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Abstract

We continue the development of the homological theory of quan-
tum general linear groups previously considered by the first author.
The development is used to transfer information to the representation
theory of quantised Schur algebras. The acyclicity of induction from
some rank-one modules for quantised Borel-Schur subalgebras is de-
duced. This is used to prove the exactness of the complexes recently
constructed by Boltje and Maisch, giving resolutions of the co-Specht
modules for Hecke algebras.

1 Introduction

In [SY12] the last two authors constructed characteristic free projective
resolutions of the Weyl modules for the classical Schur algebra. Then,
using the Schur functor, obtained resolutions by permutation modules
of the co-Specht modules for the symmetric group. This last result
allowed them to prove Conjecture 3.4 of Boltje and Hartman [BH11].
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The key ingredients of [SY12] are the use of the normalised bar res-
olution in the context of Borel-Schur algebras and Woodcock’s Theo-
rem [Woo94b], which reduces the construction of projective resolutions
for Weyl modules to the construction of projective resolutions for rank-
one modules for the Borel-Schur algebra. The original motivation of
the present paper was to extend the results of [SY12] to the context of
quantised Schur algebras and Hecke algebras. This is easily achieved
once one has a quantised version of the generalization of Woodcock’s
theorem given in [SY12].

Fix positive integers n and r, a commutative ring R and an invert-
ible element q in R. Consider the quantised Schur algebra SR,q (n, r)
and the quantised positive Borel-Schur algebra S+

R,q (n, r). For each
partition λ = (λ1, . . . , λn) of r there is a rank-one module Rλ for
S+
R,q (n, r). The induced module

WR,q
λ := SR,q (n, r)⊗S+

R,q
(n,r) Rλ

is the Weyl module associated with λ. Following [SY12], we work in the
category of S+

R,q (n, r)-modules and use the normalised bar resolution
to construct a projective resolution of Rλ. Next we apply the induction
functor SR,q (n, r)⊗S+

R,q
(n,r)− to this resolution and obtain a complex

BR,q∗,λ of finite length

· · · → BR,q1,λ → BR,q0,λ →WR,q
λ → 0,

where each BR,qk,λ is a projective SR,q(n, r)-module.
To show that this complex is exact we use Theorem 8.4, which is

the quantised version of Woodcock’s Theorem. So BR,q∗,λ is a projective

resolution of the quantised Weyl module WR,q
λ and it is simple to see

that this resolution is universal, that is

BR,q∗,λ
∼= BZ,t∗,λ ⊗Z R,

where Z = Z
[
t, t−1

]
is the universal quantization ring.

Write HR,q for the Hecke algebra over R associated with the sym-
metric group Σr. In [BM12], Boltje and Maisch constructed, for each

composition λ = (λ1, . . . , λn) of r, a complex C̃λ∗ of left HR,q-modules
and proved that it is exact in degrees 0 and −1. Specializing to q = 1,
C̃λ∗ coincides with the complex constructed in [BH11]. Suppose that λ

is a partition of r. Then the last module in C̃λ∗ is the dual of the Specht
module Sλ over HR,q. It was proved in [SY12] that in this situation
upon specializing to q = 1 the resulting complex is exact. It is natural
to conjecture that the same should be true for an arbitrary q.

Returning to our setting, we choose n ≥ r and fix λ a partition of
r into at most n parts. We apply the Schur functor

F : SR,q(n, r)-mod→ HR,q-mod

to our resolution BR,q∗,λ and obtain an exact complex F
Ä
BR,q∗,λ

ä
which

we prove to be isomorphic to C̃λ∗ . This proves the exactness of C̃λ∗ .
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We approach the quantisation of Woodcock’s Theorem, as described
above, via the representation theory of the quantum general linear
group G(n) of degree n, introduced in [DD91]. In fact we take this
opportunity to develop the homological theory previously considered
in [Don96] and [Don98]. The focus here is on a comparison between
the homological algebra in the category of polynomial modules and in
the full category of modules for the quantum group. We work over an
arbitrary field K and non-zero parameter q ∈ K.

Let B(n) be the negative Borel (quantum) subgroup of G. We

prove in particular that the derived functors of induction Riind
G(n)
B(n)

take polynomial modules to polynomial modules, Corollary 7.7. Fur-
thermore we show that if V is a homogeneous polynomial B(n)-module

of degree r then Riind
G(n)
B(n)V = 0 for all i > r, Lemma 6.2. In general

the tensor product is not commutative in the category of modules for
a quantum group. However, we show that if L and M are B-modules
and L is one dimensional then the B-module L ⊗M and M ⊗ L are
isomorphic, Proposition 7.1. Using this property and a Koszul reso-
lution we show that the polynomial part of the coordinate algebra of
B(n) is acyclic for the induction functor. This leads to the fact that
the derived functors of induction applied to a polynomial B(n)-module
are the same whether computed in the polynomial category or the full
module category, Theorem 7.5. Kempf’s Vanishing Theorem for rep-
resentations of quantum groups, when expressed in the polynomial
category, is essentially the quantised version of Woodcock’s Theorem,
over a field. Some further work is needed to expressed this in terms
of the acyclicity theorem for induction over Schur algebras, over an
arbitrary coefficient ring, mentioned above, Theorem 8.4.

Though not needed for the application to resolutions we also take
the opportunity to give the generalisation to the quantum Borel sub-
group B(n) of another theorem of Woodcock, [Woo92], Theorem 7 and
[Woo94a] (see also [Woo97] for related material obtained by working
with global bases). This theorem asserts that the extension groups be-
tween polynomial B(n)-modules of the same degree whether calculated
in the polynomial category or the full B(n)-module category are the
same, Theorem 5.2. We approach the quantised version by considering
the derived functors of the functor pol , which takes a B(n)-module
to its largest polynomial submodule. Though in detail it looks quite
different it is in spirit rather close to the approach of [Woo92], and we
gratefully acknowledge the influence of this unpublished work.

The organization of the present paper is as follows. We first study
the homological results for quantum G(n) and its negative Borel sub-
group. Then we use this to obtain the quantised version of Woodcock’s
Theorem, Theorem 8.4. In the last part of the paper we construct uni-
versal projective resolutions for quantised Weyl modules. Using these
resolutions, we prove the exactness of Boltje and Maisch complexes for
dominant weights.
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2 Restriction and induction of comodules

We fix a field K. For a vector space V over K we write V ∗ for the
linear dual HomK(V,K) and if W is also a vector space over K we
write simply V ⊗W for the tensor product V ⊗KW . We write idX for
the identity map on a set X.

For a coalgebra A = (A, δA, εA) over K we write Comod(A) for the
category of right A-comodules and write comod(A) for the category
of finite dimensional right A-comodules. We recall for future use the
definition of the coefficient space of an A-comdodule. Let V = (V, τ)
be a right A-comodule and let {vi : i ∈ I}, be a K-basis of V . The
coefficient space cf(V ) is the K-span of the elements fij ∈ A defined
by the equations

τ(vi) =
∑
j∈I

vj ⊗ fji

for i ∈ I. (This space is independent of the choice of basis. For further
properties see [Gre76].)

Let B = (B, δB , εB) also be a coalgebra and suppose φ : A → B is
a coalgebra map. Recall that for V = (V, τ) ∈ Comod(A) we have

φ0(V ) = (V, (idV ⊗ φ) ◦ τ) ∈ Comod(B).

If f : V → V ′ is a morphism of right comodules then the same map
f : V → V ′ is also a morphism of B-comodules. In this way we have
an exact functor φ0 : Comod(A) → Comod(B), with φ0(f) = f , for
f a morphism of A-comodules. We call φ0 the φ-restriction (or just
restriction) functor.

More interestingly perhaps, we have the φ-induction functor
φ0 : Comod(B)→ Comod(A). This is described in [Don80], Section 3,
and we briefly recall the construction and some properties. If X is a
K-vector space (possibly with extra structure) we write |X|⊗A for the
vector space X ⊗ A regarded as an A-comodule with structure map
idX ⊗ δA. Let (W,µ) ∈ Comod(B). The set of all s ∈W ⊗A such that

(µ⊗ idA)(s) = (idW ⊗ (φ⊗ idA) ◦ δA)(s) ∈W ⊗B ⊗A

is an A-subcomodule of |W | ⊗A, which we denote φ0(W ). If f : W →
W ′ is a morphism of B-comodules then the map f ⊗ idA restricts
to an A-comodule map φ0(f) : φ0(W ) → φ0(W ′). In this way we
obtain a left exact functor φ0 : Comod(B) → Comod(A). Let V =
(V, λ) ∈ Comod(A) and W = (W,µ) ∈ Comod(B). We have a
natural isomorphism HomB(φ0(V ),W )) → HomA(V, φ0(W )), taking
α ∈ HomB(φ0(V ),W )) to α̃ = (α⊗ idA) ◦ λ.

Suppose now that A is finite dimensional. We consider the dual
algebra S = A∗ = HomK(A,K). Given a right A-comodule V with
structure map τ : V → V ⊗A we may also regard V as a left S-module
with action αv = (idV ⊗ α)τ(v). If θ : V → V ′ is a morphism of right
A-comodules then, regarding V and V ′ as left S-modules, θ : V → V ′

is also a morphism in the category of left S-modules. In this way



3 THE QUANTUM POLYNOMIAL ALGEBRA IN N2 VARIABLES 5

we have an equivalence between the categories of finite dimensional
right A-comodules and of finite dimensional left S-modules. For finite
dimensional right A-comodules V, V ′ this equivalence of categories in-
duces a K-linear isomorphism ExtiA(V, V ′) → ExtiS(V, V ′) in each de-
gree i.

If S is a K-algebra and V is a left (resp. right) A-module then the
linear dual V ∗ is naturally a right (resp. left) S-module. Now suppose
φ : A → B is a morphism of finite dimensional K-coalgebras and let
T = B∗. The linear dual φ∗ : T → S is a K-algebra map. Now A is
naturally an (S, S)-bimodule with left action αa = (idA⊗α)δA(a) and
right action aβ = (β ⊗ idA)δ(a), for a ∈ A, α, β ∈ S. We view an
S-module also as a T -module via φ∗.

We have the natural linear isomorphism η : V ⊗ A → (V ∗ ⊗ A∗)∗.
The tensor product V ∗ ⊗T A∗ is a quotient of (V ∗ ⊗A∗) and we thus
identify (V ∗ ⊗T A∗)∗ with a subspace of (V ∗ ⊗A∗)∗. From the defini-
tions one checks that an element y of V ⊗ A lies in φ0(V ) if and only
if η(y) lies in (V ∗ ⊗T A∗)∗. The map η restricts to an isomorphism of
left A-modules

φ0V → (V ∗ ⊗T A∗)∗.

It follows that the derived functors of φ0 are given as follows.

Proposition 2.1. Let φ : A→ B be a morphism of finite dimensional
coalgebras over K. Then for V ∈ comod(B) we have

Riφ0V = (TorB
∗

i (V ∗, A∗))∗

for i ≥ 0.

3 The quantum polynomial algebra in n2

variables

We shall work with the quantum general linear groups defined in
[DD91]. We briefly recall the construction and some properties, start-
ing with the construction of the quantum polynomial algebra. We fix
n ≥ 1. Let R be a commutative ring and let q ∈ R. We write AR,q(n)
for the R-algebra given by generators cij , 1 ≤ i, j ≤ n, and relations:

circis = ciscir, for 1 ≤ i, r, s ≤ n;

cjrcis = qciscjr, for 1 ≤ i < j ≤ n, 1 ≤ r ≤ s < n;

cjscir = circjs − (q − 1)ciscjr, for 1 ≤ i < j ≤ n, 1 ≤ r < s ≤ n.

We call the elements cij the (i, j) coordinate elements of AR,q(n).
Since the relations are homogeneous, AR,q(n) has an R-algebra grad-
ing AR,q(n) =

⊕
r≥0AR,q(n, r) in which each coordinate element has

degree 1. Then by [DD91], Theorem 1.1.8 the elements

cm11
11 cm12

12 . . . cm1n
1n cm21

21 . . . cmnnnn ,
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with m11, . . . ,mnn ≥ 0, form an R-basis of AR,q(n). We make this
slightly more formal.

Let r ≥ 0. As in [Gre07], we write I(n, r) for the set of maps
i : {1, . . . , r} → {1, . . . , n}. We identify i ∈ I(n, r) with the sequence
(i1, . . . , ir) in the obvious way. For i, j ∈ I(n, r) we write cij for the
product ci1j1 . . . cirjr . We write i ≤ j if ia ≤ ja, for all 1 ≤ a ≤ r,
and write i < j if i ≤ j and i 6= j. We write Y (n, r) for the set of all
pairs (i, j) ∈ I(n, r) such that i1 ≤ · · · ≤ ir and whenever, for some
1 ≤ a < r, we have ia = ia+1 then ja ≤ ja+1. We write Y (n) for the
disjoint union of the sets Y (n, r), r ≥ 0.

Lemma 3.1. The elements cij, with i, j ∈ Y (n) form an R-basis of
AR,q(n) and, for r ≥ 0, the elements cij, with i, j ∈ Y (n, r), form an
R-basis of AR,q(n, r).

We write I for the ideal of AR,q(n) generated by all cij , with 1 ≤
i < j ≤ n. We leave it to the reader to check (by an easy induction
argument using the defining relations) the following result.

Lemma 3.2. The ideal I has R-basis cij, with (i, j) ∈ Y (n, r) for
some r and ia < ja, for some 1 ≤ a ≤ r.

We set Ā(n) = A(n)/I. For f ∈ A(n) we set f̄ = f + I ∈ Ā(n).
For r ≥ 0, we write Ȳ (n, r) for the set of all (i, j) ∈ Y (n, r) such
that i ≥ j. We set Ȳ (n) =

⋃
r≥0 Ȳ (n, r). As an R-module we have

AR,q(n) = I ⊕ D, where D = ⊕(i,j)∈Ȳ (n)Rcij . Hence we have the
following.

Lemma 3.3. ĀR,q(n) has R-basis c̄ij, (i, j) ∈ Ȳ (n), and, for r ≥ 0,
ĀR,q(n, r) has R-basis c̄ij, (i, j) ∈ Ȳ (n, r).

4 Quantum general linear groups

Let K be a field. The category of quantum groups over K is the dual
of the category of Hopf algebras over K. More informally, we shall
use the expression “G is a quantum group over K” to indicate that we
have in mind a Hopf algebra over K, which we will denote K[G] and
call the coordinate algebra of G. By the expression “θ : G → H is a
morphism of quantum groups (over K)” we indicate that G and H are
quantum groups and that we have in mind a Hopf algebra morphism
from K[H] to K[G], which we call the comorphism of θ and denote θ].
We shall say that a quantum group H is a (quantum) subgroup of a
quantum group G over K to indicate that K[H] = K[G]/IH for some
Hopf ideal IH of K[G], which we call the defining ideal of H in G. If H
is a quantum subgroup of the quantum group G then by the inclusion
map i : H → G we mean the quantum group homomorphism such that
i] : K[G]→ K[H] is the natural map.

Let G be a quantum group over K. By the category of left G-
modules we mean the category of right K[G]-comodules. We write
Mod(G) for the category of left G-modules and mod(G) for the cat-
egory of finite dimensional left G-modules. For V,W ∈ Mod(G) and



4 QUANTUM GENERAL LINEAR GROUPS 7

i ≥ 0 we write ExtiG(V,W ) for ExtiK[G](V,W ). Let H be a quan-

tum subgroup of G. Then we have the induction functor indGH =
φ0 : Mod(H) → Mod(G), where φ = i] is the comorphism of the in-
clusion map i : H → G. The functor indGH is left exact so we have the
derived functors RiindGH : Mod(H)→ Mod(G), for i ≥ 0.

We work with the quantum coordinate algebra AR,q(n) of the pre-
vious section, now taking R = K and q 6= 0. We write Σr for the
symmetric group on {1, 2, . . . , r}, for r a positive integer. To simplify
notation we will omit K and q in subscript in the objects defined in
the previous section, where confusion seems unlikely.

By [DD91], Theorem 1.4.2, A(n) has a unique structure of a bialge-
bra with comultiplication δ : A(n)→ A(n)⊗A(n) and counit ε : A(n)→
K, satisfying

δ(cij) =
n∑
r=1

cir ⊗ crj , ε(cij) = δij

for 1 ≤ i, j ≤ n and where δij is the Kronecker delta.
The quantum determinant

d =
∑
π∈Σn

sgn(π)c1,π(1)c1,π(2) . . . cn,π(n)

is a group-like element of A(n). Here sgn(π) denotes the sign of a
permutation π. Furthermore, we have cijd = qi−jdcij for 1 ≤ i, j ≤ n
(see [DD91, Section 4]). It follows that we can form the Ore locali-
sation A(n)d. The bialgebra structure on A(n) extends to A(n)d and
indeed the localisation A(n)d is a Hopf algebra. We write G(n) for the
quantum group with coordinate algebra K[G(n)] = A(n)d.

We write B(n) for the quantum subgroup whose defining ideal IB(n)

is generated by all cij , with 1 ≤ i < j ≤ n. We write T (n) for the
quantum subgroup whose defining ideal is generated by all cij with
1 ≤ i, j ≤ n and i 6= j. The inclusion map A(n) → K[G(n)] gives
rise to an injective map Ā(n) → K[B(n)] by which we identify Ā(n)
with a subbialgebra of K[B(n)]. A G(n)-module V is called polynomial
(resp. polynomial of degree r) if cf(V ) ≤ A(n) (resp. cf(V ) ≤ A(n, r))
and a B(n)-module M is called polynomial (resp. polynomial of degree
r) if cf(M) ≤ Ā(n) (resp. cf(V ) ≤ Ā(n, r)). We shall often identify a
polynomial G(n)-module (resp.B(n)-module) with the corresponding
A(n)-comodule (resp. Ā(n)-comodule).

We shall also need the parabolic (quantum) subgroups containing
B(n). We fix a string a = (a1, . . . , am) of positive integers whose sum
is n. We let I(a) be the ideal of k[G(n)] generated by all cij such that
1 ≤ i < j ≤ a1 or a1 + · · · + ar < i < j ≤ a1 + · · · + ar+1 for some
1 ≤ r < m. Then I(a) is a Hopf ideal and we denote by P (a) the
quantum subgroup of G(n) with defining ideal I(a). Thus we have
P (1, 1, . . . , 1) = G(n) and P (n) = B(n). For 1 ≤ i < m we shall write
Pi for the “minimal parabolic” P (a), where a = (1, 1, . . . , 2, 1, . . . , 1)
(with 2 in the ith position).

We now introduce certain combinatorial objects associated with the
representation theory of G(n) and its subgroups, following [Don96].
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We set X(n) = Zn. We shall write δn, or simply δ, for (n − 1, n −
2, . . . , 1, 0) ∈ X(n). For 1 ≤ i ≤ n we set εi = (0, . . . , 0, 1, 0, . . . , 0)
(with 1 in the ith position). We have the dominance order � on X(n):
for λ = (λ1, . . . , λn), µ = (µ1, . . . , µn) we write λ� µ if λ1 + · · ·+ λi ≤
µ1 + · · ·+ µi, for 1 ≤ i < n, and λ1 + · · ·+ λn = µ1 + · · ·+ µn.

We write X+(n) for the set of all λ = (λ1, . . . , λn) ∈ X(n) with
λ1 ≥ · · · ≥ λn. Elements of X(n) will sometimes be called weights
and elements of X+(n) called dominant weights. We write Λ(n) for
the set of polynomial weights, i.e., the set of λ = (λ1, . . . , λn) ∈ X(n)
with all λi ≥ 0, and write Λ+(n) for the set of dominant weights,
i.e., X+(n)

⋂
Λ(n). We define the degree of a polynomial weight λ =

(λ1, . . . , λn) by deg(λ) = λ1 + · · ·+ λn. For r ≥ 0 we define Λ(n, r) ⊂
Λ(n) to be the set of all polynomial weights of degree r (or compositions
of r). We define the length, len(λ), of a polynomial weight λ to be 0 if
λ = 0 and to be the number of non-zero entries of λ if λ 6= 0.

For λ = (λ1, . . . , λn) ∈ X(n) we have a one dimensional B(n)-
module Kλ: the comodule structure map τ : Kλ → Kλ⊗ k[B(n)] takes
v ∈ Kλ to v⊗(cλ1

11 . . . c
λn
nn+IB(n)). We regard Kλ also as a T (n)-module

by restriction.
The modules Kλ, λ ∈ X(n), form a complete set of pairwise non-

isomorphic irreducible T (n)-modules. For a T (n)-module V we have
the weight space decomposition V = ⊕λ∈X(n)V

λ, where V λ is a direct
sum of copies of Kλ, λ ∈ X(n).

For λ ∈ X(n) the induced module ind
G(n)
B(n)Kλ is non-zero if and

only if λ ∈ X+(n). We set ∇(λ) = ind
G(n)
B(n)Kλ, for λ ∈ X+(n). The

socle L(λ) of ∇(λ) is simple. The modules L(λ), λ ∈ X+(n), form a
complete set of pairwise non-isomorphic irreducible G(n)-modules and
the modules L(λ), λ ∈ Λ+(n), form a complete set of pairwise non-
isomorphic irreducible polynomial G(n)-modules. We will write D for
the determinant module, i,e., the (one dimensional) left G(n)-module
L(1, . . . , 1).

Let 1 ≤ i < n. Let λ = (λ1, . . . , λn) ∈ X(n) and suppose that

m = λi − λi+1 ≥ 0. We define ∇i(λ) = ind
Pi(n)
B(n) Kλ. Then ∇i(λ) has

weights λ − r(εi − εi+1), 0 ≤ r ≤ m, each occurring with multiplicity
one (see [Don96], p251).

We shall need that a G(n)-module whose composition factors have
the form L(λ) with λ ∈ Λ+(n) (resp. λ ∈ Λ+(n, r)) is polynomial (resp.
polynomial of degree r). Given the results of [Don96] this follows from
the arguments in the classical case in [Don86]. We make this explicit.

Let π ⊆ X+(n). We say that a G(n)-module V belongs to π if each
composition factor of V belongs to {L(λ) | λ ∈ π}. For an arbitrary
G(n)-module we write Oπ(V ) for the largest G(n)-submodule of V
belonging to π. Regarding K[G(n)] as the left regular G(n)-module
we define A(π) = Oπ(K[G]). Then, by the arguments for the classical
case, [Don86], Section 1.2, one has the following.

Lemma 4.1. A(π) is a subcoalgebra of K[G(n)] and a G(n)-module V
belongs to π if and only if cf(V ) ≤ A(π).

In the case π = Λ+(n, r), r ≥ 0, we have A(π) = A(n, r), see
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[Don96], p263, and taking π = Λ+(n), since Λ+(n) =
⋃
r≥0 Λ+(n, r),

we have A(π) = A(n). Hence the above lemma gives:

Lemma 4.2. A G(n)-module V is polynomial (resp. polynomial of de-
gree r) if and only if each composition factor of V belongs to {L(λ) |λ ∈
Λ+(n)} (resp. {L(λ) |λ ∈ Λ+(n, r)}).

Remark 4.3. We note that if M is a polynomial B-module then
indGBM is a polynomial G-module. It is enough to check this for M
finite dimensional since induction commutes with direct limits. By the
left exactness of induction and the Lemma 4.2 it is enough to check
this for M one dimensional. So we may assume that M = Kλ for
some λ ∈ Λ(n). But now we have

indGBKλ =

®
∇(λ), if λ ∈ Λ+(n);

0, if λ 6∈ Λ+(n)

and, in particular, indGBM is polynomial.

5 Extensions of B-modules and polynomial
B-modules

Though it is not needed for the application to resolutions of modules for
the Borel-Schur algebras, we take this opportunity to put on record the
quantised version of [Woo97, Theorem 7] giving that, for homogeneous
polynomial B(n)-modules, the extension groups Exti(V,X) are the
same whether calculated in the module category of the Borel-Schur
algebra or the full B(n)-module category. Though the proof given here
looks rather different it is similar at key points to that of Woodcock in
the classical case, [Woo92] and we gratefully acknowledge the influence
of [Woo92]. A later proof was given in [Woo94a] using the deep theory
of cohomology of line bundles on Schubert varieties due to van der
Kallen, [vdK89] and related results are to be found in the later work
[Woo97] using the theory of global bases.

In this section we adopt the following notation. We put B = B(n),
A = Ā(n) and Am = K[c̄m1, c̄m2, . . . , c̄mm], xm = c̄mm, ym = c̄−1

mm ,
for 1 ≤ m ≤ n. For α = (α1, . . . , αn) ∈ Λ(n) we put xα = xα1

1 . . . xαnn
and yα = yα1

1 . . . yαnn . We write simply d for the restriction of the
determinant to the quantum subgroup B(n), i.e., d = x1 . . . xn.

We have A = A1 ⊗ · · · ⊗An and it is easy to check that

Am/xmAm ∼=
®
Am−1, for 1 < m ≤ n;

K, for m = 1

as B(n)-modules.
We shall need the following result.

Lemma 5.1. Let λ ∈ Λ(n) and suppose 1 ≤ m ≤ n is such that
λm 6= 0. Let Z be a polynomial B-module such that for each weight µ
of Z, we have µm = µm+1 = · · · = µn = 0. Then we have

ExtiA(Kλ, Z ⊗Am+1 ⊗ · · · ⊗An) = 0
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for all i ≥ 0. In particular, we have

ExtiA(Kλ, A/xmA) = 0

for all i ≥ 0.

Proof. Suppose not and let i be minimal for which the lemma fails.
Since ExtiA(Kλ,−) commutes with direct limits, the lemma fails for
some finite dimensional Z and by the long exact sequence we may
assume that Z = Kµ, for some µ ∈ Λ(n), with µm = µm+1 = · · · =
µn = 0. Now Kµ⊗Am+1⊗· · ·⊗An has socle Kµ⊗K[xm+1, . . . , xn] and
so for each weight ν of the socle we have νm = 0. Since λm 6= 0 there
can be no non-zero image of Kλ in the socle of Kµ ⊗Am+1 ⊗ · · · ⊗An
and therefore HomA(Kλ,Kµ ⊗ Am+1 ⊗ · · · ⊗ An) = 0. Thus we must
have i > 0.

Now we have a short exact sequence of A-comodules (or polynomial
B-modules)

0→ Kµ → A1 ⊗ · · · ⊗Am−1 → Q→ 0

and for each weight ν of A1⊗· · ·⊗Am−1, and hence Q, we have νm = 0.
Tensoring with Am+1 ⊗ · · · ⊗An we obtain the short exact sequence

0→ Kµ ⊗Am+1 ⊗ · · · ⊗An →A1 ⊗ · · · ⊗Am−1 ⊗Am+1 ⊗ · · · ⊗An
→Q⊗Am+1 ⊗ · · · ⊗An → 0.

But now A1⊗· · ·⊗Am−1⊗Am+1⊗· · ·⊗An is an injective A-comodule
(since it is a direct summand of A, viewed as the right regular comod-
ule) so we get

ExtiA(Kλ,Kµ ⊗Am+1 ⊗ · · · ⊗An) = Exti−1
A (Kλ, Q⊗Am+1 ⊗ · · · ⊗An)

from the long exact sequence. This is 0, by the minimality of i, and so
we are done.

We now consider the functor pol : Mod(B) → Comod(A), taking
X ∈ Mod(B) to the largest polynomial submodule of X. For a mor-
phism θ : X → X ′, of B-modules, pol (θ) : pol (X) → pol (X ′) is the
restriction of θ.

For V ∈ Comod(A), X ∈ Mod(B), since the image of any B-
module homomorphism from V to X is contained in pol (X), we have
HomB(V,X) = HomA(V,pol (X)). Thus we get a factorisation of left
exact functors

HomB(V,−) = HomA(V,−) ◦ pol .

Moreover, pol (K[B]) = A and it follows that pol takes injective B-
modules to injective A-comodules. Thus, for V ∈ Comod(A), X ∈
Mod(B), we have a Grothendieck spectral sequence, with second page
ExtiA(V,RjpolX), converging to Ext∗B(V,X). In particular, if k > 0
and Rjpol (X) = 0 for all 0 < j < k, then we have the 5-term exact
sequence

0→ ExtkA(V,polX)→ExtkB(V,X)→ HomA(V,RkpolX)

→Extk+1
A (V,polX)→ Extk+1

B (V,X).
(1)
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Theorem 5.2. (i) Let X be a polynomial B-module. Then we have
Ripol (X) = 0, for all i > 0.

(ii) If V is also a polynomial B-module then the above spectral
sequence degenerates and we have ExtiA(V,X) = ExtiB(V,X), for all
i ≥ 0.

Proof. For k > 0 we prove by induction the statement P (k): for all
polynomial B-modules V ′, X ′ we have RipolX ′ = 0 for all 0 < i < k
and ExtiA(V ′, X ′) = ExtiB(V ′, X ′), for all 0 ≤ i < k.

Note that P (1) is true since HomA(V ′, X ′) = HomB(V ′, X ′) for
polynomial B-modules V ′, X ′. We now assume P (k) and deduce P (k+
1).

We claim that RkpolA = 0. Assume, for a contradiction, that this
is not the case. Then the B-socle of RkpolA is not zero so we have
HomB(Kλ, RkpolA) 6= 0 for some λ ∈ Λ(n). Dimension shifting, using
the short exact sequence

0→ A→ K[B]→ K[B]/A→ 0

gives Extk−1
B (Kλ,K[B]/A) 6= 0. Now K[B] has an ascending exhaustive

filtration A ⊆ d−1A ⊆ d−2A ⊆ · · · and Extk−1
B (Kλ,−) commutes with

direct limits so we must have Extk−1
B (Kλ, d−sA/A) 6= 0 for some s > 0.

Hence we have Extk−1
B (Kλ, yαA/A) 6= 0, for some α ∈ Λ(n). We choose

α, β ∈ Λ(n) with βi ≤ αi, for 1 ≤ i ≤ n, and with deg(α) − deg(β)
minimal subject to the condition Extk−1

B (Kλ, yαA/yβA) 6= 0. Note
that in fact we must have deg(α) = deg(β) + 1 since if γ ∈ Λ(n) with
βi ≤ γi ≤ αi, for all i, then we get a short exact sequence

0→ yγA/yβA→ yαA/yβA→ yαA/yγA→ 0

and so we must have

Extk−1
B (Kλ, yγA/yβA) 6= 0 or Extk−1

B (Kλ, yαA/yγA) 6= 0.

Thus we have α = β + εm, for some 1 ≤ m ≤ n. Hence we have
Extk−1

B (Kλ, yβ+εmA/yβA) 6= 0 and so

Extk−1
B (Kλ ⊗Kβ+εm ,Kβ+εm ⊗ (yβ+εmA/yβA)) 6= 0.

Thus we have Extk−1
B (Kν , A/xmA) 6= 0, where ν = λ+ β + εm. By

the inductive hypothesis, we have

Extk−1
A (Kν , A/xmA) = Extk−1

B (Kν , A/xmA) 6= 0

and this contradicts Lemma 5.1. Hence we have RkpolA = 0. Since
Rkpol commutes with direct limits we also have RkpolZ = 0, where
Z is a direct sum of copies of the right regular comodule A. Let X ′ be
any polynomial B-module. Then X ′ embeds in a direct sum of copies
of A, via the comodule structure map. Thus we have a short exact
sequence 0→ X ′ → Z → Y → 0, where Z is a direct sum of copies of
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A and Y is a polynomial B-module. Now the derived functors of pol
give the exact sequence

Rk−1polY → RkpolX ′ → RkpolZ = 0.

But also, we have Rk−1polY = 0, from the inductive hypothesis, so
that RkpolX ′ = 0.

Now for V ′, X ′ ∈ Comod(A) the 5-term exact sequence (1) gives an
isomorphism ExtkA(V ′, X ′)→ ExtkB(V ′, X ′). This completes the proof
of P (k + 1). Hence P (k) is true for all k. Thus we have RipolX = 0
for all i > 0. This proves (i).

(ii) follows from (i).

Corollary 5.3. A B-module is polynomial if and only if all its weights
are polynomial.

Proof. If V is a polynomial B-module then V embeds, via the comod-
ule structure map, into a direct sum of copies of A(n) and it follows
that all weights of V are polynomial. To prove that a B-module V
with all weights polynomial is polynomial it suffices, by local finite-
ness, to consider the case in which V is finite dimensional. If V is
one dimensional then it is isomorphic to Kλ, for some λ ∈ Λ(n), and
hence polynomial. Suppose now that V has dimension bigger than
one and let L be a one dimensional submodule. We may assume in-
ductively that V/L is polynomial. We have a natural isomorphism
Ext1

A(n)(V/L,L)→ Ext1
B(V/L,L), by the theorem and it follows that

every extension of V/L by L arises from an A(n)-comodule, in partic-
ular V is polynomial.

Let r ≥ 0. We define the negative (quantised) Borel-Schur algebra
S−(n, r) to be the dual algebra of Ā(n, r). We now obtain the quantised
version of a theorem of Woodcock, [Woo92], Theorem 7.

Corollary 5.4. Let V and X be polynomial B-modules which are ho-
mogeneous of degree r. Then we have ExtiS−(n,r)(V,X) = ExtiB(V,X),
for all i ≥ 0.

Proof. We have

ExtiS−(n,r)(V,X) = ExtiĀ(n,r)(V,X) = ExtiĀ(n)(V,X) = ExtiB(V,X).

6 A vanishing theorem for polynomial
modules

To save on notation we shall abbreviate G(n), B(n), T (n) to G,B, T
where confusion seems unlikely.

We shall need a bound for the vanishing of RiindGBKλ, for λ ∈ Λ(n).
We do this by an inductive argument using the function b that we
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now introduce. For each λ ∈ Λ(n) we shall define a non-negative
integer b(λ). We define b on Λ(n, r), for r ≥ 0 by descending induction
on the dominance order. If λ is dominant or if λj − λj+1 = −1 for
some 1 ≤ j < n we set b(λ) = 0. In particular this defines b(λ) for
λ = (r, 0, . . . , 0). If λ ∈ Λ(n, r) is not of the form already considered
then we have λj − λj+1 = −mj , with mj ≥ 2, for some 1 ≤ j < n. We
define

bj(λ) = max{b(λ+ t(εj − εj+1)) | 0 < t < mj}+ 1.

and
b(λ) = min{bj(λ) | 1 ≤ j < n, λj − λj+1 ≤ −2}. (2)

By an easy induction one sees that if λ = (λ1, . . . , λm, 0, . . . , 0) with
λ1, . . . , λm 6= 0 then b(λ) = b(µ), where µ = (λ1 − 1, . . . , λm −
1, 0, . . . , 0).

Lemma 6.1. For λ ∈ Λ(n) we have b(λ) ≤ deg(λ)− len(λ).

Proof. Since Λ(1) consists of dominant weights the result holds for
n = 1. Suppose that it is false and let n be minimal for which it fails.
Let λ ∈ Λ(n) be a counterexample of smallest possible degree . If
λ = (λ1, . . . , λm, 0, . . . , 0) with λ1, . . . , λm 6= 0 then

b(λ) = b(λ1 − 1, . . . , λm − 1, 0, . . . , 0)

≤ deg(λ1 − 1, . . . , λm − 1, 0, . . . , 0)

− len(λ1 − 1, . . . , λm − 1, 0, . . . , 0)

= deg(λ)−m− len(λ1 − 1, . . . , λm − 1, 0, . . . , 0)

≤ deg(λ)−m = deg(λ)− len(λ).

Hence there exists some 1 ≤ j < n such that λj = 0, λj+1 > 0. If
λj+1 = 1 then b(λ) = 0 and λ is not a counterexample. Hence we have
λj+1 = m ≥ 2. But now we have

b(λ) ≤ bj(λ)

= max{b(λ+ t(εi − εi+1) | 0 < t < m}+ 1.

We consider µ = λ + t(εj − εj+1) with 0 < t < m. Note that µ has
entry t 6= 0 in the jth position and entry λj+1− t ≥ λj+1− (m−1) = 1
in the (j+1)st position. Moreover, λ and µ agree in all positions other
than j and j + 1. Hence we have len(µ) = len(λ) + 1. Moreover, µ is
greater than λ, in the dominance order. Hence we have

b(µ) ≤ deg(µ)− len(µ) = deg(λ)− len(λ)− 1

i.e., b(µ) + 1 ≤ deg(λ)− len(λ).
Since this is true for all µ of the form λ+t(εi−εi+1) with 0 < t < m,

from (2), we have b(λ) ≤ deg(λ)− len(λ).

Lemma 6.2. (i) For λ ∈ Λ(n) we have RiindGBKλ = 0 for all i > b(λ),
and hence for i ≥ deg(λ) > 0.

(ii) If V is a polynomial B-module of degree r then RiindGBV = 0
for i > r.
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Proof. (i) We argue by induction on b(λ). If b(λ) = 0 then either λ is
dominant or λj − λj+1 = −1 for some 1 ≤ j < n, and RiindGBKλ = 0
for i > 0, [Don96], Theorem 3.4 and Lemma 3.1, (ii), and the result
holds. So suppose b(λ) > 0 and the result holds for all µ ∈ Λ(n) with
b(µ) < b(λ). We have b(λ) = bj(λ) + 1 for some 1 ≤ j < n with
λj − λj+1 = −m, m ≥ 2. Consider the module ∇j(λ + (m − 1)(εj −
εj+1) + δ). Writing µ = λ+ (m− 1)(εj − εj+1) + δ we have

µj − µj+1 = −m+ 2(m− 1) + 1 = m− 1.

Hence∇j(λ+(m−1)(εj−εj+1)+δ) has weights λ+(m−1)(εj−εj+1)+δ,
λ+ (m− 2)(εj − εj+1) + δ, . . ., λ+ δ, each occurring with multiplicity
1. Hence the module ∇j(λ+ (m− 1)(εj − εj+1 + δ)⊗K−δ has bottom
weight λ and we have a short exact sequence of B-modules

0→ Kλ → ∇j(λ+m(εj − εj+1) + δ)⊗K−δ → Q→ 0. (3)

where Q has weights λ+ i(εj − εj+1), with 1 ≤ i ≤ m− 1.

Now we have Riind
Pj
B K−δ = 0 for all i, by [Don96], Lemma 3.1 (ii)

and so by the tensor identity and [Don96], Proposition 1.3 (iii), we
have

Riind
Pj
B (∇j(λ+ (m− 1)(εj − εj+1) + δ)⊗K−δ) = 0

for all i. By the spectral sequence arising from the transitivity of
induction, [Don96], Proposition 1.2, we get RiindGB(∇j(λ + m(εj −
εj+1) + δ) ⊗ K−δ) = 0 for all i. Hence from (3) we get RiindGBKλ =

Ri−1indGBQ.
But a weight ν of Q has the form λ+t(εj−εj+1), with 1 ≤ t ≤ m−1,

and b(ν) ≤ b(λ) − 1. So that for i > b(λ) we have i − 1 > b(ν) and
hence Ri−1indGBKν = 0, by the inductive hypothesis. Since this holds
for all weights of Q, i.e., for all composition factors Kν of Q, we get
Ri−1indGBQ = 0, from the long exact sequence, and hence RiindGBKλ =
0

(ii) This follows from (i) and the long exact sequence.

7 Kempf vanishing for quantised Schur al-
gebras

At this point we introduce the natural leftG-module for use later in this
section. We write E for the K-vector space with basis e1, . . . , en. Then
E is a G-module via the comodule structure map τ : E → E ⊗ K[G]
defined by τ(ei) =

∑n
j=1 ej ⊗ cji, 1 ≤ i ≤ n. We shall also need the

symmetric powers SrE and exterior powers
∧r E of E. We recall the

construction from [DD91] and [Don98]. Let T (E) be the tensor algebra
⊕r≥0E

⊗r. Thus T (E) is a graded K-algebra, in such a way that each
ei ∈ E has degree 1. The ideal generated by all eiej − ejei, 1 ≤ i, j ≤
n, is homogeneous and is a G-submodule, so the (usual) symmetric
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algebra S(E) inherits a grading S(E) =
⊕

r≥0 S
r(E) and each Sr(E)

is a G-submodule of S(E). Also, the ideal of T (E) generated by the
elements e2

i , ekel + qelek, 1 ≤ i ≤ n, 1 ≤ k < l ≤ n, is homogeneous
and a G-submodule and we write

∧
(E) for the quotient algebra. Thus∧

(E) inherits a grading
∧

(E) = ⊕r≥0
∧r(E) and each

∧r(E) is a
G-submodule.

For i = (i1, . . . , ir) ∈ I(n, r) we write ei for ei1 ⊗ · · · ⊗ eir ∈ E⊗r
and êi for the image of ei in

∧r(E). The module
∧r(E) has basis êi,

with i ∈ I(n, r), running over all maps with i1 > · · · > ir.

Proposition 7.1. (i) Let 1 ≤ r ≤ n and let Lr be the simple B-
module with weight εr. Then for any B-module M the K-linear map
φM : M ⊗ Lr → Lr ⊗M given by

φ(m⊗ l) = qα1+···+ αr l ⊗m

for α = (α1, . . . , αn) ∈ X(n) and m ∈ Mα, is a B-module isomor-
phism.

(ii) For any B-module M and one dimensional B-module L the
B-modules M ⊗ L and L⊗M are isomorphic.

Proof. (i) Certainly φM is a linear isomorphism so it remains to show
that it is B-module homomorphism. We shall call a B-module M
admissible if φM is a B-module homomorphism. So the point is to
show that all B-modules are admissible. Note also that admissibility is
preserved by isomorphism. LetM andN be B-modules. Then the map
φM⊗N : M⊗N⊗L→ L⊗M⊗N factorizes as (φM⊗ idN )◦(idM⊗φN )
so that admissibility is preserved under tensor products.

Suppose now that M is a submodule of N . Then the map φN : N⊗
Lr → Lr ⊗ N restricts to φM : M ⊗ Lr → M ⊗ Lr. Thus if N is
admissible then so is M . Similarly, if N is admissible then so is the
quotient N/M . By the local finiteness of B-modules it suffices to prove
that finite dimensional B-modules are admissible.

We now prove that all G-modules are admissible. Note that if M
is one dimensional then the twisting map θ : M ⊗Lr → Lr ⊗M , given
by θ(m ⊗ l) = (l ⊗m), for l ∈ Lr, m ∈ M , is a B-module map and
φM is a scalar multiple of θ. Hence one dimensional B-modules are
admissible. Now ifM is any finite dimensionalG-module thenD⊗r⊗M
is polynomial for some r ≥ 0. Hence M is isomorphic to a module of
the form Z ⊗ N , where Z is the dual of D⊗r and N is polynomial.
Hence it suffices to prove that finite dimensional polynomial modules
are admissible.

Note that if M = M1 ⊕ · · · ⊕Mt, for G-modules M1, . . . ,Mt then
φM = φM1

⊕ · · · ⊕ φMt
so that if each Mi is admissible then so is M .

Now if M is a polynomial G-module then, for some r ≥ 0, we may
write M = M0 ⊕ · · · ⊕Ms, where Mr is polynomial of degree r, for
0 ≤ r ≤ s. Hence it suffices to prove that for each r, all polynomial
G-modules of degree r are admissible.

We now check that the natural module E is admissible. Let Z be
the subspace of K[B] spanned by the elements c̄nic̄rr, 1 ≤ i ≤ n. It
is seen from the defining relations that Z is also spanned by c̄rr c̄ni,
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1 ≤ i ≤ n. We fix a non-zero element l0 of Lr. The subspace Z
is a left B-submodule of K[B] and we have B-module isomorphisms
θ : E ⊗ Lr → Z, η : Lr ⊗ E → Z satisfying θ(ei ⊗ l0) = c̄nic̄rr and
η(l0 ⊗ ei) = c̄rr c̄ni, for 1 ≤ i ≤ n.

Hence we have an isomorphism ψ = η−1 ◦ θ : E ⊗ Lr → Lr ⊗ E.
We consider first the case r = n. The element c̄nn commutes with the
elements c̄ni and ψ : E ⊗ Ln → Ln ⊗ E is the twisting map, taking
ei ⊗ l0 → l0 ⊗ ei, for 1 ≤ i ≤ n. The map φE is qψ and hence is
a homomorphism. Now suppose that r < n. For 1 ≤ i ≤ r we have
θ(ei⊗l0) = c̄nic̄rr = qc̄rr c̄ni = η(ql0⊗ei) and hence ψ(ei⊗l0) = ql0⊗ei.
For i > r we have θ(ei ⊗ l0) = c̄rr c̄ni = c̄nic̄rr (from the defining
relations) and so θ(ei ⊗ l0) = η(l0 ⊗ ei). We have shown that the
B-module homomorphism ψ : E ⊗ Lr → Lr ⊗ E is given by

ψ(ei ⊗ l0) =

®
ql0 ⊗ ei, if 1 ≤ i ≤ r;
l0 ⊗ ei, if r < i ≤ n.

Thus ψ = φE and therefore φE is a B-module homomorphism.
Since the class of admissible modules is closed under taking tensor

products and quotients we get that the jth symmetric power SjE is
admissible for all j ≥ 0. Now we get that for any β = (β1, . . . , βn) ∈
Λ(n) the module SβE = Sβ1E ⊗ · · · ⊗ SβnE is admissible. But these
modules SβE are injective in the category of polynomial G-modules
and every finite dimensional polynomial G-module embeds in a direct
sum of copies of the modules SβE, [Don98], Section 2.1. Hence every
finite dimensional polynomial module is admissible and hence all G-
modules are admissible.

The left regular B-module K[B] is admissible since it is the image
of the restriction homomorphism K[G]→ K[B]. Hence a direct sum of
copies of K[B] is admissible. Let M be a B-module. Then the structure
map τ : M → M ⊗K[B] embeds M into a direct sum of copies of the
left regular B-module and hence M is admissible. This complete the
proof of (i).

(ii) We have L = Kλ, for some λ ∈ Λ(n). If λ = 0 there is nothing
to prove. If λ 6= 0 and λ ∈ Λ(n) we may write λ = µ + εr, for some
1 ≤ r ≤ n and µ ∈ Λ(n). Then we have Kλ ∼= Kµ ⊗ Lr so we get

Kλ ⊗M ∼= Kµ ⊗ Lr ⊗M ∼= Kµ ⊗M ⊗ Lr

by part (i) and now it follows by induction on degree that Kλ ⊗M is
isomorphic to M ⊗Kλ. Finally, if λ = µ− τ , where µ, τ ∈ Λ(n), then
we have that

Kτ ⊗Kλ ⊗M ∼= Kµ ⊗M ∼= M ⊗Kµ
∼= M ⊗Kτ ⊗Kλ ∼= Kτ ⊗M ⊗Kλ.

So we have that Kτ ⊗ Kλ ⊗M is isomorphic to Kτ ⊗M ⊗ Kλ and
tensoring on the left with the dual of Kτ gives the desired result.
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Corollary 7.2. Let t ≥ 1. Let Vj be a polynomial B-module of degree
rj, for 1 ≤ j ≤ t and let Mj be a G-module for 1 ≤ j ≤ t + 1. Then
we have

RiindGB(M1 ⊗ V1 ⊗ · · · ⊗Mt ⊗ Vt ⊗Mt+1) = 0

for i > r1 + · · ·+ rt.

Proof. By the long exact sequence we may assume that each Vi is one
dimensional. Then by the Proposition M1⊗V1⊗· · ·⊗Mt⊗Vt⊗Mt+1 is
isomorphic to M⊗V , where M = M1⊗· · ·⊗Mt+1 and V = V1⊗· · ·⊗Vt
and so the result follows from the tensor identity and Lemma 6.2(ii).

Remark 7.3. Recall (or check, by dimension shifting) that if m ≥ 0
and

0→ Xr → Xr−1 → · · · → X0 →M → 0

is an exact sequence of B-modules such that RiindGBXj = 0 for all i >

m+ j then RiindGBM = 0 for all i > m. In particular if RiindGBXj = 0

for all i > j then RiindGBM = 0 for all i > 0.

Proposition 7.4. We have

RiindGBĀ(n) =

®
A(n), if i = 0;

0, if i > 0.

Proof. We first consider the case i = 0. The natural map π : A(n) →
Ā(n) gives rise to a G-module map π̃ : A(n)→ indGBĀ(n), given by

π̃(f) =
m∑
i=1

π(fi)⊗ f ′i

where δK[G](f) =
∑m
i=1 fi ⊗ f ′i ∈ A(n) ⊗ K[G]. Now if π̃(f) = 0 then

applying εK[B] ⊗ idK[G] we get

0 =
m∑
i=1

εK[B]π(fi)f
′
i =

m∑
i=1

εK[G](fi)f
′
i = f.

Hence π̃ is injective. Now the inclusion Ā(n) of K[B] gives rise to an
injective G-module homomorphism indGBĀ(n) → indGBK[B] = K[G].
Moreover, indGBĀ(n) is polynomial, by Remark 4.3, so that this map
goes onto A(n). Hence we have a composition of injective G-module
homomorphisms

A(n)→ indGBĀ(n)→ A(n).

But now, restricting to degree r we get an injective homomorphism
A(n, r) → A(n, r) and since A(n, r) is finite dimensional this map is
surjective, for all r ≥ 0. Hence the composite A(n) → indGBĀ(n) →
A(n) is surjective and the second map indGBĀ(n)→ A(n) is a G-module
isomorphism.
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We now suppose i > 0. Let Ar be the subaglebra of Ā(n) gener-
ated by the elements c̄r1, . . . , c̄rr. Then Ar is a B-submodule and the
multiplication map A1⊗· · ·⊗An → Ā(n) is a B-module isomorphism.

Let 0 ≤ m < n and let Vm be the B-submodule of E spanned
by ej , with m < j ≤ n. Let V = Vm. For r ≥ 0 we write

∧r V
for the subspace of

∧r E spanned by êi, with i ∈ I(n, r), ia > m
for 1 ≤ a ≤ r. Since this is the image of the B-submodule V ⊗r of
E⊗r under the natural map E⊗r →

∧r E we have that
∧r V is a B-

submodule of E⊗r. Similarly we have that the ideal J , say, of S(E)
generated by V is a B-submodule. We write S(E/V ) for the K-algebra
and B-module S(E)/J . We write Sr(E/V ) for the rth homogeneous
component of S(E/V ).

Let Um be the B-submodule of A(n) spanned by c̄m1, . . . , c̄mm.
Now we have a B-module homomorphism θ : E → Um, sending ei to
c̄mi, for 1 ≤ i ≤ m, and to 0 for m < i ≤ n. Then θ induces a
B-module isomorphism S(E/Vm)→ Am. Hence we have

Ā(n, r) ∼=
⊕

r=r1+···+rn

Sr1(E/V1)⊗ · · · ⊗ Srn(E/Vn). (4)

By [Don96], Lemma 3.3(ii), we have that, for r > 0, the K-linear
map ψ :

∧r E → E ⊗
∧r−1E, given by

ψ(êi) =
r∑
a=1

(−1)a−1eia ⊗ êi1...̂ia...ir

for ∈ I(n, r) with i1 > · · · > ir (where îa indicates that ia is omitted)
is a G-module homomorphism. Combining these maps with the mul-
tiplication maps E ⊗ Sb(E)→ Sb+1(E), b ≥ 0, (also G-module maps)
in the usual way, for a ≥ 0, we obtain the Koszul resolution

0→
∧aE → · · · → ∧2E ⊗ Sa−2E → E ⊗ Sa−1E → Sr(E)→ 0.

By restricting the maps in the above we obtain, in the usual way, the
Koszul resolution (cf.[Jan03, II 12.12 (i)])

0→
∧a Vm → · · · → ∧a−j Vm ⊗ SjVm

→ · · · → Sa(E)→ Sa(E/Vm)→ 0.

Tensoring all such together, for 1 ≤ m ≤ n, we obtain a resolution

· · · → Y1 → Y0 → Sr1(E/V1)⊗ · · · ⊗ Srn(E/Vn)→ 0

where each term Ys is a direct sum of modules of the form M1 ⊗
Z1 ⊗ · · · ⊗Mt ⊗Zt with each Mi a G-module and each Zj polynomial
of degree dj , say, d1 + · · · + dt = s. Now from Corollary 7.2, we

have that RiindGBYs = 0 for i > s and hence by Remark 7.3 we have
Ri(Sr1(E/V1)⊗· · ·⊗Srn(E/Vn)) = 0 for all i > 0. Hence by (4) above
we have RiindGBĀ(n) = 0, for all i > 0.
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Theorem 7.5. Let φ : Ā(n) → k[B] and ψ : A(n) → k[G] be the in-
clusion maps. Let π : A(n) → Ā(n) be the restriction map. Then, for
V ∈ Comod(Ā(n)), we have RiindGB(φ0V ) ∼= ψ0R

iπ0V for all i ≥ 0.

Proof. If M is a polynomial B-module then indGBM is a polynomial G-
module, by Remark 4.3. Hence we have indGB◦φ0 = ψ0◦π0 : Comod(Ā(n))→
Mod(G). We write F = indGB ◦ φ0 = ψ0 ◦ π0. Now ψ0 is exact
so we have RF iV = ψ0R

iπ0V . An injective Ā(n)-comodule is a di-
rect summand of a direct sum of copies of the left regular comodule
Ā(n). So it follows from the Proposition 7.4 that φ0 takes injective
objects to indGB-acyclic objects. Hence we have a Grothendieck spec-
tral sequence, with second page RiindGB ◦Rjφ0V converging to R∗FV .
But φ0 is exact, so the spectral sequence degenerates and we have
RiFV ∼= RiindGB(φ0V ) = ψ0R

iπ0V .

Remark 7.6. Slightly less formally, identifying Comod(Ā(n)) with the
full subcategory of B-modules whose objects are the polynomial modules
and identifying Comod(A(n)) with the subcategory of G-modules whose
objects are the polynomial modules, we have Riπ0V ∼= RiindGBV for a
polynomial B-module V .

The Theorem 7.5 has the following corollary, generalising Remark
4.3, but which may also be proved by a straightforward dimensional
shifting argument.

Corollary 7.7. If V is a polynomial B-module then RiindGBV is a
polynomial G-module, for all i ≥ 0.

However, the main point of the discussion is to demonstrate the
following result, which follows from Kempf’s Vanishing Theorem for
G, as in [Don96], Theorem 3.4.

Corollary 7.8. (Kempf Vanishing for polynomial modules.) Let π : A(n)→
Ā(n) be the restriction map. For λ ∈ Λ+(n) we have

Riπ0Kλ =

®
∇(λ), if i = 0;

0, if i > 0.

Let π(r) : A(n, r) → Ā(n, r) be the restriction of π. Now π =
⊕∞r=0π(r) : A(n) = ⊕∞r=0A(n, r) → Ā(n, r). If V ∈ Comod(Ā(n))
then we may write V uniquely as V =

⊕∞
r=0 V (r), where V (r) ∈

Comod(Ā(n, r)) (or less formally, V (r) is polynomial of degree r). It
follows that Riπ0V =

⊕∞
r=0R

iπ(r)0V (r). Hence we get:

Corollary 7.9. (Kempf Vanishing for homogeneous polynomial mod-
ules.) Let r ≥ 0 and let π(n, r) : A(n, r) → Ā(n, r) be the restriction
map. For λ ∈ Λ+(n, r) we have

Riπ(n, r)0Kλ =

®
∇(λ), if i = 0;

0, if i > 0.
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Let S(n, r) = A(n, r)∗ and S−(n, r) = Ā(n, r)∗. Then from Propo-
sition 2.1 we get :

Corollary 7.10. (Kempf Vanishing for Schur algebras) For λ ∈ Λ+(n, r)
we have

Tor
S−(n,r)
i (K∗λ, S(n, r)) =

®
∇(λ)∗, if i = 0;

0, if i > 0.
.

(Here K∗λ denotes the right S−(n, r)-dual module of Kλ.)

8 General coefficient rings

We shall work with Schur algebras over general coefficient rings. We
will use the universal coefficient ring Z = Z

[
t, t−1

]
. First we consider

the Schur algebra SQ(t),t(n, r) over the field of rational functions in the
parameter t. We define SZ,t(n, r) to be

{ξ ∈ SQ(t),t(n, r) | ξ(f) ∈ Z for all f ∈ AZ,t(n, r)}

which, by Lemma 3.1, is a Z-form of SQ(t),t(n, r). For an arbitrary
commutative ring and a unit q in R we define, by base change via the
ring homomorphism from Z to R, taking t to q, the R-algebra

SR,q(n, r) = R⊗Z SZ,t(n, r).

It is easy to check that, for R a field and q a unit in R this is
consistant with our earlier definition, i.e., that the homomorphism Z →
R, taking t to q induces an isomorphism AR,q(n, r)

∗ → R⊗ZSZ,t(n, r).
In the same way we define the negative (quantised) Borel-Schur sub-

algebra S−R,q(n, r) of SR,q(n, r). We define S−Q(t),t(n, r) = ĀQ(t),t(n, r)
∗.

The coalgebra AQ(t),t(n, r) has a Z-form AZ(n, r) spanned as a Z-

module by the elements c̄ij,Q(t),t, with i, j ∈ I(n, r). We define S−Z,t(n, r)
to be

{ξ ∈ S−Q(t),t(n, r) | ξ(f) ∈ Z for all f ∈ AZ,t(n, r)}

which, by Lemma 3.3 is a Z-form of S−Q(t),t(n, r). For an arbitrary

commutative ring and a unit q in R we define, by base change via the
ring homomorphism from Z to R taking t to q, the R-algebra

S−R,q(n, r) = R⊗Z S−Z,t(n, r).

It is easy to check that, for R a field and q a unit in R this is consistent
with our earlier definition, i.e., that the homomorphism Z → R, taking
t to q induces an isomorphism AR,q(n, r)

∗ → R⊗Z S−Z,t(n, r).
The positive Borel-Schur algebra S+

R,q(n, r) is defined in an analo-

gous way. We define A+
Q(t),t(n) = AQ(t),t(n)/I, where I is the ideal of

AQ(t),t(n) generated by the elements cij with 1 ≤ j < i ≤ n. Then

A+
Q(t),t(n) has a natural coalgebra grading

A+
Q(t),t(n) =

⊕
r≥0

A+
Q(t),t(n, r).
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For every nonnegative r we define S+
Q(t),t(n, r) to be the Q(t)-algebra

dual of A+
Q(t),t(n, r). We write A+

Z,t(n, r) for the image of AZ,t(n, r)

under the natural map AQ(t),t(n, r)→ A+
Q(t),t(n, r). Then A+

Z,t(n, r) is

a Z-form of A+
Q(t),t(n, r) and we define S+

Z,t(n, r) to be

{ξ ∈ S+
Q(t),t(n, r) | ξ(f) ∈ Z for all f ∈ A+

Z,t(n, r)}.

For an arbitrary commutative ring and a unit q in R we define, by
base change via the ring homomorphism from Z to R taking t to q,
the R-algebra

S+
R,q(n, r) = R⊗Z S+

Z,t(n, r).

We identify S−R,q(n, r) and S+
R,q(n, r) withR-subalgebras of SR,q(n, r)

in the obvious way.

We now generalise Corollary 7.10 to an arbitrary commutative
ground ring from a general result. This is presumably well known
but we include it here since we were unable to find a suitable refer-
ence. For an algebra S over a commutative ring R and maximal ideal
M of R with residue field K = R/M we write SK for the K-algebra
K ⊗R S obtained by base change. Further, if D is a left (resp. right)
S-module we write DK for the left (resp. right) SK-module K ⊗R D
obtained by base change.

Proposition 8.1. Let R be a commutative Noetherian ring. Let S be
an R-algebra which is finitely generated and projective as an R-module.
Let D be a right S-module and E a left S-module. Suppose that D and
E are finitely generated and projective as R-modules. Suppose further
that for each maximal ideal M of R we have

TorSK
i (DK, EK) = 0

for all i > 0 (where K = R/M). Then we have

TorSi (D,E) = 0

for all i > 0.

Proof. We first make a reduction to the case in which R is local. So
we first assume the result in the local case. Let M be a maximal ideal
of R and K = R/M . Then we have the RM algebra SM obtained
by localising at M . The RM module DM (resp.EM ) obtained by
localisation is naturally a left (resp. right) SM -module. Also, for i ≥ 0,
we have the localisation TorSi (D,E)M of the R-module TorSi (D,E).
Moreover, by (the argument of) [Mat70], (3.E), we have

TorSi (D,E)M ∼= TorSMi (DM , EM ) (5)

and

TorK⊗RSMi (K⊗R DM ,K⊗ EM ) ∼= TorSK
i (DK, EK) = 0
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for i > 0. Thus, for i > 0, we get TorSi (D,E)M = 0 for all maximal
ideals. Since TorSi (D,E) is a finitely generated R-module, this implies
TorSi (D,E) = 0.

We now assume that R is local with maximal ideal M and K =
R/M . We make a reduction to the case i = 1. Suppose that TorS1 (D,E)
is zero for all D,E as above but that the result is false. We choose
i > 1 as small as possible such that TorSi (D,E) 6= 0 for some D,E as
above. We choose an epimorphism from a finitely generated projec-
tive S-module P onto E and consider the corresponding short exact
sequence of S-modules

0→ N → P → E → 0.

Then N is finitely generated and projective as an R-module. Hence
we have a short exact sequence of SK-modules

0→ NK → PK → EK → 0

with PK projective. Hence we have

TorSj (D,N) = TorSj+1(D,E) and TorSK
j (DK, NK) = TorSK

j+1(DK, EK)

for j ≥ 1. So by the minimality of i we have TorSi−1(D,N) = 0 and

therefore also TorSi (D,E) = 0, a contradiction.
Hence it suffices to prove that TorS1 (D,E) = 0 for allD,E satisfying

the hypotheses. We now consider the right exact functor F from the
category of finitely generated S-modules to K-spaces, F(X) = XK⊗SK

EK. Note that F factorizes: F is isomorphic to G ◦ H, where H is
a functor from S-modules to SK-modules, H(X) = XK and G is a
functor from the category of SK-modules to K-spaces G(Y ) = Y ⊗SKEK.
Moreover, the functors G and H are right exact and H takes projective
S-modules to projective SK-modules. Hence, for X ∈ mod(S), there
is a Grothendieck spectral sequence with second page (LiG ◦ LjH)X
converging to (L∗F)X. Taking X = D, since D is projective as an
R-module we have (LjH)D = 0 for all j > 0. Hence the spectral
sequence degenerates and we have (LiF)D = (LiG)(H(D)) for all i ≥
0. Hence we have (LiF)D = TorSK

i (DK, EK), and from the hypotheses,
(LiF)D = 0 for all i > 0.

But also, for a right S-module X we have F(X) = XK ⊗SK EK =
K⊗R(X⊗SE). This gives another factorisation: F is the composite P◦
Q, whereQ is the functor from right S-modules to R-modules, Q(X) =
X ⊗S E and P is the functor from R-modules to K-spaces P(Y ) =
K⊗R Y . For X projective, X ⊗S E is a projective R-module. Hence,
for X a right S-module, there is a Grothendieck spectral sequence,
with second page (LiP ◦ LjQ)X converging to (L∗F)X. In particular
(see [Wei94], Corollary 5.8.4), we have the 5-term exact sequence

(L2F)X → (L2P)(Q(X))→ P(L1Q(X))

→ (L1F)X → (L1P)Q(X)→ 0.
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Taking X = D we obtain the exact sequence

TorSK
2 (DK, EK)→TorR2 (K, D ⊗S E)→ K⊗R TorS1 (D,E)

→TorSK
1 (DK, EK)→ TorR1 (K, D ⊗S E)→ 0.

But TorSK
i (DK, EK) = 0, for i > 0, and so TorR1 (K, D⊗SE) = 0. Hence

D ⊗R E is a projective R-module, see [Mat70], Section 18, Lemma 4.
Hence TorR2 (K, D ⊗S E) = 0 and hence K ⊗R TorS1 (D,E) = 0, and
hence TorS1 (D,E) = 0.

Let R be a commutative ring with Noetherian subring R0. Let
φ : X → Y be an R0-module homomorphism. It is easy to check (and
we leave this to the reader) that if for every subring R′ of R containing
R0 which is finitely generated over R0, the R′-module homomorphism
φR′ : R

′ ⊗R0 X → R′ ⊗R0 Y is injective then the R-module homomor-
phism φR : XR → YR (obtained by base change) is injective.

Lemma 8.2. Let R be a commutative ring and let R0 be a Noetherian
subring. Let S be an R0-algebra, finitely generated and projective as
an R0-module. Let M be a right S-module and N a left S-module
and suppose that M and N are finitely generated and projective over

R0. If Tor
SR′
i (MR′ , NR′) = 0 for all i > 0, and all subrings R′ of R

containing R0 and finitely generated over R0, then TorSRi (MR, NR) = 0
for all i > 0.

Proof. Choose an S-module surjection P → N , where P is a finitely
projective S-module and let

0→ H → P → N → 0 (6)

be the corresponding short exact sequence. Then we have that
MR′ ⊗S′

R
NR′ → HR′ ⊗SR′ PR′ , is injective, i.e.,

R′ ⊗R0 (M ⊗R0 H)→ R′ ⊗R0 (M ⊗R0 P )

is injective (whenever R′ is a subring of R finitely generated over R0,

since Tor
SR′
1 (MR′ , NR′) = 0). Hence we have that

R⊗R0
(M ⊗R0

H)→ R⊗R0
(M ⊗R0

P )

is injective, i.e., MR ⊗SR NR → HR ⊗SR PR is injective and therefore
TorSR1 (MR, NR) = 0. Now for i > 1 it follows that TorSRi (MR, NR) = 0
using (6) and dimension shifting.

Let λ ∈ Λ(n, r). Then we have the one dimensional module Kλ
for the quantised Borel subgroup B(n) over K = Q(t). Thus Kλ is
naturally a left S−Q(t),t(n, r)-module and we obtain an S−R,q(n, r)-module

Rλ, free of rank one over R, by base change. We write R∗λ for the right
SR,q(n, r)-module dual of Rλ. Similarly we construct an S+

R,q(n, r)-
module, also denoted Rλ, free of rank one over R.
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Theorem 8.3. Let R be a commutative ring and let q be a unit in R.
Let λ ∈ Λ+(n, r). Then we have

Tor
S−
R,q

(n,r)

i (R∗λ, SR,q(n, r)) = 0

for all i > 0.

Proof. The result for R Noetherian follows from Corollary 7.10 and
Proposition 8.1 and the result for general R follows from Lemma 8.2.

We shall also give the version of this result for the positive Borel-
Schur algebra. Suppose J is an anti-automorphism of a ring S and
that S has subrings S− and S+ interchanged by J . Given a right S−-
module (resp. left) M we write MJ for the same group M regarded as
a left (resp. right) S+-module with action xm = mJ(x) (resp.mx =
J(x)m), m ∈ M , x ∈ S+. Note that if M is S, regarded as a right
S−-module via right multiplication, then MJ is S regarded as a left
S+-module via left multiplication. Similarly if M is S, regarded as
a left S−-module via left multiplication, then MJ is S regarded as a
right S+-module via right multiplication. If M is a right S−-module
and N is a left S−-module then we have

TorS
−

i (M,N) ∼= TorS
+

i (NJ ,MJ)

for all i ≥ 0.
Recall that, by [Don98], pg. 82, we have an involutary anti-auto-

morphism J of the Schur algebra SK,q(n, r) over a field K. For i ∈
I(n, r) we write d(i) for the number of pairs (a, b) such that 1 ≤ a <
b ≤ r and ia < ib. Then, for i, j ∈ I(n, r), we have

cji(ξ)q
d(j) = cij(J(ξ))qd(i)

(see [Don98], p83) and clearly J is determined by this property. Taking
K = Q(t) and q = t, it is easy to check that J preserves SZ,t(n, r)
and interchanges S−Z,t(n, r) and S+

Z,t(n, r). Hence J induces, for a
general commutative ring R and unit q ∈ R, an anti-automorphism,
which we also denote J , of SR,q(n, r) which interchanges S−R,q(n, r) and

S+
R,q(n, r). Moreover, for λ ∈ Λ(n, r), starting with the left S−R,q(n, r)-

module Rλ, we have that (R∗λ)J is the left S+
R,q(n, r)-module, also

denoted by Rλ. Thus from Theorem 8.3 we get our quantised version
of Woodcock’s Theorem.

Theorem 8.4. Let R be a commutative ring and let q be a unit in R.
Let λ ∈ Λ+(n, r). Then we have

Tor
S+
R,q

(n,r)

i (SR,q(n, r), Rλ) = 0

for all i > 0.
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Recall that AQ(t),t(n, r) has basis { cij | (i, j) ∈ Y (n, r)}. Let

{ ξij | (i, j) ∈ I(n, r)}

be the dual basis of SQ(t),t(n, r), that is

ξij(ci′,j′) =

®
1, i = i′, j = j′

0, (i′, j′) ∈ Y (n, r), (i, j) 6= (i′, j′).

Then it is straightforward that { ξij | (i, j) ∈ Y (n, r)} is a Z-basis of
SZ,t(n, r). We will also denote by the same symbol ξij the image of
ξij in SR,q(n, r) under base change. For λ ∈ Λ(n, r), we will write ξλ
for ξl(λ),l(λ).

Note that in Section 2 of [Don98] there is used a slightly different
parameterisation of the set { ξij | (i, j) ∈ Y (n)}. As we will refer the
results of [Don98], we will explain this in more detail. Let U be the
subset of I(n, r) × I(n, r) of pairs (l (λ) , j) such that j1 ≥ · · · ≥ jλ1

,
jλ1+1 ≥ · · · ≥ jλ1+λ2

and so on. Now for every λ ∈ Λ(n, r), there is a
permutation πλ ∈ Σλ of order 2 such that (l(λ), j) ∈ Y (n, r) if and only
if (l (λ) , jπλ) ∈ U . Since the generators cab and cab′ commute for any
b and b′, we have cl(λ),j = cl(λ),jπλ . Thus we get for any (i, j) ∈ Y (n, r)
and (i′, j′) ∈ U that

ξij(ci′,j′) = ξij (ci′,j′πλ) =

®
1, i = i′, j = j′πλ

0, otherwise.

Therefore ξij in our notation corresponds to ξi,jπλ in the notation
of [Don98].

Using the above identification, from [Don98], page 38, for λ, µ ∈
Λ(n, r) we obtain

ξλξijξµ =

®
ξij , i ∈ λ, j ∈ µ,
0, otherwise.

Moreover, 1 =
∑
λ∈Λ(n,r) ξλ is an orthogonal idempotent decomposi-

tion of the identity.
Similarly to Lemma 3.2, we have that the kernel of the projection

f : AQ(t),t(n, r)� A+
Q(t),t(n, r)

has basis
{ cij | (i, j) ∈ Y (n, r) but not i ≤ j} .

Thus for any (i, j) ∈ Y (n, r) such that i ≤ j, we get that the restriction
of ξij to Ker(f) is zero. Therefore we can consider ξij as an element of
S+
Q(t),t(n, r) = A+

Q(t),t(n, r)
∗. Using a dimension argument we get that

{ ξij | (i, j) ∈ Y (n, r), i ≤ j} (7)

is a Q(t)-basis of S+
Q(t),t(n, r). Obviously, it is also a Z-basis of S+

Z,t(n, r)

and, by base change, an R-basis for any S+
R,q(n, r).
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We now recall the normalised bar construction. Note that this is a
special case of the construction described in Chapter IX, §7 of [ML63]
and its detailed treatment can be found in Section 3 of [SY12].

Let S be a ring with identity and S′ a subring of S. We assume
that there is an epimorphism of rings p : S → S′ that splits the natural
inclusion of S′ into S. Write K for the kernel of p. Then K is an
S′-bimodule.

For every S-module M we define the chain complex

B∗ (S, S′,M) = (Bk (S, S′,M) , dk)k≥−1

as follows:

B−1 (S, S′,M) = M, B0 (S, S′,M) = S ⊗M,

Bk (S, S′,M) = S ⊗K⊗k ⊗M, ∀k ≥ 1,

dk =
k∑
t=0

(−1)tdkt : Bk (S, S′,M)→ Bk−1 (S, S′,M) ,

where all the tensor products are over S′ and the S-module homomor-
phisms dkt : Bk (S, S′,M) → Bk−1 (S, S′,M), k ≥ 0, 0 ≤ t ≤ k are
given by

d00 (s⊗m) = sm

dk0 (s⊗ s1 ⊗ · · · ⊗ sk ⊗m ) = ss1 ⊗ s2 ⊗ · · · ⊗ sk ⊗m
dkt (s⊗ s1 ⊗ · · · ⊗ sk ⊗m) = s⊗ · · · ⊗ stst+1 ⊗ · · · ⊗m, 1 ≤ t ≤ k − 1

dkk (s⊗ s1 ⊗ · · · ⊗ sk ⊗m) = s⊗ s1 ⊗ · · · ⊗ sk−1 ⊗ skm, k ≥ 0.

The complex (B (S, S′,M) , d) is exact and is called the normalised bar
resolution of M over S. Now we specialize this construction to the
case of the quantised Borel-Schur algebra.

Define

L = LR,q =
⊕

(i,i)∈Y (n,r)

Rξii =
⊕

λ∈Λ(n,r)

Rξλ

and
J = JR,q =

⊕
(i,j)∈Y (n,r)

i<j

Rξij .

Then L⊕ J = S+
R,q(n, r).

Proposition 8.5. The R-module LR,q is a split subalgebra of S+
R,q(n, r)

and JR,q is a split ideal of S+
R,q(n, r).

Proof. It is obvious that LR,q is a subalgebra of S+
R,q(n, r).

Now, we will check that JR,q is an ideal of S+
R,q(n, r). By a base

change argument, it is enough to check that JZ,t is an ideal of S+
Z,t(n, r)

and this can be reduced to showing that JQ(t),t(n, r) is an ideal of

S+
Q(t),t(n, r).
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Let (i, j), (i′, j′) ∈ Y (n, r) such that i ≤ j and i′ ≤ j′. Then the
coefficient of ξλ in the expansion of the product ξi,jξi′,j′ in the basis (7)
of S+

Q(t),t(n, r) is given by

(ξi,jξi′,j′)
(
cl(λ),l(λ)

)
=

∑
h∈I(n,r)

ξi,j
(
cl(λ),h

)
ξi′,j′

(
ch,l(λ)

)
,

where cij denotes the image of cij under the epimorphism

AQ(t),t(n, r)� A+
Q(t),t(n, r).

Thus cl(λ),h 6= 0 and ch,l(λ) 6= 0 imply that l(λ) ≤ h ≤ l(λ). Hence

(ξi,jξi′,j′)
(
cl(λ),l(λ)

)
= ξi,j

(
cl(λ),l(λ)

)
ξi′,j′

(
cl(λ),l(λ)

)
,

which is zero, if i 6= j or i′ 6= j′. This proves that the product ξi,jξi′,j′

lies in JQ(t),t, if ξi,j ∈ JQ(t),t or ξi′,j′ ∈ JQ(t),t.

For any λ ∈ Λ(n, r) we can apply the normalised bar construction
to S+

R,q(n, r), L, and the rank-one module Rλ.

Denote Bk
Ä
S+
R,q(n, r),J , Rλ

ä
by B+

k,λ for k ≥ −1. We get

B+
−1,λ = Rλ, B

+
0,λ = S+

R,q (n, r)⊗L Rλ,

B+
k,λ = S+

R,q (n, r)⊗L J⊗k ⊗L Rλ, k ≥ 1.

For any µ ∈ Λ(n, r), M ∈ mod-L and N ∈ L-mod, we have

(M ⊗L Rξµ)⊗R (Rξµ ⊗L N) ∼= M ⊗L Rξµ ⊗L N.

Thus

M ⊗L N ∼= M ⊗L L⊗L N ∼=
⊕
µ∈Λ

(M ⊗L Rξµ)⊗R (Rξµ ⊗L N)

∼=
⊕
µ∈Λ

Mξµ ⊗R ξµN,

since M ⊗L Rξµ ∼= Mξµ and Rξµ ⊗L N ∼= ξµN . Hence

B+
0,λ
∼=
⊕
µ∈Λ

S+
R,q (n, r) ξµ ⊗R ξµRλ

= S+
R,q (n, r) ξλ ⊗R Rλ ∼= S+

R,q (n, r) ξλ,

since ξµRλ = 0 unless µ = λ. Further

B+
k,λ
∼=

⊕
µ(1),...,µ(k+1)∈Λ

S+
R,q (n, r) ξµ(1) ⊗R ξµ(1)J ξµ(2) ⊗R . . .

⊗R ξµ(k)J ξµ(k+1) ⊗R ξµ(k+1)Rλ.

As { ξij | (i, j) ∈ Y (n, r) , i < j} is an R-basis of J , we get that ξµJ ξτ
is zero, unless µ . τ . If µ . τ , then ξµJ ξτ has an R-basis

{ ξij | (i, j) ∈ Y (n, r) , i < j, j ∈ τ, i ∈ µ} .



8 GENERAL COEFFICIENT RINGS 28

Thus for every k ≥ 1 we can write

B+
k,λ
∼=

⊕
µ(1).....µ(k).λ

S+
R,q (n, r) ξµ(1) ⊗ ξµ(1)J ξµ(2) ⊗ · · · ⊗ ξµ(k)J ξλ,

where ⊗ means ⊗R. Note that B+
k,λ is zero for k sufficiently large.

Given µ . λ, we define Ω+
k (λ, µ) to be the set of all sequences

(i(1), j(1)), . . . , (i(k), j(k))

of elements in Y (n, r) such that i(1) ∈ µ, j(k) ∈ λ, and

i(1) < j(1) ∼ i(2) < j(2) ∼ i(3) < · · · < j(k),

where j ∼ i means that i and j have the same content. Then we have
isomorphisms of S+

R,q(n, r)-modules

B+
k,λ
∼=

S
+
R,q(n, r)ξλ, k = 0⊕
µ.λ

Ä
S+
R,q (n, r) ξµ

ä#Ω+
k

(λ,µ)
, k ≥ 1.

(8)

So we get the following result

Theorem 8.6. Let λ ∈ Λ(n, r). Then the complex B+
∗,λ is a projective

resolution of Rλ over S+
R,q(n, r).

Now consider λ ∈ Λ+(n, r). The Weyl module associated with λ is

Wλ = SR,q(n, r)⊗S+
R,q

(n,r) Rλ.

By Theorem 8.4, Rλ is an acyclic module for the functor SR,q⊗S+
R,q

(n,r)

−. Therefore B∗,λ := SR,q(n, r)⊗S+
R,q

(n,r)B
+
∗,λ is a projective resolution

of Wλ. Moreover, since

SR,q(n, r)⊗S+
R,q

(n,r) S
+
R,q(n, r)

∼= SR,q(n, r),

we get the following theorem.

Theorem 8.7. Let λ ∈ Λ+(n, r). Define the complex Bλ as follows:

B−1,λ = Wλ, B0,λ = SR,q(n, r)ξλ,

and for k ≥ 1, we set Bk,λ to be⊕
µ(1).....µ(k).λ

µ(1),...,µ(k)∈Λ(n,r)

SR,q (n, r) ξµ(1) ⊗R ξµ(1)J ξµ(2) ⊗R · · · ⊗R ξµ(k)J ξλ.

Define d0 to be the canonical projection of SR,q(n, r)ξλ on Wλ, and for
k ≥ 1 define dk : Bk,λ → Bk−1,λ to be the R-linear extension of the
map

x0 ⊗ x1 · · · ⊗ xk 7→
k−1∑
t=0

(−1)tx0 ⊗ · · · ⊗ xtxt+1 ⊗ · · · ⊗ xk.

Then Bλ is a projective resolution of Wλ over SR,q(n, r).
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We will show now that Bλ is stable under base change. Our resolu-
tions for a moment will get additional indices to emphasize dependence
on R and q ∈ R. Let R and R′ be commutative rings, θ : R→ R′ a ring
homomorphism, q ∈ R and q′ := θ(q) ∈ R′ invertible elements. Since
SR,q(n, r)⊗R R′ ∼= SR′,q(n, r) and BRk,λ are free SR,q(n, r)-modules for

k ≥ 0, we get that (BRk,λ ⊗R R′, k ≥ 0) and (BR
′

k,λ, k ≥ 0) are isomor-
phic complexes. Moreover, from the commutative diagram with exact
rows

BR1,λ ⊗R R′
d1 //

∼=
��

BR0,λ ⊗R R′
d0 //

∼=
��

WR
λ ⊗R R′ //

∃!∼=
��

0

BR
′

1,λ

d1 // BR
′

0,λ

d0 // WR′

λ
// 0,

it follows that BR∗,λ ⊗R R′ and BR
′

∗,λ are isomorphic also in degree −1.

9 The Hecke algebra and resolutions of co-
Specht modules

In this section we will use the notation of [DJ86] but will denote by
lng (σ) the length of σ ∈ Σr. The Hecke algebra H = HR,q associated
with Σr over R is free as an R-module with basis {Tσ |σ ∈ Σr}, where

TsTσ =

®
Tsσ, if lng(sσ) = lng(σ) + 1

qTsσ + (q − 1)Tσ, otherwise,

for σ, s ∈ Σr with lng(s) = 1.
In [BM12] Boltje and Maisch constructed for every composition λ

of r a chain complex ‹Cλ∗ of H-modules. These complexes are lifting
to the q-setting of the corresponding RΣr-module complexes described
in [BH11]. It was proved in [SY12], that ‹Cλ∗ is a permutation resolution
of the co-Specht modules HomR(Sλ, R) for q = 1 and λ a partition of
r. In this section we will prove a similar result for any invertible q in
R.

Choose any n ≥ r, and let

ω = (1, . . . , 1, 0, . . . , 0) ∈ Λ(n, r)

u = (1, 2, . . . , r) ∈ I(n, r).

Then (see [Don98, Section 0.23])

{ ξu,uπ |π ∈ Σr}

is an R-basis of ξωSR,q(n, r)ξω and

ξωSR,q(n, r)ξω → H
ξu,uπ 7→ Tπ−1
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is an isomorphism of R-algebras. Therefore we have the Schur functor

F : SR,q(n, r)-mod→ H-mod

V 7→ ξωV.

Applying F to the resolution Bλ of Wλ with λ ∈ Λ+(n, r), we obtain

an exact sequence F (Bλ). It is our aim to prove that F (Bλ) and ‹Cλ∗
are isomorphic chain complexes of H-modules. This will prove that the
complexes ‹Cλ∗ are resolutions of the co-Specht modules HomR(Sλ, R)
over H.

We start by reminding to the reader some facts on Hecke alge-
bra. Denote by Σλ the standard Young subgroup corresponding to the
composition λ. By [DJ86, Lemma 1.1] each right coset of Σλ in Σr
contains a unique element of minimal length, the distinguished coset
representative of Σλ in Σr. We denote by Dλ the set of these elements.
Given two compositions λ and µ, we also define Dλ,µ = Dλ ∩D−1

µ . By
[DJ86, Lemma 1.6] the set Dλ,µ is a system of Σλ-Σµ double coset
representatives in Σr.

Recall that, for λ ∈ Λ(n, r), we write l(λ) for the multi-index
(1λ1 , 2λ2 , . . . , nλn). Then every element of Y (n, r) is of the form (l (λ) , j)
for some λ ∈ Λ(n, r) and j ∈ I(n, r). It is easy to see (cf. [DD91,
pp. 24-25]), that for given λ, µ ∈ Λ(n, r), there is a bijective corre-
spondence

{ (l(λ), j) ∈ Y (n, r) | j ∈ µ} → Dλ,µ, (9)

defined as follows. For a given pair (l(λ), j) the set{
π ∈ Σr

∣∣ l(µ)π−1 = j
}

is a Σµ-orbit, and thus contains a unique distinguished element d̄ of
D−1
µ . We define d as the representative of ΣλdΣµ in Dλ,µ.

For λ ∈ Λ(n, r), define xλ :=
∑
π∈Σλ

Tπ and Mλ := xλH. Then

HomH(Mµ,Mλ) has an R-basis¶
ϕλ,µd

∣∣∣ d ∈ Dλ,µ

©
,

where
ϕλ,µd (xµ) =

∑
π∈ΣλdΣµ

Tπ, d ∈ Dλ,µ.

Theorem 3.2.5 and Corollary 3.2.6 in [DD91] say that there is an alge-
bra isomorphism

SR,q(n, r)→
⊕

µ,λ∈Λ(n,r)

HomH(Mµ,Mλ) (10)

ξl(λ),j 7→ ϕλ,µd ,

where the correspondence (l(λ), j) 7→ d is given by (9).
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Denote by T (λ, µ) the set of all λ-tableaux with content µ and by
T rs(λ, µ) the set of all row semistandard λ-tableaux with content µ.
Write

Tλ =

1 2 . . . λ1

λ1 + 1 λ1 + 2 . . . . . . . . . λ1 + λ2

. . .
λ1 + · · ·+ λn−1 + 1 . . . . . . . . . r

and for each i ∈ I(n, r), let Tλi be the λ-tableaux

Tλi =

i1 i2 . . . iλ1

iλ1+1 iλ1+2 . . . . . . . . . iλ1+λ2

. . .
iλ1+...λn−1+1 . . . . . . . . . ir.

Recall that (i, j) ∈ Y (n, r) if and only if i1 ≤ i2 ≤ · · · ≤ ir and
jν ≤ jν+1 if iν = iν+1, 1 ≤ ν ≤ r − 1. Therefore there is a bijective
correspondence

{ (l (λ) , j) ∈ Y (n, r) | j ∈ µ} → T rs (λ, µ)

(l (λ) , j) 7→ Tλj

that in combination with (9) induces the bijection

Dλ,µ ↔ T rs (λ, µ) . (11)

Boltje and Maisch say that a λ-tableaux in T (λ, µ) is ascending if, for
every a ∈ N, the ath row of this tableau contains only entries which
are greater than or equal to a. They denote the set of all ascending
elements of T rs (λ, µ) by T ∧(λ, µ). One has T ∧ (λ, µ) 6= ∅ if and only
if µ E λ, if and only if Tλl(µ) ∈ T

∧(λ, µ). Notice that for j ∈ I(n, r),

the λ-tableau Tλj is ascending if and only if l (λ) ≤ j. Therefore we
have a bijective correspondence

Y (λ, µ)
∧

:= { (l (λ) , j) ∈ Y (n, r) | j ∈ µ, l (λ) ≤ j} → T ∧ (λ, µ)

(l(λ), j) 7→ Tλj .

Denote by D∧λ,µ the image of Y (λ, µ)∧ in Dλ,µ under the correspon-
dence (9). Boltje and Maisch define for each µ E λ

Hom∧H(Mµ,Mλ) :=
⊕

d∈D∧
λ,µ

Rϕλ,µd ⊂ HomH(Mµ,Mλ).

Then under the isomorphism (10), Hom∧H(Mµ,Mλ) corresponds to⊕
(l(λ),j)∈I2(λ,µ)∧

Rξl(λ),j .

But, since{
ξl(λ),j

∣∣ (l(λ), j) ∈ Y (n, r), l(λ) ≤ j, λ ∈ Λ
}
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is an R-basis of S+
R,q(n, r) and for any ν, τ ∈ Λ(n, r)

ξνξijξτ =

®
ξij , if i ∈ ν, j ∈ τ
0, otherwise,

we get that Hom∧H(Mµ,Mλ) corresponds to ξλS
+
q (n, r)ξµ. We saw

previously that S+
R,q(n, r) = L ⊕ J . But if λ . µ, we have ξλLξµ = 0.

Hence Hom∧H(Mµ,Mλ) corresponds to ξλJ ξµ if λ . µ.

Next we define the Boltje-Maisch complex C̃λ∗ . We will restrict
ourselves to the case when λ is a partition of r. For every right H-
module N the R-module HomR(N,R) has the structure of a left H-
module given by

(hε)(n) := ε(nh),

where h ∈ H, ε ∈ HomR(N,R), and n ∈ N . So given an R-module
N ′, the R-module HomR(N,R)⊗R N ′ can be viewed as an H-module
via

h(ε⊗ n′) = (hε)⊗ n′,
where h ∈ H, ε ∈ HomR(N,R), and n′ ∈ N ′.

For each λ ∈ Λ+(n, r), Boltje and Maisch define a complex‹Cλ∗ : 0→ Cλa(λ)

dλa(λ)−→ Cλa(λ)−1

dλa(λ)−1−→ · · · dλ1−→ Cλ0
dλ0−→ Cλ−1 → 0

in the following way:

Cλ−1 = HomR(Sλ, R),

Cλk =
⊕

µ(1).....µ(k).λ

µ(1),...,µ(k)∈Λ(n,r)

HomR

Ä
Mµ(1)

, R
ä
⊗R Hom∧H(Mµ(2)

,Mµ(1)

)

⊗R · · · ⊗R Hom∧H(Mλ,Mµ(k)

).

The differential dλk : Cλk → Cλk−1 is given by the sum
k−1∑
t=0

(−1)tdkt, where

for k ≥ 1 and 1 ≤ t ≤ k − 1, we set

dk0(ε⊗ φ1 ⊗ · · · ⊗ φk) = εφ1 ⊗ φ2 · · · ⊗ φk,
dkt(ε⊗ φ1 ⊗ · · · ⊗ φk) = ε⊗ φ1 ⊗ · · · ⊗ φtφt+1 ⊗ · · · ⊗ φk,

(12)

and d0 : HomR(Mλ, R)→ HomR(Sλ, R) is defined to be the restriction
on Sλ.

Let us consider the resolution Bλ of Wλ. Applying the Schur func-
tor to Bλ we obtain the exact sequence F (Bλ), where

F (Bλ)−1 = ξωWλ, F (Bλ)0 = ξωSR,q(n, r)ξλ,

and for k ≥ 1 the H-module F (Bλ)k is given by⊕
µ(1).....µ(k).λ

µ(1),...,µ(k)∈Λ(n,r)

ξωSq(n, r)ξµ(1) ⊗R ξµ(1)J ξµ(2) ⊗R · · · ⊗R ξµ(k)J ξλ.
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Notice that, for µ ∈ Λ(n, r) the subspace ξωSq(n, r)ξµ corresponds un-
der (10) to HomH(Mµ,Mω). But Mω = xωH = H, since Σω is the
trivial group and xω =

∑
π∈Σω

Tπ = Tid. Thus ξωSR,q(n, r)ξµ corre-
sponds under (10) to HomH(Mµ,H). Here we have that HomH(Mµ,H)
is a H-module by

(hψ)(m) = hψ(m),

where h ∈ H, m ∈Mµ, and ψ ∈ HomH(Mµ,H).
Thus we can write

F (Bλ)0 = HomH(Mλ,H),

F (Bλ)k =
⊕

µ(1).....µ(k).λ

µ(1),...,µ(k)∈Λ(n,r)

HomH(Mµ(1)

,H)⊗R Hom∧H(Mµ(2)

,Mµ(1)

)

⊗R · · · ⊗R Hom∧H(Mλ,Mµ(k)

),

and the differentials dk in F (Bλ) are the sums
∑k−1
t=0 (−1)tdkt, where

the maps dkt are defined analogously to (12).

We will prove that F (Bλ) is isomorphic to the complex C̃λ∗ in non-

negative degrees. Since F (Bλ) is exact and C̃λ∗ is exact in the degrees 0
and −1 by [BM12, Theorems 4.2 and 4.4 ], the isomorphism in degree
−1 will follow.

To prove that F (Bλ)k ∼= Cλk for k ≥ 0, we start by showing that
there is an isomorphisms of H-modules

Fµ : HomH(Mµ,H)→ HomR(Mµ, R)

such that for all ν ∈ Λ(n, r), ψ ∈ HomH(Mµ,H), ϕ ∈ HomH(Mν ,Mµ),
we have Fν(ψϕ) = Fµ(ψ)ϕ.

We will prove this in a more general setting. Let ∗ : H → H be the
anti-automorphism of H given by Tπ 7→ T ∗π = Tπ−1 . Let M be any
right H-module. By [DJ86, Theorem 2.6] there is an isomorphism of
R-modules

HomR(M,R)→ HomH(M,H)

ϕ 7→ ϕ̂,

where
ϕ̂(m) :=

∑
σ∈Σr

q−lng(σ)ϕ(mT ∗σ )Tσ.

The inverse of this isomorphism is the map

HomH (M,H)→ HomR(M,R)

ψ 7→ ψ̃,

where ψ̃(m) is the coefficient of Tid in the expansion

ψ(m) =
∑
σ∈Σr

aσTσ, aσ ∈ R.
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Consider the symmetric associative bilinear form f : H ⊗ H → R
([DJ86, Lemma 2.2 and proof of Theorem 2.3]) given by

f(Tσ, Tπ) =

®
qlng(σ), if σ = π−1

0, otherwise.

Note that we have

f(
∑
σ∈Σr

aσTσ, Tid) = aid(Tid, Tid) = aid.

Thus for m ∈ M we get ψ̃(m) = f(ψ(m), Tid). We will prove that
ψ → ψ̃ is an H-module homomorphism. Recall that HomR(M,R)
is a left H-module by (hϕ)(m) = ϕ(mh), where h ∈ H, m ∈ M ,
ϕ ∈ HomR(M,R), and HomH(M,H) is a left H-module by (hψ)(m) =
hψ(m), where h ∈ H, ψ ∈ HomH(M,H), m ∈M .

Proposition 9.1. The map

FM : HomH(M,H)→ HomR(M,R)

ψ 7→ ψ̃
(13)

where ψ̃(m) = f (ψ(m), Tid) for m ∈ M , is an isomorphism of H-
modules.

Proof. Given h ∈ Hr,q, ψ ∈ HomH(M,H), and m ∈M , we have›hψ(m) = f ((hψ)(m), Tid) = f(hψ(m), Tid) = f(h, ψ(m)Tid)

= f(h, ψ(m)) = f(ψ(m), h) = f(Tid, ψ(m)h) = f(Tid, ψ(mh))

= f(ψ(mh), Tid) = ψ̃(mh) = (hψ̃)(m).

Proposition 9.2. Let M and N be right H-modules. Then the fol-
lowing diagram is commutative

HomH(M,H)⊗HomH(N,M)
FM⊗id //

◦
��

HomR(M,R)⊗HomH(N,M)

◦
��

HomH(N,H)
FN // HomR(N,R).

Proof. Let ϕ : N → M , ψ : M → H be homomorphisms of right H-
modules. Then for all n ∈ N›ψϕ(n) = f(ψϕ(n), Tid) = f(ψ(ϕ(n)), Tid) = ψ̃(φ(n)) = ψ̃φ(n).

Thus ›ψϕ = ψ̃ϕ.
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Returning to our setting we will abbreviate FMµ to Fµ. For each
k ≥ 0 define the map τk : F (Bλ)k → Ck,λ to be the direct sum

τk :=
⊕

µ(1).....µ(k).λ

µ(1),...,µ(k)∈Λ(n,r)

Fµ(1) ⊗ id⊗ · · · ⊗ id.

Then τk is an isomorphism of H-modules for k ≥ 0. From Proposi-
tion 9.2, we get that for every k ≥ 1

dk,0τk = τk−1dk,0.

Moreover it is obvious that for all k ≥ 1 and 1 ≤ t ≤ k

dk,tτk = τk−1dk,t.

Thus for all k ≥ 1 we have dkτk = τk−1dk. This shows that τ =
(τk)k≥1 is a chain transformation between the truncated complexes

F (Bλ)≥0 and C̃≥0,λ. Since every τk is an isomorphism of H-modules,

we get that F (Bλ) and C̃∗,λ are isomorphic in non-negative degrees as
promised. The existence of an isomorphism in degree −1 follows from
the commutative diagram with exact rows

F (Bλ)1
d1 //

τ1

��

F (Bλ)0
d0 //

τ0

��

F (Wλ) //

∃!
��

0

Cλ1
d1 // Cλ0

d0 // Sλ // 0.

Thus we proved

Theorem 9.3. Let λ be a partition of r. Then the complexes C̃λ∗ and

F (Bλ) are isomorphic. In particular, C̃λ∗ is an exact complex.
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