras causas de anemias deste tipo, nomeadamente da anemia por défice de ferro, da deficiência da medula óssea e de um conjunto de doenças associadas à diminuição da resposta à EPO, como a doença renal e distúrbios metabólicos (Hillman & Ault, 2002).

No entanto, a ADC pode coexistir com a anemia por défice de ferro, défice de vitamina B12 e ácido fólico, hemólise, diminuição da eritropoiese por insuficiência renal, mielofibrose, fármacos e toxinas.

A principal condição para o diagnóstico diferencial com a ADC é a anemia por défice de ferro (Cançado & Chiattone, 2002). Neste contexto, uma história clínica que permita avaliar a existência de perdas sanguíneas e descartar uma causa ao nível da dieta é importante. Porém, é através dos dados laboratoriais que podemos proceder, com rigor, ao diagnóstico.

Tanto na ADC como na anemia por défice de ferro a concentração sérica de ferro e a saturação da transferrina encontram-se reduzidas. No entanto, na anemia por défice de ferro a saturação da transferrina apresenta valores mais baixos, uma vez que a concentração plasmática da transferrina se encontra aumentada nesta condição, o que não acontece na ADC. De igual modo, o receptor solúvel da transferrina encontra-se aumentado, o que não acontece na ADC em que este valor se encontra normal (Tabela 5) (Weiss & Goodnough, 2005).

Na ausência de inflamação, a ferritinémia está correlacionada directamente com as reservas de ferro no SRE. Se este valor se encontrar baixo, inferior a 30 ng/L, a hipótese de diagnóstico mais provável é de anemia por défice de ferro. Pelo contrário, se
a ferritinémia estiver elevada, superior a 100 ng/L, estes resultados sugerem o diagnóstico de ADC. No entanto, o valor da ferritina sérica pode estar elevado no contexto de um processo inflamatório (definido por um aumento da PCR), não se podendo excluir a existência de défice de ferro. Nesta situação recorre-se à avaliação da saturação da transferrina, já que a diminuição deste parâmetro (<20%) confirma o défice de ferro. Esta situação pressupõe uma origem mista da anemia, por exemplo um processo crónico que coexiste com défice de ferro, o que pode acontecer no contexto de doença inflamatória intestinal ou de neoplasia (Bermejo & López, 2009).

<table>
<thead>
<tr>
<th>Tabela 5 – Diagnóstico diferencial entre a anemia da doença crónica e a anemia por défice de ferro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Ferro</td>
</tr>
<tr>
<td>Transferrina</td>
</tr>
<tr>
<td>Saturação da</td>
</tr>
<tr>
<td>Transferrina</td>
</tr>
<tr>
<td>Ferritina</td>
</tr>
<tr>
<td>Receptor da</td>
</tr>
<tr>
<td>transferrina solúvel</td>
</tr>
<tr>
<td>Ratio receptor de</td>
</tr>
<tr>
<td>transferrina solúvel/</td>
</tr>
<tr>
<td>log ferritina</td>
</tr>
<tr>
<td>Citocinas</td>
</tr>
<tr>
<td>PCR</td>
</tr>
<tr>
<td>EPO</td>
</tr>
</tbody>
</table>

(Adaptado de Bermejo & López, 2009; Weiss & Goodnough, 2005)

Outra situação em que pode ocorrer anemia mista, é o caso de doença inflamatória crónica em que simultaneamente ocorre perda sanguínea ou má nutrição.
Nestas situações o aumento da hepcidina é contraposto pelos efeitos do défice de ferro. Mesmo que não existam perdas sanguíneas ou défice nutricional, quando a inflamação dura muitos anos pode-se desenvolver anemia por défice de ferro, como consequência da acção prolongada da hepcidina na absorção de ferro a nível duodenal (Nemeth, 2010).

Um estudo realizado com o objectivo de avaliar a eficácia diagnóstica de alguns testes laboratoriais, incluindo o doseamento dos sTfR no diagnóstico de deplecção de ferro em doentes com patologias crónicas, concluiu que o doseamento do sTfR tem baixa sensibilidade e especificidade e não avalia correctamente o status do ferro nas situações de ADC. Nestes doentes, o exame eleito continua a ser o aspirado da medula óssea e posterior coloração com azul da Prússia (Figura 15) (Juncá et al., 1998).

Um outro estudo mais recente comparou a capacidade de discriminar doentes com anemia por défice de ferro e doentes com ADC, mediante a avaliação do sTfR e outros indicadores do status do ferro, como a capacidade total de ligação ao ferro (TIBC), o volume corpuscular médio (VCM), a percentagem de saturação da transferrina, o índice de anisocitose (RDW) e a concentração sérica de ferro. O estudo concluiu não haver uma diferença significativa entre o sTfR e o TIBC em termos de acuidade diagnóstica. No entanto o sTfR parece ter um interesse diagnóstico acrescido quando se trata de determinar se a anemia é devido a défice de ferro ou a resposta inflamatória, como sucede na ADC. Isto acontece quando os valores de ferritina não ajudam a esclarecer o diagnóstico, ou seja, não são tão baixos quanto se esperaria numa anemia por défice de ferro, nem tão elevados ao ponto de indicarem ADC. Além disso, a determinação plasmática do TfR pode auxiliar na avaliação dos doentes que têm simultaneamente défice de ferro e ADC (Wians et al., 2001).
O esfregaço sanguíneo pode também contribuir para o diagnóstico diferencial dos diferentes tipos de anemia. Um estudo recente baseado numa análise quantitativa morfológica, verificou que a presença de poiquilócitos (designados de préqueratócitos) apenas existiam nos esfregaços sanguíneos de doentes com anemia por défice de ferro. Este estudo possibilitou também a avaliação da validade de outras alterações morfológicas descritas na anemia por défice de ferro, na β-talassémia e na ADC. Os resultados deste estudo mostraram a existência de eritrócitos em alvo (Figura 17) na maioria dos casos de ADC (65%), ainda que em menor número do que nos outros tipos de anemia. Além disso, foi confirmado que os prequeratócitos são característicos da anemia por défice de ferro, estando presentes em 78% dos casos; contudo em 13% dos casos de ADC também foram observados (Harrington et al., 2008).

Além da anemia por défice de ferro, o diagnóstico diferencial com outras anemias hipoproliferativas impõe a avaliação da função renal e tiroideia, a biópsia ou o aspirado da medula óssea. Este último exame, para além de avaliar as reservas de ferro a nível medular, detecta a presença de lesão medular ou doença infiltrativa. Através da análise da morfologia das células no sangue periférico e na medula óssea é possível diagnosticar uma lesão da medula óssea secundária a fármacos como, por exemplo, a anti-retrovirais prescritos na infecção VIH, a doença infiltrativa, como leucemia ou linfoma, bem como a aplasia medular em geral (Adamson, 2008).

Figura 17 – Esfregaço de sangue periférico evidenciando células em alvo.
6. TRATAMENTO

A anemia está associada a alterações na função cardíaca e renal, diminuição da distribuição de oxigénio, da actividade física e fadiga e diminuição da qualidade de vida (Weiss & Gasche, 2010). A prescrição de terapêutica adequada nos doentes com anemia baseia-se não só nos valores laboratoriais mas também na causa da anemia, na sua severidade e na existência de sintomas (Mayhew, 2006). Além disso, outros factores influenciam a decisão, como a idade do doente, a existência concomitante de doença arterial coronária, doença pulmonar ou DRC (Weiss & Goodnough, 2005).

A ADC é uma anemia que se desenvolve de forma progressiva e é bem tolerada pelo doente, a não ser que este apresente alguma patologia associada, como por exemplo, insuficiência cardíaca. Nesta situação, os doentes podem manifestar sintomas com valores de concentração de hemoglobina e hematócrito mais baixos. Normalmente os doentes com ADC apresentam um valor da concentração da hemoglobina em média 10g/dl e hematócrito 30% (Mayhew, 2006).

Sempre que possível, o tratamento da doença de base é a melhor opção terapêutica e muitas vezes é suficiente para a correcção da anemia (Tabela 6) (Weiss & Goodnough, 2005). Por exemplo, numa infecção bacteriana aguda, a anemia é corrigida com a toma de antibiótico; já no caso da AR, a utilização de anti-inflamatórios muitas vezes contribui para a subida nos valores da hemoglobinina. No entanto, quando não se consegue uma boa resposta, ou se está perante anemia severa, ou anemia ligeira/moderada num doente com factores de risco importantes, é fundamental estabelecer uma terapêutica adequada para tratar a anemia de acordo com a doença de base (Hillman & Ault, 2002; Weiss & Gasche, 2010).
A percentagem de doentes com ADC e que necessitam de tratamento varia entre 20% a 30%, e as opções terapêuticas possíveis englobam a transfusão de eritrócitos, a reposição de ferro e a administração de agentes estimuladores da eritropoiese (Tabela 6) (Cançado & Chiattone, 2002). No entanto, devido à melhor compreensão da patogenia da ADC, cada vez mais se têm vindo a desenvolver novas terapêuticas e outras estão ainda em estudo (Weiss & Gasche, 2010).

6.1. TRANSFUSÃO DE ERITRÓCITOS

A indicação para transfusão de eritrócitos verifica-se em situações em que é necessário uma intervenção rápida, como no contexto de anemia severa (valores de hemoglobina inferiores a 8g/dl), ou de situações que põe em causa a vida do doente (hemoglobina inferior a 6,5g/dl) (Weiss & Goodnough, 2005). Nos doentes oncológicos, submetidos a quimioterapia ou radioterapia, pode efectuar-se transfusões mesmo com valores de hemoglobina de 10g/dl, para ultrapassar o efeito da hipóxia na neoplasia e melhorar a farmacocinética dos agentes quimioterapêuticos. Isto aplica-se
quando não é possível esperar pelo tratamento com EPO, ou esta hormona não pode ser usada devido à presença de receptores específicos nas células tumorais.

Quando se considera a transfusão de concentrado de eritrócitos, há um conjunto de parâmetros clínicos a avaliar, como a idade do doente, os sinais e sintomas da anemia, a velocidade e o volume da perda sanguínea (quando existe), a função cardíaca e pulmonar, a existência de doença cardíaca isquémica e de tratamento farmacológico.

Nos adultos, cada unidade de eritrócitos aumenta a concentração de hemoglobina em 1g/dl e o hematocrito em 3%. Nas crianças, uma transfusão de 5 ml/kg aumenta a concentração de hemoglobina, aproximadamente, de 1g/dl. Contudo, quando o aumento da hemoglobina é mais baixo do que o esperado deve-se procurar identificar causas que estejam relacionadas com a perda, armazenamento ou destruição de eritrócitos (Liumbruno et al., 2009).

A transfusão sanguínea está associada ao aumento da taxa de sobrevida em doentes com anemia e enfarte do miocárdio. Contudo, encontra-se associada a falência multiorgânica e aumento da mortalidade em doentes internados em estado crítico (Weiss & Goodnough, 2005). Um estudo revelou aumento da mortalidade (cerca de 16,1%), nos doentes que receberam transfusão para valores de hemoglobina inferiores a 10g/dl. No entanto, nos doentes que só receberam transfusão quando o valor da hemoglobina desceu para valores inferiores a 7g/dl, a mortalidade foi apenas de 8,7% (Zarychanski & Houston, 2008).

Um outro estudo mostrou maior probabilidade de morte nos doentes com hematocrito pré-transfusão entre 25 e 30%, relativamente a doentes com hematocrito mais baixo. Estes resultados permitiram inferir que as transfusões de eritrócitos podem ser prejudiciais nos doentes com anemia ligeira a moderada, mas benéfica naqueles com anemia severa (Zarychanski & Houston, 2008).
Existem guidelines para a abordagem da ADC em doentes com neoplasias ou DRC, que desaprovam as transfusões prolongadas no tempo, devido aos riscos associados, como sobrecarga corporal de ferro e sensibilização aos antigénios HLA, que pode ocorrer previamente a transplante renal (Weiss & Goodnough, 2005).

6.2. SUPLEMENTOS DE FERRO

O ferro é um micronutriente fundamental a uma diversidade de processos fisiológicos. Porém, é também essencial ao crescimento de microorganismos e das células tumorais, as quais dependem intrinsecamente deste para proliferarem. Deste modo, a retenção do ferro ao nível do SRE pode ser considerada uma estratégia de defesa para impedir o crescimento dos microorganismos e das células tumorais. Nestes casos deve-se evitar a administração de ferro (Cançado & Chiattone, 2002; Weiss & Goodnough, 2005).

Os suplementos de ferro devem ser considerados em doentes com ADC e défice de ferro e em doentes que não respondem favoravelmente à terapêutica com agentes eritropoiéticos que manifestam um défice funcional de ferro. Além disso, a terapia com ferro pode reduzir a actividade da doença na AR e da DRC em estádio final, devido à inibição da formação do TNF-α (Weiss & Goodnough, 2005).

A reposição de ferro pode ser instituída por via oral ou parentérica. Os suplementos de ferro oral contêm, habitualmente, este elemento sob a forma de sais ferrosos, como sulfato de ferro, gluconato de ferro e fumarato de ferro (Weiss & Gasche, 2010). A dose recomendada é de 150 a 200 mg diariamente. Quando este não é devidamente absorvido poderão ser necessárias doses mais elevadas. Os efeitos adversos desta terapêutica, por via oral, são o desconforto abdominal, naúseas, vômitos
e obstipação. Estes efeitos, muitas vezes, condicionam a adesão à terapêutica. Além disso, o aparecimento de fezes escuras pode mascarar uma eventual hemorragia gastrointestinal (Mayhew, 2006).

As preparações parentéricas de ferro actualmente disponíveis incluem ferro dextrano, gluconato de ferro e sacarose de ferro. A primeira é um produto estável, tem um tempo de semi-vida plasmático de 3-4 dias, o que permite a administração de doses simples elevadas. No entanto, esta molécula pode desencadear reacções anafilácticas (Gasche et al., 2010), hipotensão, cáimbras, naúseas, vômitos, cefaleias e diarreia (Mayhew, 2006). É a formulação que está mais associada a efeitos adversos (Mehdi & Toto, 2009).

O gluconato de ferro apresenta uma rápida degradação e é libertado directamente para as proteínas plasmáticas. Os seus efeitos tóxicos podem advir da sobresaturação da capacidade de saturação de transferrina. O ferro não ligado à transferrina pode lesar as células endoteliais e levar ao chamado síndrome de vazamento capilar ou síndrome de Clarckson. Neste contexto, os doentes podem manifestar naúseas, hipotensão, taquicardia, dispneia e edema bilateral das mãos e pés. Porém, a utilização do gluconato de ferro nos doentes em diálise com défice de ferro parece ser mais seguro e eficaz em detrimento do ferro dextran.

A sacarose de ferro apresenta uma cinética de degradação média e o tempo de semi-vida plasmática é pequeno 5-6h. O ferro é captado, apenas em parte, pelas proteínas plasmáticas e pelo SRE. A sacarose de ferro não está relacionada com o desenvolvimento de reacção anafiláctica (Gasche et al., 2010).

Num estudo realizado com doentes em hemodiálise, com saturação de transferrina inferior a 20% e níveis de ferritina superiores a 100 ng/ml, sob terapêutica de ferro endovenoso, verificou-se um risco superior de desenvolver bacteriémia. Isto
deve-se, provavelmente, ao efeito inibitório do ferro nos mecanismos de imunidade celular. Além disso, o uso prolongado promove a formação de radicais livres que causa lesão dos tecidos e disfunção endotelial com aumento do risco de doença cardiovascular (Weiss & Goodnough, 2005).

Nos doentes com DRC, tanto a falta como o excesso de ferro encontram-se ligados ao aumento do risco de eventos tromboembólicos (relativamente ao défice de ferro devido ao desenvolvimento de uma trombocitose reactiva). Também foram descritos casos de trombose do seio venoso cerebral em doentes com deficiência de ferro e contagem normal de plaquetas (Besarab et al., 2009).

Na DRC é frequente a ocorrência de défice de ferro devido à perda sanguínea e diminuição da absorção deste micronutriente (Miranda et al., 2009). A terapêutica com ferro é essencial nestes doentes e a via parentérica é considerada a mais eficaz e pode até aumentar os níveis de hemoglobina sem a utilização concomitante de agentes estimuladores da eritropoiese (Besarab et al., 2009). Actualmente, recorre-se preferencialmente ao gluconato de ferro e sacarose de ferro em detrimento do ferro dextran devido ao risco de reacção anafiláctica (Fishbane, 2009). A administração de ferro parentérico reduz a quantidade de EPO em aproximadamente 46% nos doentes em diálise (Hillman & Ault, 2002).

Os critérios estabelecidos para a terapêutica com ferro, segundo Miranda et al. (2009) são a saturação de transferrina inferior a 20% e/ou ferritina sérica inferior a 100 g/ml. Porém, segundo as guidelines da National Kidney Foundation, no tratamento da anemia da DRC, a terapêutica com ferro está indicada nos seguintes casos:

- Nos doentes em que se pretende um hematócrito de 33-36%, o ferro deve ser administrado mantendo a saturação da transferrina inferior a 20% e a ferritina superior a 200µg/L;
- Nos doentes que respondem mal ao tratamento com EPO, pode ser necessário manter a saturação da transferrina superior a 50% e a ferritina entre 400 e 800µg/L;
- Nos doentes em hemodiálise, quase todos requerem tratamento com ferro para evitar deficiência funcional de ferro (Hillman & Ault, 2002).

O tratamento com ferro endovenoso em doentes com ferritina sérica superior a 500µg/ml ainda não está totalmente esclarecido. Um estudo aleatório efectuado por Coyne et al. (2007) em 134 doentes em hemodiálise, com valores de ferritina sérica de 500µg/ml, procurou avaliar a alteração nos valores de hemoglobina em função do tratamento com ferro parentérico. Verificou-se aumento nos valores de hemoglobina em maior proporção no grupo em que houve introdução de ferro relativamente ao grupo controlo. Vários estudos evidenciaram que esta terapêutica mantém a eficácia eritropoietica nos doentes em hemodiálise com valores de ferritina sérica superiores a 500µg/ml (Fishbane, 2009).

Nos doentes com insuficiência cardíaca, estudos recentes mostraram uma boa resposta ao tratamento do défice de ferro (verdadeiro ou funcional) com reposição parentérica deste. Verificou-se aumento dos níveis de hemoglobina, melhoria da fracção de ejeção do ventrículo esquerdo, da NYHA, da hipertrofia e dilatação esquerda, da função renal, da qualidade de vida e da capacidade de exercicio e diminuição da frequência cardíaca, do peptídeo natriurético (BNP), PCR e da hospitalização. Apesar de ser uma terapêutica simples, esta pode desempenhar um papel importante na correcção da anemia e/ou défice de ferro nestes doentes (Silverber et al., 2008).

Na doença inflamatória intestinal impõe-se a utilização da via parentérica, devido aos efeitos secundários da terapêutica com ferro oral, da diminuição da absorção deste elemento ao nível do duodeno (resultado da acção combinada da hepcidina e do
TNF-α), bem como do stress oxidativo induzido por este elemento no lúmen intestinal, o que agrava a inflamação intestinal. As vantagens desta via de utilização prendem-se com o facto do ferro se encontrar na forma férrica e, portanto, não ter potencial oxidativo, bem como a própria via em si impedir a acumulação intestinal (Gasche et al., 2010).

Segundo estudos referidos por Gasche et al., (2010), a sacarose de ferro é o composto eleito, demonstrando segurança com doses únicas de 300 mg. A dose máxima recomendada é 600mg, por semana, embora este valor exceda a necessidade fisiológica deste micronutriente (Gasche et al., 2010). A carboxymaltose de ferro parece também ser eficaz (Weiss & Gasche, 2010).

6.3. AGENTES ESTIMULANTES DA ERITROPOIESE

A eritropoietina recombinante humana constitui uma opção terapêutica que se provou ser bastante eficaz no tratamento das anemias hipoproliferativas. A sua utilização encontra-se bem documentada, sobretudo em doentes com DRC (Mayhew, 2006). Recentemente, o seu uso encontra-se aprovado em doentes com cancro a fazer quimioterapia, doentes com DRC e doentes com infecção VIH, que se encontram sob tratamento mielosupressivo (Weiss & Goodnough, 2005). Nos doentes com HIV/AIDS e doentes oncológicos em quimioterapia, a administração de EPO recombinante pode reduzir a necessidade de recorrer a transfusões sanguíneas (Hillman & Ault, 2002). Além disso, a utilização destes agentes melhora a retinopatia diabética, o edema macular e a qualidade de vida em doentes com diabetes e submetidos a cirurgia (Fishbane, 2010). A percentagem de doentes com ADC que respondem a esta
terapêutica é de 25% em síndromes mielodisplásicos, 80% no mieloma múltiplo e superior a 95% na AR e DRC.

Esta terapêutica permite contrariar os efeitos anti-proliferativos das citocinas, estimular a captação do ferro e a síntese do heme nas células progenitoras eritróides. A má resposta a esta terapêutica encaminha-nos para uma de duas hipóteses: ou a anemia está associada ao número elevado de citocinas proinflamatórias; ou a disponibilidade de ferro é baixa (Weiss & Goodnough, 2005).

Com a utilização inicial da epoietina alfa, em 1989, o objectivo principal era o aumentar a concentração de hemoglobina para valores superiores a 10 g/dl nos doentes com DRC e evitar a necessidade de transfusão. As preocupações mais recentes com os possíveis efeitos secundários dos agentes estimulantes da eritropoiese, incluem o risco aumentado de AVC e eventos cardiovasculares. Estes parecem surgir essencialmente em doentes cujo objectivo é atingir níveis de hemoglobina superiores a 13g/dl, o que contribuiu para a definição de um valor alvo de hemoglobina de 10 a 12 g/dl (Fatodu, 2010).

A EPO recombinante humana ao aumentar a massa eritrocitária conduz ao aumento da viscosidade sanguínea e do risco trombótico devido à inflamação e actividade antifibrinolítica. Outro mecanismo provável para este efeito secundário é a estimulação do desenvolvimento vascular e alterações na produção de factores vasoactivos (Drakos et al., 2008). Estudos recentes sugerem que o aumento de eventos tromboembólicos, que decorrem do tratamento com agentes estimuladores da eritropoiese, parece surgir devido ao défice funcional de ferro induzido por esta terapêutica e aumento da produção de plaquetas. A administração concomitante de ferro com estes agentes eritropoiéticos (ou apenas pré-tratamento com ferro) parece diminuir a trombocitose induzida por esta terapêutica (Besarab et al., 2009).
Os agentes estimuladores da eritropoiese são similares em estrutura e função à EPO, e apresentam eficácia e segurança similar. Estímulam a produção eritrocitária mediante a ligação aos receptores da EPO na medula óssea (Fishbane, 2009). As duas formas mais comuns destes agentes são a epoietina alfa e a darbopoietina alfa (Fishbane, 2010). Um outro agente disponível é a epoietina beta. Todos estes agentes diferem em termos de composição farmacológica, receptividade para o receptor e tempo de semi-vida sérico, o que permite definir estratégias e doses a instituir com maior flexibilidade (Weiss & Goodnough, 2005).

Relativamente aos doentes com câncer e anemia, a fazer tratamento com EPO recombinante, apesar da redução no número de transfusões necessárias e da melhoria da qualidade de vida, vários estudos têm revelado diminuição da sobrevivência, aumento da progressão do tumor e dos eventos trombóticos (Fatodu, 2010; Fishbane, 2010). Foram detectados níveis elevados de receptores de EPO em biópsias de células de carcinomas da mama o que parece ser regulado pela hipóxia. Em alguns tipos de câncer o número elevado desses receptores está associado a neoangiogénese, hipóxia e tumor infiltrante (Weiss & Goodnough, 2005).

Nos doentes com câncer a fazer quimioterapia, o tratamento só deve ser instituído para valores de hemoglobina inferiores a 10 g/dl, recomendação estabelecida pela American Society of Clinical Oncology/ American Society of Hematology (ASSCO/ASH) e não deve ultrapassar os 12 g/dl. De acordo com as guidelines da National Comprehensive Cancer Network, com recomendações mais severas do que as apresentadas pela ASSCO/ASH (2008) esta terapêutica deve ser instituída apenas em doentes a fazer quimioterapia, mas sem intenção curativa. Aqueles em que a quimioterapia tem um potencial curativo, ou nos doentes sob radioterapia, o tratamento com estes agentes não é recomendado.
Em suma, o objectivo principal do tratamento com estes agentes é reduzir a necessidade de proceder a transfusões. Assim, a dose recomendada é a mais baixa, que permite evitar a transfusão. Se os valores de hemoglobina aumentarem 1g/dl, num período de 2 semanas, a dose deve ser reduzida 25% a 50% (Fishbane, 2010).

No entanto, temos de ter em atenção que vários ensaios revelaram aumento da mortalidade em doentes com neoplasias cerebrais, do pescoço e de células não pequenas do pulmão sob tratamento com EPO recombinante humana. Além disso, outro ensaio com doentes com cancro da mama teve que ser interrompido devido à elevada mortalidade no grupo de doentes a receber EPO recombinante (Zarychanski & Houston, 2008).

Nos doentes com DRC, o tratamento com os agentes estimuladores da eritropoiese está relacionado com diminuição da necessidade de transfusões e, possivelmente, melhoria na qualidade de vida, mas não tem efeitos evidentes no controlo das manifestações secundárias da doença. Se o valor alvo da hemoglobina ultrapassar os 13 g/dl, a probabilidade de AVC ou eventos cardiovasculares é elevada. No decurso do tratamento, cerca de 25% dos doentes podem requerer medicação anti-hipertensiva ou ajustamento desta; os doentes com hipertensão não controlada não devem fazer esta terapêutica. Ainda durante a hemodiálise pode ser necessário a tomada de anticoagulantes como heparina em alguns doentes (Fishbane, 2010).

As guidelines da Food and drug administration (FDA) apresentam as seguintes recomendações para o tratamento com agentes estimuladores da eritropoiese:

- No tratamento com os agentes estimuladores da EPO, quando o valor alvo pretendido é entre 13,5 e 14g/dl, o risco de morte e eventos cardiovasculares é superior em relação a valores alvo de hemoglobina de 10 a 11,3 g/dl.
A dose deve ser individualizada e o objectivo é manter os valores de hemoglobina entre 10 a 12 g/dl.

Se um doente não responde favoravelmente, ou seja, os níveis de hemoglobina não atingem o valor alvo passadas 12 semanas:

- Não se deve administrar doses elevadas, mas sim utilizar a dose mais baixa que permite evitar recorrer a transfusões sanguíneas;
- Avaliar e tratar outras causas de anemia e continuar a avaliar os níveis de hemoglobina;
- Seguir as instruções para ajustes na dose;
- Parar a terapêutica com estes agentes, se for necessário continuar a recorrer a transfusões.

Os agentes estimuladores da eritropoiese também podem ser utilizados com eficácia nos doentes com doença inflamatória intestinal, que têm anemia mista (ADC com défice de ferro), em especial se após terapêutica com ferro não se obtiveram resultados favoráveis (Figura 18) (Weiss & Gasche, 2010). Nos doentes com infecção VIH o tratamento com estes agentes é eficaz e seguro, diminuindo a necessidade de transfusão.
OUTRAS TERAPÊUTICAS

Devido ao seu papel central na ADC, a IL-6, considerada a principal citocina inflamatória envolvida na produção de hepcidina, poderá ser um alvo terapêutico importante em várias doenças inflamatórias e auto-imunes. O Tocilizumab, aprovado pela FDA para tratamento de doentes com AR, é um anticorpo contra o receptor da IL-6 que impede a ligação desta citocina à membrana e aos receptores solúveis, inibindo assim a transdução do sinal. Estudos preliminares indicam bons resultados relativamente à diminuição da actividade da doença, aumento dos valores da hemoglobina e normalização dos marcadores inflamatórios, como a PCR, VS e ferritina sérica (Raj, 2009).

Um estudo realizado com o objectivo de avaliar a prevalência e patogenia da anemia na doença inflamatória intestinal analisou a acção do Infliximab, um anticorpo monoclonal anti TNF-α, e o efeito que induz na anemia e no status do ferro in vivo bem como a sua actuação no crescimento das células progenitores eritróides in vitro. Nestes
doentes observou-se melhoria da anemia provavelmente devido a sua acção na inflamação e na actividade da doença (Bergamaschi et al., 2010).

Assim, é fundamental encontrar novas terapêuticas que incluam modificadores da EPO/receptores da EPO, novas hormonas e citocinas/anticitocinas que possam ultrapassar a restrição de ferro e a diminuição da eritropoiese em condições inflamatórias (Weiss & Gasche, 2010).

Os antagonistas da hepcidina também têm manifestado um papel promissor nos doentes em que se verifica aumento dos níveis desta hormona. Os anticorpos para neutralizar a hepcidina já foram usados com sucesso in vivo em modelos de ratos com anemia da inflamação. Têm sido desenvolvidos compostos que interferem com a via de produção da hepcidina, por exemplo, a dorsomorfina, uma molécula que inibe a via de sinalização BMP ao bloquear a indução da hepcidina pelo ferro in vivo. Outras substâncias específicas para o tratamento da ADC, actuando especificamente no eixo hepcidina/ferroportina, estão a ser alvo de investigação. A hemojuvelina (HJV) solúvel actua como antagonista na via de sinalização BMP e diminui a expressão da hepcidina em ratos. Alguns agentes estimulantes eritropoiéticos como os inibidores da prolyl hidroxilase podem impedir a produção de hepcidina ao intervirem na via HIF, além de estimularem a eritropoiese (Nemeth, 2010).
CONCLUSÃO

A anemia associada à doença crónica é caracterizada por retenção do ferro ao nível do SRE e alteração na produção e sobrevivência dos eritrócitos. Pode surgir no contexto de diversas patologias crónicas infecciosas e inflamatórias, nomeadamente, infecção VIH, neoplasia, AR, doença inflamatória intestinal, DRC, diabetes, insuficiência cardíaca, entre outras. Também pode manifestar-se num contexto agudo, por exemplo, na sépsis em doentes internados nos cuidados intensivos.

É importante o clínico reconhecer que esta anemia pode surgir associada a determinada patologia e influenciar a sua progressão, sobrevivência e consequências clínicas. Tendo conhecimento da causa que está na sua base é possível estabelecer um procedimento adequado, que pode contribuir para melhorar a qualidade de vida dos doentes. Porém, esta é muitas vezes difícil de diagnosticar, especialmente nos idosos e em doentes em que a etiologia da anemia é multifactorial.

Perante a suspeita, através da observação da palidez das mucosas ou de sintomatologia típica, ou mais frequentemente em exames laboratoriais de rotina, é fundamental proceder a uma cuidadosa avaliação clínica e laboratorial. Questionar o doente sobre história de hemorragias, défices nutricionais, entre outros, pode contribuir para o correcto diagnóstico. No entanto, só através dos diversos parâmetros laboratoriais é possível, de uma forma rigorosa, caracterizar e definir esta alteração hematológica. O algoritmo elaborado representado na Figura 19 pretende ser uma ferramenta útil na prática clínica, nomeadamente no diagnóstico e seguimento do doente com ADC.

A ADC envolve a activação do sistema imunitário e traduz-se, laboratorialmente, por anemia normocítica normocrómica, em geral ligeira a moderada, diminuição do ferro sérico e da percentagem de saturação da transferrina. Podemos ainda encontrar a concentração sérica de ferritina normal ou diminuída, diminuição do
ratio sTfR/log transferrina (inferior a 1) e aumento da ferritina sérica, que indica a existência de inflamação juntamente com outros parâmetros como a PCR e VS. Dado que esta anemia pode coexistir com défice de ferro, pode ser necessária a avaliação das reservas deste elemento ao nível da medula óssea através de biópsia da medula óssea e posterior coloração dos esfregaços com azul da Prússia. É fundamental distinguir ADC isolada de ADC associada a défice de ferro, ou mesmo de anemia por défice de ferro isolada, em virtude das implicações ao nível da terapêutica a instituir.

Além da componente laboratorial é indispensável avaliar a doença de base já que o tratamento desta é a opção terapêutica inicialmente recomendada. Quando não se consegue corrigir a anemia é necessária a selecção de uma terapêutica adequada tendo em conta as indicações clínicas, os efeitos secundários e contraindicações. Esta engloba transfusões de eritrócitos, compostos de ferro e agentes estimulantes da eritropoiese.

As transfusões estão indicadas perante situações urgentes ou anemia severa que põe em risco a vida do doente. A administração de compostos de ferro permite, no caso da DRC, diminuir a dose de agentes estimulantes da eritropoiese. Contudo, em determinadas situações, como infecção bacteriana ou neoplasia, esta não está indicada já que o ferro é um micronutriente utilizado pelos microorganismos invasores e células tumorais para o seu crescimento e proliferação.

A utilização de agentes estimuladores da eritropoiese no cancro, na DRC e na infecção VIH, tem revelado contribuir para melhorar a qualidade de vida e evitar o recurso às transfusões de eritrócitos. No contexto oncológico, a prescrição dos agentes estimuladores da eritropoiese está indicada no âmbito paliativo. Em todas estas abordagens terapêuticas é mandatório seguir as guidelines para o tratamento, uma vez que podem advir efeitos nefastos e aumento da mortalidade se for ultrapassado o valor alvo de hemoglobina.
Podemos pois concluir que, na abordagem deste tipo de anemia, o clínico deve conhecer a sua etiologia diversa e mecanismos patogénicos. Sempre que se revelar necessário deve ponderar cuidadosamente a altura adequada para instituir a terapêutica, tendo em conta o risco/benefício. Apesar de a ADC ser considerada, por alguns autores, um mecanismo adaptativo e, existirem situações em que a sintomatologia é ligeira, as consequências clínicas desta podem ser preocupantes e contribuir para o agravamento da doença de base.

Como se constata pelo número avultado de publicações neste domínio o tema continua a suscitar a atenção dos investigadores e a desafiar constantemente a investigação à medida que se conhecem novas moléculas implicadas na patogenia da ADC, se esclarecem mecanismos associados e se procuram novas terapêuticas dirigidas aos vários intervenientes no processo.
Figura 19 – Algoritmo de diagnóstico diferencial da anemia por défice de ferro, ADC e ADC com défice de ferro. (Adaptado de Lambert & Beris, 2006; Muñoz et al., 2009a; Weiss & Goodnough, 2005)
Bibliografia

73

