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Abstract. We find some curvature properties of 3-quasi-Sasakian manifolds

which are similar to some well-known identities holding in the Sasakian case.
As an application, we prove that any 3-quasi-Sasakian manifold of constant

horizontal sectional curvature is necessarily either 3-α-Sasakian or 3-cosymplectic.
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1. Introduction

An important topic in contact Riemannian geometry is the study of curvature
properties of almost contact metric manifolds (see [1] for details). In some cases it
is in fact possible to characterize a manifold in terms of its curvature tensor field.
The typical example is given by Sasakian manifolds, which are characterized by the
well-known condition

(1) RXY ξ = η(Y )X − η(X)Y.

A key role in this area is played by the interaction between the curvature and the
structure tensors (φ, ξ, η) of an almost contact metric manifold. For instance, in
any Sasakian manifold one has

R(X,Y, Z,W ) = R(X,Y, φZ, φW )− g(X,Z)g(Y,W ) + g(X,W )g(Y,Z)

+ g(X,φZ)g(Y, φW )− g(X,φW )g(Y, φZ)(2)

and in any cosymplectic manifold

(3) R(X,Y, Z,W ) = R(X,Y, φZ, φW )

for any vector fields X,Y, Z,W . The relations (2) and (3) turn out to be useful for
studying the φ-sectional curvature and the Ricci tensor and deriving other proper-
ties on the geometry of the manifold. A generalization of (2) and (3) was proposed
by Janssens and Vanecke in [9]. They defined a C(α)-manifold as a normal almost
contact metric manifold whose curvature tensor satisfies the condition

R(X,Y, Z,W ) = R(X,Y, φZ, φW ) + α
(
−g(X,Z)g(Y,W ) + g(X,W )g(Y, Z)

+ g(X,φZ)g(Y, φW )− g(X,φW )g(Y, φZ)
)
,

for some α ∈ R. C(α)-manifolds include Sasakian, cosymplectic and Kenmotsu
manifolds. Another generalization, due to Blair, is given by the notion of quasi-
Sasakian structure ([2]). By definition, a quasi-Sasakian manifold is a normal al-
most contact metric manifold whose fundamental 2-form Φ := g(·, φ·) is closed.
This class includes Sasakian and cosymplectic manifolds and can be viewed as an
odd-dimensional counterpart of Kähler structures. Although quasi-Sasakian mani-
folds were studied by several different authors and are considered a well-established
topic in contact Riemannian geometry, only little about their curvature properties
is known. With this regard we mention the attempts of Olszak ([10]) and Rus-
tanov ([12]). On the other hand, if a quasi-Sasakian manifold is endowed with two
additional quasi-Sasakian structures defining a 3-quasi-Sasakian manifold then, as
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shown in [3] and [4], the quaternionic-like relations force the three structures to
satisfy more restrictive geometric conditions.

Motivated by these considerations, in this paper we study the curvature prop-
erties of 3-quasi-Sasakian manifolds. We are able to find conditions similar to (1),
(2), and (3) for the 3-quasi-Sasakian case. Moreover, we present one application
of these properties by proving a formula relating the three φ-sectional curvatures
of a 3-quasi-Sasakian manifold. We then obtain that a 3-quasi-Sasakian manifold
has constant horizontal sectional curvature if and only if it is either 3-c-Sasakian or
3-cosymplectic. In the first case it is a space of constant curvature c2/4 and in the
latter case it is flat. The last result extends to the quasi-Sasakian setting a famous
theorem of Konishi ([7]).

2. Preliminaries

A quasi-Sasakian manifold (M,φ, ξ, η, g) of dimension 2n + 1 is said to be of
rank 2p (for some p ≤ n) if (dη)

p 6= 0 and η ∧ (dη)
p

= 0 on M , and to be of rank

2p + 1 if η ∧ (dη)
p 6= 0 and (dη)

p+1
= 0 on M (cf. [2, 13]). It was proven in

[2] that there are no quasi-Sasakian manifolds of (constant) even rank. Particular
subclasses of quasi-Sasakian manifolds are c-Sasakian manifolds (usually called α-
Sasakian), which have rank 2n+ 1, and cosymplectic manifolds (rank 1) according
to satisfy, in addition, dη = cΦ (c 6= 0) and dη = 0, respectively. For c = 2 we
obtain the well-known Sasakian manifolds.

If on the same manifold M there are given three distinct almost contact struc-
tures (φ1, ξ1, η1), (φ2, ξ2, η2), (φ3, ξ3, η3) satisfying the following relations, for any
even permutation (α, β, γ) of {1, 2, 3},

φγ = φαφβ − ηβ ⊗ ξα = −φβφα + ηα ⊗ ξβ ,
ξγ = φαξβ = −φβξα, ηγ = ηα ◦ φβ = −ηβ ◦ φα,

(4)

we say that (φα, ξα, ηα), α ∈ {1, 2, 3}, is an almost contact 3-structure. Then the
dimension of M is necessarily of the form 4n + 3. This notion was introduced
independently by Kuo ([8]) and Udriste ([14]). An almost 3-contact manifold M is
said to be hyper-normal if each almost contact structure (φα, ξα, ηα) is normal.

In [8] Kuo proved that given an almost contact 3-structure (φα, ξα, ηα), there
exists a Riemannian metric g compatible with each of the three almost contact
structure and hence we can speak of almost contact metric 3-structure. It is well
known that in any almost 3-contact metric manifold the Reeb vector fields ξ1, ξ2, ξ3
are orthonormal with respect to the compatible metric g. Moreover, by putting
H =

⋂3
α=1 ker (ηα) we obtain a codimension 3 distribution on M and the tangent

bundle splits as the orthogonal sum TM = H ⊕ V, where V = 〈ξ1, ξ2, ξ3〉. The
distributions H and V are called, respectively, horizontal and Reeb distribution.

A 3-quasi-Sasakian structure is an almost contact metric 3-structure such that
each structure (φα, ξα, ηα, g) is quasi-Sasakian. Remarkable subclasses are 3-Sasakian
and 3-cosymplectic manifolds. Another subclass of 3-quasi-Sasakian structures is
given by almost contact metric 3-structures (φα, ξα, ηα, g) such that each structure
(φα, ξα, ηα, g) is cα-Sasakian. It is proven in [6] that the non-zero constants c1, c2,
c3 must coincide. Therefore we speak of 3-c-Sasakian manifolds. Many results on
3-quasi-Sasakian manifolds were obtained in [3] and [4]. We collect some of them
in the following theorem.

Theorem 1 ([3, 4]). Let (M,φα, ξα, ηα, g) be a 3-quasi-Sasakian manifold of di-
mension 4n + 3. Then, for any even permutation (α, β, γ) of {1, 2, 3}, the Reeb
vector fields satisfy

(5) [ξα, ξβ ] = cξγ ,
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for some c ∈ R. Moreover, the 1-forms η1, η2, η3 have the same rank, called the
rank of the 3-quasi-Sasakian manifold M . The rank of M is 1 if and only if M is
3-cosymplectic and it is an integer of the form 4l + 3, for some l ≤ n, in the other
cases. Furthermore, any 3-quasi-Sasakian manifold of rank 4n + 3 is necessarily
3-c-Sasakian.

We point out that the constant c in (5) is zero if and only if the manifold is
3-cosymplectic. Moreover, for any 3-quasi-Sasakian manifold of rank 4l+ 3 one can
consider the distribution

E4m := {X ∈ H|iXηα = 0, iXdηα = 0 for any α = 1, 2, 3} (l +m = n)

and its orthogonal complement E4l+3 := (E4m)⊥. We will also consider the dis-
tribution E4l which is the orthogonal complement of V in E4l+3. A remarkable
property of 3-quasi-Sasakian manifolds, which in general does not hold for a sin-
gle quasi-Sasakian structure, is that both E4l+3 and E4m are integrable and define
Riemannian foliations with totally geodesic leaves. In particular it follows that
∇E4l+3 ⊂ E4l+3 and ∇E4m ⊂ E4m.

All manifolds considered in the paper are assumed to be connected. The Spivak’s

conventions for the differential, the wedge product and the interior product are adopted.

3. Main results

We recall that in any 3-quasi-Sasakian manifold of rank 4l + 3 for each α ∈
{1, 2, 3} one defines two tensors ψα and θα by

ψα :=

{
φα, on E4l+3

0, on E4m θα :=

{
0, on E4l+3

φα, on E4m.

Moreover we define Ψα(X,Y ) := g(X,ψαY ) and Θα(X,Y ) := g(X, θαY ) for all
X,Y ∈ Γ(TM). The tensors ψα and Ψα satisfy

(6) dηα = cΨα, ∇ξα = − c
2
ψα

(cf. [4, (4.8)] and [4, Theorem 4.3]). Since φα = ψα+θα one has that Φα = Ψα+Θα.
Consequently, due to (6), Ψα and Θα are closed 2-forms. We start with a few
lemmas. The first is immediate.

Lemma 2. In any 3-quasi-Sasakian manifold of rank 4l + 3 one has,

g(ψ2
αX,Y ) = g(X,ψ2

αY ),(7)

ψ3
α = −ψα,(8)

∇ηα =
c

2
Ψα.(9)

Lemma 3. In any 3-quasi-Sasakian manifold of rank 4l + 3 one has

(10) (∇Xψα)Y =
c

2

(
ηα(Y )ψ2

αX − g(ψ2
αX,Y )ξα

)
.

Proof. Let X ∈ Γ(TM). According to the orthogonal decomposition TM = E4l+3⊕
E4m we may distinguish the following two cases. (i) Assume Y ∈ Γ(E4l+3). Then,

since ∇E4l+3 ⊂ E4l+3, we have (∇Xψα)Y = ∇X(ψαY ) − ψα∇XY = ∇X(φαY ) −
φα∇XY = (∇Xφα)Y . The assertion then follows from [4, (4.9)]. (ii) If Y ∈ Γ(E4m),
then, as ∇E4m ⊂ E4m, one has (∇Xψα)Y = ∇X(ψαY ) − ψα∇XY = 0. On the
other hand, by using (7) and Y ∈ Γ

(
E4m

)
⊂ ker (ηα) ∩ ker (ψα), one has

c

2

(
ηα(Y )ψ2

αX − g(ψ2
αX,Y )ξα

)
= − c

2
g
(
X,ψ2

αY
)
ξα = 0.

�
3



By using (10) and (8) we get straightforwardly the following formula for ∇ψ2
α.

Lemma 4. In any 3-quasi-Sasakian manifold of rank 4l + 3 one has

(11) (∇Xψ2
α)Y =

c

2
(Ψα(X,Y )ξα − ηα(Y )ψαX) .

Theorem 5. In any 3-quasi-Sasakian manifold the following formula holds

RXY ξα =
c2

4

(
ηα(X)ψ2

αY − ηα(Y )ψ2
αX
)
.

Proof. If the manifold is 3-cosymplectic, i.e. c = 0, the claim follows easily from
the property that each ξα is parallel. Thus we can assume that M has rank 4l+ 3.
By using (6), (10), and (7), we have

RXY ξα =
c

2
(∇Y (ψαX)−∇X(ψαY ) + ψα[X,Y ])

=
c

2
((∇Y ψα)X − (∇Xψα)Y )

=
c2

4

(
ηα(X)ψ2

αY − g(ψ2
αY,X)ξα − ηα(Y )ψ2

αX + g(ψ2
αX,Y )ξα

)
=
c2

4

(
ηα(X)ψ2

αY − ηα(Y )ψ2
αX
)
.

�

Theorem 6. Let M be a 3-quasi-Sasakian manifold of rank 4l + 3. Then,

RXY φαZ − φαRXY Z =
c2

4

(
(Ψα(Y, ψαZ)− ηα(Y )ηα(Z))ψαX − (Ψα(X,ψαZ)

−ηα(X)ηα(Z))ψαY −Ψα(Y,Z)ψ2
αX + Ψα(X,Z)ψ2

αY

+ (ηα(X)Ψα(Y, Z)− ηα(Y )Ψα(X,Z)) ξα
)
.

Proof. The claim follows from a long computation using (10), (11) and (8). �

Corollary 7. In any 3-quasi-Sasakian manifold of rank 4l + 3 one has

g(RXY φαZ,W ) + g(RXY Z, φαW ) = −Pα(X,Y, Z,W ),

where Pα is the tensor defined by

Pα(X,Y, Z,W ) =
c2

4

(
Ψα(Y,Z)Ψα(X,ψαW )−Ψα(X,Z)Ψα(Y, ψαW )

+ Ψα(Y, ψαZ)Ψα(X,W )−Ψα(X,ψαZ)Ψα(Y,W )

− ηα(X)ηα(W )Ψα(Y, Z)− ηα(Y )ηα(Z)Ψα(X,W )

+ ηα(Y )ηα(W )Ψα(X,Z) + ηα(X)ηα(Z)Ψα(Y,W )
)
.

Corollary 8. In any 3-quasi-Sasakian manifold of rank 4l + 3 one has

g(RφαXφαY φαZ, φαW ) =
c2

4

(
g(RXY Z,W ) + Ψα(Z,X)Ψα(W,ψαφαY )

+ Ψα(Z,ψαX)Ψα(W,φαY )

+ Ψα(φαX,Z)Ψα(φαY, ψαφαW )

+ Ψα(φαX,ψαZ)Ψα(φαY, φαW )
)
,

for any X,Y, Z,W ∈ Γ(H).

Proof. By using Corollary 7 twice, one obtains

g(RφαXφαY φαZ, φαW ) = g(RXY Z,W )− Pα(Z,W,X, φαY )− Pα(φαX,φαY,Z, φαW ).
4



Next, by using (7) and the property that φα and ψα commute, we get that

Pα(Z,W,X, φαY ) + Pα(φαX,φαY,Z, φαW ) = −c
2

4

(
Ψα(Z,X)Ψα(W,ψαφαY )

+ Ψα(Z,ψαX)Ψα(W,ψαY )

+ Ψα(φαX,Z)Ψα(φαY, ψαφαW )

+ Ψα(φαX,ψαZ)Ψα(φαY, φαW )
)
.

Thus the assertion follows. �

We recall that on an almost contact metric manifold (M,φ, ξ, η, g) one defines a
φ-section as the 2-plane spanned by X and φX, where X is a unit vector field or-
thogonal to ξ. Then the sectional curvature H(X) := K(X,φX) = g(RXφXφX,X)
is called φ-sectional curvature. In a 3-quasi-Sasakian manifold M , we denote by
Hα the φα-sectional curvature.

Theorem 9. For any X ∈ Γ(H) the φα-sectional curvatures of a 3-quasi-Sasakian
manifold of rank 4l + 3 satisfy the following relation

(12) H1(X) +H2(X) +H3(X) =
3c2

4
g(XE4l , XE4l)

2,

where XE4l denotes the projection of X onto the distribution E4l. In particular,

(13) H1(X) +H2(X) +H3(X) =

{
3c2

4 , for any X ∈ Γ(E4l);
0, for any X ∈ Γ(E4m).

Proof. From Corollary 7 it follows that, for any X,Y, Z,W ∈ Γ(H),

g(RXY φαZ, φαW ) = g(RXY Z,W ) +
c2

4

(
Ψα(Y, ψαZ)g(ψαX,φαW )

−Ψα(X,ψαZ)g(ψαY, φαW )−Ψα(Y,Z)g(ψ2
αX,φαW )(14)

+ Ψα(X,Z)g(ψ2
αY, φαW )

)
.

In (14) we put α = 1, Z = X and Y = W = φ3X, getting

−g(RXφ3Xφ1X,φ2X) = g(RXφ3XX,φ3X) +
c2

4

(
−g(φ3X,ψ

2
1X)g(ψ1X,φ2X)

+ g(X,ψ2
1X)g(ψ1φ3X,φ2X) + g(φ3X,ψ1X)g(ψ2

1X,φ2X)

− g(X,ψ1X)g(ψ2
1φ3X,φ2X)

)
.

By using the definition of the operators ψα and the property that g(φα·, ·) =
−g(·, φα·), one proves that g(ψ1X,φ2X), g(φ3X,ψ1X), and g(X,ψ1X) vanish.
Hence the previous relation becomes

−g(RXφ3Xφ1X,φ2X) = g(RXφ3XX,φ3X) +
c2

4
g(X,ψ2

1X)g(ψ1φ3X,φ2X)

= −H3(X) +
c2

4
g(XE4l , XE4l)

2(15)

since g(X,ψ2
1X)g(ψ1φ3X,φ2X) = −g(X,φ2

1XE4l)g(φ2XE4l , φ2X) = g(XE4l , X)2 =
g(XE4l , XE4l)

2. Making cyclic permutations of {1, 2, 3}, one gets

−g(RXφ1Xφ2X,φ3X) = −H1(X) +
c2

4
g(XE4l , XE4l)

2(16)

−g(RXφ2Xφ3X,φ1X) = −H2(X) +
c2

4
g(XE4l , XE4l)

2.(17)

Then by summing (15), (16), (17), the claim follows from the Bianchi identity. �
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The notion of horizontal sectional curvature ([7]) plays in the context of 3-
structures the same role played by the φ-sectional curvature in contact metric
geometry. Let (φα, ξα, ηα, g) be an almost contact 3-structure on M . Let X be
a horizontal vector at a point x. Then one can consider the 4-dimensional subspace
Hx(X) of TxM defined by Hx(X) = 〈X,φ1X,φ2X,φ3X〉. Hx(X) is called the
horizontal section determined by X. If the sectional curvature for any two vectors
belonging to Hx(X) is a constant k(X) depending only upon the fixed horizontal
vector X at x, then k(X) is said to be the horizontal sectional curvature with re-
spect to X at x. Now let X be an arbitrary horizontal vector field on M . If the
horizontal section Hx(X) at any point x of M has a horizontal sectional curvature
whose value k(X) is independent of X, we say that the manifold M is of constant
horizontal sectional curvature at x. It is known ([7]) that a 3-Sasakian manifold
has constant horizontal sectional curvature if and only if it has constant curvature
1. We now consider the 3-quasi-Sasakian setting.

Theorem 10. A 3-quasi-Sasakian manifold has constant horizontal sectional cur-
vature if and only if it is either 3-c-Sasakian or 3-cosymplectic. In the first case it
is a space of constant curvature c2/4, in the latter it is flat.

Proof. We distinguish the case when M is 3-cosymplectic and M is 3-quasi-Sasakian
of rank 4l+3. Let M be a 3-cosymplectic manifold of constant horizontal sectional
curvature k and let x be a point of M . There exists a local Riemannian submersion
π defined on an open neighborhood of x with base space a hyper-Kähler manifold
(M ′, J ′α, g

′). We recall the well-known O’Neill formula ([11]) relating the sectional
curvatures of the total and base spaces

(18) K(Y,Z) = K ′(Y,Z)− 3 ‖AY Z‖ = K ′(Y,Z),

A denoting the O’Neill tensor, which in this case vanishes identically since the
distribution H is integrable. As the value of k does not depend of the horizontal
section Hx(X) at x, we can choose X to be a basic vector field. Since for any
α, β ∈ {1, 2, 3}, Lξαφβ = 0, Hx(X) projects to a horizontal section Hx′(X ′) on
x′ = π(x). Then, (18) implies that M ′ has constant horizontal sectional curvature
k. It is well known that a hyper-Kähler manifold of constant horizontal sectional
curvature is flat, hence by using (18) again we get that M is horizontally flat. On
the other hand, for any Z ∈ Γ(TM), we have K(Z, ξα) = 0 (cf. [5, Lemma 2]).
Thus M is flat. Let us now suppose that M is a 3-quasi-Sasakian manifold of rank
4l + 3 with constant horizontal sectional curvature k. By definition of horizontal
sectional curvature, k = k(X) = H1(X) = H2(X) = H3(X). Suppose the rank of
M is not maximal, that is E4l does not coincide with H. Then, from (13), we get

that k(X) = c2

4 for X ∈ Γ(E4l) and k(X) = 0 for X ∈ Γ(E4m). This is in contrast
with the fact that the value of k does not depend of X. Thus M is necessarily of

maximal rank and k = c2

4 . Hence, due to [4, Corollary 4.4], M is 3-c-Sasakian.
Observe now that one can apply a homothety to the given structure, that is a
change of the structure tensors of the following type

(19) φ̄α := φα, ξ̄α :=
2

c
ξα, η̄α :=

c

2
ηα, ḡ :=

c2

4
g,

Then it is easy to check that the resulting structure (φ̄α, ξ̄α, η̄α, ḡ) is 3-Sasakian and
its horizontal sectional curvature is proportional to that of (φα, ξα, ηα, g). There-
fore, due to [7], (M, φ̄α, ξ̄α, η̄α, ḡ) is a space of constant sectional curvature and

therefore the same is true for (M,φα, ξα, ηα, g). Its sectional curvature is k = c2

4 . �
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