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Abstract. Using the Hard Lefschetz Theorem for Sasakian manifolds, we find

two examples of compact K-contact nilmanifolds with no compatible Sasakian
metric in dimensions five and seven, respectively.
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1. Introduction

Construction of examples of compact symplectic manifolds with no Kähler struc-
tures is a topic which attracted wide interest in recent years (see e.g. [17] and refer-
ence therein). Many techniques have been used to identify such examples. The first
technique used to prove that some examples were non-Kähler consists in showing
that some odd Betti number of the manifold is not even and thus the manifold
cannot be Kähler (see e.g. [16]). In other cases (e.g. [2]), when the all odd Betti
numbers are even, one possibility to prove that a certain symplectic manifold can-
not admit a Kähler structure is to show that it does not satisfy the Hard Lefschetz
theorem.

In odd dimensions, a Hard Lefschetz theorem for compact co-Kähler manifolds
was proven in [6]. However, until recently only the Betti number technique was
available to show that a compact K-contact manifold does not admit any Sasakian
structure. An example of a compact K-contact manifold with no Sasakian structure
was found by Boyer and Galicki in [4, Example 7.4.16]. They constructed a non-
trivial T3-bundle over T2 and proved that it is non-Sasakian since the first Betti
number is odd. Recently a Hard Lefschetz theorem for compact Sasakian manifolds
was proven ([5]).

In this paper we give two examples of compact co-orientable K-contact manifolds
with no Sasakian structure compatible with the contact one. The examples, in
dimensions five and seven respectively, are intended as first applications of our Hard
Lefschetz theorem. We take advantage of the fact that lately Kutsak has classified
the invariant contact structures on nilmanifolds up to dimension seven in [11].
Thus, by using this classification one can construct examples of compact contact
nilmanifolds in any odd dimension 3, 5, 7. Actually, since the only 3-dimensional
nilpotent Lie algebra admitting an invariant contact structure is the Heisenberg
algebra, the non-trivial dimensions are 5 and 7. Among these examples we find one
in dimension 5 with b1 = 2 and one in dimension 7 with b1 = 4 and b3 = 8. Thus,
the Betti numbers data do not give us any obstruction for the manifolds to admit
a Sasakian metric. However, we prove that, while both nilmanifolds are endowed
with a left-invariant K-contact structure, they cannot admit any Sasakian metric
compatible with the underlying contact structure since they do not satisfy the Hard
Lefschetz Theorem.

Concerning the question of finding non-trivial examples of K-contact manifolds
which cannot carry any Sasakian metric, we mention the very recent paper [9],
where compact and simply connected examples in dimensions ≥ 11 are found by
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using some geometric techniques based on the notion of contact fatness developed by
Lerman in [12] and [13]. However, we notice that in [9] the fact that the manifold
is non-Sasakian was established by proving that the third Betti number is odd.
Finally, when the present paper was in the final stages of preparation, a new result
appeared in [15] where examples of simply connected K-contact manifolds without
any Sasakian structures in dimensions ≥ 9 are found by using the Hard Lefschetz
Theorem.

2. Preliminaries

In this section we recall some basic definitions and properties in contact Rie-
mannian geometry. For further details we refer the reader to the monographs [3]
or [4].

Let M be a smooth manifold of dimension 2n+ 1. A 1-form η on M is called a
contact form if η ∧ dηn is a volume form. Then the pair (M,η) is called a (strict)
contact manifold. In any contact manifold one proves the existence of a unique
vector field ξ, called the Reeb vector field, satisfying the properties

iξη = 1, iξdη = 0.

Given a contact manifold (M,η) there always exists a Riemannian metric g and a
tensor field φ of type (1, 1) such that the following conditions hold

η = g(·, ξ),(2.1)

dη = 2g(·, φ ·),(2.2)

φ2 = −I + η ⊗ ξ,(2.3)

where I : TM → TM denotes the identity mapping. From (2.1)–(2.3) it follows
that φξ = 0, η ◦ φ = 0 and

g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any X,Y ∈ Γ(TM). Moreover, (2.2) implies that the bilinear form Φ := g(·, φ·)
is in fact a 2-form, which is sometimes called Sasaki form. The manifold M together
with the above geometric structure (φ, ξ, η, g) is called a contact metric manifold.

A Sasakian manifold is a contact metric manifold for which the following nor-
mality condition is satisfied

[φ, φ]FN + 2dη ⊗ ξ = 0,

where [−,−]FN is the Frölicher-Nijenhuis bracket (see e.g. [10]).
An equivalent way to express the Sasakian condition is to say that the Riemann-

ian cone of (M,η, g) is a Kähler manifold.
In any Sasakian manifold the Reeb vector field is Killing. This last property is

equivalent to the condition Lξφ = 0. More generally, a contact metric manifold
whose Reeb vector field is Killing is called K-contact. Thus any Sasakian manifold
is K-contact and it is known that the converse holds in dimension 3.

A well-known obstruction to the existence of a Sasakian structure on a contact
manifold (M,η) is given by the following theorem, due to Fujitani.

Theorem 2.1 ([8]). Let (M,η) be a compact contact manifold of dimension 2n+1.
If M admits a compatible Sasakian structure, then for any odd integer p ≤ n + 1
the Betti numbers bp are even.

In [5] an obstruction stronger than the one expressed in Theorem 2.1 was found,
by proving an odd dimensional counterpart of the celebrated Hard Lefschetz The-
orem.
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Theorem 2.2 ([5]). Let (M,φ, ξ, η, g) be a compact Sasakian manifold of dimension
2n+ 1. Then for each integer 0 ≤ p ≤ n the maps

(2.4)
Lefn−p : Hn−p(M)→ Hn+p+1(M)

[β ] 7→ [ η ∧ (dη)p ∧ΠM β ] ,

are isomorphisms, ΠMβ denoting the orthogonal projection of β on the space of
harmonic forms.

Notice that, contrary to the even dimensional case, it is not true that the wedge
multiplication by η or by η∧dη maps harmonic forms into harmonic forms, so that
one is forced to use the metric in order to define the Lefschetz maps (2.4). Thus,
a priori, one could expect that different Sasakian metrics, all compatible with
the same underlying contact form, could lead to different Lefschetz isomorphisms.
However, in [5, Theorem 4.5] it is proved that the Lefschetz isomorphisms are
independent of the metric. The proof of [5, Theorem 4.5] suggests to introduce
the notion of contact Lefschetz manifold. Namely, according to [5], let us define
the Lefschetz relation between cohomology groups Hp(M) and H2n+1−p(M) of a
contact manifold (M,η) to be

RLefp =
{ (

[β] , [εηL
n−pβ]

) ∣∣β ∈ Ωp(M), dβ = 0, iξβ = 0, Ln−p+1β = 0
}
.

Here, given α ∈ Ωk(M), the operator εα is defined by

εαβ = α ∧ β,
L = ε 1

2 dη and the conditions dβ = 0, iξβ = 0, and Ln−p+1β = 0 imply that the

((2n+ 1)− p)-form εηL
n−pβ is closed and [εηL

n−pβ] = Lefp[β] (see Theorem 4.5 in
[5]). Therefore if (M,η) admits a compatible Sasakian metric, due to Theorem 2.2
it follows that RLefp is the graph of the isomorphism Lefp. More generally, a com-
pact contact manifold (M,η) is said to be Lefschetz contact if it satisfies the hard
Lefschetz property, that is, for every p ≤ n the relation RLefp is the graph of an

isomorphism between Hp(M) and H2n+1−p(M).
We point out that, according to [5, Theorem 5.2], every Lefschetz contact mani-

fold satisfies the restrictions on the Betti numbers for compact Sasakian manifolds
stated in Theorem 2.1.

3. Examples of compact K-contact manifolds with no compatible
Sasakian metric

Hereinafter, by using the aforementioned Hard Lefschetz Theorem for Sasakian
manifolds, we shall present two examples of compact contact manifolds (actually,
K-contact manifolds) of dimension 5 and 7, respectively, which do not admit any
compatible Sasakian metric. As we shall see, one cannot deduce the assertion from
the well-known restrictions concerning the Betti numbers of the manifold.

Example 3.1. Let us consider the 5-dimensional nilpotent Lie algebra g with non-
zero Lie brackets

[X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5, [X2, X3] = X5.(3.1)

Let us denote by αi the dual 1-form of the vector Xi, for any i ∈ {1, . . . , 5}.
Then by (3.1) it follows that

dα1 = 0, dα2 = 0, dα3 = −α1 ∧ α2, dα4 = −α1 ∧ α3,

dα5 = α1 ∧ α4 + α2 ∧ α3.
(3.2)

Here, d: ∧k g∗ → ∧k+1g∗ is the Chevalley-Eilenberg differential in the Lie algebra
g. We have α5 ∧ (dα5)2 = 2α1 ∧ α2 ∧ α3 ∧ α4 ∧ α5, hence if η is the left-invariant
1-form induced by α5 on the simply connected Lie group G whose Lie algebra is
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g, then η is a contact 1-form on G. The corresponding Reeb vector field is the
left-invariant vector field ξ on G induced by X5.

Now, let us consider a co-compact discrete subgroup Γ of G. Such a subgroup ex-
ists by the Malcev’s criterion, since in our case the structure constants are integers.
Then the quotient M = G/Γ is a compact nilmanifold.

Remark 3.2. The Lie group G is isomorphic to R5 endowed with the multiplication
defined by

(x1, x2, x3, x4, x5)·(y1, y2, y3, y4, y5) =
(
x1 + y1, x2 + y2, x3 + y3 + x1y2, x4 + y4

+ x1y3 +
(x1)2

2
y2, x5 + y5 − x1y4 −

(
(x1)2

2
+ x2

)
y3

− x1

2
(y2)2 −

(
(x1)3

6
+ x1x2

)
y2

)
,

for (x1, x2, x3, x4, x5), (y1, y2, y3, y4, y5) ∈ R5. A basis of the space of the left-
invariant 1-forms is given by

α1 = dx1, α2 = dx2, α3 = dx3 − x1dx2, α4 = dx4 − x1dx3 +
(x1)2

2
dx2,

α5 = dx5 + x1dx4 − (x1)2

2
dx3 +

(x1)3

6
dx2 + x2dx3.

As a co-compact discrete subgroup of G, we can take for example

Γ = 6Z× Z4.

By the Nomizu’s Theorem, H∗
DR(M) ∼= H∗(g), where H∗(g) = H∗(g,R) denotes

the Chevalley-Eilenberg cohomology of the Lie algebra g with the coefficients in the
trivial module R.

By (3.2) we have that

H1(g) = 〈[α1], [α2]〉.

Thus b1(M) = 2, so that the Betti numbers do not give any obstruction for (M,η)
to admit a Sasakian structure. Now, according to [5, Section 5], let us consider the
Lefschetz relation

RLefp =
{

([β], [η ∧ (dη)2−p ∧ β]) | β ∈ Ωp(M), dβ = 0, iξβ = 0, (dη)3−p ∧ β = 0
}
.

As a consequence of [5, Theorem 4.5], if a 5-dimensional contact manifold (M,η)
admits any compatible Sasakian metric then RLefp is the graph of an isomorphism
for every p ≤ 2. Actually, let us prove that in our case the above property does not
hold for p = 1. Let us consider the 1-form β on M induced by the left-invariant
1-form on G associated to α2. Clearly β is closed, iξβ = 0 and

(dη)2 ∧ β = 0.

Moreover, using that [α2] is a non-zero element of H1(g), we deduce that [β] is a
non-zero element of H1

DR(M). We prove that

[η ∧ dη ∧ β] = 0.

Indeed we have

d(α3 ∧ α4 ∧ α5) = −α1 ∧ α2 ∧ α4 ∧ α5.

Therefore, η ∧ dη ∧ β is an exact 4-form on M . In fact, η ∧ dη ∧ β = −dγ,
with γ the 3-form on M induced by the left-invariant 3-form on G associated to
α3 ∧ α4 ∧ α5 ∈ ∧3g∗. So, RLef1 is not the graph of an isomorphism and we
conclude that M cannot carry any (not necessarily left-invariant) Sasakian metric
compatible with η.
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Remark 3.3. We point out that though (M,η) cannot admit a Sasakian metric,
it admits a (even left-invariant) K-contact structure. Indeed, we can define an
endomorphism φ : g −→ g by setting

φX1 = −X4, φX2 = −X3, φX3 = X2, φX4 = X1, φX5 = 0

and we can define a positive definite bilinear form g by declaring that {X1, . . . , X5}
is g-orthonormal. Then (φ, ξ, η, g) induces a left-invariant contact metric structure
on G which descends to the quotient. Since X5 belongs to the center of the Lie
algebra g, we have immediately that the Reeb vector field ξ is Killing and thus the
structure is K-contact.

Example 3.4. Now, we shall present an example of a compact 7-dimensional K-
contact manifold which does not admit any compatible Sasakian metric. As we shall
see, one cannot deduce this fact by Theorem 2.1.

In a recent paper [11], Kutsak has classified all nilpotent 7-dimensional Lie al-
gebras carrying a left-invariant contact structure. Let us consider the example
(1457B) in that paper, namely the nilpotent Lie algebra g with non-zero Lie brackets

[X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X7,

[X2, X3] = X7, [X5, X6] = X7.
(3.3)

Let us denote by αi the dual 1-form of the vector Xi, for any i ∈ {1, . . . , 7}. Then
by (3.3) it follows that

dα1 = 0, dα2 = 0, dα5 = 0, dα6 = 0, dα3 = −α1 ∧ α2,

dα4 = −α1 ∧ α3 dα7 = −α1 ∧ α4 − α2 ∧ α3 − α5 ∧ α6.
(3.4)

Let G be the simply connected Lie group G with Lie algebra g and consider the
left-invariant 1-form on G associated to α7. Then, such a 1-form defines a contact
structure on G. The corresponding Reeb vector field ξ is the left-invariant vector
field on G induced by X7.

Now, let us consider a co-compact discrete subgroup Γ of G. Then the quotient
M = G/Γ is a compact nilmanifold.

Remark 3.5. The Lie group G is isomorphic to R7 endowed with the multiplication
defined by

(x1, x2, x3, x4, x5, x6, x7) · (y1, y2, y3, y4, y5, y6, y7) =
(
x1 + y1, x2 + y2, x3 + y3 + x1y2,

x4 + y4 + x1y3 +
(x1)2

2
y2, x5 + y5, x6 + y6, x7 + y7 + x1y4

+

(
(x1)2

2
+ x2

)
y3 +

x1

2
(y2)2 +

(
(x1)3

6
+ x1x2

)
y2 + x5y6

)
,

for (x1, x2, x3, x4, x5, x6, x7), (y1, y2, y3, y4, y5, y6, y7) ∈ R7. A basis of the space of
the left-invariant 1-forms is given by

α1 = dx1, α2 = dx2, α3 = dx3 − x1dx2, α4 = dx4 − x1dx3 +
(x1)2

2
dx2,

α5 = dx5, α6 = dx6, α7 = dx7 − x1dx4 +
(x1)2

2
dx3 − (x1)3

6
dx2 − x2dx3 − x5dx6.

A co-compact discrete subgroup of G is

Γ = 6Z× Z6.
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By the Nomizu’s Theorem H∗
DR(M) ∼= H∗(g). By (3.4) we have that H1(g) =

〈[α1], [α2], [α5], [α6]〉. Thus b1(M) = 4. Furthermore, by using the library [14]
of the computer algebra system Singular [7], one can compute the dimension of
H3(g). Namely, the cohomology group H3(g,R) is isomorphic to the third Ext-group
Ext3

U(g)(R,R), where U(g) denotes the universal enveloping algebra of g. Note that
the Lie algebra g is a positively graded Lie algebra with the grading

deg(X1) = deg(X5) = 1, deg(X2) = 2, deg(X3) = 3,

deg(X4) = deg(X6) = 4, deg(X7) = 5.

Therefore, we can consider U(g) as a connected graded associative algebra. Thus

the dimension of ExtkU(g)(R,R) coincides with the rank of the (necessarily free) k-

th module of the minimal projective resolution of R over U(g). One can use the
procedure mres of Singular to construct such a resolution. As a result, we get that
b3(M) = 8. Therefore, the dimension of H3(g) does not give any obstruction to the
existence of a Sasakian structure on (M,η), where η is the contact 1-form on M
induced by the left-invariant 1-form on G associated to α7.

Now, according to [5, Section 5], let us consider the Lefschetz relation

RLefp =
{

([β], [η ∧ (dη)3−p ∧ β]) | β ∈ Ωp(M), dβ = 0, iξβ = 0, (dη)4−p ∧ β = 0
}
.

As recalled in Section 2, as a consequence of [5, Theorem 4.5], if a 7-dimensional
contact manifold (M,η) admits any compatible Sasakian metric then RLefp is the
graph of an isomorphism for every p ≤ 3. Actually, let us prove that in our case
the above property does not hold for p = 1. Let us consider the 1-form β on M
induced by the left-invariant 1-form on G associated to α1 ∈ g∗. First of all let us
check that RLef1 is defined for β. Indeed, β is closed, iξβ = 0 and

(dη)3 ∧ β = 0.

Clearly, [β] defines a non-zero element of H1
DR(M). Finally

[η ∧ (dη)2 ∧ β] = 0.

Indeed we have

α7 ∧ (dα7)2 ∧ α1 = −2α1 ∧ α2 ∧ α3 ∧ α5 ∧ α6 ∧ α7

= 2d(α2 ∧ α4 ∧ α5 ∧ α6 ∧ α7).

Therefore RLef1 is not the graph of an isomorphism and we conclude that M cannot
carry any (not necessarily left-invariant) Sasakian metric compatible with η.

Remark 3.6. We point out that though (M,η) cannot admit a Sasakian metric,
it admits a (even left-invariant) K-contact structure. Indeed, we can define an
endomorphism φ : g −→ g by setting

φX1 = X4, φX2 = X3, φX3 = −X2, φX4 = −X1,

φX5 = X6, φX6 = −X5, φX7 = 0.

and we can define a positive definite bilinear form g by declaring that {X1, . . . , X7}
is g-orthonormal. Then (φ,X7, α7, g) induces a left-invariant contact metric struc-
ture on G which descends to the quotient. Since X7 belongs to the center of the Lie
algebra g, we have immediately that the Reeb vector field is Killing and thus the
structure is K-contact.

Remark 3.7. In [1] it was proved that every nilpotent Lie algebra admitting a
Sasakian structure is necessarily isomorphic to the Heisenberg Lie algebra. Thus
one could think that the non-Sasakian property for our examples can be deduced
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from this result. Actually, our results are stronger, because we prove that the nil-
manifolds in Examples 3.1 and 3.4 cannot admit any compatible Sasakian structure,
not necessarily left-invariant.
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