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Resumo
Nesta tese estudamos um sistema de equações diferenciais parciais

constituído por uma equação hiperbólica e uma equação parabólica que
surge, frequentemente, na descrição da libertação controlada de fármacos.
Neste contexto, a evolução da concentração é de�nida por uma equação
de difusão-convecção-reação em que a velocidade convectiva é induzida
por um campo elétrico.

Apresentamos um estudo qualitativo e quantitativo para o modelo
contínuo e para o modelo discreto construído de forma conveniente. Re-
alçamos que, para este último, estabelecemos resultados de convergência
que mostram que os métodos numéricos propostos são supraconvergentes.

Palavras Chave: Equação hiperbólica, Equação parabólica, Sistema de libertação

de fármacos, Método numérico, Supraconvergência

Abstract
In this work we study a system of two PDEs: a hyperbolic and a

parabolic equation. This system arise often in the mathematical mo-
delling of the controlled drug release. In this scope, the time and space
evolution of the concentration is described by a convective-di�usion-
reaction equation, where the convective velocity is induced by an electric
�eld.

We present a qualitative and quantitative study for the continuous
and the proposed discrete models. We remark that in the quantitative
analysis we include supraconvergence results.

Keywords: Hyperbolic equation, Parabolic equation, Drug delivery system, Nu-

merical method, Supraconvergence
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Chapter 1

Introduction

This work aims to study systems of partial di�erential equations composed by a

parabolic equation and a hyperbolic equation, and completed by convenient initial

and boundary conditions that arises in the scope of drug delivery.

Systems of partial di�erential equations that describe di�erent physical processes

interacting arise in several applications. For instance, if di�erent species di�use and

react together, then the time and space evolution of the corresponding concentrations

are described by a system of di�usion-reaction equations ([27], [28]). In this case,

we have the coupling between di�erent parabolic equations. Otherwise, if we would

like to describe the stationary state of the previous physical system, then we should

consider the corresponding elliptic equations. Moreover, if we consider a di�usion

process that is enhanced by the application of an electric �eld, then the evolution

of the drug concentration and the electric �eld are described by an elliptic equation

coupled with a parabolic equation ([5], [15]). It remains to remark that coupling

between partial di�erential equations and ordinary di�erential equations also arise

in the mathematical modeling of drug release, for instance, when the viscoelastic

properties of the di�usion medium are taken into account ([1]).

The system of equations that will be studied in this thesis can be considered in

drug delivery when the di�usion process is enhanced by an electric �eld. It should

be remarked that di�erent types of enhancers have been used to increase the drug

transport (physical and chemical enhancers [10]). Iontophoresis and electroporation

belong to the class of physical processes used to increase the drug transport. In

this case, an electric �eld is applied to the di�usion medium that induces a con-

vective transport. These two enhancer processes have been considered in several

medical applications: dermatology - transdermal drug delivery ([10]); oncology -

cancer treatment ([7]); opthalmology - anterior and posterior segment eye diseases

treatment ([39]). While the �rst enhancer is characterized by long and lower electric

pulses, the medical protocols de�ned by the second one are characterized by short
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Chapter 1 Introduction

and high electric pulses. We observe that electroporation induces the increasing of

pores in the live target tissue, and consequently, a higher transport than the one

induced if iontophoresis is applied.

The propagation of the electric potential or electric �eld is described by the

Maxwell's equations. In certain scenarios, these equations can be reduced to wave

equations. In the literature, elliptic equations were used to describe the electric prop-

erties of the physical system when the two previous enhancers are considered ([5],

[30]). Consequently, the drug concentration evolution is described by the Poisson

equation that is coupled with a convection-di�usion equation. This last equation is

established considering the conservation mass principle and the Nernst-Planck equa-

tion for the mass �ux. A natural mathematical question is the mathematical study

of the coupling between the more general equations - the wave equation, and the dif-

fusion equation for the drug transport. The mathematical support from analytical

and numerical point of view are well established for the coupling between parabolic

equations, elliptic equations and elliptic-parabolic equations ([6], [21], [22], [29], [31],

[32], [33], [34], [41], [43]).

For systems of hyperbolic and parabolic equations, we found in the literature the

analytical and numerical study when the spatial domain is split into two domains

Ω1 and Ω2 and the coupling is made by the interface between both ([9], [11], [37]).

However, to the best of our knowledge, the mathematical treatment of systems of

second order (in time) hyperbolic equations and di�usion equations was not consid-

ered in the literature. In this work we consider a system composed by a telegraph

equation and a convection-di�usion-reaction equation, linked by the convective ve-

locity and completed with initial and Dirichlet boundary conditions. Our aim is

to establish some energy estimates for the drug concentration depending on energy

estimates for the solution of the wave equation. We propose a numerical method for

the coupled model that mimics the continuous one. We study the convergence prop-

erties of such numerical method. We prove that, although the truncation errors for

both discretizations are of �rst order with respect to the space stepsize, the spatial

discretization errors are of second order with respect to convenient discrete H1 and

L2 norms. Numerical experiments illustrating the theoretical results are included.

This work is organized as follows. In Chapter 2 we present the basis of the

motivation of this work - the wave equations for the electric �eld intensity and for

the electric potential established from the Maxwell's equations. Although the elec-
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tric potential or the electric �eld intensity have been described by Poisson equation,

when iontophoresis and electroporation processes are used to enhance the drug dif-

fusion, a more general scenario requires naturally an evolution equation that have

as stationary states the ones used before. Chapter 3 is focused on the study of a

telegraph equation: a wave equation with a damping e�ect. We study some energy

estimates for the solution of the initial boundary value problem de�ned by this equa-

tion, and we propose a spatial discretization that induces a semi-discrete solution

presenting the qualitative properties of the continuous one. The convergence analy-

sis is also presented in this chapter. The coupling telegraph-di�usion equations is

studied in Chapter 4. We start this chapter analysing the stability of the coupled

initial boundary value problem. A coupled semi-discrete problem is proposed and

its convergence is established. Finally numerical results illustrating the main results

are also included. We remark that the existence of the solution of the continuous

model is not established in this work and will be addressed in the future.

We would like to highlight Theorem 6 in Chapter 3 and Theorem 9 in Chapter

4 where the convergence properties of the semi-discrete schemes are established.

These two results are proved assuming that the solution of both initial boundary

value problems are smooth enough. Numerically we observe that the same result

of the Theorem 6 is observed for solution without the required smoothness. The

convergence analysis for less smooth solutions will be also studied in the near future.
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Chapter 2

Maxwell's Telegraph Equations

2.1. Introduction

The �rst question that we need to clarify is why arises the coupling between a

telegraph equation and a di�usion equation in the scope of drug delivery. To ans-

wer this question, we start this chapter by highlighting the main di�erence between

iontophoresis and electroporation and how the electric potentials induced by their

protocols are described in the literature. A general scenario of application of an

electric �eld or electric potential to enhance a drug di�usion requires a time and

space evolution equation for both. These equations will be deduced from the general

Maxwell's equations in what follows.

2.2. Iontophoresis and Electroporation

The main objective of iontophoresis and electroporation is the enhancement of po-

larized drug di�usion. In these two processes, an electrode with the drug charge is

placed in the neighbourhood of the polarized drug placed in a target tissue. This

electrode exerts a repulsion force on the drug particles and the other electrode, nor-

mally placed in the opposite side of the tissue, induces an attraction force on the

drug. These two forces create a convective velocity that increases the drug transport.

We observe that they could also induce a �uid movement which contributes to the

convective transport.

The main di�erence between the iontophoresis and the electroporation is given

by the applied potential protocols ([2]). The iontophoresis is characterized by the

use of constants electric pulses of low intensity (less or equal to 10V) during long

time periods, while the electroporation consists in the application of several electric

pulses of high intensity, but during short periods. Iontophoresis and electroporation

protocols can be applied independently or they can be combined.

In the iontophoresis the drug is only transferred by the free spaces of the tissue,

this means, we do not have changes in the porosity. When the intensity of the
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Chapter 2 Maxwell's Telegraph Equations

electric current is too high, pores arise in the target tissue. For this reason, in

the electroporation, the di�usion of drug molecules with high molecular weight is

possible. The formation of pores is not always reversible, it is only possible until

a certain value of intensity, so in most situations, the applied electric �eld should

be controlled such that an increasing of the permeability is observed, but without

irreversible damage in the tissue ([30]).

Note that the irreversible electroporation is also a promising technique when the

applied electric �eld intends to destroy target tissue like in cancer treatment. In this

case, the intensity and the duration of electric pulses should be such that the tissue

cannot return to its normal state.

In both processes, the drug transport is determined by the characteristics of the

applied current and the properties of the drug and target tissue. If the drug is

contained in a reservoir, usually a polymeric reservoir, then its characteristics have

an important role in the drug transport.

In the drug transport we identify three main contributions: passive di�usion,

convective transport induced by the repulsion and attraction forces, and transport

due to �uid movement (the so called electro-osmosis) ([18], [35], [42]). The time

and space of the drug evolution is described by the mass conservation law, being c

(kgm−3) the drug concentration,

∂c

∂t
+∇ · J = 0,

where J (kgm−2 s−1) denotes the mass �ux which is given by the Nernst-Planck

equation ([38])

J = −D∇c− vc,

where D (m2 s−1) is the di�usion coe�cient and v (ms−1) is the convective velocity

given by

v = − zDFc
RTemp

E,

where z is the valence of ionic species, Fc (9.6485 × 10−4Cmol−1) the Faraday's

constant, Temp the temperature of the tissue (K), R (8.314 J K−1mol−1) is the

universal gas constant and E (V m−1) is the electric �eld intensity. To complete

the mathematical description of the di�usion process we need to establish a partial

di�erential equation for the electric �eld intensity. We observe that in [5], [8], [17],

the authors assume a time independent situation, so E = −∇φ, where φ is the

electric potential (V ) . In this case the electrical potential is de�ned by the Laplace
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2.3 Maxwell's Equations

equation

∇(σ∇φ) = 0,

where σ denotes the electric conductivity (S m−1).

The time and space evolution of an electric potential or electric �eld intensity

can be deduced from the Maxwell's equations whose stationary states leads to the

Poisson equation. However, to obtain an accurate description of the drug evolution

in a more general setting, it is necessary to construct an equation for the electric

�eld intensity or for the electric potential. In what follows we deduce such equations

from the general Maxwell's equations in a three dimensional setting.

2.3. Maxwell's Equations

The Maxwell equations were presented by Maxwell in 1865 ([30]), being its construc-

tion from physical laws that we present in what follows ([45]).

Let S be an arbitrary smooth and bounded oriented 2-manifold in R3 with bound-

ary ∂S. Let E be the electric �eld intensity de�ned on ∂S, and B the magnetic �eld

(T ) induced in S. The Faraday's law states that

∂

∂t

∫
S
B dA+

∫
∂S
E dS = 0. (2.1)

Applying the Stokes's Theorem ([23]) we obtain∫
S

(
∂B

∂t
+∇× E

)
dA = 0,

and therefore, assuming continuity of the vector function, we conclude

∂B

∂t
+∇× E = 0. (2.2)

The Ampére's law allows us to compute the time variation of the electric dis-

placement De (Cm−2) on the boundary of a surface S from Je, the density of the

electric current (A), and from a magnetic �eld H (Am−1) in S, by

∂

∂t

∫
S
De dA−

∫
∂S
H dS +

∫
S
Je dA = 0. (2.3)

Let V be an arbitrary domain in R3 with piecewise smooth boundary ∂V . The

Gauss's law for the electric �eld states that∫
∂V
De dA =

∫
V
ρ dV, (2.4)
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where ρ denotes the total charge density (Cm−3). Moreover, Gauss's law for the

magnetic �eld states that ∫
∂V
B dA = 0. (2.5)

Following the establishment of (2.2), using the Stoke's Theorem and the Gauss's

Theorem ([23]), it can be easily shown that

∂De

∂t
−∇×H + Je = 0, (2.6)

∇ ·De − ρ = 0 (2.7)

and

∇ ·B = 0. (2.8)

Moreover, from (2.6), (2.7) and the fact that ∇ · (∇× u) = 0 for any smooth u, we

obtain the continuity equation

∇ · Je = −∂ρ
∂t
. (2.9)

Furthermore, as for bound surfaces we have

∫
∂V
∇×H dA =

∫
V
∇·(∇×H) dV = 0,

then

∂

∂t

∫
V
ρ dV =

∂

∂t

∫
∂V
De dA =

∫
∂V

(∇×H − Je) dA = −
∫
V
∇ · Je dV.

A compatibility relation between the electric current Je and the electric �eld E

is given by the Ohm's law. In fact, this law allows us to de�ne Je in function of E

through the relation

Je = σE, (2.10)

where σ denotes the electric conductivity.

Considering now the system (2.2), (2.6)-(2.8), we verify that it is not complete,

that means that the number of unknowns is di�erent from the number of equations

(twelve variables and eight equations). So we need to specify two called constitutive

equations, to obtain a complete system. Functional relations relating De, E, B and

H are usually assumed

De = εE, (2.11)

B = µH, (2.12)

where ε represents the electric permittivity (F m−1) and µ is the magnetic perme-

ability (Hm−1). However, (2.2), (2.6)-(2.8), (2.11), and (2.12) de�ne a system of
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2.4 Telegraph Equations

fourteen equations for twelve variables. So, now, we need to decrease the number

of equations. In the following result we specify two conditions that can be used to

reduce the number of equations.

Theorem 1. Let us assume that ∇·(De(x, 0)) = ρ(x, 0) and ∇·(B(x, 0)) = 0. Then

any solution of the system (2.2), (2.6) and (2.9), veri�es ∇ ·De = ρ and ∇ ·B = 0

for t > 0.

Proof. As we have ∇ · (∇ × u) = 0 for any su�ciently smooth function u, we have

successively
∂

∂t
(∇ ·B) = ∇ · ∂B

∂t
= −∇ · (∇× E) = 0

and
∂

∂t
(∇ ·De − ρ) = ∇ · (∇×H − Je)−

∂ρ

∂t
= ∇ · (∇×H) = 0.

Finally, as consequence of the initial conditions we obtain the desired result.

Considering (2.11), (2.12), (2.10), we can give to equations (2.2) and (2.6) the

followings equivalent form

µ
∂H

∂t
+∇× E = 0, (2.13)

ε
∂E

∂t
−∇×H + σE = 0. (2.14)

In the above equations, ε, µ and σ are matrices of order 3, we remark that µ,

ε, σ and ρ can be position dependents. If the medium is isotropic, that means, it

is uniform in all directions, µ, ε and σ are reduced to real functions. Furthermore,

if the medium is homogeneous which means that its properties do not depend on

the position, then, if the medium is isotropic and homogeneous then µ, ε and σ are

constants.

2.4. Telegraph Equations

In the previous section we established the equations (2.13) and (2.14) as a consistent

system of Maxwell's equations. Applying the rotational operator to both members

of these equations, and using (2.7), (2.8), and the equality ∇×∇×u = ∇(∇·u)−∆u

that holds for all smooth functions, we obtain the following two telegraph equations

for the electric and magnetic �elds

µε
∂2E

∂t2
+ µσ

∂E

∂t
−∆E = −∇

(
ρε−1

)
, (2.15)

µε
∂2H

∂t2
+ µσ

∂H

∂t
−∆H = 0.

9



Chapter 2 Maxwell's Telegraph Equations

If the medium is homogeneous and isotropic, (2.15) becomes

∂2E

∂t2
+
σ

ε

∂E

∂t
− 1

εµ
∆E = 0, (2.16)

with ε, µ 6= 0.

We observe that the telegraph equation (2.16) can be rewritten as an integro-

di�erential equation. In fact, (2.16) is equivalent to

∂

∂t

(
e
σt
ε
∂E

∂t
(x, t)− 1

εµ

∫ t

0
e
σs
ε ∆E(x, s)ds

)
= 0

that implies that

∂E

∂t
(x, t) =

1

εµ

∫ t

0
e−

σ
ε

(t−s) ∆E(x, s)ds+ f(x)e−
σ
ε
t. (2.17)

Finally we remark that (2.17) can be deduced considering the mass conservation law

∂E

∂t
+∇ · J = fe−

σ
ε
t

where the mass �ux J is given by

J(x, t) = − 1

εµ

∫ t

0
e−

σ
ε

(t−s)∇E(x, s) ds. (2.18)

Integro-di�erential equations of type (2.17) have been considered in the descrip-

tion of di�usion phenomena, where a decay e�ect de�ned by the time integral term

in (2.18) is introduced ([12]).

In this section we obtain a partial di�erential equation that describes the be-

haviour of the electric �eld. However, in what concerns the application of electric

enhancers to the drug delivery, an intuitive approach is de�ned by the electric po-

tential φ. In the next section we establish a telegraph equation for φ.

2.5. Electric Potential

We start this section with the following proposition not directly related with the

electric potential.

Proposition 1. For u a su�ciently smooth vector function de�ned on all of R3, we

have

1. If ∇× u = 0, then there exists a scalar function φ such that u = −∇φ.

2. If ∇ · u = 0, then there exists a vector function A such that u = ∇×A.

Proof. [25]

10



2.5 Electric Potential

From the equation (2.8), there exists a magnetic vector A called vector potential

(Wbs−1), such that

B = ∇×A. (2.19)

Then from equation (2.2), we obtain

∇×
(
∂A

∂t
+ E

)
= 0.

Using Proposition 1, we have for the electric �eld intensity E, vector potential A,

and scalar potential φ, the following relation

E +
∂A

∂t
= −∇φ. (2.20)

The relations (2.19) and (2.20) de�ne A and φ, however A is not uniquely deter-

mined.

Before the establishment of a condition that leads to the uniqueness of A, we

deduce mathematical relations between the electric �eld and the vector potential A

that will be useful. The �rst one comes from (2.20) and (2.7) that lead to

−∆φ− ∂

∂t
(∇ ·A) = ρε−1. (2.21)

Analogously, from (2.14) and (2.19), we have

µε
∂E

∂t
= ∇× (∇×A)− µσE, (2.22)

that combined with (2.20), and ∇×∇× u = ∇(∇ · u)−∆u allows us to establish(
∆A− εµ∂

2A

∂t2

)
−∇

(
∇ ·A+ εµ

∂φ

∂t

)
= µσ

(
∇φ+

∂A

∂t

)
. (2.23)

Another relation can be obtained using the Ohm's law (2.10) and (2.9). In fact

those relations give

∇ · (σ∇φ) +
∂

∂t
(σ∇ ·A) =

∂ρ

∂t
. (2.24)

To complete the speci�cation of A, we need to impose an additional condition on

∇ ·A. An usual condition used is the so called Coulomb gauge given by ([19])

∇ ·A = 0.

Then from (2.24) we obtain, for the electric potential, the Poisson equation

∇ · (σ∇φ) =
∂ρ

∂t
. (2.25)

11



Chapter 2 Maxwell's Telegraph Equations

The same relation is obtained if the vector potential A is time independent. More-

over, in this case the electric potential φ satis�es the Laplace equation

∇ · (σ∇φ) = 0. (2.26)

Another relation can be deduced from (2.21) if the stationary state is consid-

ered. In fact in this case we get −∇ · (∇φ) = ρε−1. We remark that the common

equation used to describe φ in iontophoresis and electroporation procedures is the

Laplace equation (2.26) which is deduced assuming that A is time independent. Then

naturally arises the question: what is the equation for a time dependent A?

Let us suppose that A satis�es the Lorentz gauge ([19])

∇ ·A = −µσφ− µε∂φ
∂t
.

Then, from (2.21) we get

µε2
∂2φ

∂t2
+ µσε

∂φ

∂t
−∇ · (ε∇φ) = ρ,

and from (2.23) we obtain

µε
∂2A

∂t2
+ µσ

∂A

∂t
−∆A = 0.

Finally from (2.24) we conclude, for the scalar electric potential, that

µεσ
∂2φ

∂t2
+ µσ2∂φ

∂t
−∇ · (σ∇φ) = −∂ρ

∂t
. (2.27)

12



Chapter 3

Electric Field-Telegraph Equation

3.1. Introduction

In the previous chapter, telegraph equations for E and φ were established from

the Maxwell's equations. One of this equations will be coupled with the di�usion

equation to describe the drug evolution when the di�usion is enhanced by an applied

electric �eld or electric potential. The analytical and numerical study of the coupled

model requires, as a �rst step, the study of the deduced telegraph equations. In this

chapter we consider the telegraph equation (2.16) for the electric �eld intensity.

In what follows, we consider that the target tissue is an isotropic medium. Let

V , represented in Figure 3.1, be a reference element in the target tissue, let E be the

electric �eld intensity and let c be the drug concentration in (x, y, z) at time t. Let

A be a cross section with �xed area A. We suppose that

E(x, y, z, t) = E(x, 0, 0, t)

c(x, y, z, t) = c(x, 0, 0, t)

for all (x, y, z) ∈ A. We represent by E(x, t) the electric �eld intensity E(x, 0, 0, t),

and by c(x, t) the concentration c(x, 0, 0, t). This means that under the previous

condition, a three-dimensional problem can be seen as an one-dimensional problem.

We also consider that the target tissue is an homogeneous medium, so ε, σ, and µ

are constants, that we consider positive.

In this chapter we consider the spacial domain Ω = (0, 1). Equation (2.16) is cou-

pled with initial and boundary conditions that de�ne the following initial boundary

value problem (IBVP)

∂2E

∂t2
=

1

εµ
∆E − σ

ε

∂E

∂t
+ F in (0, 1)× (0, T ],

E(0, t) = φ0(t), E(1, t) = φ1(t) t ∈ (0, T ],

E(x, 0) = ψ0(x) x ∈ (0, 1),

∂E

∂t
(x, 0) = ψ1(x) x ∈ (0, 1),

(3.1)

13



Chapter 3 Electric Field-Telegraph Equation

Figure 3.1: Reference element.

where φ0(t) and φ1(t) are the boundary conditions, ψ0(x) and ψ1(x) are the initial

conditions, and F de�nes a reaction term.

This chapter aims to study analytically and numerically the IBVP (3.1). In Sec-

tion 3.2 we construct the solution of (3.1) using Fourier series, we establish some

energy estimates that allow us to conclude the uniqueness of the constructed solu-

tion. In Section 3.3 we propose a numerical discretization of the IBVP (3.1) that

is obtained considering the Method of Lines Approach: a spatial discretization on

nonuniform grid that leads to a semi-discrete approximation (continuous in time)

followed by a time integration.

We prove in the main theorem of this chapter - Theorem 6 - that the proposed

method leads to a second convergence order approximation in space with respect to

a discrete H1-norm. This result is unexpected because the spacial truncation error

is only of �rst order in the ‖ · ‖∞ norm. Some numerical experiments are included

to illustrate Theorem 6. In the proof of Theorem 6 we assume that E is su�ciently

smooth in space, more precisely, we assume that E(t) ∈ C4(Ω̄). The numerical

simulations allow us to believe that the same result holds for less smooth solutions.

This problem will be studied in the near future.

3.2. Existence and Uniqueness of Solution

We observe that the initial conditions ψ0, ψ1, and the boundary conditions functions

φ0, φ1, should be compatible in the sense that (3.1) has a solution. To compute such

14



3.2 Existence and Uniqueness of Solution

solution we use in what follows the method of separation of variables that leads to

Fourier series. We start by rewriting (3.1) as an IBVP with homogeneous initial and

boundary conditions introducing the following change of variables

w(x, t) = (1−x)φ0(t)+xφ1(t)+ψ0(x)−(1−x)φ0(0)−xφ1(0)+t(ψ1(x)−(1−x)φ′0(0)−xφ′1(0)).

(3.2)

Then Ẽ = E − w satis�es

∂2Ẽ

∂t2
=

1

εµ
∆Ẽ − σ

ε

∂Ẽ

∂t
+ F̃ in (0, 1)× (0, T ],

Ẽ(0, t) = Ẽ(1, t) = 0 t ∈ (0, T ],

Ẽ(x, 0) = 0 x ∈ (0, 1),

∂Ẽ

∂t
(x, 0) = 0 x ∈ (0, 1),

(3.3)

with F̃ = F +
1

εµ
∆w − σ

ε

∂w

∂t
− ∂2w

∂t2
.

To simplify the application of Fourier method, we rewrite now (3.3) as an IBVP

without the reaction term. Let τ > 0 be a parameter and let v(·, ·; τ) be solution of

the IBVP 

∂2v

∂t2
=

1

εµ
∆v − σ

ε

∂v

∂t
in (0, 1)× (τ, T ],

v(0, t; τ) = v(1, t; τ) = 0 t ∈ (τ, T ],

v(x, τ ; τ) = 0 x ∈ (0, 1),

∂v

∂t
(x, τ ; τ) = F̃ (x, τ) x ∈ (0, 1).

(3.4)

Then, if v is su�ciently smooth, we have

Ẽ(x, t) =

∫ t

0
v(x, t; τ) dτ , t ∈ [0, T ], x ∈ [0, 1].

To obtain Ẽ we deduce, in what follows, a formal expression for v as a sum of a

Fourier series. We prescribe the following expression

v(x, t; τ) =
∑
j∈N

cj(t, τ) sin (jπx). (3.5)

Then, formally v satis�es the partial di�erential equation of (3.4) if

c′′j (t, τ) +
σ

ε
c′j(t, τ) = − 1

εµ
(jπ)2cj(t, τ), ∀j ∈ N, t > τ. (3.6)

The solution of (3.6) depends on the relations between j and the other constants

σ, ε, µ and π. So we have to consider three di�erent cases

1. σ
2π

√
µ
ε ∈ N and j = σ

2π

√
µ
ε ;

15



Chapter 3 Electric Field-Telegraph Equation

2. σ
2π

√
µ
ε /∈ N and j > σ

2π

√
µ
ε ;

3. σ
2π

√
µ
ε /∈ N and j < σ

2π

√
µ
ε .

As in general σ
2π

√
µ
ε ∈ R\N, we do not consider the �rst case. For j ∈ N satisfying

the second case, we obtain for cj the following expression

cj(x, t; τ) = e−
σ
2ε

(t−τ)

[
Aj(τ) cos

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

)

+Bj(τ) sin

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

)]
,

where Aj(τ) and Bj(τ) represent appropriate constants that will be speci�ed later.

At last, for j in the third case condition, the solution of (3.6) is given by

cj(x, t; τ) = e−
σ
2ε

(t−τ)

[
Cj(τ)e

√
σ2µ−4(jπ)2ε

4ε2µ
(t−τ)

+Dj(τ)e
−
√
σ2µ−4(jπ)2ε

4ε2µ
(t−τ)

]
,

where Cj(τ) and Dj(τ) represent constants to be speci�ed.

Then, the solution v introduced in (3.5) can be written as

v(x, t; τ) = e−
σ
2ε

(t−τ)

[ ∑
j∈N:j≤[ σ2π

√
µ
ε ]

(
Cj(τ)e

√
σ2µ−4(jπ)2ε

4ε2µ
(t−τ)

+Dj(τ)e
−
√
σ2µ−4(jπ)2ε

4ε2µ
(t−τ)

)
sin(jπx)+ (3.7)

+
∑

j∈N:j>[ σ2π
√

µ
ε ]

(
Aj(τ) cos

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

)

+Bj(τ) sin

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

))
sin(jπx)

]
.

We need to �nd now the constants Aj(τ), Bj(τ), Cj(τ) andDj(τ) such that v satis�es

the initial conditions of (3.4).

If

• Aj(τ) = 0, j ∈ N : j >
[
σ
2π

√
µ
ε

]
,

• Cj(τ) = −Dj(τ), j ∈ N : j ≤
[
σ
2π

√
µ
ε

]
,

then the initial condition in (3.4) is satis�ed.

In what follows we use the initial velocity in (3.4) to complete the computation

of the previous constants. We consider that

F̃ (x, τ) =
∑
j∈N

f̃j(τ) sin(jπx),

16
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where f̃j(τ) = 2

∫ 1

0
F̃ (x, τ) sin(jπx) dx. Taking this into account, we easily get

(A) Aj(τ) = 0, j ∈ N : j >
[
σ
2π

√
µ
ε

]
,

(B) Bj(τ) =
f̃j(τ)√

4(jπ)2ε−σ2µ
4ε2µ

, j ∈ N : j >
[
σ
2π

√
µ
ε

]
,

(C) Cj(τ) =
f̃j(τ)

2
√

σ2µ−4(jπ)2ε
4ε2µ

, j ∈ N : j ≤
[
σ
2π

√
µ
ε

]
,

(D) Dj(τ) = − f̃j(τ)

2
√

σ2µ−4(jπ)2ε
4ε2µ

, j ∈ N : j ≤
[
σ
2π

√
µ
ε

]
.

In the following result we specify su�cient conditions on F̃ that allow us to

conclude that v(x, t; τ) is solution of the IBVP (3.4).

Theorem 2. If

1.
∂F̃

∂x
is continuous in [0, 1];

2.
∂2F̃

∂x2
is piecewise continuous in [0, 1];

3. F̃ (0, τ) = F̃ (1, τ) = 0;

then

v(x, t; τ) = e−
σ
2ε

(t−τ)

[ ∑
j∈N:j≤[ σ2π

√
µ
ε ]

(
Cj(τ)e

√
σ2µ−4(jπ)2ε

4ε2µ
(t−τ)

+Dj(τ)e
−
√
σ2µ−4(jπ)2ε

4ε2µ
(t−τ)

)
sin(jπx)+ (3.8)

+
∑

j∈N:j>[ σ2π
√

µ
ε ]

(
Aj(τ) cos

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

)

+Bj(τ) sin

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

))
sin(jπx)

]
,

x ∈ [0, 1], t ∈ [τ, T ] with Aj(τ), Bj(τ), Cj(τ) and Dj(τ) given by (A), (B), (C) and

(D) respectively, is solution of (3.4) in the sense that

(a) v ∈ C1([τ, T ], C[0, 1]) ∩ C2((τ, T ], C(0, 1)) ∩ C((τ, T ], C2(0, 1));

(b) v veri�es the di�erential equation, the initial conditions and the boundary con-

ditions in (3.4).
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Proof. We start by remarking that the expression v was established using the con-

dition de�ned in (b).

In what concerns (a), we observe that the �nite sum de�ned for j ≤
[
σ
2π

√
µ
ε

]
is

smooth enough. Next we prove that the sum of the series that arises in (3.8) satis�es

the smoothness requirements speci�ed in (a).

The �rst step shows that the sum of the series in (3.8) de�nes a continuous

function in [0, 1] × [τ, T ]. The general term of the series, for j ∈ N, j >
[
σ
2π

√
µ
ε

]
,

satis�es the following inequality∣∣∣∣∣e−σ(t−τ)2ε

(
Aj(τ) cos

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

)

+Bj(τ) sin

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

))
sin(jπx)

∣∣∣∣∣ ≤ |Bj(τ)|, for x ∈ [0, 1], t ∈ [τ, T ].

We have

∑
j∈N,j>[ σ2π

√
µ
ε ]

|Bj(τ)| ≤ 1

2

 ∑
j∈N:j>

[
µσ2

4επ2

]
4ε2µ

4(jπ)2ε− σ2µ


1/2 ∑

j∈N:j>
[
µσ2

4επ2

](f̃j(τ))2


1/2

,

where by Parseval's identity ∑
j∈N:j>

[
µσ2

4επ2

](f̃j(τ))2


1/2

≤ ‖F̃‖L2(−1,1).

Then, the series with general term |Bj | is convergent, and therefore the series in (3.8)

is uniformly convergent. Finally, (3.8) de�nes a continuous function in [0, 1]× [τ, T ].

Now we want to show that the time derivative of the series in (3.8) exists and is

continuous in [0, 1]× [τ, T ]. For the series of the time derivatives we have∣∣∣∣∣− σ

2ε
e−

σ(t−τ)
2ε

(
Aj(τ) cos

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

)

+Bj(τ) sin

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

))
sin(jπx)

+ e−
σ(t−τ)

2ε

(
−Aj(τ)

√
4(jπ)2ε− σ2µ

4ε2µ
sin

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

)

+Bj(τ)

√
4(jπ)2ε− σ2µ

4ε2µ
cos

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

))
sin(jπx)

∣∣∣∣∣
≤ σ

2ε
|Bj(τ)|+

√
4(jπ)2ε− σ2µ

4ε2µ
|Bj(τ)|, (3.9)
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for [0, 1]× [τ, T ], where √
4(jπ)2ε− σ2µ

4ε2µ
|Bj(τ)| ≤ |f̃j(τ)|

and

|f̃j(τ)| = 2

jπ
|f̃ ′j(τ)|,

being f̃ ′j , j ∈ N, the Fourier coe�cients of
∂F̃

∂x
. Using again the Parseval's identity,

and considering that
∂F̃

∂x
∈ L2(0, 1), we conclude the convergence of the series de�ned

by the left side in (3.9). Therefore, the initial series is uniformly convergent in

[0, 1]× [τ, T ] and consequently
∂v

∂t
is continuous in [0, 1]× [τ, T ], and this function is

the sum of the series of the time derivatives in (3.8).

We need to prove now that
∂2v

∂t2
exists and that it is continuous in (0, 1)× (τ, T ].

Let δ > 0 be such that δ + τ < T and t ∈ [τ + δ, T ]. Considering the �nite sum of

(3.8), of course its second derivative is continuous. The series of the second order

time derivative satis�es the following∣∣∣∣∣ ( σ2ε)2 e−σ(t−τ)2ε

(
Aj(τ) cos

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

)

+Bj(τ) sin

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

))
sin(jπx)

− σ

ε
e−

σ(t−τ)
2ε

(
−Aj(τ)

√
4(jπ)2ε− σ2µ

4ε2µ
sin

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

)

+Bj(τ)

√
4(jπ)2ε− σ2µ

4ε2µ
cos

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

))
sin(jπx)

+ e−
σ(t−τ)

2ε

(
−Aj(τ)

4(jπ)2ε− σ2µ

4ε2µ
sin

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

)

−Bj(τ)
4(jπ)2ε− σ2µ

4ε2µ
cos

(√
4(jπ)2ε− σ2µ

4ε2µ
(t− τ)

))
sin(jπx)

∣∣∣∣∣
≤
( σ

2ε

)2
|Bj(τ)|+ σ

ε

√
4(jπ)2ε− σ2µ

4ε2µ
|Bj(τ)|+ 4(jπ)2ε− σ2µ

4ε2µ
|Bj(τ)|. (3.10)

for (0, 1)× [τ + δ, T ], where

4(jπ)2ε− σ2µ

4ε2µ
|Bj(τ)| ≤

√
4(jπ)2ε− σ2µ

4ε2µ
|f̃j(τ)|

and

|f̃j(τ)| = 4

(jπ)2
|f̃ ′′j(τ)|,

being f̃ ′′j , j ∈ N the Fourier coe�cient of
∂2F̃

∂x2
. Then,

∂2v

∂t2
exists and it is the sum

of the series de�ned by the second order time derivate of each term of the series in
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(3.8), being continuous in (0, 1)× [τ + δ, T ]. As δ > 0 can be considered arbitrarily

small, we conclude our result.

Following the previous analysis, it can be shown that the �rst and second space

derivatives of v exist and are continuous in (0, 1)× (τ, T ].

Duhamel Principle allows us to conclude that a solution of the IBVP 3.1 is given

by

E(x, t) =

∫ t

0
v(x, t; τ) dτ + w(x, t), (3.11)

where w is given by (3.2), x ∈ [0, 1] and t ∈ [0, T ].

Theorem 3. If

1. φ0, φ1 ∈ C1[0, T ] ∩ C2(0, T ];

2. ψ0, ψ1 ∈ C3[0, 1];

3. ψ
(iv)
0 , ψ

(iv)
1 are piecewise continuous in [0, 1];

4. F ∈ C((0, T ], C1[0, 1]);

5.
∂2F

∂x2
is piecewise continuous in [0, 1];

6. F (0, t) = − 1

εµ
(ψ′′0(0)+tψ′′1(0))+

σ

ε
(φ′0(t)+ψ1(0)−φ′0(0))+φ′′0(t) for t ∈ (0, T ];

7. F (1, t) = − 1

εµ
(ψ′′0(1)+tψ′′1(1))+

σ

ε
(φ′1(t)+ψ1(1)−φ′1(0))+φ′′1(t) for t ∈ (0, T ];

then the IBVP (3.1) has at least one solution E in the sense that E ∈ C1([0, T ], C[0, 1])

∩C2((0, T ], C(0, 1)) ∩ C((0, T ], C2(0, 1)); E satis�es the telegraph equation in (3.1),

and the initial and boundary conditions in (3.1).

To conclude the uniqueness of the computed solution, we establish, in what fol-

lows, energy estimates similar to the ones well known for the wave equation. To do

that we reduce the IBVP (3.1) to an IBVP with homogeneous boundary conditions.

Let h : [0, 1]× [0, T ]→ R be given by

h(x, t) = (1− x)φ0(t) + xφ1(t). (3.12)

The Ê = E−h is solution of the following IBVP, where F̂ , ψ̂0 and ψ̂1 are appropriate

functions.
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∂2Ê

∂t2
=

1

εµ
∆Ê − σ

ε

∂Ê

∂t
+ F̂ in (0, 1)× (0, T ],

Ê(0, t) = Ê(1, t) = 0 t ∈ (0, T ],

Ê(x, 0) = ψ̂0(x) x ∈ (0, 1),

∂Ê

∂t
(x, 0) = ψ̂1(x) x ∈ (0, 1).

(3.13)

In what follows, we use the next notation: if v : Ω̄× [0, T ]→ R then v(t) denotes

a function de�ned of Ω̄ in R de�ned by v(t)(x) = v(x, t).

Let (·, ·) be the usual inner product in L2(0, 1) and ‖ · ‖ the corresponding norm.

From the telegraph equation of the system (3.13), we get∫
Ω

d2Ê

dt2
(t)
dÊ

dt
(t) dx =

1

εµ

∫
Ω

∆Ê(t)
dÊ

∂t
(t) dx−σ

ε

∫
Ω

(
dÊ

dt
(t)

)2

dx+

∫
Ω
F̂ (t)

dÊ

dt
(t) dx.

By the Cauchy-Schwartz and the Cauchy with ε inequalities, we obtain, for δ > 0,

1

2

d

dt

∥∥∥∥∥dÊdt (t)

∥∥∥∥∥
2

+
1

2εµ

d

dt

∥∥∥∇Ê(t)
∥∥∥2

+
σ

ε

∥∥∥∥∥dÊdt (t)

∥∥∥∥∥
2

≤ 1

4δ

∥∥∥F̂ (t)
∥∥∥2

+ δ

∥∥∥∥∥dÊdt (t)

∥∥∥∥∥
2

.

Considering now δ =
σ

2ε
, we deduce

d

dt

∥∥∥∥∥dÊdt (t)

∥∥∥∥∥
2

+
1

εµ

∥∥∥∇Ê(t)
∥∥∥2

+
σ

ε

∫ t

0

∥∥∥∥∥dÊdt (t)

∥∥∥∥∥
2

ds

 ≤ ε

σ

∥∥∥F̂ (t)
∥∥∥2
.

That allows us to establish∥∥∥∥∥dÊdt (t)

∥∥∥∥∥
2

+
1

εµ

∥∥∥∇Ê(t)
∥∥∥2

+
σ

ε

∫ t

0

∥∥∥∥∥dÊdt (s)

∥∥∥∥∥
2

ds ≤ ε

σ

∫ t

0

∥∥∥F̂ (s)
∥∥∥2

ds

+

∥∥∥∥∥dÊdt (0)

∥∥∥∥∥
2

+
1

εµ

∥∥∥∇Ê(0)
∥∥∥2
.

Taking into account the initial conditions of (3.13), we conclude∥∥∥∥∥dÊdt (t)

∥∥∥∥∥
2

+
1

εµ

∥∥∥∇Ê(t)
∥∥∥2

+
σ

ε

∫ t

0

∥∥∥∥∥dÊdt (s)

∥∥∥∥∥
2

ds ≤ ε

σ

∫ t

0

∥∥∥F̂ (s)
∥∥∥2

ds+
∥∥∥ψ̂1

∥∥∥2
+

1

εµ

∥∥∥ψ̂′0∥∥∥2
.

(3.14)

The energy in the context of the wave equation is given by

∥∥∥∥∥dÊdt (t)

∥∥∥∥∥
2

+
1

εµ

∥∥∥∇Ê(t)
∥∥∥2
.

The new term

∫ t

0

∥∥∥∥∥dÊdt (s)

∥∥∥∥∥
2

ds that arises in (3.14) is induced by the damping term

σ

ε

∂Ê

∂t
. Moreover, if we do not have a reaction term then holds the following energy

conservative law∥∥∥∥∥dÊdt (t)

∥∥∥∥∥
2

+
1

εµ

∥∥∥∇Ê(t)
∥∥∥2

+
2σ

ε

∫ t

0

∥∥∥∥∥dÊdt (s)

∥∥∥∥∥
2

ds =
∥∥∥ψ̂1

∥∥∥2
+

1

εµ

∥∥∥ψ̂′0∥∥∥2
, t ∈ [0, T ].

(3.15)
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Considering Poincaré inequality in (3.14) we conclude∥∥∥∥∥dÊdt (t)

∥∥∥∥∥
2

+
∥∥∥Ê(t)

∥∥∥2

H1

≤ C
(∥∥∥ψ̂1

∥∥∥2
+
∥∥∥ψ̂′0∥∥∥2

+

∫ t

0

∥∥∥F̂ (s)
∥∥∥2

ds

)
, t ∈ [0, T ], (3.16)

where ‖·‖H1 represents the usual H1 norm, and consequently, as H1(0, 1) is embed-

ding in C[0, 1] we conclude∥∥∥∥∥dÊdt (t)

∥∥∥∥∥
2

+
∥∥∥Ê(t)

∥∥∥2

∞
≤ C

(∥∥∥ψ̂1

∥∥∥2
+
∥∥∥ψ̂′0∥∥∥2

+

∫ t

0

∥∥∥F̂ (s)
∥∥∥2

ds

)
, t ∈ [0, T ], (3.17)

where C denotes a positive constant depending on the coe�cients ε, µ and σ. In

(3.17) ‖·‖∞ denotes the usual maximum norm.

Theorem 4. Under the condition of Theorem 3 the IBVP (3.1) has a unique solu-

tion.

Proof. We need only to prove the uniqueness. Since E and E∗ are two solutions of

(3.1) in the sense speci�ed in Theorem 3, then E − E∗ is solution of the correspon-

dent homogeneous telegraph IBVP. The energy conservation equality (3.15) leads to∥∥∥∥ ∂∂t(E − E∗)
∥∥∥∥2

= 0,

∥∥∥∥ ∂∂x(E − E∗)
∥∥∥∥2

= 0. As E, E∗ are smooth enough functions,

we conclude that E = E∗ in [0, 1]× [0, T ].

3.3. Numerical Analysis of Telegraph IBVP

3.3.1. Introduction

To obtain an accurate numerical description of the hyperbolic-parabolic coupled

IBVP we need to propose a numerical discreptization of the hyperbolic IBVP (3.1)

that mimics the solution of such system, and that presents a high convergence order.

The method that we propose is obtained considering two steps:

1. Discretization of the spatial derivatives that reduces (3.1) to a second order

ordinary di�erential system;

2. Time integration of the initial value problem obtained in the �rst step.

The spatial discretization is de�ned on non uniform spatial grids and the con-

vergence properties of the semi-discrete approximations are studied. Finally in the

time integration we consider a standard implicit method. The fully discrete solution

is not studied in the present work but will be considered in the near future.
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3.3 Numerical Analysis of Telegraph IBVP

3.3.2. Spatial Discretization

We reduce our study to the homogeneous problem

∂2E

∂t2
=

1

εµ
∆E − σ

ε

∂E

∂t
+ F in (0, 1)× (0, T ],

E(0, t) = E(1, t) = 0 t ∈ (0, T ],

E(x, 0) = ψ0(x) x ∈ (0, 1),

∂E

∂t
(x, 0) = ψ1(x) x ∈ (0, 1).

(3.18)

In the spatial domain Ω̄ = [0, 1] we introduce the non-uniform mesh 0 = x0 <

x1 < · · · < xI−1 < xI = 1. Let h = (h1, h2, . . . , hI) be the stepsize vector with

hi = xi − xi−1, i = 1, . . . , I, and let Ωh be the interior grid points. Let D2 be the

�nite di�erence operator

D2uh(xi) = 2
uh(xi−1)hi+1 − uh(xi)(hi + hi+1) + uh(xi+1)hi

hihi+1(hi + hi+1)
, i = 1, . . . , I − 1,

(3.19)

where uh is a grid function, that will be considered in the discretization of the spatial

derivative in the PDE of (3.18). Let Eh(t) be the grid function with entries Eh(xi, t),

i = 0, . . . , I, de�ned by

d2Eh
dt2

=
1

εµ
D2Eh −

σ

ε

dEh
dt

+ Fh in Ωh × (0, T ],

Eh(x0, t) = Eh(xI , t) = 0 t ∈ (0, T ],

Eh(xi, 0) = ψ0(xi) i = 1, . . . , I − 1

dEh
dt

(xi, 0) = ψ1(xi) i = 1, . . . , I − 1,

(3.20)

where Fh(xi, t), is an approximation of the reaction term F (xi, t), i = 1, . . . , I − 1.

In what follows we consider Fh(xi, t) = F (xi, t) and Eh(t) is called semi-discrete

approximation for E.

System (3.20) is an initial boundary problem, so it is important to check if it has

solution. Let Y (t) be a vector with entries of Eh(xi, t) for i = 1, . . . , I − 1, that is

Eh(t) is a grid function de�ned in Ωh. By DE we denote the diagonal matrix with

diagonal entries
σ

ε
and Bh the tridiagonal matrix induced by the operator D2. Then

(3.20) becomes 
Y ′′ +DEY

′ = BhY + Fh, t ∈ (0, T ]

Y (0) = ψ0, Y
′(0) = ψ1,

(3.21)

where ψ0, ψ1 are the vectors with entries ψ0(xi), ψ1(xi), respectively.
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Chapter 3 Electric Field-Telegraph Equation

Let Z = [Y Y ′]T and f = [0 Fh]T , then (3.21) can be written as
Z ′ =

 0 Id

Bh −DE

Z + f, t ∈ (0, T ]

Z(0) = [ψ0 ψ1]T

(3.22)

where Id denotes the identity matrix with order I − 1.

Considering M de�ned by

M =

 0 Id

Bh −DE

 ,
then

Z = etMZ(0) +

∫ t

0
e(t−s)Mf(s) ds, t ∈ [0, T ].

The previous relation gives simultaneously Eh(t) and E′h(t).

Now, we intend to study the accuracy properties of Eh(t). Let Th(t) be the trun-

cation error induced by the previous discretization. This error admits the following

representation

Th(xi, t) =
1

3εµ
(hi − hi+1)

∂3E

∂x3
+O(h2

max), i = 1, . . . , I − 1, (3.23)

where hmax = max
i=1,...,I

hi, and O(h2
max) denotes a quantity that satis�es |O(h2

max)| ≤

Ch2
max. Notice that the previous relation is veri�ed provided that E admits bounded

fourth partial spatial derivative.

From (3.23), the truncation error has �rst order on non-uniform meshes, so we

expect an equal or bigger order of convergence. In particular case for uniform meshes

with stepsize h, we have ‖Th(t)‖∞ ≤ Ch2 provided that E has bounded fourth

partial spatial derivative. In the main result of this section we establish that Eh(t)

has second order of convergence for non-uniform meshes. We introduce now the

convenient functional context. Let Vh,0 be the space of grid functions with value

zero in the extreme points of the partition. In Vh,0 we introduce the inner product

(uh, vh)h =

I−1∑
i=1

hi + hi+1

2
uh(xi)vh(xi), uh, vh ∈ Vh,0. (3.24)

By ‖ · ‖h we denote the norm induced by (·, ·)h. We use the notation

‖D−xuh‖h,+ =

(
I∑
i=1

hi(D−xuh(xi))
2

) 1
2

, (3.25)
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3.3 Numerical Analysis of Telegraph IBVP

where D−x denotes the backward di�erence operator de�ned by

D−xuh(xi) =
uh(xi)− uh(xi−1)

hi
.

We observe that

(D2uh, vh)h = −(D−xuh, D−xvh)h,+, uh, vh ∈ Vh,0,

where

(D−xuh, D−xvh)h,+ =

I∑
i=1

hiD−xuh(xi)D−xvh(xi).

As for non-uniform meshes the truncation error (3.23) has only �rst order, the

second order of convergence is not immediate. However, we start presenting a sta-

bility result for the semi-discrete solution Eh(t) of (3.20), whose proof is similar to

the proof of Theorem 6.

Theorem 5. If the semi-discretized model (3.20) has a solution Eh(t), then∥∥∥∥dEhdt (t)

∥∥∥∥2

h

+
1

εµ
‖D−xEh(t)‖2h,+ +

σ

ε

∫ t

0

∥∥∥∥dEhdt (s)

∥∥∥∥2

h

ds ≤ (3.26)

≤ ε

σ

∫ t

0
‖Fh(s)‖2h ds+ ‖ψ1‖2h +

1

εµ
‖D−xψ0‖2h,+

and

1

εµ
‖Eh‖2∞ ≤

ε

σ

∫ t

0
‖Fh(s)‖2h ds+ ‖ψ1‖2h +

1

εµ
‖D−xψ0‖2h,+ , (3.27)

for t ∈ [0, T ].

From the previous theorem we conclude the stability of the IBVP (3.20) and the

uniqueness of solution for this semi-discretized problem.

By Rh we represent the restriction operator.

Theorem 6. If the IBVP (3.18) has solution E ∈ C1([0, T ], C4[0, 1]) ∩ C2((0, T ],

C(0, 1)), then there exist positive constants C1, C2 such that the error eh(t) =

RhE(t)− Eh(t) veri�es∥∥∥∥deh(t)

dt

∥∥∥∥2

h

+ ‖D−xeh(t)‖2h,+ +

∫ t

0

∥∥∥∥deh(s)

dt

∥∥∥∥2

h

ds ≤

≤ C1h
4
maxe

C2t

(∫ t

0
‖E′(s)‖2C4(Ω̄) ds+ ‖E(t)‖2C4(Ω̄)

)
, t ∈ [0, T ] (3.28)

where Eh(t) is solution of (3.20) de�ned on non-uniform mesh.
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Proof. The errors eh(t) and Th(t) verify

d2eh
dt2

=
1

εµ
D2eh −

σ

ε

deh
dt

+ Th in Ωh × (0, T ],

eh(x0, t) = eh(xI , t) = 0 t ∈ (0, T ],

eh(xi, 0) = 0 i = 1, . . . , I − 1,

deh
dt

(xi, 0) = 0 i = 1, . . . , I − 1.

(3.29)

From the di�erential equation of (3.29) we obtain(
d2eh
dt2

(t),
deh
dt

(t)

)
h

=
1

εµ

(
D2eh(t),

deh
dt

(t)

)
h

− σ

ε

(
deh
dt

(t),
deh
dt

(t)

)
h

+

(
Th(t),

deh
dt

(t)

)
h

,

that is,

1

2

d

dt

∥∥∥∥dehdt (t)

∥∥∥∥2

h

+
1

2εµ

d

dt
‖D−xeh(t)‖2h,+ +

σ

ε

∥∥∥∥dehdt (t)

∥∥∥∥2

h

=

(
Th(t),

deh
dt

(t)

)
h

.

If we use in the second hand member the Cauchy with ε inequality, we get ‖Th‖h
which gives an error estimate of �rst order. To avoid this result we need to remark

that (
Th(t),

deh
dt

(t)

)
h

=
d

dt
(Th(t), eh(t))h −

(
dTh
dt

(t), eh(t)

)
h

.

The previous relation enable us to conclude that

1

2

d

dt

∥∥∥∥dehdt (t)

∥∥∥∥2
h

+
1

2εµ

d

dt
‖D−xeh(t)‖2h,++

σ

ε

∥∥∥∥dehdt (t)

∥∥∥∥2
h

=
d

dt
(Th(t), eh(t))h−

(
dTh
dt

(t), eh(t)

)
h

,

which is equivalent to∥∥∥∥dehdt (t)

∥∥∥∥2

h

+
1

εµ
‖D−xeh(t)‖2h,+ +

2σ

ε

∫ t

0

∥∥∥∥dehdt (s)

∥∥∥∥2

h

ds = (3.30)

= 2(Th(t), eh(t))h − 2

∫ t

0

(
dTh
dt

(s), eh(s)

)
h

ds.

We need now to obtain upper bounds for

(
dTh
dt

(t), eh(t)

)
h

and (Th(t), eh(t))h.

We remark that
dTh
dt

(t) admits the representation

dTh
dt

(xi, t) =
1

3εµ
(hi − hi+1)

∂4E

∂x3∂t
(xi, t) +

h2
i

12εµ

(
hi+1

hi + hi+1
− 1

)
∂5E

∂x4∂t
(ξ1, t)

+
h2
i+1

12εµ

(
hi

hi + hi+1
− 1

)
∂5E

∂x4∂t
(ξ2, t)

with ξ1, ξ2 ∈ (0, 1).

In fact such error satis�es

d3eh
dt3

(t) =
1

εµ
D2

deh
dt

(t)− σ

ε

d2eh
d2t

(t) +
dTh
dt

(t).
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3.3 Numerical Analysis of Telegraph IBVP

That is,
dTh
dt

is the truncation error induced by the discretization of the second order

spatial derivative in the equation

∂3E

∂t3
=

1

εµ

∂3E

∂x∂t
− σ

ε

∂2E

∂2t
.

Let be

T
(1)
h,d(t) =

1

3εµ
(hi − hi+1)

∂4E

∂x3∂t
(t)

and

T
(2)
h,d(t) =

h2
i

12εµ

(
hi+1

hi + hi+1
− 1

)
∂5E

∂x4∂t
(ξ1, t) +

h2
i+1

12εµ

(
hi

hi + hi+1
− 1

)
∂5E

∂x4∂t
(ξ2, t).

We have successively

−εµ
(
T

(1)
h,d(t), eh(t)

)
h

=
I−1∑
i=1

h2
i+1 − h2

i

6

∂4E

∂x3∂t
(xi, t)eh(xi, t)

=
I∑
i=2

h2
i

6

∂4E

∂x3∂t
(xi−1, t)eh(xi−1, t)−

I−1∑
i=1

h2
i

6

∂4E

∂x3∂t
(xi, t)eh(xi, t)

(3.31)

= −1

6

I∑
i=1

h2
i

∂4E

∂x3∂t
(xi−1, t)[eh(xi, t)− eh(xi−1, t)] (3.32)

− 1

6

I∑
i=1

h2
i

[
∂4E

∂x3∂t
(xi, t)−

∂4E

∂x3∂t
(xi−1, t)

]
eh(xi, t)

= −1

6

I∑
i=1

h3
i

∂4E

∂x3∂t
(xi−1, t)D−xeh(xi, t)

− 1

6

I∑
i=1

h2
i

∫ xi

xi−1

∂5E

∂x4∂t
(s, t) ds eh(xi, t) (3.33)

≤ h2
max

6

∥∥E′(t)∥∥
C3(Ω̄)

‖D−xeh(t)‖h,+

+

√
2h2

max

6

∥∥E′(t)∥∥
C4(Ω̄)

‖eh(t)‖h. (3.34)

Consequently we get, for δ1, δ2 > 0,

∣∣∣εµ(T (1)
h,d(t), eh(t)

)
h

∣∣∣ ≤ δ1

36
h4

max

∥∥E′(t)∥∥2

C3(Ω̄)
+
δ2

18
h4

max

∥∥E′(t)∥∥2

C4(Ω̄)

+
1

4δ1
‖D−xeh(t)‖2h,+ +

1

4δ2
‖eh(t)‖2h.

For (T
(2)
h,d(t), eh(t))h, with δ3 > 0, we obtain

∣∣∣εµ(T (2)
h,d(t), eh(t)

)
h

∣∣∣ ≤ δ3h
4
max

36

∥∥E′(t)∥∥2

C4(Ω̄)
+

1

4δ3
‖eh(t)‖2h.
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Putting it all together, we have∣∣∣∣εµ(dThdt (t), eh(t)

)
h

∣∣∣∣ ≤Ch4
max

(∥∥E′(t)∥∥2

C4(Ω̄)
+
∥∥E′(t)∥∥2

C3(Ω̄)

)
+

(
1

4δ2
+

1

4δ3

)
‖eh(t)‖2h +

1

4δ1
‖D−xeh(t)‖2h,+,

where C is a convenient positive constant independent on E, t and h. Considering

now the discrete Poincaré-Friedrichs inequality ([40]), we conclude∣∣∣∣εµ(dThdt (t), eh(t)

)
h

∣∣∣∣ ≤Ch4
max

(∥∥E′(t)∥∥2

C4(Ω̄)
+
∥∥E′(t)∥∥2

C3(Ω̄)

)
(3.35)

+

(
1

4δ1
+

1

4δ2
+

1

4δ3

)
‖D−xeh(t)‖2h,+.

Taking into account that

Th(xi, t) =
1

3εµ
(hi − hi+1)

∂3E

∂x3
(xi, t) +

h2
i

12εµ

(
hi+1

hi + hi+1
− 1

)
∂4E

∂x4
(η1, t)

+
h2
i+1

12εµ

(
hi

hi + hi+1
− 1

)
∂4E

∂x4
(η2, t)

with η1, η2 ∈ (0, 1) and following the construction of the upper bound (3.35), it can

be shown that, for ρ1, ρ2, ρ3 > 0, we have

|εµ (Th(t), eh(t))h| ≤Ch
4
max

(
‖E(t)‖2C4(Ω̄) + ‖E(t)‖2C3(Ω̄)

)
(3.36)

+

(
1

4ρ1
+

1

4ρ2
+

1

4ρ3

)
‖D−xeh(t)‖2h,+.

Considering the upper bounds (3.35) and (3.36) in (3.30) we conclude∥∥∥∥dehdt (t)

∥∥∥∥2

h

+
1

εµ
‖D−xeh(t)‖2h,+ +

2σ

ε

∫ t

0

∥∥∥∥dehdt (s)

∥∥∥∥2

h

ds

≤ 1

εµ

(
1

2ρ1
+

1

2ρ2
+

1

2ρ3

)
‖D−xeh(t)‖2h,+

+
1

εµ

(
1

2δ1
+

1

2δ2
+

1

2δ3

)∫ t

0
‖D−xeh(s)‖2h,+ ds

+ Ch4
max

[∫ t

0

(∥∥E′(s)∥∥2

C4(Ω̄)
+
∥∥E′(s)∥∥2

C3(Ω̄)

)
ds

+
(
‖E(t)‖2C4(Ω̄) + ‖E(t)‖2C3(Ω̄)

)]
.

Considering ρ1 = ρ2 = ρ3 = 3 and δ1 = δ2 = δ3 =
3

2
, we get∥∥∥∥dehdt (t)

∥∥∥∥2

h

+
1

2εµ
‖D−xeh(t)‖2h,+ +

2σ

ε

∫ t

0

∥∥∥∥dehdt (s)

∥∥∥∥2

h

ds

≤ 1

εµ

∫ t

0
‖D−xeh(s)‖2h,+ ds

+ Ch4
max

[∫ t

0

∥∥E′(s)∥∥2

C4(Ω̄)
ds+ ‖E(t)‖2C4(Ω̄)

]
.

Finally applying the Gronwall inequality, we conclude (3.28).
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Under the conditions of the Theorem 6 we conclude that

‖eh(t)‖2h, ‖D−xeh(t)‖2h,+ ≤ C1h
4
maxe

C2t

(∫ t

0
‖E′(s)‖2C4(Ω̄) ds+ ‖E(t)‖2C4(Ω̄)

)
,

that is

‖eh(t)‖21,h ≤ C1h
4
maxe

C2t

(∫ t

0
‖E′(s)‖2C4(Ω̄) ds+ ‖E(t)‖2C4(Ω̄)

)
,

where ‖ · ‖1,h represents the following discrete H1-norm

‖uh‖1,h = (‖uh‖2h + ‖D−xuh‖2h,+)1/2, uh ∈ Vh,0.

As ‖uh‖∞ ≤ ‖uh‖1,h, uh ∈ Vh,0, we obtain for ‖eh(t)‖∞ the following upper

bound

‖eh(t)‖2∞ ≤ C1h
4
maxe

C2t

(∫ t

0
‖E′(s)‖2C4(Ω̄) ds+ ‖E(t)‖2C4(Ω̄)

)
.

The previous upper bounds were unexpected because Th(t) is only of �rst order

with respect to the ‖·‖∞ norm. This phenomenon is usually called supraconvergence

([16], [20], [44]), and was �rstly studied for elliptic equations ([13], [14]) and parabolic

equations ([3], [24]). Here we observe that this phenomenon is also present when

hyperbolic equations are considered. It should be pointed out that the upper bounds

were obtained assuming that the solution E belongs to C1([0, T ], C4[0, 1]).

3.3.3. Numerical Simulation

This section aims to illustrate the main result of this chapter - Theorem 6. As this

result is for the semi-discrete approximation Eh(t) de�ned by (3.20), we need to

specify a fully discrete method.

In [0, T ] we introduce the time grid {tn, n = 0, . . . , N}, with tn+1 − tn = ∆t,

and N∆t = T . Let D2,t be the second order centred operator in time, and D−t the

backward �nite di�erence operator in time. Replacing the time derivative in (3.20)

by D2,t and D−t, and considering non-homogeneous boundary conditions, we obtain

D2,tE
n
h (xi) +

σ

ε
D−tE

n+1
h (xi) =

1

εµ
D2E

n+1
h (xi) + Fn+1

h (xi), i = 1, . . . , I − 1,

n = 1, . . . , N − 1

(3.37)

with

Ejh(x0) = φ0(tj), E
j
h(xI) = φ1(tj), j = 0, . . . , N (3.38)
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and

E0
h(xi) = ψ0(xi) i = 1, . . . , I − 1. (3.39)

Considering the forward �nite di�erence operator in time Dt to replace the �rst order

time derivative in the initial velocity we get

DtE
0
h(xi) = ψ1(xi), i = 1, . . . , I − 1. (3.40)

We remark that Enh (xi) ≈ E(xi, tn), i = 0, . . . , I, n = 0, . . . , N . The stability and

convergence properties of the �nite di�erence method (3.37)-(3.40) will be studied

in the near future.

Example 1. Let E(x, t) = e
−π√
εµ
t
cos(πx), x ∈ [0, 1], t ∈ [0, T ], and let ψ0, ψ1, φ0, φ1,

and F be such that E is solution of the IBVP (3.1). We also consider ε, µ, σ = 1.

We introduce in [0, 1] a random non-uniform grid Ω
(0)
h , being the new grids Ω

(l)
h

de�ned introducing a medium point in each spatial subinterval. Let h(l) be the vector

of stepsizes that de�nes the grid Ω
(l)
h . By En

h(l)
we represent the numerical solution

de�ned by the grid Ω
(l)
h at time level tn and en

h(l)
denotes the correspondent error. Let

el = max
1≤n≤N

‖en
h(l)
‖1,h(l).

The convergence rate rl is given by

rl =
log

el−1

el

log
(
h
(l−1)
max

h
(l)
max

) , (3.41)

and we take T = 1 and N = 90000, because we intend to illustrate the behaviour of

the error induced by the spatial discretization.

In Table 3.1 we present the obtained numerical results for the referenced meshes.

In Figure 3.2 we plot the least squares line for the set (log(h
(l)
max), log(el)), for seven

meshes with I = 5× 2i, i = 0, . . . , 6. The obtained angular coe�cient illustrates the

second order convergence rate.

Example 2. Let E(x, t) = e
− π√

εµ
t|x − 0.5|3,1, x ∈ [0, 1], t ∈ [0, T ]. This function

belongs to H3(0, 1). Let the initial and boundary conditions, and F be such that E

is solution of the IBVP (3.1), and take ε, µ, σ equal to 1.

We consider the approach introduced in Example 1 to de�ne the sequence of spacial

grids. By Enh (xi), i = 1, . . . , I−1 we denote the numerical solution de�ned by (3.37)-

(3.40) with

Fh(xi, t) =
1

(hi + hi+1)
1
2

∫ x
i+1

2

x
i− 1

2

F (x, t) dx, i = 1, . . . , I − 1, (3.42)
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3.3 Numerical Analysis of Telegraph IBVP

I hmax el rl

50 0.0901 0.0124 -

100 0.0450 0.0030 2.0533

200 0.0225 0.0007 2.0130

400 0.0113 0.0002 2.0006

Table 3.1: Numerical results for

smooth E.

Figure 3.2: Linear regression illustrating the

convergence order of the method.

where xi− 1
2

= xi − hi
2 , xi+ 1

2
= xi + hi+1

2 .

We consider T = 1 and N = 90000. In Table 3.2 we include the numerical

results obtained by method (3.37)-(3.40), with Fh given by (3.42). We use the no-

tations introduced in Example 1. In Figure 3.3 we plot the least squares line for

(log(h
(l)
max), log(el)) for seven meshes with I = 5× 2i, i = 0, . . . , 6.

Table 3.2 and Figure 3.3 illustrate the second convergence order of the method

(3.37)-(3.40) with Fh given by (3.42) for solutions with lower smoothness (E(t) ∈

H3(Ω)). The theoretical support for this fact cannot be developed using the approach

used in the proof of Theorem 6. The extension of this result for solutions in H3(Ω)

will be consider in the near future.

I hmax ||el||1,h rl

50 0.0889 0.00076 -

100 0.0445 0.00020 1.9429

200 0.0222 0.00005 1.9947

400 0.0111 0.00001 2.0384

Table 3.2: Numerical results for

less smoother E.

Figure 3.3: Linear regression illustrating the

convergence order of the method.
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Chapter 4

Hyperbolic-Parabolic Coupled

Model

4.1. Introduction

Our goal in this chapter is to study the coupling between the IBVP studied in

Chapter 3 with a parabolic IBVP that can be used to describe a di�usion process.

This coupling, as we mentioned before, can be used to study a drug di�usion

process in a target tissue when an electric �eld or a scalar electric potential is ge-

nerated to enhance the drug di�usion. We recall that a coupling between a di�usion

equation and a Poisson equation was considered in this scope when iontophoresis or

electroporation protocols are applied ([5], [15]). Such Poisson equation de�nes the

stationary state of the telegraph equation that we studied before, when a electric �eld

or a scalar electric potential is applied to enhance the di�usion of a drug, then in the

drug transport were identi�ed three main contributions: passive di�usion, convective

transport induced by the electric �eld or electric potential, and convective transport

induced by the �uid �ux. The last contribution arises namely when high currents

are applied. In what follows we do not consider this last contribution usually called

electro-osmosis. Remark that when high electric pulses are applied, the structure

of the target tissue changes and its porosity increases. To take into account this

property, the di�usion process should be seen in a porous medium. In this case the

coupling of the di�usion equation and one of the telegraph equations, introduced in

Chapter 2, is not enough to describe all physical problem. We need to introduce

another contribution in the drug transport induced by the porosity of the medium,

and to consider Darcy's law ([4]).

If we consider only the convective transport induced by the electric �eld, then

the mass �ux J is given by the Nernst-Planck equation

J = −D∇c− vc, (4.1)

where c denotes the drug concentration, D the di�usion coe�cient and v the con-
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Chapter 4 Hyperbolic-Parabolic Coupled Model

vective velocity given by

v = − zDFc
RTemp

E. (4.2)

If we consider the scalar electric potential φ to describe the electric properties

generated in the target tissue, then the convective velocity is given by

v =
zDFc
RTemp

(
∇φ+

∂A

∂t

)
. (4.3)

As the concentration of the drug is described by the mass conservation

∂c

∂t
+∇ · J = 0 in (0, 1)× (0, T ], (4.4)

then for c we conclude
∂c

∂t
= ∇ · (D∇c) +∇ · (vc). (4.5)

Equation (4.5) is coupled with initial and boundary conditions. If, for instance, drug

degradation is taken into account, then c is described by the following IBVP

∂c

∂t
= ∇ · (D∇c) +∇ · (vc) +G in (0, 1)× (0, T ],

c(x, 0) = c0(x) in (0, 1),

c(0, t) = cext(t) in (0, T ],

c(1, t) = 0 in (0, T ],

(4.6)

where v is given by (4.2) or (4.3), c0 describes the initial drug concentration, cext

de�nes a source at the left size of the domain Ω. We also assume that all drug that

attains the right side of the domain is removed. In (4.6) G represents a reaction that

we suppose c independent.

In what follows, we study the coupled hyperbolic-parabolic IBVP (3.1) and (4.6).

We observe that if the electric potential is considered then the partial di�erential

equation in (3.1) should be replaced by (2.27). This last coupling is not considered

in this work because as v depends on ∇φ several analytical di�culties need to be

solved and we do not have now the right answers.

In Section 4.2 we study the stability of the coupled model (3.1), (4.6). The

existence of solution of such problem will be not considered here. However from the

stability analysis we conclude that (3.1), (4.6) has at most one solution. In section 4.3

we couple the semi-discrete initial value (3.20) with a semi-discrete approximation

of (4.6) and we study the stability and convergence properties of the hyperbolic-

parabolic semi-discrete problem. Finally, some numerical experiments illustrating

the theoretical results established in this chapter are included in Section 4.4.
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4.2 Stability of the Coupled Problem

4.2. Stability of the Coupled Problem

The IBVP (3.1) has at most one solution. We prove now that (4.6) has also at most

one solution. Let us suppose that for E given by (3.1), (4.6) has two solutions c and

c̃. Let consider w = c− c̃. It can be shown that w satis�es

1

2

d

dt
‖w(t)‖2 = −D‖∇w(t)‖2 − (vw(t),∇w(t))

≤ −D‖∇w(t)‖2 + ‖v‖∞‖w(t)‖‖∇w(t)‖

≤ −D‖∇w(t)‖2 +
‖v‖2∞
4χ1

‖w(t)‖2 + χ1‖∇w(t)‖2, t ≥ 0,

where χ1 > 0 is an arbitrary constant.

For χ1 such that D − χ1 > 0 we obtain

d

dt
‖w(t)‖2 ≤ 1

2χ1
‖v(t)‖2∞‖w(t)‖2, t ≥ 0,

that leads to

‖w(t)‖2 ≤ e
1

2χ1

∫ t
0 ‖v(s)‖2∞ ds‖w(0)‖2, t ≥ 0. (4.7)

As ‖w(0)‖ = 0 we conclude that exists at most one solution c ∈ C1((0, T ], C(0, 1))∩

C([0, T ], C[0, 1]) ∩ C((0, T ], C2(0, 1)), with the corresponding partial derivatives in

the space of uniformly Hölder continuous functions, de�ned in Ω with exponent δ,

0 < δ < 1.

Theorem 4 and the previous remark allow us to conclude that the hyperbolic-

parabolic IBVP (3.1), (4.6) has at most one solution. To conclude the existence

of a unique solution we need to establish conditions that enable to guarantee such

existence ([26]).

In what follows we consider cext = 0. Similarly to the proof of the inequality

(4.7) it can be shown

‖c(t)‖2 ≤
(
‖c(0)‖2 + 2ξ2

∫ t

0
‖G(s)‖2 ds

)
e
∫ t
0

(
1

2ξ1
‖v‖2∞+ 1

2ξ2

)
ds
, (4.8)

for ξ1, ξ2 > 0 such that D − ξ1 > 0.

We analyse now the stability of the coupled IBVP (3.1), (4.6).

Theorem 7. Let E, Ẽ be solutions of (3.1) with initial conditions ψ0, ψ1, ψ̃0, ψ̃1,

and c, c̃ be the corresponding solutions of (4.6) with initial conditions c0, c̃0. If

c, c̃ ∈ C1((0, T ], C(0, 1)) ∩C([0, T ], C[0, 1]) ∩C((0, T ], C2(0, 1)), then there exist two
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Chapter 4 Hyperbolic-Parabolic Coupled Model

positive constants χ1, χ2 such that

‖c(t)− c̃(t)‖2 +

∫ t

0
‖∇(c− c̃)(t)‖2 ≤

≤ c3

(
‖(c− c̃)(0)‖2 +

zDFc
RTempχ2

∫ t

0
‖c̃(s)‖2‖wE(s)‖2∞ ds

)
e
c3
χ1

∫ t
0 ‖vE(s)‖2∞ ds

, t ∈ [0, T ],

for c3 =
1

min{1, 2D − χ1 − χ2}
, with wE = E − Ẽ.

Proof. For wc = c− c̃ we easily deduce

d

dt
‖wc(t)‖2 + 2D‖∇wc(t)‖2 = −2(vE(t)wc(t),∇wc(t))− 2(wv(t)c̃(t),∇wc(t)), (4.9)

where vE =
zDFcE

RTemp
, wv = vE − vẼ . Equality (4.9) leads to

d

dt
‖wc(t)‖2 + 2D‖∇wc(t)‖2 ≤ 2‖vE(t)‖∞‖wc(t)‖‖∇wc(t)‖+ 2‖c̃(t)‖‖wv(t)‖∞‖∇wc(t)‖

≤ 1

χ1
‖vE(t)‖2∞‖wc(t)‖2 +

1

χ2
‖c̃(t)‖2‖wv(t)‖2∞ + (χ1 + χ2)‖∇wc(t)‖2, x

where χi > 0, i = 1, 2, are arbitrary constants. Then

‖wc(t)‖2 + (2D − χ1 − χ2)

∫ t

0
‖∇wc(t)‖2 ds ≤ ‖wc(0)‖2 +

1

χ1

∫ t

0
‖vE(s)‖2∞‖wc(s)‖2 ds

+
1

χ2

∫ t

0
‖c̃(s)‖2‖wv(s)‖2∞ ds, t ∈ [0, T ].

Fixing χ1, χ2 such that 2D − χ1 − χ2 > 0, we obtain

‖wc(t)‖2 +

∫ t

0
‖∇wc(s)‖2 ds ≤ c3

(
‖wc(0)‖2 +

1

χ2

∫ t

0
‖c̃(s)‖2‖wv(s)‖2∞ ds

)
+
c3

χ1

∫ t

0
‖vE(s)‖2∞‖wc(s)‖2 ds, t ∈ [0, T ],

where c3 =
1

min{1, 2D − χ1 − χ2}
. Applying Gronwall Lemma we get,

‖wc(t)‖2 +

∫ t

0
‖∇wc(s)‖2 ds ≤

≤ c3

(
‖wc(0)‖2 +

1

χ2

∫ t

0
‖c̃(s)‖2‖wv(s)‖2∞ ds

)
e
c3
χ1

∫ t
0 ‖vE(s)‖2∞ ds

, t ∈ [0, T ].

In the conditions of Theorem 7, taking into account (3.17), (3.12) and that from

(4.8) we have

‖c̃(t)‖2 ≤
(
‖c̃0‖2 + 2ξ2

∫ t

0
‖G(s)‖2 ds

)
e
∫ t
0

(
1

2ξ1
‖vẼ‖

2
∞+ 1

2ξ2

)
ds

we conclude the stability of the IBVP (3.1), (4.6). Moreover, under these conditions,

we also conclude that exists at most one solution of the coupled problem.
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The previous estimates allow us to obtain an upper bound for the drug mass in

the system, during drug di�usion processes when an electric �eld is generated. We

de�ne the drug mass in the system, in the instant t by

M(t) =

∫ 1

0
A(x)c(x, t) dx,

where A(x) is the area of the cross section for the position x. Here, by simplicity,

we consider A(x) = 1 for all x. So, we have for ξ1, ξ2 > 0

M(t) ≤ ‖c(t)‖ ≤
(
‖c(0)‖2 + 2ξ2

∫ t

0
‖G(s)‖2 ds

) 1
2

e
∫ t
0

(
1

4ξ1
‖v‖2∞+ 1

4ξ2

)
ds
,

with ‖v(t)‖∞ ≤ zDFc
RTemp(‖Ê(t)‖∞+‖h(t)‖∞) e ‖Ê(t)‖∞ which has (3.17) as an upper

bound.

4.3. A Semi-Discrete Approximation

To simulate the behaviour of the solution of the hyperbolic-parabolic IBVP (3.1),

(4.6) we use in what follows a method of lines approach. As the spatial discretization

has a crucial role in the error of the numerical approximation for the solution of such

coupled problem, we should consider an accurate spatial discretization. We remark

that the semi-discrete approximation (3.20) for the hyperbolic IBVP (3.1) presents

an unexpected convergence rate established in Theorem 6.

Our aim in this section is to propose a spatial discretization for IBVP (4.6)

such that the corresponding semi-discrete approximation and the one de�ned by the

di�erential problem (3.20) for the electric �eld presents second convergence order.

In Ω̄ = [0, 1] we consider the spatial grid de�ned in Section 3.3.2. Let Dc be the

�nite di�erence operator given by

Dcuh(xi) =
uh(xi+1)− uh(xi−1)

hi + hi+1
.

Let ch(xi, t) be the approximation for c(xi, t), i = 0, . . . , I, de�ned by the ordinary

di�erential system

dch
dt

= DD2ch +Dc(chvh) +Gh in Ωh × (0, T ],

ch(x0, t) = ch(xI , t) = 0 t ∈ (0, T ],

ch(xi, 0) = c0(xi) i = 1, . . . , I − 1,

(4.10)

for cext = 0 where vh(t) = − zDFc
RTemp

Eh(t), Eh(t) is de�ned by (3.20), Gh(xi, t) is an

approximation for the reaction term G(xi, t), i = 1, . . . , I − 1. In this work we take

Gh(xi, t) = G(xi, t), i = 1, . . . , I − 1.
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Chapter 4 Hyperbolic-Parabolic Coupled Model

The solution of the IBVP (4.10) admits the representation

ch(t) = etAhch(0) +

∫ t

0
e(t−s)AhGh(s) ds, t ≥ 0,

where Ah is the matrix induced by the operators D2 and Dc.

This solution is unique. In fact, if c̃h(t) is another solution, then wh(t) = ch(t)−

c̃h(t) satis�es (4.10) with wh(0) = 0, Gh(t) = 0. As (Dc(vh(t)wh(t)), wh(t))h =

−(Mh(vh(t)wh(t)), D−xwh(t))h,+, where

Mhuh(xi) =
uh(xi) + uh(xi−1)

2
,

it can be shown that

1

2

d

dt
‖wh(t)‖2h +D‖D−xwh(t)‖2h,+ = − (Mh(vh(t)wh(t)), D−xwh(t))h,+

≤ ‖vh(t)‖∞‖wh(t)‖h,+‖D−xwh(t)‖h,+

≤
√

2‖vh(t)‖∞‖wh(t)‖h‖D−xwh(t)‖h,+

≤ 1

2χ1
‖vh(t)‖2∞‖wh(t)‖2h + χ1‖D−xwh(t)‖2h,+,

where χ1 > 0 is an arbitrary constant. Then, for χ1 such that D − χ1 > 0 we get

d

dt
‖wh(t)‖2h ≤

1

2χ1
‖vh(t)‖2∞‖wh(t)‖2h, t ≥ 0,

and consequently,

‖wh(t)‖2h ≤ e
1

2χ1

∫ t
0 ‖vh(s)‖2∞ ds‖wh(0)‖2h, t ≥ 0.

As wh(0) = 0 we conclude ‖wh(t)‖2h = 0, t ≥ 0, that is ch(t) = c̃h(t), t ≥ 0.

Theorem 8. Let Eh(t) be de�ned by (3.20). Then the IBVP (4.10) has a unique

solution.

The last result and Theorem 5 guarantee that the coupled IBVP (3.20), (4.10)

has a unique solution.

We study now the convergence properties of the semi-discrete approximation

de�ned by (4.10). Let ec,h(t) = Rhc(t)− ch(t) and evc,h(t) = Rh(vc)(t)− vh(t)ch(t)

be the induced spatial error where vh(t) = − zDFc
RTemp

Eh(t). These errors satisfy



dec,h
dt

= DD2ec,h +Dcecv,h + Th in Ωh × (0, T ],

ec,h(x0, t) = ec,h(xI , t) = 0 t ∈ (0, T ],

ec,h(xi, 0) = 0 i = 1, . . . , I − 1,

(4.11)
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4.3 A Semi-Discrete Approximation

where the truncation error Th(t) is given by

Th(xi, t) =
D

3
(hi − hi+1)

∂3c

∂x3
(xi, t) + (hi − hi+1)

∂2(vc)

∂x2
(xi, t)

+
Dh2

i

12

(
hi+1

hi + hi+1
− 1

)
∂4c

∂x4
(η1, t) +

Dh2
i+1

12

(
hi

hi + hi+1
− 1

)
∂4c

∂x4
(η2, t)

+
h2
i

6

(
hi+1

hi + hi+1
− 1

)
∂3(vc)

∂x3
(ξ1, t) +

h2
i+1

6

(
hi

hi + hi+1
− 1

)
∂3(vc)

∂x3
(ξ2, t),

with η1, η2, ξ1, ξ2 ∈ (0, 1).

From the di�erential equations of (4.11), it can be shown that

1

2

d

dt
‖ec,h(t)‖2h = −D‖D−xec,h(t)‖2h,+−(Mhecv,h(t), D−xec,h(t))h,+ +(Th(t), ec,h(t))h .

(4.12)

Let k =
zDFc
RTemp

, and eh(t) = RhE(t)− Eh(t), where Eh(t) is de�ned by (3.20).

We have successively

∣∣∣− (Mhecv,h(t), D−xec,h(t))h,+

∣∣∣
≤ k‖c(t)‖∞‖eh(t)‖h,+‖D−xec,h(t)‖h,+ + k‖Eh(t)‖∞‖D−xec,h(t)‖h,+‖ec,h(t)‖h,+

≤ k2

2χ1
‖c(t)‖2∞‖eh(t)‖2h + (χ1 + χ2)‖D−xec,h(t)‖2h,+ +

k2

2χ2
‖Eh(t)‖2∞‖ec,h(t)‖2h.

Applying the last upper bound in (4.12) we obtain

d

dt
‖ec,h(t)‖2h + 2(D − χ1 − χ2)‖D−xec,h(t)‖2h,+ (4.13)

≤ k2

χ1
‖c(t)‖2∞‖eh(t)‖2h +

k2

χ2
‖Eh(t)‖2∞‖ec,h(t)‖2h + 2(Th(t), ec,h(t))h, t ≥ 0.

Now we need to �nd an upper bound for (Th(t), ec,h(t))h. We start by splitting

the truncation error Th(xi, t) = T
(1)
h (xi, t) + T

(2)
h (xi, t), with

T
(1)
h (xi, t) =

D

3
(hi − hi+1)

∂3c

∂x3
(xi, t) + (hi − hi+1)

∂2(vc)

∂x2
(xi, t)

and

T
(2)
h (xi, t) =

Dh2
i

12

(
hi+1

hi + hi+1
− 1

)
∂4c

∂x4
(η1, t) +

Dh2
i+1

12

(
hi

hi + hi+1
− 1

)
∂4c

∂x4
(η2, t)

+
h2
i

6

(
hi+1

hi + hi+1
− 1

)
∂3(vc)

∂x3
(ξ1, t) +

h2
i+1

6

(
hi

hi + hi+1
− 1

)
∂3(vc)

∂x3
(ξ2, t).

As

∣∣∣(T (1)
h (t), ec,h(t))h

∣∣∣ ≤ √2

2
h2

max

∥∥∥∥∂f∂x (t)

∥∥∥∥
∞
‖ec,h(t)‖h+

1

2
h2

max‖f(t)‖∞‖D−xec,h(t)‖h,+,
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for f(x, t) =
D

3

∂3c

∂x3
(x, t) +

∂2(vc)

∂x2
(x, t), we conclude

∣∣∣T (1)
h (t), ec,h(t))h

∣∣∣ ≤ 1

8δ1
h4

max

∥∥∥∥∂f∂x (t)

∥∥∥∥2

∞
+ δ1‖ec,h(t)‖2h (4.14)

+
1

16δ2
h4

max‖f(t)‖2∞ + δ2‖D−xec,h(t)‖2h,+,

where δ1, δ2 > 0 are arbitrary constants.

Moreover, as∣∣∣(T (2)
h (t), ec,h(t))h

∣∣∣ ≤ max{1, D}h2
max

(
1

6

∥∥∥∥ ∂4c

∂x4
(t)

∥∥∥∥
∞

+
1

3

∥∥∥∥∂3vc

∂x3
(t)

∥∥∥∥
∞

)
‖ec,h(t)‖h,

we have∣∣∣(T (2)
h (t), ec,h(t))h

∣∣∣ ≤ (max{1, D})2

2δ3
h4

max

(
1

36

∥∥∥∥ ∂4c

∂x4
(t)

∥∥∥∥2

∞
+

1

9

∥∥∥∥∂3vc

∂x3
(t)

∥∥∥∥2

∞

)
(4.15)

+ δ3‖ec,h(t)‖2h,

where δ3 > 0 is an arbitrary constant.

Taking in (4.13) the upper bounds (4.14), (4.15) we deduce

d

dt
‖ec,h(t)‖2h + 2(D − χ1 − χ2 − δ2)‖D−xec,h(t)‖2h,+ (4.16)

≤ k2

χ1
‖c(t)‖2∞‖eh(t)‖2h +

(
k2

χ2
‖Eh(t)‖2∞ + 2(δ1 + δ3)

)
‖ec,h(t)‖2h + h4

maxg(t),

where

g(t) =
1

4δ1

∥∥∥∥∂f∂x (t)

∥∥∥∥2

∞
+

1

8δ2
‖f(t)‖2∞+

(max{1, D})2

2δ3

(
1

18

∥∥∥∥ ∂4c

∂x4

∥∥∥∥2

∞
+

2

9

∥∥∥∥∂3vc

∂x3
(t)

∥∥∥∥2

∞

)
.

The inequality (4.16) leads to

‖ec,h(t)‖2h + 2(D − χ1 − χ2 − δ2)

∫ t

0
‖D−xec,h(s)‖2h,+ ds (4.17)

≤ ‖ec,h(0)‖2h +

∫ t

0

(
k2

χ1
‖c(s)‖2∞‖eh(s)‖2h + h4

maxg(s)

)
ds

+

∫ t

0

(
k2

χ2
‖Eh(s)‖2∞ + 2δ1 + 2δ3

)
‖ec,h(s)‖2h ds.

For χ1, χ2, δ2 such that D − χ1 − χ2 − δ2 > 0 and using the Gronwall Lemma we

obtain

‖ec,h(t)‖2h + 2(D − χ1 − χ2 − δ2)

∫ t

0
‖D−xec,h(s)‖2h,+ ds

≤
∫ t

0

(
k2

χ1
‖c(s)‖2∞‖eh(s)‖2h + h4

maxg(s)

)
ds e

∫ t
0

(
k2

χ2
‖Eh(s)‖2∞+2δ1+2δ3

)
ds
.

Finally we obtain the following result.
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Theorem 9. Let E and c be solutions of the coupled hyperbolic-parabolic problem

(3.1), (4.6) and let Eh and ch be the corresponding semi-discrete approximations

de�ned by (3.20) and (4.10). If E ∈ C1([0, T ], C4[0, 1]) ∩ C2((0, T ], C(0, 1)) and

c ∈ C((0, T ], C4[0, 1]) ∩C([0, T ], C[0, 1]) ∩C1((0, T ], C(0, 1)), then there are positive

constants Ci, i = 1, 2, 3 such that the error ec,h(t) = Rhc(t)− ch(t) satis�es

‖ec,h(t)‖2h +

∫ t

0
‖D−xec,h(s)‖2h,+ ds ≤ C1h

4
maxe

C2t

[∫ t

0

(
‖c(s)‖2C3(Ω̄)‖E(s)‖2C4(Ω̄)

+ ‖c(s)‖2C4(Ω̄)

)
ds+

∫ t

0
‖E′(s)‖2C4(Ω̄) ds

∫ t

0
‖c(s)‖2C(Ω̄) ds

]
eC3

∫ t
0 ‖Eh(s)‖2∞ ds,

for t ∈ [0, T ].

We remark that Eh(t) is given by (3.20) and considering the upper bound (3.27)

we conclude that ‖Eh(t)‖∞ is uniformly bounded in t and h. This fact enable us

to conclude that, under the conditions of Theorem 9 there are positive constants C1

and C2 independent of E, C, h and t such that

‖ec,h(t)‖2h +

∫ t

0
‖D−xec,h(s)‖2h,+ ds ≤ C1h

4
maxe

C2t

[∫ t

0

(
‖c(s)‖2C3(Ω̄)‖E(s)‖2C4(Ω̄)

+ ‖c(s)‖2C4(Ω̄)

)
ds+

∫ t

0
‖E′(s)‖2C4(Ω̄) ds

∫ t

0
‖c(s)‖2C(Ω̄) ds

]
,

for t ∈ [0, T ].

4.4. Numerical Simulation

To illustrate the behaviour of the solution of the hyperbolic-parabolic IBVP (3.1),

(4.6) we propose the fully implicit-explicit discrete �nite di�erence scheme

D−tc
j+1
h (xi) = DD2c

j+1
h (xi) +Dc(v

j+1
h (xi)c

j
h(xi)) +Gj+1

h (xi), i = 1, . . . , I − 1,

j = 1, . . . , N − 1,

cjh(x0) = cext(tj), j = 1, . . . , N,

cjh(xI) = 0, j = 1, . . . , N,

c0
h(xi) = c0(xi), i = 1, . . . , I − 1,

(4.18)

which is coupled with the fully discrete �nite di�erence scheme (3.37)-(3.40) for

electric �eld intensity. In (4.18), cjh(xi) represents the approximation for c(xi, tj),

i = 0, . . . , I, j = 0, . . . , N .

For the numerical approximation for the electric �eld intensity E and the numer-

ical approximation for the concentration c, we use the following steps:
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Chapter 4 Hyperbolic-Parabolic Coupled Model

1. Solve (3.37)-(3.40);

2. Solve (4.18).

The fully discrete coupled problem (3.37)-(3.40), (4.18) will be studied in the

near future. In what follows we present some numerical experiments that allow

us to illustrate the main convergence result of this chapter - Theorem 9 - and the

qualitative behaviour of the hyperbolic-parabolic IBVP (3.1), (4.6).

Example 3. Let ψ0, ψ1, φ0, φ1, F be such that E(x, t) = e
−π√
εµ
t
cos(πx), x ∈ [0, 1],

t ∈ [0, T ] is solution of (3.1). Let c0, cext and G be such that c(x, t) = e−πt sin(πx),

x ∈ [0, 1], t ∈ [0, T ] is solution of the IBVP (4.6).

In (3.37)-(3.40) we take Fh(xi, tn) = F (xi, tn) and in (4.18) Gh(xi, tn) = G(xi, tn).

We consider the sequence of the spatial grids as in Example 1 and we take T = 1 and

N = 90000. For the constants of this processes, we consider ε, µ, σ = 1, D = 10−2,

z = 1 and Temp = 310.

Let el = max
1≤n≤N

‖R(l)
h c(tn) − cn

h(l)
‖h(l) and rl be de�ned in h(l) as in (3.41). In

Table 4.1 we present the obtained numerical results. In Figure 4.1 we plot the least

squares line for (log(h
(l)
max), log(el)) for seven meshes with I = 5 × 2i, i = 0, . . . , 6.

Such results illustrate the second order convergence rate established in Theorem 9.

I hmax el rl

50 0.0882 0.00187 -

100 0.0441 0.00045 2.0656

200 0.0221 0.00011 2.0617

400 0.0110 0.00002 2.0945

Table 4.1: Numerical results for

the coupled model.
Figure 4.1: Linear regression illustrating the

convergence order of the numerical coupled

model.

Example 4. In what follows we illustrate the behaviour of the concentration de�ned

by the coupled problem (3.1), (4.6). We consider our domain a cube of edge 1, so

considering that the medium is isotropic, we can simplify our study to x ∈ [0, 1]. For

the electric �eld intensity we take ε = 4× 10−4, µ = 2 and σ = 0. We also consider
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4.4 Numerical Simulation

F = 0, φ0(tj) = 0.008, φ1(tj) = 0, j = 1, . . . , N , and ψ0(xi) = 2 cos
(
π
2 (1 + 2xi)

)
+

0.008(1−xi), ψ1(xi) = − π√
εµ cos

(
π
2 (2 + 2xi)

)
with i = 1 . . . , I−1. In what concerns

the concentration, we take z = 1, Temp = 310 and D = 10−2. The numerical Eh(t)

and ch(t) are obtained with T = 100, M = 5000 and N = 100.

Let Ma(t) be the drug mass released at x = 1, that is given by

Ma(t) =

∫ t

0
AJ(xI , s) ds,

where A is the area of the cross section which is assumed equal to the unity (see

Figure 3.1). Its numerical approximation is computed by

Ma(t) ' ∆t
L∑

m=0

(
−D

cmI − cmI−1

h
− vcmI

)
,

where L∆t = t. As c(xI , tj) = 0 for all j, then

Ma(t) ' ∆t
L∑

m=0

D
cmI−1

h
.

(a) cext(t) = 0.1 for t ∈ (0, T ];

c0(0) = 0.1, c0(x) = 0 for x ∈ (0, 1).

(b) cext(t) = 0 for t ∈ (0, T ];

c0(x) = 0.2 sin(πx) for x ∈ [0, 1).

Figure 4.2: Drug concentration in the domain for several time instants.

In Figure 4.2a we plot the drug concentration obtained with cext(t) = 0.1, for

t ∈ (0, T ], and c0(x) = 0, x ∈ (0, 1), for di�erent time levels. The results plotted in

Figure 4.2b were obtained assuming that the target tissue has an isolated left hand

side and the drug is removed at the right hand side. In this case the di�usion equation

(4.5) is complemented with the boundary conditions

J(0, t) = 0, c(xI , t) = 0, t ∈ (0, 1],

where J(x, t) = −D∇c(x, t)− v(x, t)c(x, t).
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Chapter 4 Hyperbolic-Parabolic Coupled Model

The discretization of this problem is made considering an additional grid point

x−1 = −h1, considering v(x−1, t) = v(x0, t), for t ∈ (0, 1], and using the following

discretization

DDcc
j
h(x0) + vjh(x0)cjh(x0) = 0.

We also consider that we do not have reaction.

The e�ect of the temperature in the released mass for di�erent initial conditions

is illustrated in Figure 4.3. In Figure 4.3a we plot the released mass for di�erent

temperatures when at the left hand side of the spatial domain we have the source used

before in the scenario illustrated in Figure 4.2a. When the temperature increases, a

decreasing of the released mass is observed. The behaviour of the concentration for

di�erent temperatures, where the di�usion process is enhanced by an applied electric

�eld is illustrated in Figure 4.3b. From these results, we conclude that an increase of

the temperatures leads to a decrease of the released mass.

(a) cext(t) = 0.1 for t ∈ (0, T ];

c0(0) = 0.1, c0(x) = 0 for x ∈ (0, 1).
(b) cext(t) = 0 for t ∈ (0, T ];

c0(x) = 0.2 sin(πx) for x ∈ [0, 1).

Figure 4.3: Released drug mass at x = 1 for di�erent temperatures.

Figure 4.4 illustrates the behaviour of the drug di�usion for di�erent electric con-

ductivities and di�erent electric permittivities of the target tissue. The results in

Figure 4.4a show that the convective transport is higher for higher electric conduc-

tivities. In Figure 4.4b we observe an opposite behaviour, that is, an increase of the

electric permittivity induces a decrease of the electric transport. These results were

obtained using a pulse initial condition.
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4.4 Numerical Simulation

(a) Variation of σ. (b) Variation of ε.

Figure 4.4: Released drug mass at x = 1 where cext(t) = 0 for t ∈ (0, T ] and

c0(x) = 0.2 sin(πx) for x ∈ [0, 1).
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Conclusions

In this work we studied a coupled initial boundary value problem (3.1), (4.6) that

describes the time and space evolution of the electric �eld E and the concentration c.

As we mentioned before, this system is a natural extension of the coupling between

Laplace equation for the electric potential and equation (4.5) for the concentration.

We believe that the coupling hyperbolic-parabolic problem can be used to study the

drug absorption enhanced by a physical enhancer like electric currents, as considered

in the references included in this work, or light ([36]).

Theorems 6 and 9 are the main results of this work. In the �rst result we es-

tablish that the error for the semi-discrete approximation Eh(t), de�ned by (3.20),

for the electric �eld E(t), de�ned by (3.18), presents second convergence order with

respect to the H1 discrete norm ‖ · ‖1,h. Using this result, we prove in the second

result that the error for semi-discrete approximation ch(t), de�ned by (4.10), for the

concentration c, de�ned by (4.6) with homogeneous boundary conditions, presents

second convergence order but with respect to the L2 discrete norm ‖ · ‖h. These re-

sults are unexpected because the truncation errors induced by the considered spatial

discretizations have only �rst order with respect to the norm ‖ · ‖∞.

Numerical results illustrating these results are also presented. We remark that

these results require smoothness for the electric �eld and for the concentration. Nu-

merical simulation for weaker smooth solutions is also included.

The qualitative behaviour of the coupled model (3.1), (4.6) is illustrated consi-

dering the fully discrete coupled method (3.37)-(3.40), (4.18). This scheme was

constructed using the method of lines approach: the time integration of the semi-

discrete coupled problem (3.20), (4.10) using Euler method.

As this work is the �rst study in the analysis from analytical and numerical

point of view of the IBVPs (3.1), (4.6), several questions are still without an answer.

Firstly, from the numerical simulation of the method (3.1), when the electric �eld

E(t) is in H3(0, 1), we think that Theorem 6 remains true when lower smoothness
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Chapter 5 Conclusions

assumptions are imposed. The stability and convergence analysis of the fully discrete

schemes (3.37)-(3.40), (4.18) under the smoothness assumptions considered in this

work or under weaker assumptions will be studied in a near future. The electric

�eld E(t) (equation (2.16)) was used in the Nernst-Planck relation (4.1) to de�ne

the convective velocity for the drug concentration. Let us consider now that the

convective velocity is induced by the gradient of the electric potential φ de�ned by

the equation (2.27). The study of results similar to Theorems 6 and 9 need to be

consider for this last scenario. High dimensions for the space variable will be also

considered.
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