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Abstract

In multi-layer networks protection can be provided at multiple layers. Hence some links
at an upper layer may be resilient because they are protected at a lower layer. We will
designate as resilient arc at a given layer, an arc which has some form of protection at an
underlaying layer. When path diversity is used at an upper layer, and resilient arcs are
taken into account, it may not be necessary for the considered paths to be fully disjoint.

We solve a problem of finding the shortest node-disjoint pair of paths that can share
resilient arcs. It is assumed that a network consists of a set of nodes and a set of arcs.
Moreover, a number of available arcs are resilient. Our goal is to find the shortest pair
of paths such that they share only those nodes that are incident to shared resilient arcs.
Moreover, we assume that the resulting paths cannot contain loops, and costs of shared
resilient arcs are counted only once towards the objective function.

In the paper we present two novel algorithms solving the above problem, and two sup-
porting algorithms that are utilized as subroutines. We implement the proposed algorithms
and compare them to an MIP approach.

Keywords: routing, protection, disjoint paths

1. Introduction and motivation

The deployment of broad-band services has increased the bandwidth demand of telecom-
munication networks. Satisfying this demand has been made possible by optical networks,
which carry a huge amount of traffic. A single link failure in an optical network can have
a significant impact in the carried traffic. Because many critical infrastructures depend on
the correct and continuous operation of telecommunication networks, these networks must
be resilient [2].

✩The idea was originally presented at RNDM 2013 - 5th International Workshop on Reliable Networks
Design and Modeling, co-located with ICUMT 2013 Congress (Sept. 10-12, 2013, Almaty, KZ) under title
“Finding the shortest node-disjoint pair of paths that are allowed to share resilient arcs” [1]
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Path diversity is a form of protection that consists in routing a traffic demand, between
two specific node pairs, using a set of paths. The survivability of traffic flows, in single
links (or node) failure scenarios, can be 100% guaranteed by a pair of link-disjoint (or node-
disjoint) paths [3]. In multi-layer networks protection can be made at multiple layers. Hence
some links at an upper layer may be resilient because they are protected at a lower layer.
We will designate as resilient arc at a given layer, an arc which has some form of protection
at an underlaying layer. When path diversity is used at an upper layer, and resilient arcs
are taken into account, it may not be necessary for the considered paths to be fully disjoint.

In [4] the Partial Disjoint Path algorithm is proposed to avoid protection duplications in
a multi-layer scenario. It is a two step approach: first it calculates the AP (active path or
working path or primary path) , and then in it seeks to obtain the shortest BP (backup path
or secondary path) which is disjoint with AP only in the unreliable links. The resulting paths
are designated failure-disjoint paths because they do not share any risk of failure (assuming
nodes do not fail) because they only share resilient arcs. Although this approach allows for
sharing of resilient links (counted only once) between the AP and BP, it does not calculate,
among all such path pairs, the one of minimal total (additive) cost. Hence the approach
of [4] may require more network resources than would have been strictly necessary. This
problem is solved in [5], where a polynomial time algorithm for finding failure-disjoint paths,
of min-sum cost is proposed.

Node disjointness implies link disjointness, so using node disjoint path pairs (or sets of
paths) results in higher network availability. Considering there exist resilient arcs in the
network layer, where a node disjoint path pair is to be calculated, it may be advantageous
from the point of bandwidth usage or cost to admit paths that share those arcs. This implies
that the node disjointness restriction, at the end nodes of shared resilient arcs, would have
to be relaxed. These resilient arcs may for instance represent interconnections of two sub-
networks of a single operator using a third party network. Also, in a Multi-Protocol Label
Switching Transport Profile (MPLS-TP) network, resilient arcs may represent (protected)
tunnels at the Wavelength Division Multiplexing (WDM) layer. Real-world communication
networks are generally made up of different layers, for example, a SONET/SDH layer over
an optical network layer. A link of the SONET/SDH layer can be considered as a demand
that should be routed through a path in the optical layer. If this path is protected against
failures, then the link is reliable. Otherwise the link can fail and hence requires some
protection against failures at the SONET/SDH layer. This leads to two kinds of arcs:
perfectly reliable arcs that do not fail, and unreliable arcs that can fail [6, 3]. This kind
of problem is consider for instance in [7], where the authors replace the optical protection
with the protection in higher layers for some links. Another example are Free Space Optics
(FSO) networks [8] facilitated with fiber connections for some vital routes. In this case, the
technology used for fiber links makes them much more resilient to failures than the other
links that are built on FSO [9].

In the context described above a new problem arises, which is the calculation of a pair
of paths, from node s to node t, such that they are node-disjoint, except possibly at the end
nodes of shared resilient arcs. Moreover, the returned pair of paths cannot contain loops.
In this work a formal, mathematical description of the problem of calculating the shortest
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node-disjoint pair of paths that are allowed to share resilient arcs, is proposed and two novel
algorithms are introduced for solving it.

As for general requirements that have to be met in practice by such algorithms consider
a Multi-Protocol Label Switching (MPLS) context. In the Generalized Multi-Protocol Label
Switching (GMPLS) architecture a Path Computation Element (PCE) [10] is a computa-
tional unit that calculates routes as requested by a Path Computation Client (PCC). A PCE
can be implemented in any system; embedded in a network element or a network manage-
ment system, or implemented as a separate server dedicated to path computations [11]. The
route calculation made by a PCE, can be made in a centralized or distributed manner [10].
A centralized PCE usually has good processing capabilities, and it may have a response
time in the order of a few seconds, answering to requests from the network management
system. In a distributed model the PCE, which may be embedded in a network element,
should be able to provide a rapid response, although it may have limited calculation power
and memory resources. For end-to-end protection in GMPLS networks, considering that
information about resilient links is distributed, the PCE should be capable of calculating
failure-disjoint path pairs, to avoid protection duplications. This shows the importance of
developing efficient algorithms1 for determining failure-disjoint paths.

The paper is organized as follows. In Section 2 we present a short literature review on
resilient routing. In Section 3 we present a formal, mathematical description of the problem.
This is followed by a description of related failure-disjoint problems in Section 4. Problems
described there at first sight may look similar to our problem. In Section 5 supporting
algorithms are presented. They are utilized as subroutines in the core algorithms solving
our problem presented in Section 6. Numerical results are presented in Section 7. The paper
ends with conclusions in Section 8.

2. Literature review of resilient routing issues

In [12] networks challenges are defined as adverse events causing faults, that may result
in service failures. Network service providers seek to ensure their networks’ survivability,
so that when a fault occurs its impact is strongly mitigated and in many cases not even
perceived by the users. To attain this objective, two main recovery options are available:
protection and restoration. In the first case, backup resources are reserved in advance, before
any fault occurs. In the second case, after detecting a fault a solution to recover the affected
connection is searched for, and the necessary resources are then allocated to restore the
affected services. Protection has higher cost, but strict recovery time, and is the preferred
solution at the optical layer [13]. Restoration is more bandwidth efficient than protection,
as it makes better use of network resources. However, the efficiency is at the expense of
longer recovery times, and hence should only be used for services which can tolerate some
disruption resulting in worse quality of service.

Regarding the scope, the recovery can be global, local, or segment oriented [6]. When
global path protection is utilized, the AP is utilized in normal network operation conditions.

1This work was in fact motivated by a R&D Project under contract with PT Inovação.
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When a fault occurs (due to a node or link failure) a fault indication signal (FIS) is generated
by the node closest to the failed element and is sent towards the head end of the path. Once
the head end of the failed AP receives the FIS, it will switch the traffic to the BP. When local
protection is used the node closest to the fault switches the traffic to a pre-established detour,
which avoids the failed link or node. This results in a faster recovery than global protection,
but requires much more backup resources. In segment protection the AP is divided into
segments, which are locally protected; segment protection is a compromise solution: it is
faster that global protection and requires less backup resources than local protection [6].

Dedicated protection ensures fast recovery but requires a high level of network redun-
dancy (ratio of backup to active bandwidth capacity). In a single failure scenario protection
resources can be shared among BPs of risk disjoint APs. When shared protection is consid-
ered the BPs are not established (together with APs) but are pre-calculated, thus allowing
them to share protection bandwidth. This implies a longer restoration time, but results in
significant reduction of network redundancy [14].

When dedicated protection is used, a link-disjoint (or node-disjoint) path pair can be
obtained in polynomial time [15]. In shared path protection, the calculation of an adequate
AP and BP can be modeled as min-sum problem with ordered dual costs, which has been
shown to be NP-Complete [16, 17]. Algorithms for solving the min-sum problem with
asymmetric weights can be found in [18] and [19]. A more general problem, the min-sum
with dual costs, is solved in [20]. The algorithms in [18, 19, 20] are all variants of the Iterative
Two Step Approach, which consists in using a k-shortest enumeration algorithm [21, 22],
for successively obtaining a candidate active path for which an adequate backup path is
calculated. The iterative process continues until certain predefined criteria are met.

The problem of calculating an AP and a BP considering shared bandwidth is tackled
in [14]. An Integer Linear Programming (ILP) approach is proposed there, but because
the calculation of the AP and BP are entwined, solving exactly the least-cost AP and BP
path-pair (in terms of the sum of the cost) is not scalable in the network size. Hence in [14]
two heuristic algorithms, designated ITSA and Maximum Likelihood Relaxation (MLR),
are proposed. The authors conclude that ITSA, although giving the best results, can be
computationally expensive and that MLR is a good compromise between performance and
computational efficiency.

In [23] the approach called the designated PRotection using Multiple SEgments (PROMISE)
for shared segment protection is proposed. It seeks, for a given node pair, the best AP
segments (ASs) and corresponding BP segments (BSs), considering the ASs and BSs may
overlap. In [23] an ILP formulation and an heuristic for solving the problem of calculating
the BSs for a given AP are presented.

Fast ReRouting (FRR) [24] in MPLS networks implements local protection consider-
ing bandwidth sharing among the BPs of each protected AP (intra-demand sharing). When
inter-demand bandwidth sharing is desired, the calculation of the AP an BP (and the capac-
ity for bandwidth sharing) depends on the considered information model. In [25, 26] three
scenarios are considered: no information (NI), aggregated information (AG), and complete
information (CI). The NI model allows for intra-demand sharing, but no inter-demand shar-
ing is possible, because only the residual bandwidth in each link is known to the routing
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algorithms. The CI model could be used with centralized routing, but is not realistic in
the context of on-line (distributed) routing, due the huge amount of information that would
have to be distributed by the routing protocols (and maintained at each node). Finally
the AG model, where aggregated information about the bandwidth reserved for APs and
BPs, and the residual bandwidth in each link is distributed, allows for inter-demand sharing.
Distributed Partial Information Management schemes that ensure sufficient BP bandwidth
estimation using the AG model, but allow minimum BP bandwidth allocation (and deallo-
cation), are proposed in [27], but require some extensions of the signaling protocols.

In [28] a generic optimization framework, referred to as the Generalised Shared Protection
(GSP), is proposed. It selects the AP and a type (link, segment, or global) of shared
protection for a certain end-to-end demand under given traffic and network conditions.
GSP, using an ILP formulation, calculates the BP (path, segments, or detours) which uses
resources optimally along with the AP for any single demand.

The preconfigured protection cycles (p-cycles) proposed by Grover [29] are characterized
by a recovery speed similar to SDH/SONET rings and present mesh-like efficiency because
p-cycles can protect both on-cycle and straddling links. A review of several p-cycle based
protection (for link, segment, path, and flow) approaches can be found in [30]. p-cycles can
also be utilized to protect multicast traffic trees [30, 31].

IP-over-WDM (Wavelength-Division Multiplexing), is one of the considered architectures
for the next generation Internet. Survivability is of the utmost importance in this type of
networks, because of the huge amount of traffic carried in a single light-path. The most
common approach is to consider protection at the WDM layer or in alternative at the IP
layer [13]. Depending on a failure scenario and a traffic pattern it may be more advantageous
(considering backup capacity) to ensure protection at the optical layer in some cases, and
in other cases to ensure recovery at the IP layer. In [13] the bandwidth requirements
of IP restoration versus optical protection for a given class of services is analyzed and a
combination of both recovery types is also considered. Zhang et al. [32] study how to
maximize the bandwidth sharing for survivable IP/MPLS over WDM, and propose a new
scheme for resource sharing, which is more effective than two other alternatives.

The GMPLS control plane [33] has been standardized by the Internet Engineering Task
Force (IETF). Recovery in GMPLS networks has also been specified in IETF RFC 4872 [34].
The Resource Reservation Protocol-Traffic Engineering (RSVP-TE) with extensions [35] is
used for signaling the restoration path according to the calculated route of the backup path.
Sharing the bandwidth in the common link(s) of the path pair (active LSP and backup LSP)
can be easily implemented in the MPLS control plane. It suffices that they are signaled
using the Shared-Explicit (SE) style of RSVP-TE [36]. This allows to take advantage of the
existence of resilient links, and avoids wasting backup bandwidth in a multi-layer scenario.

3. Problem Formulation

In this section we present a problem of obtaining the min-sum path pair, such that the
paths are node-disjoint, except possibly at the end nodes of shared resilient arcs. Moreover,
the paths cannot contain cycles. In order to formally present the optimization problem we
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introduce the following notation.

Sets:

V set of nodes; a single node is denoted by v

A set of arcs; a single arc is denoted by a; each arc is an ordered pair (v, v′) of elements
from V

S set of resilient arcs; S ⊆ A

δ+(v) set of arcs emergent from node v

δ−(v) set of arcs incident in node v

Parameters:

ca cost of arc a; ca > 0 for all a ∈ A

s source node; s ∈ V

t target node; t ∈ V

Variables:

xa number of paths using arc a

ra 1 if arc a is used in its resilient mode; 0 otherwise

rv 1 if node v is used in its resilient mode; 0 otherwise

An arc is used in its resilient mode if it is being shared by the AP and BP. A node is used
in its resilient mode if it is the end node of a shared resilient arc.

The considered optimization problem—Shortest Node-Disjoint Pair of Paths Sharing
Resilient Arcs—will be denoted by SNDP2SRA, and can be formulated as follows.
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min
∑

a∈A

ca(xa − ra)

2 · ra ≤ xa ∀a ∈ A (1a)

∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa =







2 if s = v

−2 if t = v

0 otherwise

∀v ∈ V (1b)

xa ≤ 1 ∀a ∈ A \ S (1c)

rv ≤
∑

a∈δ+(v)∪δ−(v)

ra ∀v ∈ V (1d)

∑

a∈δ+(v)

xa ≤ 1 + rv ∀v ∈ V \ {s} (1e)

xa ∈ {0, 1, 2} ∀a ∈ A (1f)

ra ∈ {0, 1} ∀a ∈ A (1g)

rv ∈ {0, 1} ∀v ∈ V (1h)

In (1) we pay for each utilized arc. However, if an arc is used by both paths (xa = 2), then
this arc should be counted only once towards the objective function. This fact is controlled
by ra, which is bounded by (1a). Equation (1b) expresses the standard flow conservation
law for variables xa. Variables xa are additionally bounded by inequality (1c), which ensures
that unreliable arcs cannot be shared by the paths. A node is used in its resilient mode only
if at least one incident arc is also used in its resilient mode. This fact is expressed by (1d).
Nodes not used in their resilient modes cannot be shared by the paths. This restriction is
represented by (1e). Inequality (1e) assures that if a node is not resilient, it cannot be left
by more than one path (except source node s). What is more, inequality (1e) also assures
that loops will not be present in the solution.

4. Related min-cost failure-disjoint problems

Our problem can be easily mistaken for another failure-disjoint problems that can be
found in the literature. In this section we want to briefly describe a number of key features
that distinguish our problem from the other similar problems. Let us summarize them now.

1. A solution to our problem is a pair of node-disjoint paths.

2. The pair can share “resilient” nodes.

3. A node is resilient only if it is adjacent to a resilient arc.

4. Both paths of the pair have to use this resilient arc to make the adjacent nodes resilient.

5. The paths cannot contain loops.

6. If both paths are using the same resilient arc, we pay for it only once.
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s a b t

Figure 1: Network showing the importance of Feature 5.

If a problem satisfies only Feature 1, then it can be easily solved by Suurballe’s algorithm
[15]. This algorithm can be also used when a solution has to be additionally characterized by
Features 2 and 3. However, when Feature 4 has to be also satisfied, then a new specialized
algorithm is needed. Here it is worth to notice that a problem, which lacks Feature 5, still
differs from the problem considered in this work. It is clearly visible in Fig. 1. Consider a
problem of finding a pair of failure-disjoint paths from s to t in the network of Fig. 1 with
one resilient link depicted with a thick arc. In such a network there is a feasible solution
satisfying Features 1, 2, 3, and 4. However, there is no solution when also Feature 5 has to
be satisfied.

Finally, Feature 6 deals with costs and can be used independently of the others. The
feature is very important as it can change the way problems can be solved. Consider a
problem characterized by Features 1, 2, and 3. As written before, it can be solved by
Suurballe’s algorithm. However, when Feature 6 is added, then a new specialized algorithm
has to be presented. The same situation is with our problem. Algorithms presented in this
paper cannot solve a problem that is characterize by a cost function which does not satisfy
Feature 6.

5. Supporting algorithms

In this section three supporting procedures are presented. They are used as subroutines
in our main algorithms presented in the next section. The procedures use a notion of a path
instead of a flow on arcs like in (1). The paths are denoted by p and q, and a pair they form
is denoted by (p, q). The cost of the pair is denoted by c(p, q):

c(p, q) =
∑

a∈p

ca +
∑

a∈q

ca −
∑

a∈q∧a∈q

ca (2)

Notice that the common arcs in p and q must belong to S.

5.1. Failure-Disjoint Path Algorithm [5] (FDP)

Before moving to actual supporting algorithms let us first briefly describe an algorithm
presented in [5] that solves a problem of finding a min-sum path pair that can share resilient
arcs paying for them only once. The procedure is presented in Algorithm 1. We will refer
to it as Failure-Disjoint Paths Algorithm (FDP). The algorithm is used as a subroutine in
the first supporting procedure, while the second supporting procedure is in fact a modified
version of FDP. As proven in [5] the algorithm is polynomial.
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Algorithm 1 Failure-Disjoint Paths Algorithm (FDP)

Require: Digraph G = (V,A); source node s; target node t; arc costs ca such that a ∈ A;
set of unreliable arcs S̄ = A\S.

Ensure: (p, q) is the min-sum cost failure-disjoint path pair from s to t, or (∅, ∅) if no
solution was found.

1: Compute the shortest pair of arc-disjoint paths from each vertex u (sources) to each
vertex v (sinks), where u is either s or a sink of any resilient arc, and v is either t or a
source of any resilient arc.

2: In the resulting modified graph, which consists of pairs of arc-disjoint paths (represented
by newly added arcs) and of resilient arcs, compute the shortest path.

3: Consider a graph consisting of doubled resilient arcs selected by the shortest path algo-
rithm of Step 2 and arcs that form pairs of arc-disjoint paths computed in Step 1 and
also selected by the same run of the shortest path algorithm (Step 2). Compute a pair
(p, q) of arc-disjoint paths in the considered graph.

4: return path pair (p, q) found in the previous step or (∅, ∅) if no solution was found.

5.2. Failure-Disjoint Paths Algorithm considering Node Failures (FDP-NF)

The first approach uses FDP for obtaining a failure-disjoint path pair of min-sum cost in
an appropriately modified graph. The approach is presented in Algorithm 2. We will refer
to it as Failure-Disjoint Paths Algorithm considering Node Failures (FDP-NF).

FDP finds a min-sum cost failure-disjoint path pair in networks with a number of reliable
arcs, and uses the set of sink nodes (t and the sources of resilient arcs) and the set of source
nodes (s and the sinks of resilient arcs) to achieve this goal. However, in our problem a
node-disjoint pairs of paths are of interest. Therefore, we will assume that the nodes not
in the set of sinks or in the set of sources are now unreliable nodes, and in order to cope
with unreliable nodes, before running FDP, a network transformation, as already suggested
in [5], will be made, where every unreliable node is divided in two sub-nodes connected by
an unreliable arc of zero cost.

More precisely, let v be an unreliable node divided into two sub-nodes, v1 and v2, con-
nected by an unreliable arc (v1, v2) of zero cost; every incident arc in node v will now be
incident in node v1 and every emergent arc from v will now emerge from v2. This will ensure
that the failure-disjoint (in fact arc-disjoint in the unreliable arcs) paths calculated in line 1
of FDP-NF are also node-disjoint in the considered unreliable nodes.

In line 2 algorithm FDP-NF calculates the shortest pair of failure-disjoint paths. This
path pair does not share any unreliable arcs, and hence must be node-disjoint on the unreli-
able nodes (the nodes not in the set of sinks or sources), due to the network transformation
in line 1. In line 3 the graph transformation of line 1 is reversed to return a path pair in the
original graph G.

Theorem 1. A path pair returned by FDP-NF may only share resilient arcs and the con-
sidered resilient nodes, and is of min-sum cost among such path pairs.
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Algorithm 2 Failure-Disjoint Paths Algorithm considering Node Failures (FDP-NF)

Require: Digraph G = (V,A); source node s; target node t; arc costs ca such that a ∈ A;
set of unreliable arcs S̄ = A\S.

Ensure: (p, q) is the min-sum cost failure-disjoint path pair from s to t which is node-
disjoint except possibly at end nodes of resilient arcs, or (∅, ∅) if no solution was found.

1: Transform the graph, replacing every unreliable node by two nodes and an unreliable
arc.

2: Use FDP to find the shortest pair of failure-disjoint paths from s to t in the transformed
graph.

3: If a path pair was found in the previous step, collapse every divided node in the paths
into the original node.

4: return path pair (p, q) found in the previous step or (∅, ∅) if no solution was found.

Proof. The network transformation of line 1 replaces the considered unreliable nodes (the
nodes which are not s, t or the end nodes of resilient arcs) by unreliable arcs. The result
of calling FDP in line 2 of FDP-NF, whose correctness is proved in [5], is the min-sum
failure-disjoint path pair in that transformed graph. Hence the resulting path pair may only
share resilient arcs and the considered resilient nodes, and must be of min-sum cost among
such path pairs.

Therefore, the path pair resulting from FDP-NFmay share resilient arcs, will be node disjoint
except possibly at the end nodes of resilient arcs and will have min-sum cost. However, have
in mind that FDP-NF does not ensure that the shared nodes are end nodes of shared resilient
arcs. In fact, the resilient arcs do not have to be used at all.

Example FDP-NF. Consider a network presented in Fig. 2 with a resilient arc depicted
using a thick arrow and all arc costs like in the figure. Assume that a pair of paths from
s to t is searched for. After applying the network transformation of line 1 of FDP-NF, we
obtain a network presented in Fig. 3. Notice that only nodes b and d are not either a source,
a sink, or are incident to a reliable arc. Therefore, only those nodes are replaced with two
nodes b1 and b2 (d1 and d2, respectively), and an unreliable arc between them. Obviously
arcs that were originally incident in b or d are now incident in b1 or d1, while arcs that were
emergent from b and d are now emergent from b2 and d2.

In line 2 of FDP-NF the shortest failure-disjoint path pair is found in the transformed
graph. In our example there are only two such pairs (of cost 7), and they both use all arcs
in the graph except of (b, a). Consider a pair s → b1 → b2 → c → t and s → a → c →
d1 → d2 → t (the second pair is s → a → c → t and s → b1 → b2 → c → d1 → d2 → t).
After reducing the graph to its original form in line 3 of FDP-NF the paths will reduce to
s → b → c → t and s → a → c → d → t (or to s → a → c → t and s → b → c → d → t
for the second pair). Obviously those are not feasible solutions to SNDP2SRA, as arc (a, c)
is not shared by the paths, thus also neither a nor c can be shared by the paths—in both
obtained solutions c is shared by the pairs. As clearly seen in the example, FDP-NF cannot
solve SNDP2SRA.
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Figure 2: Example network.
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Figure 3: Transformed network.

5.3. Advanced Failure-Disjoint Paths Algorithm considering Node Failures (AdvFDP-NF)

Another approach is to use a variant of FDP, for obtaining a failure-disjoint path pair
of min-sum cost. The approach is more efficient than FDP when the percentage of resilient
edges is relatively small. However, it loses its competitive edge when the percentage exceeds
approximately 50%. The approach will be called Advanced Failure-Disjoint Paths Algorithm
considering Node Failures (AdvFDP-NF) in the rest of the paper.

AdvFDP-NF is essentially Algorithm 1 except for:

• calculating node-disjoint path pairs in line 1 instead of arc-disjoint path pairs;

• obtaining a maximally node-disjoint path pair [37] in line 3, in order to allow sharing
the resilient arcs (and corresponding end nodes) instead of finding two arc-disjoint
paths in the reduced graph with resilient arcs.

The algorithm is not as universal as FDP-NF, because the problem it solves makes sense
only in the context of SNDP2SRA. FDP-NF returns the min-sum cost failure-disjoint path
pair from s to t which is node-disjoint except possibly at end nodes of resilient arcs. On the
other hand, certain things that we can write about results of AdvFDP-NF are much less
general. Consider an artificial problem AdvFDP-NF-Problem that is solved by AdvFDP-NF.
We can write that:

Lemma 1. All feasible solutions to SNDP2SRA are also feasible to AdvFDP-NF-Problem,
i.e., if a feasible solution to SNDP2SRA exists in G, then also AdvFDP-NF returns a feasible
solution in G.
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Proof. First notice that if a solution is feasible for AdvFDP-NF-Problem in a given graph
G, then it will be also feasible in any graph that contains G, as we can always set ca for
all additional arcs to infinity. The reason is that ca values do not have an impact on the
feasibility of a solution. Still, arcs with ca equal to infinity will not be in an optimal solution
as long as a feasible solution not containing such arcs exists.

Consider now any feasible solution to SNDP2SRA in a given graph G. Remove from G
all the arcs that are not in the considered feasible solution. Notice that if AdvFDP-NF finds
the same solution as the considered feasible solution in this reduced graph, then all feasible
solutions to SNDP2SRA are also feasible for AdvFDP-NF-Problem. A feasible solution to
SNDP2SRA consists of segments that are either a shared resilient arc or a node-disjoint pair
of paths. The segments are ordered in such a way that no two segments that are formed
by a pair of node-disjoint paths are adjacent to each other. In a graph consisting solely
of arcs that are in a feasible solution to SNDP2SRA after running line 1 of Algorithm 3
(AdvFDP-NF) we obtain a chain, which will be a modified graph in line 2. It leads us to
a solution that contains exactly the same arcs that were used by a solution to SNDP2SRA,
which ends the proof.

Lemma 2. Objective values of the same solutions for AdvFDP-NF-Problem and SNDP2SRA
are equal.

Proof. In SNDP2SRA a cost of a solution is a sum of ca of each arc belonging to a solution.
A cost of a solution to AdvFDP-NF-Problem consists of a sum of costs of node-disjoint pair
of paths and a sum of costs of used resilient arcs, which is in fact a sum of ca of each arc
belonging to a solution.

Lemma 3. All feasible solutions to AdvFDP-NF-Problem are also feasible to FDP-NF-
Problem, i.e., if AdvFDP-NF returns a feasible solution in G, then also FDP-NF returns
a feasible solution in G.

Proof. Consider the lemma is not true, and there exists a feasible solution to AdvFDP-
NF-Problem that is not feasible to FDP-NF-Problem. An infeasible solution to FDP-NF-
Problem either contains loops or two paths of the solution share a node which is not adjacent
to a reliable arc. Notice that a solution to AdvFDP-NF-Problem cannot contain loops as
ca > 0 for all a ∈ A, so any loop would be eliminated by the maximally min-sum node-
disjoint paths algorithm of line 3 of AdvFDP-NF. Therefore, consider that there exists a
solution to AdvFDP-NF-Problem with two paths sharing a node which is not adjacent to
a reliable arc. Such a solution can be obtained only if the shared node alone creates in the
reduced graph a vertex cut. However, if the node is not adjacent to any resilient arc, so the
reason it was included in the reduced graph was because it was on one of node-disjoint pairs
of paths computed in line 1 of AdvFDP-NF. Therefore, it cannot form alone a vertex cut in
the reduced graph. Thus, a contradiction is reached.

Lemma 4. Objective values of the same solutions for AdvFDP-NF-Problem and FDP-NF-
Problemare equal.
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Proof. A cost of a solution to FDP-NF-Problem is a sum of costs of used arcs. As shown
in the proof of Lemma 2, a cost of a solution to AdvFDP-NF-Problem is also a sum of costs
of all used arcs.

Let us now draw some important conclusions from the lemmas. First of all, the first
two lemmas tell us that AdvFDP-NF-Problem, like FDP-NF-Problem, are relaxations of
SNDP2SRA. It will be important from the point of view of algorithms presented in Section
6, as only procedures solving relaxations of SNDP2SRA can be used in those algorithms as
subroutines.

On the other hand, the following two lemmas (3 and 4) tell us that FDP-NF-Problem is
a relaxation of AdvFDP-NF-Problem. This fact makes AdvFDP-NF not worse than FDP-
NF as a subroutine of the algorithms of Section 6. In fact, as show in numerical results of
Section 7, the fact makes AdvFDP-NF slightly more efficient than FDP-NF while used as
the subroutine.

Algorithm 3 Advanced Failure-Disjoint Paths Algorithm considering Node Failures
(AdvFDP-NF)

Require: Digraph G = (V,A); source node s; target node t; arc costs ca such that a ∈ A;
set of unreliable arcs S̄ = A\S.

Ensure: (p, q) satisfies lemmas 1, 2, 3, and 4, or (∅, ∅) if no solution was found.
1: Find 2 min-sum node-disjoint paths from sources to sinks.
2: Find the shortest path in the modified graph, which consists of pairs of node-disjoint

paths (represented by newly added arcs) and of resilient arcs.
3: Find 2 maximally min-sum node-disjoint paths in the reduced graph, if the shortest path

in that graph is not entirely reliable.
4: return path pair (p, q) found in the previous step or (∅, ∅) if no solution was found.

AdvFDP-NF is formally presented in Algorithm 3. In line 1 it calculates the shortest
pair of node-disjoint paths from each node u (sources) to each node v (sinks), where u is
either s or a sink of any resilient arc, and v is either t or a source of any resilient arc. In
line 2 the modified graph corresponds to the original graph, where all the unreliable arcs
have been removed and for each calculated node-disjoint path pair one arc from the source
of the pair to the sink of the pair is added to the graph with the cost of the corresponding
path pair. The reduced graph of line 3 is the graph induced by the the resilient arcs selected
by the shortest path algorithm in line 2 and the set of arcs that form pairs of node-disjoint
paths computed in line 1 and also selected by the same run of the shortest path in line 2.
Calculating two maximally node-disjoint paths [37] in the reduced graph allows the sharing
of resilient arcs and its end nodes.

The path found in line 2 of AdvFDP-NF is formed by zero or more resilient arcs and/or
by arcs which represent 2 node-disjoint paths from sources to sinks obtained in line 1 of
AdvFDP-NF. However, the arcs belonging to the path obtained in line 2 can create a solution
with cycles. Therefore, 2 maximally node-disjoint paths have to be found in the reduced
graph as stated in line 3.
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Figure 5: Example network for AdvFDP-NF.

Example AdvFDP-NF. Again consider a network presented in Fig. 2 with the same
arc costs and starting and ending nodes. After applying the network transformation of line
2 we obtain a network presented in Fig. 4. In this network there is only one path from s to t
(of cost 8). After extending the graph to its original form in line 3 of AdvFDP-NF the path
will extend to a pair s → b → a → c → t and s → a → c → d → t (or to s → a → c → t
and s→ b→ a→ c→ d→ t for the second pair).

Those are feasible solutions to SNDP2SRA. However, AdvFDP-NF alone is still not able
to solve SNDP2SRA. Consider a slightly different network of Fig. 5 with two reliable arcs,
and arc (b, a) replaced with (a, b). In this network an optimal solution to AdvFDP-NF would
cost 7, while an optimal solution to SNDP2SRA would cost 8.

6. Algorithms solving SNDP2SRA

In this section two algorithms solving SNDP2SRA are presented. They both use the
supporting algorithms of Section 5 (FDP-NF and AdvFDP-NF) as subroutines.

Before moving to the description of the algorithm, let us introduce some additional
notation. Let v be the first (from source to target) intermediate common node in a path
pair obtained using a supporting algorithm, which is not the end node of a shared resilient
arc:

• φ+(v) pair of arcs emergent from v which are present in the path pair obtained using
a supporting algorithm.

• φ−(v) pair of arcs incident on v which are present in the path pair obtained using a
supporting algorithm.
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• δ+S (v) = δ+(v) ∩ S, is the set of resilient arcs emergent from v.

In our example for FDP-NF the first intermediate common node in the path pair obtained
using the algorithm, which is not the end node of a shared resilient arc, is c. Therefore,
sets φ+(c) and φ−(c) are equal to {(c, d), (c, t)} and {(b, c), (a, c)}, respectively. Finally,
δ+S (c) = ∅.

6.1. Simple approach

In this section a basic solution to SNDP2SRA is presented. In order to continue, let us
prove a basic lemma that will be the first step to present the algorithm.

Lemma 5. If a supporting algorithm returns an admissible solution to SNDP2SRA, then
this is the optimal solution to SNDP2SRA.

Proof. First notice that each solution to SNDP2SRA is also an admissible solution to
AdvFDP-NF (Lemma 1) and FDP-NF (Lemma 1 combined with Lemma 3). Moreover,
objective functions of those three problems are identical (Lemmas 4 and 2), i.e., the same
pair of paths will have the same cost for SNDP2SRA, AdvFDP-NF, and FDP-NF. If the
returned solution was not the optimal solution to SNDP2SRA, then there would exist another
solution to SNDP2SRA with a lower cost. However, this another solution would be also an
admissible solution to both FDP-NF and AdvFDP-NF. Therefore, our solution not only
could not be an optimal solution to SNDP2SRA but also could be an optimal solution
neither to FDP-NF nor to AdvFDP-NF, thus a contradiction is reached.

When the returned solution is not a feasible solution to SNDP2SRA, then a simple
approach to fix it consists in a successive removal of each of the arcs (incident and emergent)
in the first common intermediate node (which is not the end node of a shared resilient arc)
from source to target, and then applying a supporting algorithm to every one of these pruned
networks, which will be designated as the new problems to solve. Let us consider only FDP-
NF as a supporting algorithm in our explanations and examples, as using AdvFDP-NF is
similar in general.

In the algorithm that follows the function firstCNode(p, q) returns the first (from s to t)
common intermediate node between p and q, which is not the end node of a shared resilient
arc. An admissible solution of SNDP2SRA (line 12 of the next algorithm) is a node-disjoint
path pair where the only intermediate nodes in common are end nodes of shared resilient
arcs.

Let us now present the algorithm. An example of using it is given in the end of this
section.

The idea is to make a Breadth First Search (BFS) in a 4-ary tree of network graphs, G′

in line 9 of ASA. This ensures an exhaustive search among all networks G′ that may result
in a solution to the problem of finding a node-disjoint path pair except possibly at end nodes
of shared resilient arcs; if no admissible solution is obtained, the problem has no solution.

Theorem 2. ASA finds a feasible and optimal solution to SNDP2SRA.
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Algorithm 4 Algorithm Simple Approach (ASA)

Require: Digraph G = (V,A); source node s; target node t; arc costs ca such that a ∈ A;
set of unreliable arcs S̄ = A\S.

Ensure: (p, q) is the min-sum cost node-disjoint path pair from s to t except possibly at
end nodes of shared resilient arcs, or (∅, ∅) if no solution was found.

1: Let Q be a queue of sets of arcs
2: Push ∅ into Q // Initial network is G
3: (p, q)← (∅, ∅) // Initially: no solution and its cost is ∞
4: while Q is not empty do

5: Â ← head of Q
6: Remove head of Q
7: A′ ← A\Â // Set of arcs of current problem (c.p.)
8: S̄ ′ ← A′ ∩ S̄ // Set of unreliable arcs of c.p.
9: (p′, q′)← FDP-NF(s, t, G′(V,A′), c, S̄ ′) // or alternatively AdvFDP-NF

10: if (p′, q′) 6= (∅, ∅) then
11: if c(p′, q′) < c(p, q) then

12: if (p′, q′) is an admissible solution then

13: (p, q)← (p′, q′) // updates (p, q)
14: else //New problems
15: v ← firstCNode(p′, q′)
16: for all a ∈ φ+(v) ∪ φ−(v) do
17: Push Â ∪ {a} into Q
18: end for

19: end if

20: end if

21: end if

22: end while

23: return path pair (p, q) // No solution if (p, q) = (∅, ∅)
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Proof. Assume it is not true, and all optimal solutions cannot be found by the algorithm.
Consider one such a solution (call it (p, q)⋆), and any graph G′ in Q for which (p, q)⋆ is
admissible. In the graph G′ a solution to FDP-NF is found in line 9. The solution is not
(p, q)⋆, as it would mean that the optimum can be found, due to Lemma 5. Its cost is less
or equal c(p, q)⋆, as in other case (p, q)⋆ would not be admissible in G′. Finally, the solution
is not admissible, as in other cases the solution would be optimal (and would be found).
The solution is not admissible, so it produced four new problems and four new graphs G′.
At least in one of them (p, q)⋆ is admissible, as in other case it would mean that (p, q)⋆

contains all four arcs from φ+(v) ∪ φ−(v), thus (p, q)⋆ is not admissible. We have proved
that if (p, q)⋆ is admissible in G′ from Q, then it will either be found or be admissible in at
least one child of G′ that will be inserted in Q. Knowing that (p, q)⋆ is admissible in original
graph G, we conclude that it either has to be found or there will always exist at least one
G′ in Q where (p, q)⋆ is admissible. The graph G has a limited number of arcs, so graphs G′

cannot be created infinitely, thus if an optimal solution exists, then it has to be found. The
contradiction is reached.

Example ASA. Consider again the network of Fig. 2. The first execution of FDP-NF
in line 9 of ASA returns one of the two solutions discussed in the previous example, e.g.,
s → b → c → t and s → a → c → d → t. The solution exists, its cost is smaller than ∞.
However, it is not admissible. Therefore, we are in line 14 of ASA. The first common node
of the two paths is c. The set of arcs incident or emerging from c and on one of the paths
(φ+(c) ∪ φ−(c)) is {(a, c), (b, c), (c, d), (c, t)}. It means that four new problems are added to
Q. In the following four executions of the main loop of line 4 of ASA algorithm FDP-NF
will only find a solutions when Â = {(b, c)}. In the remaining three loops a solution will not
be found, the loops will end at line 10, and will not add any new object to Q.

There are two optimal solutions when Â = {(a, c)}. They use exactly the same arcs, so
we will concentrate only on one of them: s → b → c → t and s → a → c → d → t. The
solution is admissible, so it does not add any new objects to Q. Instead, it will be set as the
optimal solution in line 13 of ASA. Finally, the algorithm will end returning this solution,
after executing the main loop for the fifth time.

6.2. Efficient approach

Depending on the fact that the first (from source to target) intermediate common node
v in the path pair (p′, q′), which is not the end node of a shared resilient arc, obtained using
FDP-NF, should be (or not) shared by the solution, there are two cases:

1. The incident arcs in v, φ−(v), are both part of the optimal solution. Hence v must be
the tail node of a resilient shared arc of the optimal solution.
To obtain this type of a solution one must remove from the graph all arcs incident on
v except φ−(v), and all unreliable arcs emergent from v. Let this set be χ(v):

χ(v) = [δ−(v)\φ−(v)]
︸ ︷︷ ︸

incident

∪ [δ+(v)\δS
+(v)]

︸ ︷︷ ︸

unreliable
emergent
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In this case v is considered to be the tail node of a resilient shared arc of the optimal
solution, so v should only belong to the sink node set. Hence node v must be removed
from the set of source nodes of the new problem to be solved using FDP-NF. This
can be accomplished by removing from set S ′ (where S ′ = A′\S̄ ′) the resilient arcs in
φ−(v) (recall that all other incident arcs in v will be removed from A′).
Additionally if both arcs emergent from v in the path are resilient, i.e., δ+S (v) ⊇ φ+(v),
only one of them will belong to the final solution, so each of them must be pruned
from the network (while the other remains) generating two new problems.

2. The incidents arcs in v, φ−(v) cannot both be a part of the optimal solution.
To obtain this type of solution each of the incident arcs in v, φ−(v), must be removed
(one at a time), generating two new problems.

This resolution method generates new problems pruning arcs from the graph and making
resilient arcs unreliable (by removing them from S). To record these two actions, which result
in new problems, a queue of pairs of sets of arcs is used. The first element of the pair is the
set of pruned network arcs; the second element is the set of now unreliable arcs.

Let us now present the algorithm. As in the case of ASA, a simple example of using the
algorithm is given in the end of the section.

The idea of AEA (as in ASA) is to make a BFS search in a 4-ary tree of network graphs,
G′ in line 9 of AEA. Therefore, a proof of correctness of the algorithm can also be based on
the fact that an optimal solution admissible in G′ will be either found or be admissible at
least in one child of G′. This can be easily deduced from the description of the algorithm.

The worst case complexity of the algorithms is O(4(∆−3)k) multiplied by the complexity
of the supporting algorithms, O(|V| · |A| · log(1+|A|/|V|) |V|) [5], where k is the number of end
nodes of resilient arcs (number of nodes of the graph in line 3 of FDP-NF, minus two – s
and t), ∆ is the maximum node degree of the graph G of the initial problem. The factor
(∆ − 3) results from the fact that the same common node, which is not the end node of a
shared resilient arc, may appear up to ∆−3 times in each branch of the generated problems.

In ASA the existence of a common node v will always result in 4 new problems (network
graphs to be solved), while in AEA this will be the worst case; AEA will generate 4 prob-
lems only when both arcs in φ+(v) are resilient. Also in ASA possibly new problems will be
generated for every unreliable arc in δ+(v), which will never happen in AEA. In AEA all un-
reliable arcs in δ+(v) are removed together in Case 1. So although the worst case complexity
of the algorithms is the same, AEA will tend to be more efficient than ASA (especially in
networks with articulation nodes).

Example AEA. Consider the same example of Fig. 2. As in ASA the first execution of
the main loop of line 4 leads to line 14 that begins the generation process of new elements
to be added to Q. None of the arcs forming the paths and emergent from c is resilient.
Therefore, we generate three new problems. In the first of the new problems it is assumed
that a shared resilient arc will leave c. Therefore, it will remove (c, d) and (c, t) from A.
Moreover, it will make (a, c) unreliable. The following two new problems will just remove
one arc belonging to the paths and incident in c, i.e., arc (a, c) or (b, c). Obviously the first
two of those problems have no solution. The third problem has a solution, which is feasible
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Algorithm 5 Algorithm Efficient Approach (AEA)

Require: Digraph G = (V,A); source node s; target node t; arc cost ca such that a ∈ A;
set of unreliable arcs S̄ = A\S.

Ensure: (p, q) is the min-sum cost node-disjoint path pair from s to t except possibly at
end nodes of shared resilient arcs, or (∅, ∅) if no solution was found.

1: Let Q be a queue of pairs of sets of arcs
2: Push (∅, ∅) into Q // Initial network is G
3: (p, q)← (∅, ∅) // Initially: no solution and its cost is ∞
4: while Q is not empty do

5: (Â, Ŝ)← head of Q
6: Remove head of Q
7: A′ ← A\Â // Set of arcs of current problem (c.p.)
8: S̄ ′ ← A′ ∩ (S̄ ∪ Ŝ) // Set of unreliable arcs of c.p.
9: (p′, q′)← FDP-NF(s, t, G′(V,A′), c, S̄ ′) // or alternatively AdvFDP-NF

10: if (p′, q′) 6= (∅, ∅) then
11: if c(p′, q′) < c(p, q) then
12: if (p′, q′) is an admissible solution then

13: (p, q)← (p′, q′) // updates (p, q)
14: else // New problems
15: v ← firstCNode(p′, q′) // Case 1)
16: Â1 ← Â ∪ χ(v) // Remove χ(v) arcs
17: Ŝ1 ← Ŝ ∪ φ−(v) // φ−(v) now unreliable
18: if |φ+(v) ∩ S̄ ′| 6= 0 then

19: Push (Â1, Ŝ1) into Q
20: else // Both arcs in φ+(v) are resilient
21: for all a ∈ φ+(v) do
22: Push (Â1 ∪ {a}, Ŝ1) into Q
23: end for

24: end if

25: for all a ∈ φ−(v) do // Case 2)
26: Push (Â ∪ {a}, Ŝ) into Q
27: end for

28: end if

29: end if

30: end if

31: end while

32: return path pair (p, q) // No solution if (p, q) = (∅, ∅)
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and identical to the solution obtained using ASA. Therefore, the algorithm will end after
executing the main loop of line 4 for the fourth time. Notice that in ASA the main loop
had to be executed five times.

However, for the same example network of Fig. 2, if AdvFDP-NF is used instead of FDP-
NF, the optimal solution would be obtained by both AEA and ASA in the first iteration –
see Fig. 4.

6.3. Improving the efficiency of both algorithms

In ASA or AEA, new problems will always have a cost equal or greater than the cost
of the originating problem. The correctness of this statement is clear if one recalls that
every time a new problem is generated, at least one arc is pruned and possibly a resilient
arc is made unreliable. If the cost of the current best solution (p, q) (assuming it is not ∞)
is smaller than the cost of the path pair (p′, q′), no problems generated using (p′, q′) will
improve the present solution. This knowledge is used (see line 11 of ASA and 11 of AEA)
to prevent generating problems that will not improve the current best solution of ASA or
AEA.

Furthermore, the cost of the originating problem is also kept as the second (third) part
of each element stored in the queue used in ASA (AEA). This information can be utilized
to avoid using FDP-NF (in both algorithms) for solving problems whose cost will be equal
or greater than the cost of the current best solution. So a new line: “if (p, q) = (∅, ∅) ∨
cost of originating problem of the current problem < c(p, q) then” should be after line 6 of
ASA and 6 of AEA. Hence, the current problem (the one just removed from the head of the
queue) will only be solved if this condition is true.

Additionally instead of making a BFS search in the generated problems, ASA and
AEA can store the new problems in a priority queue, ordered by the increasing cost of
the originating problems. This will result in the need to solve less problems, because it is
likely that with this approach an admissible solution of lower cost will be found earlier than
using the BFS search.

Finally, and in order to help identifying problems with no solution, the first step will be
the determination of a maximally node disjoint path pair of min-sum cost [37]. If in the
resulting path pair:

• an unreliable arc is shared, no solution can be found and the algorithm ends;

• no resilient arc is emergent or incident in any of the intermediate common nodes, there
is no solution and the algorithm ends;

Also, if the obtained maximally node disjoint path pair is an admissible solution to SNDP2SRA
its cost can also be used as an upper-bound to the cost of the optimal solution, and thus
avoiding generating new problems that will have a higher cost than this upper-bound. Ob-
viously, this upper-bound improvement is weaker than the improvement that uses a priority
queue.
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Table 1: Networks from [38], where n is the number of nodes and m the number of edges

Network n m m/n biconnected

atlanta 15 22 1.47 yes
newyork 16 49 3.06 yes
nobel-germany 17 26 1.53 yes
geant 22 36 1.64 yes
nobel-eu 28 41 1.46 yes
india35 35 80 2.29 yes
pioro40 40 89 2.23 yes
germany50 50 88 1.76 yes
france 25 45 1.80 no
ta2 65 108 1.66 no

7. Numerical Results

For the performance evaluation of the proposed algorithms ten networks from [38] were
considered. Their brief description can be found in Table 1; the integer part of the first
module cost associated with each edge was taken as the edge cost. As noted in Table 1,
eight of the ten considered networks are bi-connected, but france and ta2 have each two
articulation nodes.

Network operators do not disclose data allowing to state which is the most realistic
percentage of resilient edges. In the scenario where resilient edges represent third party
networks that interconnect sub-networks of a single operator, the percentage of resilient
edges may be small. On the other hand, in general the number of resilient edges may be
very high, because protection is commonly used in optical networks. Nevertheless certain
edges may be prone to dual faults—which may result in the failure of the corresponding
direct connection albeit the underlying 1+1 protection—and as such may be considered
unreliable edges. In this case to increase end-to-end resiliency, node-disjoint paths sharing
resilient edges may used. Hence, the number of reliable edges was considered equal to 5%,
10%, 15%, 25%, 50% and 80%, to cover different application scenarios. For each of these
values 20 different seeds were considered generating 20 networks which differ in the resilient
edges distribution. The corresponding directed graphs were then created.

The proposed algorithms will calculate a path pair per request, and the network state
may change between requests. However, to evaluate the algorithms performance the problem
was solved for all node pairs (s, t) (s 6= t) considering a static network state, defined by the
topology (with resilient and unreliable edges) and the edges’ cost.

The CPU time (in milliseconds) per node pair, with 95% confidence intervals, were
calculated. Figs. 6 and 8 illustrate the obtained results. The CPU time required for solving
these problems using CPLEX 12.5 [39] is also given in the figures. All results were obtained
in a Dell Optiplex 7010, Intel Core i7-3770 CPU (four core, 3.40GHz, 8MB), with 16GB of
RAM, referred to as “Desktop” in the figures’ captions.

In Fig. 6 the results considering 15% resilient edges are presented for all the networks. It
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Figure 6: CPU time per node pair (milliseconds) in Desktop, considering 15% resilient edges.

can be observed that the CPU time used by the algorithms grows with the number of nodes
and edges; the same happens with CPLEX, but in a much less pronounced way. The relative
behavior of the algorithms for 5% and 10% resilient edges, is similar to the one observed
for 15% resilient edges, so we omit the respective figures. We only would like to point out
that the CPU time decreases with the number of resilient edges: for 5% resilient edges the
average CPU time is below 4 ms for ta2 and below 2 ms for all other networks. For 10%
resilient edges the average CPU time is below 20 ms for ta2 and below 4 ms for all other
networks. Solving with CPLEX for ta2 network required 10 ms and 11 ms for 5% and 10%
resilient edges, respectively; for the other networks it took between 6 ms and 9 ms for 5%
resilient edges, and between 6 ms and 10 ms for 10% resilient edges.

Regarding the relative performance of AEA and ASA (for the same supporting algorithm
FDP-NF or AdvFDP-NF) the algorithms present similar CPU times in the case of the
biconnected networks, with a consistent, albeit slight, advantage for AEA. However, in the
case of the networks with articulation nodes (france and ta2) AEA is clearly the most efficient
approach.

The CPU time of ASA and AEA algorithms is directly linked to the size of the networks,
the percentage of resilient edges, and the number of solved subproblems (the number of
times AdvFDP-NF or FDP-NF are executed). It was observed that for the biconnected
networks the average number of subproblems is close to one, which means that in most
cases the supporting algorithm (FDP or FDP-NF) solves the SNDP2SRA to optimality—
see the results for pioro40 network in Fig. 7. Only for the non-biconnected networks is the
average number of solved subproblems larger than two, as shown for france network in Fig. 7
(y axis on the right).
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Let us now comment on the significant advantage AEA has over ASA for france and
ta2 networks. When path pairs are calculated between specific end nodes in different bi-
connected components, those paths will have to share a node or two. An articulation node
(or both articulation nodes, depending on the location of the end nodes) will appear in
every candidate solution for those node pairs. If a single resilient arc is adjacent to the
common articulation node, and no solution exists, ASA will take much longer than AEA
to verify this fact. Moreover, when this articulation node is the first common node, AEA
generates problems where all unreliable arcs emergent from the common articulation node
are removed, while ASA removes the emergent edges, one by one. In this case AEA will
consistently generate (and solve) less problems than ASA (see sub-section 6.2).

The fact that AEA needs to solve on average much less problems than ASA for networks
with articulation nodes is clearly seen in Fig. 7 for france network: the number of solved
problems, for 5%-25% resilient edges is much higher in ASA than in AEA. When the number
of resilient edges is 50%, there is a high probability that at least one resilient edge (two
symmetric resilient arcs) will be adjacent to every node. And for 80% resilient edges this
will be even more probable, hence the number of solved subproblems needed to obtain an
optimal solution is close to one, because there is a great probability that the first solution
by either FDP-NF or AdvFDP-NF is an admissible solution, and hence the optimal one.

In france network only three edges belong to the two smaller biconnected components. In
the case of ta2 network (which has more than twice the number of nodes and edges of france
network) the two smaller biconnected components have one and six edges, respectively. This
is the reason why CPU times for ta2 network, for 5%-25% resilient edges, are much larger
than for the other tested networks (note the second y axis in Fig. 6).
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Figure 8: CPU time per node pair (milliseconds) in the Desktop, for pioro40 network.

Regarding the impact of selecting FDP-NF or AdvFDP-NF as supporting algorithm,
it was verified that for a smaller percentage of resilient edges AdvFDP-NF tends to be
more efficient as shown in Fig. 7. However, when the number of resilient edges increases,
FDP-NF presents lower CPU time than AdvFDP-NF, as can be seen in Fig. 8 for 50% and
80% resilient edges (for pioro40 network). Recall that FDP-NF divides all nodes considered
unreliable, and then proceeds to calculate arc-disjoint path pairs between each vertex in
sources to each vertex in sinks (see sub-section 5.1 for a definition of sources and sinks). On
the other hand, AdvFDP-NF does not require to divide any node in the beginning, as it
calculates node-disjoint path pairs between each vertex in sources to each vertex in sinks.
However, in AdvFDP-NF nodes have to be divided while calculating the mentioned node-
disjoint paths. If the percentage of resilient edges is small AdvFDP-NF needs to calculate
a relatively small number of node-disjoint path pairs, hence it makes few node divisions.
In contrast, FDP-NF has to divide a large number of nodes in the beginning. Therefore
AdvFDP-NF requires less CPU time than FDP-NF. However if the percentage of resilient
edges is high, AdvFDP-NF needs to calculate a larger number of node-disjoint path pairs,
therefore AdvFDP-NF has to make more node divisions, and becomes slightly less efficient,
in terms of CPU time, than FDP-NF. Nevertheless using AdvFDP-NF instead of FDP-NF
(for the same algorithm AEA or ASA) results in a lower average number of solved problems
(although confidence intervals overlap)—see Fig. 7.

Concerning the algorithms performance when compared to the efficiency of using the MIP
approach, for the biconnected networks with less than 30 nodes the algorithms present much
smaller CPU times than CPLEX. As the number of resilient edges increases the performance
of the algorithms may reduce, when compared to CPLEX, due to the increasing number of
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node-disjoint (AdvFDP-NF) or edge-disjoint (FDP-NF) path pairs required to create the
modified graph, in the cases where the average number of solved problems does not change
significantly because it was already very low (less than two). Still, up to 25% resilient edges
AEA presents lower CPU times than CPLEX for all networks with the exception of ta2.
An example of this behavior can be seen in Fig. 8, where CPU times for all considered
percentages of resilient edges are shown for the case of pioro40 network. The CPU time
required by the algorithms for solving SNDP2SRA in ta2 network is larger than required by
CPLEX for 10%-80% resilient edges. Yet, even for that network, the CPU time of AEA is
still compatible with a network management system (where CPLEX may not be available),
because the average CPU time per node pair was less than 110 milliseconds in the used
Desktop. What is more, it is important to notice that the presented optimization problems
are to be solved during network operations and not during a planning and designing phase.
What is more, they occur independently in different nodes of a network. It implies that in
practice it would be difficult to employ commercial MIP solvers to handle those problems.
Therefore, easily implementable specialized algorithms for such problems are of high interest.

The average CPU time per node pair was also calculated in a Path Computation Element
(PCE), model UNICOM-V5, G2 LE CPU (PowerPC compatible core) with 330 MHz core
clock, 128 MB of RAM. A compiled dynamic library in pq2 was created, and linked to a test
program calling AEA or ASA. The CPU time obtained in the considered PCE can be seen
in Fig. 9 for 15% resilient edges. From these results we may conclude that, in the PCE, the
algorithm with the best performance is still AEA, namely due to the CPU times observed
in the case of france network. From the experiments in Desktop it was clear that for ta2
network ASA had a very poor performance, when compared to AEA. Therefore in the case
of the PCE only results for AEA and the two supporting algorithms are given in Fig. 9.
It can be concluded that for the biconnected smaller networks (less than 30 nodes) AEA
(using any of the supporting algorithms) can be used in the GMPLS control plane. For
larger networks the use of the proposed algorithms will probably only be possible assuming
that the PCE is in the management plane, because the CPU time per node pair can be
as large as 5 seconds when the considered PCE is used to compute a pair of paths in ta2
network for 15% resilient edges.

Summarizing, the algorithm with the overall best performance is AEA. Regarding the
supporting algorithms, AdvFDP-NF should be used when the percentage of resilient edges
is small (< 50%) and FDP-NF should be used if that percentage is large (≥ 50%). When
the number of resilient edges is high and the networks have more than 30 nodes, we can
either employ CPLEX (if we can afford it) or use AEA with FDP-NF.

8. Conclusion

In a multilayer scenario, each layer may have its own protection mechanisms. Consid-
ering resilient routing in a MPLS network over a partially protected optical layer, efficient
algorithms are required to ensure that protection duplications are avoided.

In the paper we were facing a problem of finding the shortest node-disjoint pair of paths
that can share resilient arcs and cannot contain loops. We modeled the problem by a mixed
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Figure 9: CPU time per node pair (milliseconds) in a PCE using a dynamically linked shared object library,
considering 15% resilient edges.

integer program (MIP), and pointed a number of key features that characterize its feasible
solutions. Moreover, we directly listed a number of special features that differentiate our
problem from other similar problems considered in the literature.

In total we presented four different algorithms solving the considered problem. The
algorithms have identical worst case complexity, but differ from each other with respect
to their running times, especially in networks with articulation nodes. The algorithms
have been implemented and tested on real-world size telecommunication networks. The
algorithms proved to be efficient and return solutions in time comparable or better than
time needed by commercial MIP solvers. Moreover, they proved to be applicable as practical
approaches for finding primary-backup path pairs in industrial solutions.
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