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Abstract

We classify Borel-Schur algebras having finite representation type. We also de-
termine Auslander-Reiten sequences for a large class of simple modules over Borel-
Schur algebras. A partial information on the structure of the socles of Borel-Schur
algebras is given.

1 Introduction

Consider the general linear group GLn(K), where K is an infinite field, and let B+ be
the Borel subgroup of GLn(K) consisting of all upper triangular matrices in GLn (K).
The Schur algebras S(n, r) and S(B+) := S(B+, n, r) corresponding to GLn(K) and B+,
respectively, are powerful tools in the study of polynomial representations of GLn(K)
and B+. In particular, the simple modules of S(B+) labelled by partitions induce to
Weyl modules for S(n, r), and Weyl modules are central objects of study. In the recent
paper [18], Borel-Schur algebras were crucial to construct resolutions for Weyl modules.
Therefore one would like to understand better the algebra S(B+).

Given a finite-dimensional algebra over K, we denote by A-mod the category of all
finite-dimensional left A-modules. The algebra A is said to have finite representation
type if there are only finitely many isomorphism classes of indecomposable modules in
A-mod. Representation type of Schur algebras and of infinitesimal Schur algebras was
determined in [7] and [5]. In particular, it is known when Schur algebras are of finite
type. In this paper we obtain the corresponding classification for Borel-Schur algebras,
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determining the conditions on n, r and characteristic of K under which S(B+, n, r) is of
finite representation type. This is Theorem 6.6.

One of the motivations for this classification was the construction of Auslander-Reiten
sequences for Borel-Schur algebras. The class of these sequences, also known as almost
split sequences, is an important invariant of the module category of a finite-dimensional
algebra. It provides part of a presentation of the module category.

Taking advantage of the easy multiplication of some basis elements of S(B+), we
determine Auslander-Reiten sequences for a large class of simple S(B+)-modules. We
are able to do this, for an arbitrary n, under some combinatorial conditions. We note
that when these are satisfied, the relevant simple module does not occur in the socle of
S(B+).

Several recipes were given in the 80’s for the construction of Auslander-Reiten se-
quences (see for example [4, 10, 11]). Although we do not use any of these, we should
remark that the recipe due to J.A. Green [11] was the motivation for this work.

The proofs of our results in this article are based on an explicit description of the
multiplication in the Borel-Schur algebras S(B+, n, r) obtained by Green in [12]. It
would be interesting if one could get similar results for the Borel-Schur algebras of other
Dynkin types considered in [20].

The paper is organized as follows. Section 2 recalls the definitions of the algebras and
some basic background. We also describe the quiver presentation of S(B+, 2, r).

In Section 3, we construct Auslander-Reiten sequences ending in a simple module Kλ,
where λ satisfies a condition given in (3.5). As a by-product we see that this condition
implies that Kλ does not occur in the (left) socle of the algebra. The main result of this
section is Theorem 3.6. Some observations about the middle term of the Auslander-Reiten
sequences are also given.

In Section 4 we consider n = 2 and find Auslander-Reiten sequences ending in an
arbitrary simple module, that is we deal with the cases missing in Section 3. As an
easy consequence of the results in this section we can obtain a necessary and sufficient
condition for a simple module to occur in the socle of S(B+, 2, r). This and other results
involving the socle of the Borel-Schur algebra S(B+, n, r), for arbitrary n, are summarized
in Theorem 4.5.

In Section 5 we discuss reduction of rank. This may be of more general interest, and
is in fact used in Section 6, where we determine precisely which Borel-Schur algebras are
of finite type.

2 Notation and basic results

In this section we establish the notation we will use and give some basic results. We will
follow [17] and any undefined term may be found there. For further details on the general
theory of Schur algebras see [13] and [14].

Throughout the paper K is an infinite field of arbitrary characteristic, n and r are
arbitrary fixed positive integers and p is any prime number.

For any natural number s, we denote by s the set {1, . . . , s} and by Σs the symmetric
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group on s. Define the sets of multi-indices I(n, r) and of compositions Λ(n, r) by

I(n, r) = {i = (i1, . . . , ir) | iρ ∈ n for all ρ ∈ r}

Λ(n, r) = {λ = (λ1, . . . , λn) |λν ∈ Z, λν ≥ 0 (ν ∈ n),
∑
ν∈n

λν = r}.

We will often write I instead of I(n, r) and Λ instead of Λ(n, r).
Given i ∈ I and λ ∈ Λ, we say that i has weight λ and write i ∈ λ if, for all ν ∈ n,

we have λν = # { ρ ∈ r | iρ = ν}.
The group Σr acts on the right on I and on I × I, respectively, by

iπ = (iπ1, . . . , iπr)

and (i, j)π = (iπ, jπ), for all π ∈ Σr and i, j ∈ I. If i and j are in the same Σr-orbit of
I we write i ∼ j. Also (i, j) ∼ (i′, j′) means these two pairs are in the same Σr-orbit of
I × I. We denote the stabilizer of i in Σr by Σi, that is Σi = { π ∈ Σr | iπ = i}. We write
Σi,j = Σi ∩ Σj. Given i, j ∈ I, then i ≤ j means that iρ ≤ jρ for all ρ ∈ r, and i < j
means that i ≤ j and i 6= j.

We use E for the “dominance order” on Λ, that is α E β if
∑µ

ν=1 αν ≤
∑µ

ν=1 βν for
all µ ∈ n. Obviously if i ∈ α and j ∈ β (where α, β ∈ Λ), then i ≤ j implies β E α.

Given λ ∈ Λ, we consider in I the special element

l = l(λ) = (1, . . . , 1︸ ︷︷ ︸
λ1

, 2, . . . , 2︸ ︷︷ ︸
λ2

, . . . , n, . . . , n︸ ︷︷ ︸
λn

).

Clearly Σl(λ) is the parabolic subgroup associated with λ

Σλ = Σ{1,...,λ1} × Σ{λ1+1,...,λ1+λ2} × · · · × Σ{λ1+···+λn−1+1,...,r}.

For each ν ∈ n− 1, and each non-negative integer m ≤ λν+1, we define

λ(ν,m) = (λ1, . . . , λν +m,λν+1 −m, . . . , λn) ∈ Λ,

and write l(ν,m) for l (λ (ν,m)). We have l(ν,m) ≤ l.
For the notation of λ-tableaux the reader is referred to [17]. Given λ ∈ Λ, we choose

the basic λ-tableau

T λ =

1 2 . . . λ1

λ1 + 1 λ1 + 2 . . . . . . . . . λ1 + λ2

. . .
λ1 + · · ·+ λn−1 + 1 . . . . . . . . . r

The row-stabilizer of T λ, i.e. the subgroup of Σr consisting of all those π ∈ Σr which
preserve the rows of T λ is the parabolic subgroup Σλ.

Given i ∈ I, we define the λ-tableau T λi as

T λi =

i1 i2 . . . iλ1
iλ1+1 iλ1+2 . . . . . . . . . iλ1+λ2

. . .
iλ1+...λn−1+1 . . . . . . . . . ir.
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Then T λl has only 1’s in the first row, 2’s in the second row, . . . , n’s in row n. Notice
also that T λl(ν,m) differs from T λl only by the first m entries of row ν + 1: these entries are
all equal to ν.

We say that a λ-tableau T λi is row-semistandard if the entries in each row of T λi are
weakly increasing from left to right. We define

I− (λ) :=
{
i ∈ I

∣∣ i ≤ l (λ) and T λi is row-semistandard
}

and
I+ (λ) :=

{
j ∈ I

∣∣ j ≥ l (λ) and T λj is row-semistandard
}
.

The following obvious fact will be used later in this paper:

If λn 6= 0 and m ≤ λn, then I+ (λ) = { j ∈ I+ (λ(n− 1,m)) | j ≥ l (λ)}. (2.1)

Next we recall the definition of Schur algebra and of Borel-Schur algebra as they were
introduced in [12].

The general linear group GLn(K) acts on Kn by multiplication. So GLn (K) acts on
the r-fold tensor product (Kn)⊗r by the rule

g (v1 ⊗ · · · ⊗ vr) = gv1 ⊗ · · · ⊗ gvr, all g ∈ GLn (K), v1, . . . , vr ∈ Kn.

Extending by linearity this action to the group algebra KGLn (K), we obtain a homomor-
phism of algebras T : KGLn (K)→ EndK

(
(Kn)⊗r

)
. The image of T , i.e. T (KGLn (K)) is

called the Schur algebra for K, n, r and is denoted by S (n, r). Let B+ = B+
K (n, r) denote

the Borel subgroup of GLn (K) consisting of all upper triangular matrices in GLn (K).
The Borel-Schur algebra S (B+) = S (B+, n, r) is the subalgebra T (KB+) of S (n, r).

Associated with each pair (i, j) ∈ I × I, there is a well defined element ξi,j of S(n, r)
(see [12]). These elements have the property that ξi,j = ξk,h if and only if (i, j) ∼ (k, h). If
we eliminate repetitions in the set { ξi,j | (i, j) ∈ I × I} then we obtain a basis of S(n, r).
Also S (B+) = K { ξi,j | i ≤ j, (i, j) ∈ I × I}.

If i has weight α ∈ Λ, we write ξi,i = ξα. The set { ξα |α ∈ Λ} is a set of orthogonal
idempotents and 1S(n,r) =

∑
α∈Λ ξα.

A formula for the product of two basis elements is the following (see [12]): ξi,jξk,h = 0,
unless j ∼ k; and

ξi,jξj,h =
∑
σ

[Σiσ,h : Σiσ,j,h] ξiσ,h (2.2)

where the sum is over a transversal {σ} of the set of all double cosets Σi,jσΣj,h in Σj.

Observation 2.1. 1. ξαξi,j = ξi,j or zero, according to i ∈ α or i 6∈ α. Similarly,
ξi,jξβ = ξi,j or zero, according to j ∈ β or j 6∈ β.

2. Suppose in the formula (2.2) there is only one double coset. Then one can take the
only representative to be σ = 1. We see from (2.2) that the product ξi,jξj,h is a
scalar multiple of ξi,h. The scalar is an element of the prime field.

We are particularly interested in products of the type ξl(ν,m),lξl,j, for l = l (λ), and
j ∈ I+ (λ), for some λ ∈ Λ.
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Lemma 2.2. Let λ ∈ Λ, ν ∈ n− 1, 0 ≤ m ≤ λν+1, and j ∈ I+ (λ). If the ν + 1-st row
of T λj is constant then the double coset Σl(ν,m),l 1 Σl,j coincides with Σl.

Proof. We have Σl = Σλ. Now we know that Σl(ν,m) differs from Σλ only in factors ν and
ν + 1 and in these it is

Σ{t+1,...,t+λν+m} × Σ{t+λν+m+1,...,t+λν+λν+1},

where t = λ1 + · · ·+ λν−1. It follows that the intersection Σl(ν,m),l differs from Σλ only in
factor ν + 1 and this is

Σ{t+λν+1,...,t+λν+m} × Σ{t+λν+m+1,...,t+λν+λν+1}.

We can write Σl,j = U1 × · · · × Un, where Us is a subgroup of Σλs . Therefore the double
coset Σl(ν,m),l 1 Σl,j coincides with Σl as soon as the product of the two (ν + 1)-st factors
is Σλν+1 . This holds if Uν+1 = Σλν+1 , i.e., if the (ν + 1)-st row of T λj is constant.

Lemma 2.3. Let λ ∈ Λ, ν ∈ n− 1, 0 ≤ m ≤ λν+1. Given j ∈ I+ (λ), suppose that the
(ν + 1)-st row of T λj is constant with all entries equal to c, and that c occurs exactly a
times in row ν. Then

ξl(ν,m),lξl,j =

(
a+m

m

)
ξl(ν,m),j.

If ν = n− 1 then the hypothesis holds for all j ∈ I+(λ).

Proof. From Lemma 2.2 and Observation 2.1, we know that

ξl(ν,m),lξl,j =
[
Σl(ν,m),j : Σl(ν,m),l,j

]
ξl(ν,m),j.

Now Σl(ν,m),j and Σl(ν,m),j,l differ only in factors ν and ν + 1. If the entries of row ν of
T λ where c occurs in T λj are t1, . . . , ta, then factors ν and ν + 1 of Σl(ν,m),j and Σl(ν,m),l,j

are, respectively,
· · · × Σ{t1,...,ta,λ1+···+λν+1,...,λ1+···+λν+m} × · · ·

and
· · · × Σ{t1,...,ta} × Σ{λ1,...,λν+1,...,λ1+···+λν+m} × . . . .

Therefore
[
Σl(ν,m),j : Σl(ν,m),l,j

]
=
(
a+m
m

)
.

Given λ ∈ Λ, let Kλ denote the one-dimensional S (B+)-module K, where ξλ acts as
identity and all the other basis elements, ξi,j, where i ≤ j and (i, j) 6∼ (l, l), act as zero.
The following results were proved in [17].

Theorem 2.4. 1. {Kλ |λ ∈ Λ} is a full set of irreducible S (B+)-modules.

2. The module S (B+) ξλ is a projective cover of Kλ.

3. The module S (B+) ξλ has a K-basis { ξi,l | i ∈ I− (λ)}.

4. The module Kλ is projective if and only if λ = (r, 0, . . . , 0). This is a consequence
of #I− (λ) = 1 if and only if λ = (r, 0, . . . , 0).
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As we see the simple S(B+)-modules are one-dimensional. Hence S(B+) is a basic
algebra. This makes many calculations easy. The projective module S(B+)ξλ has a
composition series with one-dimensional quotients and hence the dimension is the same
as the composition length. The composition factors are therefore completely described
by I−(λ). The radical series of the indecomposable projective modules can be very
complicated if n is large. However [17, Theorem 4.5] has determined minimal generators
for the radical of S(B+)ξλ in general. These then allow the description of the first two
steps of a minimal projective resolution of Kλ. Define

P0 := S
(
B+
)
ξλ; P1 :=


⊕

ν∈n−1
S (B+) ξλ(ν,1), if charK = 0;⊕

ν∈n−1

⊕
1≤pdν≤λν+1

S (B+) ξλ(ν,pdν ), if charK = p.

Then by [17, Theorem 5.4] the first two steps of a minimal projective resolution of Kλ

are
P1

p1−→ P0
p0−→ Kλ → 0. (2.3)

Here the S(B+)-homomorphism p0 is defined on the generator by p0(ξλ) = 1. The S(B+)-
homomorphism p1 is defined on generators by p1(ξλ(ν,1)) = ξl(ν,1),l, when char(K) = 0, and
p1(ξλ(ν,pdν )) = ξl(ν,pdν ),l, when char(K) = p.

Notice that this determines the quiver Q of the algebra S(B+). The vertices of Q are
given by the compositions λ ∈ Λ(n, r). There is an arrow from the vertex λ to the vertex
µ if and only if S(B+)ξµ occurs as a summand of P1. Let KQ be the path algebra of the
quiver Q. We write eλ for the idempotent of KQ that corresponds to the empty path
based at the vertex λ. Since the algebra S(B+) is basic, there is a canonical epimorphims
π : KQ → S(B+) defined by π(eλ) = ξλ and by sending the arrow starting at λ and
ending at λ(ν, pd) to ξl(λ(ν,pd)),l(λ).

Next we will describe the quiver presentation of S(B+, 2, r). This will be used in
Section 6.

To simplify the notation we will identify the composition (λ1, λ2) with λ2. We have
an arrow from the vertex t to vertex s if and only if t− s = pd for some natural number d
if charK = p, and t−s = 1 if charK = 0. We denote this arrow by αt,d in characteristic p
and αt in characteristic 0. Our aim is to describe the kernel of the canonical epimorphim
π : KQ → S(B+, 2, r) defined above.

Lemma 2.5. The dimension of ξµS(B+, 2, r)ξλ is 1 if λ E µ and 0 otherwise.

Proof. By Theorem 2.4 the set
{
ξi,l(λ)

∣∣i ∈ I−(λ), i ∈ µ
}

is a basis of ξµS(B+, 2, r)ξλ. This
is obviously the empty set unless λ E µ and contains only the element ξl(µ),l(λ) if λ E µ.

Proposition 2.6. (a) If charK = 0 the epimorphism π : KQ → S(B+, 2, r) is an iso-
morphism of algebras.

(b) If charK = p the kernel of π : KQ → S(B+, 2, r) is generated as an ideal by

αs−(p−1)pd,dαs−(p−2)pd,d . . . αs,d, where d ∈ N, s− pd+1 ≥ 0, (2.4)

αs−pd1 ,d2αs,d1 − αs−pd2 ,d1αs,d2 , where d1 < d2 and s− pd1 − pd2 ≥ 0. (2.5)
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Proof. (a) If charK = 0 the quiver Q is of type Ar+1

rr−1

αr
oor−2

αr−1

oo21
α2

oo0
α1

oo
.

It is clear that dimK esKQet is 1 or 0 according to s ≤ t or s > t. Now the result follows
from the definition of π and Lemma 2.5.

(b) Suppose charK = p. Denote by I the ideal generated by (2.4) and (2.5). Let
A := KQ/I . We show first that

dimK(esAet) = 0 if s > t; dimK(esAet) ≤ 1 if s ≤ t. (2.6)

The first equality is obvious since the labels decrease along every path in Q. Define the
degree of the arrow αk,d as pd. Then we can define the degree of a path in Q as the sum
of the degrees of the arrows in the path. It is immediate that all paths from vertex t to
vertex s have the same degree t− s. Using (2.5), every element in A can be written as a
linear combination of paths

αt1,d1αt2,d2 . . . αtk,dk (2.7)

with d1 ≥ d2 ≥ · · · ≥ dk and tj = tj+1 − pdj+1 for all 1 ≤ j ≤ k − 1. Denote by md the
number of occurrences of the natural number d among d1, . . . , dk. In view of (2.4) we
can assume that md ≤ p− 1 for every d. Then the degree of the path (2.7) is

∑
d≥0mdp

d.

But
∑

d≥0mdp
d is the p-adic expansion of the degree of the path (2.7). This shows that

the multiplicities md are determined by the starting t = tk and endindg s = t1 − pd1

points of the path (2.7). Therefore, given vertices s and t with s ≤ t, there is exactly one
path from t to s of the form (2.7) such that d1 ≥ · · · ≥ dk and each multiplicity md of d
among d1, . . . , dk does not exceed p− 1. Hence dimK esAet ≤ 1.

Next we show that I ⊂ kerπ. It follows from the definition of π that

π(es) = ξ(r−s,s), π(αs,d) = ξl(r−s+pd,s−pd),l(r−s,s).

Using Lemma 2.3, when we apply π to each summand in (2.5) we obtain(
pd1 + pd2

pd1

)
ξl(r−s+pd1+pd2 ,s−pd1−pd2 ),l(r−s,s).

Now we apply π to (2.4). The result is(
2pd

pd

)(
3pd

pd

)
. . .

(
p · pd

pd

)
ξl(r−s+pd+1,s−pd+1),l(r−s,s). (2.8)

Since p divides
(
pd+1

pd

)
, we get that (2.8) is 0. This shows that I ⊂ kerπ. Now, comparing

the dimensions of esAet and π(es)S(B+, 2, r)π(et), we see that π induces an injective map
from A to S(B+, 2, r). Since π is surjective, we get that this is indeed an isomorphism,
that is KQ/I ∼= S(B+, 2, r).
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3 Auslander-Reiten sequences

In this section we give an overview of some results and definitions connected to the notion
of Auslander-Reiten sequences. Let A be a finite-dimensional algebra over K.

A short exact sequence

(E) 0→ N
f−→ E

g−→ S → 0

is said to be Auslander-Reiten if

(i) (E) is not split;

(ii) the modules S and N are indecomposable;

(iii) if X is an indecomposable A-module and h : X → S is a non-invertible homomor-
phism of A-modules, then h factors through g.

Theorem 3.1 ([1]). Given any non-projective indecomposable A-module S, there is
an Auslander-Reiten sequence (E) ending with S. Moreover, (E) is determined by S,
uniquely up to isomorphism of short exact sequences.

In this paper we will construct an Auslander-Reiten sequence ending with Kλ, for a large
number of λ ∈ Λ(n, r). We will use two contravariant functors

D, (·)t : A−mod→ Aop−mod

where for every X ∈ A−mod

X t := HomA(X,A), DX := HomK(X,K).

Recall that A acts on the right of X t and DX, respectively, by (φξ) (x) = φ (x) ξ and
(ψξ) (x) = ψ (ξx) , where φ ∈ X t, ψ ∈ DX, ξ ∈ A, and x ∈ X.

Consider the Nakayama functor [9, p.10]

D(·)t : A−mod→ A−mod.

This is a covariant right exact functor which turns projectives into injectives. Let X be
an indecomposable non-projective A-module. Consider the first two steps of a minimal
projective resolution of X

P1
p1−→ P0

p0−→ X → 0.

Applying the Nakayama functor we get from this the exact sequence

0→ τX → DP t
1

Dpt1−−→ DP t
0

Dpt0−−→ DX t → 0. (3.1)

The kernel τX of Dpt1 is called the Auslander-Reiten translation of X. It is shown on
pages 5-6 of [9] that it is possible to select an A-homomorphism θ : X → DP t

0 such that
the short exact sequence obtained from (3.1) by pullback along θ

0→ τX
f−→ E(θ)

g−→ X → 0 (3.2)
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is an Auslander-Reiten sequence. Note that

E (θ) =
{

(z, c) ∈ DP t
1 ⊕X

∣∣Dpt1 (z) = θ (c)
}

is an A-submodule of DP t
1⊕X, and f , g are the A-homomorphisms defined by g (z, c) = c,

f (v) = (v, 0), for all z ∈ DP t
1, v ∈ τX, and c ∈ X. Several recipes were given in the 80’s

for the construction of θ with the above property, see [4, 9, 11], but we do not need to
use them in this article.

Now we consider A = S(B+) and X = Kλ with λ ∈ Λ(n, r), λ 6= (r, 0, . . . , 0). It is
clear that Kλ is indecomposable and non-projective. We will use the minimal projective
resolution (2.3) of Kλ. Since

soc(DP t
0) ∼= D(hdP t

0) ∼= D(hd(ξλS(B+))) ∼= Kλ,

we have
dimK HomS(B+)(Kλ, DP

t
0) = 1. (3.3)

Therefore we can take for θ : Kλ → DP t
0 any non-zero S(B+)-homomorphism.

Before constructing Auslander-Reiten sequences, we will determine K-bases of P0

and P1 adapted to our calculations. As (S (B+) ξα)
t

and ξαS (B+) are isomorphic right
S (B+)-modules for every α ∈ Λ, we will identify these two modules. We will also identify(⊕

α∈Λ′ S (B+) ξα
)t

with
⊕

α∈Λ′ ξαS (B+), for every family Λ′ of elements in Λ.

Lemma 3.2. Let α ∈ Λ. Then
{
ξl(α),j

∣∣ j ∈ I+ (α)
}

is a K-basis of ξαS (B+).

Proof. We know that ξαS (B+) is spanned by
{
ξl(α),j

∣∣ j ∈ I (n, r) , j ≥ l (α)
}

. As ξl(α),j =
ξl(α),i if and only if iπ = j, for some π in the stabilizer of l (α) in Σr and this stabilizer
coincides with the row stabilizer of Tα, the result follows.

Fix λ ∈ Λ (n, r) and consider the result of the application of (·)t to (2.3). Then

P t
1
∼=

n−1⊕
ν=1

ξλ(ν,1)S (B+) , or P t
1
∼=

n−1⊕
ν=1

⊕
1≤pdν≤λν+1

ξλ(ν,pdν )S (B+) , according as charK = 0 ,

or charK = p. Thus a K-basis of P t
1 is given by

B1 :=
{
ξl(ν,1),j

∣∣ j ∈ I+ (λ (ν, 1)) , ν ∈ n− 1
}
, if charK = 0,

B2 :=

 ξl(ν,pd′ ),j

∣∣∣∣∣∣
j ∈ I+(λ(ν, pd

′
)),

1 ≤ pd
′ ≤ λν+1, ν ∈ n− 1

 , if charK = p.

(3.4)

With the above identifications of the projective modules, the map pt1 : P t
0 → P t

1 becomes

pt1 (η) =
n−1∑
ν=1

ξl(ν,1),lη, or pt1 (η) =
n−1∑
ν=1

∑
1≤pd′≤λν+1

ξl(ν,pd′ ),lη, according as charK = 0, or

charK = p.
To construct an Auslander-Reiten sequence ending with Kλ, it is convenient to obtain,

from B1 and B2, new bases for P t
1 containing pt1

(
ξl(λ),j

)
, j ∈ I+ (λ). Suppose λ satisfies

conditions {
λn 6= 0, if charK = 0,

λn 6= 0, λn−1 < pd+1 − 1, if charK = p and pd ≤ λn < pd+1.
(3.5)
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Given j ∈ I+ (λ), as j ≥ l = l (λ), the nth row of T λj is constant with all entries equal
to n, and its (n− 1)st row has a entries equal to n and λn−1 − a entries equal to n− 1,
for some 0 ≤ a ≤ λn−1.

We shall look first at the case charK = 0. Then by Lemma 2.3

ξl(n−1,1),lξl,j = (a+ 1) ξl(n−1,1),j,

and a+1 6= 0. Using this, we shall show that we can replace ξl(n−1,1),j by pt1 (ξl,j) in B1 and
obtain a new basis for P t

1. Notice that I+ (λ) ⊂ I+ (λ (n− 1, 1)), and so ξl(n−1,1),j ∈ B1.
On the other hand, ξl,j ∈ P t

0 = ξλS (B+), and

pt1 (ξl,j) = ξl(n−1,1),lξl,j +
n−2∑
ν=1

ξl(ν,1),lξl,j = (a+ 1) ξl(n−1,1),j +
n−2∑
ν=1

ξl(ν,1),lξl,j.

Now ξl(ν,1),lξl,j is a linear combination of basis elements of the type ξl(ν,1),jπ, for some
π ∈ Σr. As, for ν = 1, . . . , n− 2, we have that l (ν, 1) 6∼ l (n− 1, 1), we get that ξl(n−1,1),j

is always different from ξl(ν,1),i, for any i ∈ I (n, r). Therefore, we can replace ξl(n−1,1),j in
B1 by pt1 (ξl,j) and still get a basis for P t

1. We have proved the following:

Proposition 3.3. If charK = 0 and λn 6= 0, then

B1 =
{
ξl(ν,1),j

∣∣ j ∈ I+ (λ (ν, 1)) , ν = 1, . . . , n− 2
}

∪
{
ξl(n−1,1),j

∣∣ j ∈ I+ (λ (n− 1, 1)) \ I+ (λ)
}
∪
{
pt1 (ξl,j)

∣∣ j ∈ I+ (λ)
}

is a basis of P t
1. In particular, pt1 is a monomorphism.

Suppose now that charK = p and that λ satisfies condition (3.5). We will apply
Lemma 2.3, together with the following well known consequence of Lucas’ Theorem:

Proposition 3.4. Assume m and q are positive integers and that

m = m0 +m1p+ · · ·+mtp
t and q = q0 + q1p+ · · ·+ qsp

s

are the p-adic expansions of m and q. Then p divides
(
m
q

)
if and only if mν < qν for

some ν.

Given j ∈ I+ (λ), we denote by a = a (j) the number of entries equal to n in the
(n− 1)st row of T λj . Let a0, . . . , ad be the coefficients in the p-adic expansion of a, with
ad possibly equal to zero. As a ≤ λn−1 < pd+1 − 1, and all the coefficients in the p-adic
expansion of pd+1 − 1 are equal to p− 1, we get that there is some at 6= p− 1. Let

m (j) := min { t | at < p− 1} (3.6)

and define
I+ (λ, d′) =

{
j ∈ I+ (λ)

∣∣m (j) = d′
}
.

Obviously I+ (λ) =
⋃̇

0≤d′≤dI
+ (λ, d′).
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Proposition 3.5. Suppose that charK = p and that λ ∈ Λ (n, r) satisfies condition (3.5).
Then

B2 =
{
ξl(ν,pd′),j

∣∣∣ j ∈ I+(λ(ν, pd
′
)), 1 ≤ pd

′ ≤ λν+1, ν = 1, . . . , n− 2
}

∪
{
ξl(n−1,pd′),j

∣∣∣ j ∈ I+(λ(n− 1, pd
′
)) \ I+ (λ, d′) , 0 ≤ d′ ≤ d

}
∪
{
pt1 (ξl,j)

∣∣ j ∈ I+ (λ)
}

is a K-basis for P t
1. In particular, pt1 is a monomorphism.

Proof. Let j ∈ I+ (λ). Just like in the characteristic zero case, we consider the basis
element ξl,j of P t

0 and look at

pt1 (ξl,j) =
n−1∑
ν=1

∑
1≤pd′≤λν+1

ξl(ν,pd′),lξl,j.

By Lemma 2.3 for any d′ such that 0 ≤ pd
′ ≤ λn we have

ξl(n−1,pd′),lξl,j =

(
a+ pd

′

pd′

)
ξl(n−1,pd′),j.

Here a is the number of times n occurs in row n−1 of T λj . It follows from Proposition 3.4

and the definition of m (j) (see (3.6) ), that p does not divide
(
a+pm(j)

pm(j)

)
and divides all(a+pd

′

pd′

)
for d′ < m (j). Therefore

pt1 (ξl,j) =
n−2∑
ν=1

∑
1≤pd′≤λν+1

ξl(ν,pd′),lξl,j +
∑

pm(j)≤pd′≤λn

(
a+ pd

′

pd′

)
ξl(n−1,pd′),j (3.7)

and the coefficient of ξl(n−1,pm(j)),j in this sum is non-zero. As, for ν 6= n − 1, we have

l
(
n− 1, pm(j)

)
6∼ l

(
ν, pd

′)
it follows that ξl(n−1,pm(j)),j does not appear in the basis ex-

pansion of ξl(ν,pd′),lξl,h, for any h ∈ I+ (λ). Also, if d′ 6= m (j), then l
(
n− 1, pd

′) 6∼
l
(
n− 1, pm(j)

)
and so ξl(n−1,pd′),h 6= ξl(n−1,pm(j)),j for all h ∈ I+ (λ). Finally, suppose

h ∈ I+ (λ) satisfies ( l(n − 1, pm(j)), j ) ∼ ( l(n − 1, pm(h)), h ). Then h = jπ for some
π ∈ Σλ(n−1,pm(j)). But, since both h, j ≥ l, we cannot move any entry n−1 in row (n−1)

of T λj to row n to obtain T λh . This implies that π belongs to the row stabilizer of T λ.
As both T λj and T λh are row semistandard we get h = j. Therefore ξl(n−1,pm(j)),j appears

only once in B2: in the expression (3.7) of pt1 (ξl,j) with the coefficient
(
a+pm(j)

pm(j)

)
. Hence,

we can replace ξl(n−1,pm(j)),j by pt1 (ξl,j) in B2 for all j ∈ I+ (λ) and still have a basis for

P t
1.

It is now easy to obtain an Auslander-Reiten sequence ending with Kλ for λ satisfy-
ing (3.5). Denote, respectively, by B∗1 and B∗2 the K-basis of DP t

1 dual to B1 and B2.
For j ∈ I+ (λ), we denote by zl,j the element in B∗1 (respectively, in B∗2) that is dual to
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pt1 (ξl,j). Let Uλ be the subspace of DP t
1 with K-basis B∗1 \{ zl,j | j ∈ I+ (λ)} if charK = 0

or B∗2 \ { zl,j | j ∈ I+ (λ)} if charK = p. Then Uλ is in fact a S(B+)-submodule. Define

E (λ) =
{

(z, c) ∈ DP t
1 ⊕Kλ

∣∣ z ∈ (Uλ + czl,l)
}
.

Then we have the following result.

Theorem 3.6. Suppose that λ ∈ Λ (n, r) satisfies (3.5). Then the sequence

0→ Uλ
f−→ E (λ)

g−→ Kλ → 0, (3.8)

where f and g are defined by f (z) = (z, 0) and g (z′, c) = c, for all z ∈ Uλ, (z′, c) ∈ E (λ) ,
is an Auslander-Reiten sequence.

Proof. Notice first that Kλ is not projective, since λ 6= (r, 0, . . . , 0). Hence an Auslander-
Reiten sequence ending with Kλ exists.

By (3.3) the dimension of HomS(B+)(Kλ, DP
t
0) is one. Therefore, for any non-zero

θ ∈ HomS(B+)(Kλ, DP
t
0), the sequence

0→ τKλ
f−→ E(θ)

g−→ Kλ → 0 (3.9)

is an Auslander-Reiten sequence. We will consider θ defined by

θ(c)(η) = ηc, for all η ∈ P t
0 = ξλS(B+) and all c ∈ Kλ.

Note that as P t
0 has K-basis { ξl,j | j ∈ I+ (λ)} and, for j ∈ I+ (λ) and c ∈ Kλ, ξl,jc = c

or 0, according as j = l or j 6= l, we have that θ is completely determined by saying
that θ(c)(ξl,j) = c if j = l, and 0 otherwise. Given z ∈ DP t

1 we can write z as a linear
combination of the elements of B∗1 or B∗2 , according to charK = 0 or charK = p. Then,
for any c ∈ Kλ, we have Dpt1(z) = θ(c) if and only if zpt1 = θ(c), which in turn holds if
and only if for all j ∈ I+ (λ) there holds zpt1 (ξl,j) = c if j = l, and 0 otherwise. Thus
z = czl,l + u for some u ∈ Uλ. Hence

E (θ) =
{

(z, c) ∈ DP t
1 ⊕Kλ

∣∣Dpt1 (z) = θ(c)
}

= E (λ) .

In a similar way, we see that z ∈ τKλ = kerDpt1 if and only if zpt1 = 0, that is if and only
if z ∈ Uλ. Therefore τKλ = Uλ.

Remark 3.7. We have explained that any non-zero homomorphism from the simple mod-
ule Kλ into DP t

0 gives an Auslander-Reiten sequence. In particular if we replace θ by cθ,
where c is a non-zero scalar, then this gives the same Auslander-Reiten sequence. In fact
we can say more. Recall the Auslander-Reiten formula. For any modules X, Y of some
algebra, we have (see, for example, Theorem 2.20 in [11])

Ext1(X, τY ) ∼= DHom(Y,X).

Here Hom(U, V ) is the quotient space of Hom(U, V ) modulo homomorphisms which factor
through a projective module. We apply this with X = Y = Kλ. Then the right hand
side is trivially one-dimensional. Hence Ext1(Kλ, τKλ) ∼= K. Therefore, by the previous
observation, if we have a non-split exact sequence with end terms Kλ and τKλ this must
be an Auslander-Reiten sequence.
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We have constructed Auslander-Reiten sequences ending with Kλ, for every λ ∈
Λ (n, r) satisfying conditions (3.5). For this we only need to deal with the multiplica-
tion of basis elements of S (B+) where the formula in Lemma 2.3 can be used. For λ not
satisfying (3.5), the calculations for multiplication of basis elements get very tortuous,
with many particular cases to consider, and the method we use does not work well in
the construction of the desired sequences. We will give throughout treatment of the case
n = 2 in Section 4. For n = 3, we know some examples, but the calculation get quickly
out of control, so we do not list them.

Now we will look at the following problem. Given the Auslander-Reiten sequence
(3.8), one would like to know when the module E(λ) is indecomposable. This seems to
be a difficult question in general, as one can see for the Borel-Schur algebras of finite
type (see Section 6). In fact one of the motivations for our classification was to get
a better understanding of this question. We have two easy observations, which deal
with most of the cases when the algebra has finite type. The first one involves the
indecomposability of the module P1. Notice that P1 is indecomposable if and only if
λ = (λ1, 0, · · · , 0, λν , 0, · · · , 0), for some 2 ≤ ν ≤ n, λν ≥ 1, if charK = 0, and 1 ≤ λν < p,
if charK = p.

Proposition 3.8. Given λ ∈ Λ (n, r), assume the module P1 is indecomposable. Then
the middle term E(λ) is indecomposable.

Proof. We construct E(λ) as a pullback, and hence we have a commutative diagram with
exact rows

0 −−−→ τKλ −−−→ E(λ) −−−→ Kλ −−−→ 0

1

y θ̃

y θ

y
0 −−−→ τKλ −−−→ DP t

1

Dpt1−−−→ DP t
0

(3.10)

By the Snake Lemma, the map θ̃ is injective. Since P1 is indecomposable, the module
DP t

1 is indecomposable injective and hence has a simple socle. Therefore the socle of
E(λ) is simple, and the module is indecomposable.

Note that if n = 2 and charK = 0, then P1 is always indecomposable. Therefore we
have the following result.

Corollary 3.9. If n = 2 and charK = 0, then the middle term E(λ) is always indecom-
posable.

We can also identify from (3.10) the Auslander-Reiten sequence for Kλ when λ =
(0, 0, . . . , r). This is the unique simple module which is injective. It follows that DP t

0
∼=

Kλ and the map θ is an isomorphism. In this case the map Dpt1 must be onto, and then
the Auslander-Reiten sequence is equivalent to the exact sequence which is the bottom
row of the diagram (3.10).

4 Auslander-Reiten sequences for n = 2

In this section we study the construction of an Auslander-Reiten sequence ending with Kλ

in the particular case of n = 2. We will show that it is very easy to obtain such sequences
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with no restriction on λ or the characteristic of K. We will also collect some facts on
the socle of S(B+, n, r), for general n, which are easy consequences of the construction
of Auslander-Reiten sequence we have done.

Let λ = (λ1, λ2). Since Kλ is non-projective if and only if λ2 6= 0, all compositions
we are interested in satisfy this condition. So we assume that λ2 6= 0. In particular, the
construction of Auslander-Reiten sequences in the characteristic zero and n = 2 case is
completely answered in Theorem 3.6.

Suppose now that charK = p and d is such that pd ≤ λ2 < pd+1. Given j ∈ I+ (λ),
recall that a (j) is the number of 2’s in the first row of T λj . If

a = a(j) = (p− 1) + (p− 1)p+ · · ·+ (p− 1)pd + . . . (4.1)

is the p-adic expansion of a then, by Proposition 3.4, for all 0 ≤ d′ ≤ d the binomial

coefficient
(a+pd

′

pd
′

)
is divisible by p. Hence

pt1 (ξl,j) =
d∑

d′=0

ξl(1,pd′),lξl,j =
d∑

d′=0

(
a+ pd

′

pd′

)
ξl(1,pd

′),j = 0.

Next we suppose that a = a (j) has p-adic expansion a = a0 + a1p + · · · + asp
s, with

at 6= p− 1 for some 0 ≤ t ≤ d. Define m(j) = min { t | t ≤ d and at < p− 1} and

Î(λ) =
{
j ∈ I+ (λ)

∣∣ a(j) 6= (p− 1) + (p− 1)p+ · · ·+ (p− 1)pd + . . .
}
.

For 0 ≤ d′ ≤ d we denote by Î(λ, d′) the subset of those j ∈ Î(λ) such that m(j) = d′.

Then Î(λ) =
⋃̇

0≤d′≤dÎ(λ, d′) and Î (λ, d′) ⊂ I+(λ(1, pd
′
)). Now with a proof completely

analogous to the proof of Proposition 3.5, we see that, for j ∈ Î(λ, d′), the element
ξl(1,pm(j)),j in B2 can be replaced by pt1(ξl,j) and the resulting set B2 is a new basis for P t

1.
This proves the following result.

Proposition 4.1. Suppose that charK = p and λ = (λ1, λ2), with λ2 6= 0. Then

B2 =
{
ξl(1,pd′),j

∣∣∣ j ∈ I+(λ(1, pd
′
)) \ Î(λ, d′), 0 ≤ d′ ≤ d

}
∪
{
pt1 (ξl,j)

∣∣∣ j ∈ Î (λ)
}

is a K-basis for P t
1.

We also have that
{
ξl,j

∣∣∣ j ∈ I+ (λ) \ Î(λ)
}

is a K-basis for ker(pt1). In particular, pt1

is injective if and only if pd ≤ λ2 < pd+1 and λ1 < pd+1− 1, i.e., if and only if λ satisfies
condition 3.5.

Denote by B∗2 the basis of DP t
1 dual to B2. We write zl,j for the element dual to

pt1(ξl,j), where j ∈ Î(λ). Let Uλ be the S(B+)-submodule of DP t
1 with K-basis B∗2 \{

zl,j

∣∣∣ j ∈ Î(λ)
}

and

E (λ) =
{

(z, c) ∈ DP t
1 ⊕Kλ

∣∣ z ∈ (Uλ + czl,l)
}
.

Then, adapting the proof of Theorem 3.6, we can conclude the following result.
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Theorem 4.2. Suppose that charK = p and λ = (λ1, λ2), with λ2 6= 0. Then the sequence

0→ Uλ
f−→ E (λ)

g−→ Kλ → 0,

where f and g are defined by f (z) = (z, 0) and g (z′, c) = c, for all z ∈ Uλ, (z′, c) ∈ E (λ) ,
is an Auslander-Reiten sequence.

Now we return to the general setting of an arbitrary n and λ ∈ Λ(n, r). In what
follows, we will use the usual notation Λ+(n, r) for the subset of partitions in Λ(n, r).

While constructing Auslander-Reiten sequences, we studied the kernel of the map pt1.
Since this kernel can be identified with HomS(B+)(Kλ, S(B+)), it provides information
on the socle of the Borel-Schur algebra S(B+). Namely, pt1 is non-injective if and only
if Kλ is in the socle of S(B+). We end the present section with a compilation of this
information. We start with the following auxiliary result.

Lemma 4.3. Suppose ν ∈ Λ(n, r) \ Λ+(n, r) and let M be an S(n, r)-module. Then
HomS(B+)(Kν ,M) = 0, where we consider M as an S(B+)-module by restriction.

Proof. Let f : Kν → M be an S(B+)-homomorphism and c ∈ Kν . Then ξijf(c) =
f(ξijc) = 0 for all ξij ∈ S(B+) different from ξν . By [12, Theorem 5.2] we have S(n, r) =∑

λ∈Λ+(n,r) S(B−)ξλS(B+), where S(B−) denotes the lower Borel subalgebra of the Schur

algebra S(n, r). Since ν 6∈ Λ+(n, r), we get that S(n, r)f(c) = 0. This shows that f(c) = 0
for all c ∈ Kν and thus f is the zero map.

As a simple consequence we get:

Proposition 4.4. Let ν ∈ Λ(n, r) \ Λ+(n, r). Then HomS(B+)(Kν , S(B+)) = 0.

Proof. The embedding S(B+) ↪→ S(n, r) induces the injective map

HomS(B+)(Kν , S(B+))→ HomS(B+)(Kν , S(n, r)).

Now Lemma 4.3 implies that the vector space HomS(B+)(Kν , S(n, r)) is trivial. Thus also
HomS(B+)(Kν , S(B+)) vanishes.

Combining the results on pt1 obtained previously with Proposition 4.4, we get the
following theorem.

Theorem 4.5. 1. The module K(r,0,...,0) is a direct summand of the socle of S(B+)
independently of charK.

2. Suppose charK = 0 and n = 2. Then the socle of S(B+) is a direct sum of several
copies of K(r,0).

3. Suppose charK = p and n = 2. Then Kλ is a direct summand of the socle of S(B+)
if and only if λ = (r, 0) or λ is a partition satisfying

λ1 ≥ pblogp λ2c+1 − 1.

4. Suppose n ≥ 3 and charK = 0. Then all the composition factors of the socle of
S(B+) are of the form Kλ with λ a partition such that λn = 0.
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5. Suppose n ≥ 3 and charK = p. Then all the composition factors of the socle of
S(B+) are of the form Kλ with λ a partition such that either λn = 0 or

λn−1 ≥ pblogp λnc+1 − 1.

Proof. The module K(r,0,...,0) is isomorphic to its projective cover S(B+)ξ(r,0,...,0). Thus
HomS(B+)(K(r,0,...,0), S(B+)) ∼= ξ(r,0,...,0)S(B+) is non trivial. This shows that K(r,0,...,0) is
a direct summand of the socle of S(B+).

Now the claims (2)-(5) follow from Propositions 3.3, 3.5, and 4.1.

5 Functors between different algebras

A Borel-Schur algebra is triangular, that is, its quiver does not have oriented cycles.
Furthermore, a Borel-Schur algebra S(B+,m, r) is a non-unital subalgebra of a Borel-
Schur algebra S(B+, n, r) for m < n. This gives rise to functors between their module
categories, and one would like to understand when an Auslander-Reiten sequence of a
module for the smaller algebra lifts to an Auslander-Reiten sequence over the larger
algebra.

We study this question in a slightly more general setting. Assume Λ∗ ⊂ Λ(n, r) is a
coideal with respect to the dominance order. That is, if λ ∈ Λ∗ and λ E µ then µ ∈ Λ∗.
For example, if m < n then

Λ∗(m, r) := {α ∈ Λ(n, r) |α = (α1, . . . , αm, 0, . . . , 0)}

is a coideal in Λ(n, r). Let

e = eΛ∗ :=
∑
λ∈Λ∗

ξλ.

This is an idempotent in A := S(B+, n, r). Then eAe can be regarded as a non-unital
subalgebra of A, see also [13, § 6.5]. This algebra has simple modules precisely the Kλ

with λ ∈ Λ∗. In case Λ∗ = Λ∗(m, r) we have

eS(B+, n, r)e ∼= S(B+,m, r). (5.1)

We have an exact functor

F : A-mod→ eAe-mod

V 7→ eV

(θ : V → V ′) 7→ θ|eV .

The functor F has a left adjoint G = Ae⊗eAe : eAe-mod→ A-mod. In our case G is the
identity functor, since (1− e)Ae = 0. We get as an easy consequence:

Proposition 5.1. With the above notation, the following hold:

(i) FG(M) = M for all M ∈ eAe-mod;

(ii) G is exact;
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(iii) G preserves indecomposable modules;

(iv) G preserves simple modules.

We will use the following notation. If λ ∈ Λ(n, r) belongs to the subset Λ∗ we write
λ̄ if we view it as a weight of the algebra eAe, and we write Kλ̄ for the simple eAe-
module labelled by λ. Then G(Kλ̄) = Kλ. We also use τA and τeAe for the Auslander-
Reiten translation in A-mod and eAe-mod, respectively. Consider the Auslander-Reiten
sequence in eAe-mod

0→ τeAeKλ̄ → E(λ̄)→ Kλ̄ → 0.

By applying the functor G we obtain the exact sequence

0→ G(τeAeKλ̄)→ G(E(λ̄))→ Kλ → 0. (5.2)

Proposition 5.2. The sequence (5.2) is an Auslander-Reiten sequence if and only if
G(τeAeKλ̄) ∼= τAKλ.

Proof. One direction is clear. For the converse, assume G(τeAeKλ̄) ∼= τAKλ. The exact
sequence (5.2) is non-split since, if we apply F , we get the Auslander-Reiten sequence in
eAe-mod. By Remark 3.7, any non-split exact sequence with end terms τAKλ and Kλ is
the Auslander-Reiten sequence. This proves the claim.

We give now an example where the sequence (5.2) is not an Auslander-Reiten se-
quence.

Example 5.3. Suppose char(K) 6= 2. Assume Λ∗ = Λ(2, 3) viewed as a subset of Λ(3, 3),
so that eAe ∼= S(B+, 2, 3) and A = S(B+, 3, 3). Consider the weight λ = (1, 2, 0). From
the construction, we have the exact sequence

0→ τAKλ → DP t
1

Dpt1−−→ DP t
0.

In this case, DP t
1 is the injective I(2,1,0) with socle K(2,1,0) and DP t

0 is the injective I(1,2,0).
There is a uniserial module U of dimension 2 with top isomorphic to K(2,0,1) and socle

isomorphic to K(2,1,0). This is a submodule of I(2,1,0) and it is contained in the kernel of
Dpt1, as the socle of I(1,2,0) is not a composition factor of U . That is, U is a submodule of
τAKλ and we see that τAKλ is not of the form G(M) for any M . So by the Proposition 5.2,
(5.2) cannot be an Auslander-Reiten sequence.

6 Finite type classification

In this section we assume that the ground field K is algebraically closed. We will determine
precisely which Borel-Schur algebras are of finite type. We start by summarising general
results which can be used to identify representation type.

Assume A is some finite-dimensional algebra over K. Recall that A has finite type if
there are only finitely many indecomposable A-modules up to isomorphism. Otherwise,
A has infinite type. If A = KQ, where Q is a quiver with no oriented cycles, then by
Gabriel’s Theorem [8, Theorem 1.2] A has finite type if and only if Q is a disjoint union
of Dynkin quivers of types Ak with k ≥ 1, Dk with k ≥ 4, or Ek with 6 ≤ k ≤ 8.
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In some cases, we will consider algebras of the form KQ/I where I is generated by
a single commutativity relation. We will use a result by Ringel (see [16]) to identify
algebras of infinite type. Furthermore, the following is a general reduction method (see
for example Lemma 1 in [2]).

Lemma 6.1. Assume e is an idempotent of A. If eAe has infinite type then A has infinite
type.

We will combine this result with the idea of regular covering of quivers. Let Q be a
quiver and G a group acting freely on the right of Q. Then one has the quotient quiver
Q′ := Q

/
G and the canonical projection φ : Q → Q′. In that situation one says that Q

is a regular covering of Q′.
The action of G on Q induces an action of G on the path category P (Q) of the quiver

Q. It is obvious that P (Q)
/
G is isomorphic to the path category P (Q′). In particular,

following Bongartz and Gabriel [3], we can define the pushdown functor φ∗ : P (Q)-mod→
P (Q′)-mod. In our case the definition takes the following form. Let M be a representation
of Q, then for any vertex xG ∈ Q′

φ∗(M)xG :=
⊕
g∈G

Mxg;

and for every arrow x
α−→ y in Q, we define the map

φ∗(M)αG : φ∗(M)xG → φ∗(M)yG

to be the matrix with zeros at positions (g1, g2) if g1 6= g2 and αg at position (g, g).
Similarly, for each g ∈ G, we define a new representation g∗M of Q by

(g∗M)x = Mxg−1

and
(g∗M)α = Mαg−1 : Mxg−1 →Myg−1

for every vertex x and every arrow x
α−→ y in Q.

The following theorem is a restatement of [10, Lemma 3.5] in our notation.

Theorem 6.2. Let Q be a quiver and G a group acting freely on Q. Suppose that M is
a finite-dimensional indecomposable representation of Q such that g∗M 6∼= M , for every
g ∈ G, g 6= 1G. Then φ∗M is indecomposable. Moreover, if N 6∼= M is a representation
of Q such that φ∗N ∼= φ∗M , then there is g ∈ G, g 6= 1G, such that g∗M ∼= N .

Returning to Borel-Schur algebras, we have already seen in (5.1) that S(B+,m, r) and
eS(B+, n, r)e are isomorphic for some idempotent e ∈ S(B+, n, r), whenever n > m, and
we will apply Lemma 6.1 in this case. It also applies to relate S(B+, 2, r) with S(B+, 2, r′)
for r′ ≥ r. Namely we have:

Lemma 6.3. There is an idempotent e of S(B+, 2, r + 1) such that

eS(B+, 2, r + 1)e ∼= S(B+, 2, r).
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Proof. The usual basis of S(B+, 2, r) can be parametrized as ξν,µ where ν, µ ∈ Λ(2, r) and

µ E ν, see [21]. If λ ∈ Λ(2, r), then set λ̂ = (λ1 + 1, λ2) ∈ Λ(2, r + 1). Let

e :=
∑

λ∈Λ(2,r)

ξλ̂.

Then we claim that eS(B+, 2, r + 1)e ∼= S(B+, 2, r). Namely the linear map, defined on
the basis by ξµ,λ 7→ ξµ̂,λ̂, is bijective and, by Lemma 22 of [21], it is an algebra map.

Some of the Borel-Schur algebras S(B+, 2, r) are special biserial.

Definition 6.4. An algebra of the form A = KQ/I is called special biserial if

(i) for each vertex i of Q, there are at most two arrows starting at i and at most two
arrows ending at i;

(ii) for each arrow α of Q there is at most one arrow β and one arrow γ such that αβ
and γα do not belong to I.

A special biserial algebra A = KQ/I is called a string algebra if I is generated by
monomials.

Remark 6.5. By [6, II.1.3], for every special biserial algebra A = KQ/I, there is a string
algebra Astr such that A and Astr have the same representation type. To construct Astr

one proceeds as follows. Let X be the set of vertices x ∈ Q such that the modules Aex
are injective-projective and non-uniserial. Then J :=

⊕
x∈X soc(Aex) is an ideal of A.

The algebra Astr is defined to be A/J . Moreover, every indecomposable A-module is
either annihilated by J , in which case it can be considered as an indecomposable Astr-
module, or it is isomorphic to Aex for some x ∈ X. Therefore the number of isomorphism
classes of indecomposable A-modules differs from the number of isomorphism classes of
indecomposable Astr-modules by the number of elements in X. Hence A and Astr have
the same representation type.

The indecomposable modules over a string algebra were classified in [19]. Let V be
the set of vertices of Q and E the set of arrows of Q. Denote by Q̄ the quiver with the
set of vertices

Ē = E ∪
{
αt
∣∣α ∈ E} ,

where αt denotes the arrow going in the opposite direction of α. We define the involution
·t on Ē by (α)t = αt, (αt)t = α for every α ∈ E. A walk in Q is a path in Q̄. A cycle in
Q̄ is called a tour in Q. We say that a walk w = α1 . . . αk is admissible if neither w nor
wt contain a subpath in I or a subpath of the form ααt with α ∈ E. A tour τ = α1 . . . αk
is called admissible if

(i) neither τ nor τ t is a cycle;

(ii) for any 1 < j ≤ k the cyclic shift αj . . . αkα1 . . . αj−1 of τ is different from τ ;

(iii) there are neither subpaths from I nor of the form ααt either in cyclic shifts of τ or
in cyclic shifts of τ t.
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Given a walk w in Q, Wald and Waschbüsch construct on page 487 of [19] an A-module
M(w). Further, given a tour τ , a natural number m and κ ∈ K∗, they construct an
A-module M(τ,m, κ). They show in [19, Proposition 2.3] that the modules M(w) and
M(τ,m, k) are indecomposable and

(i) if M is an indecomposable A-module, then either M ∼= M(w) for some admissible
walk or M ∼= M(τ,m, κ) for some admissible tour, m ∈ N and κ ∈ K;

(ii) M(w) 6∼= M(τ,m, k) for any admissible walk w, admissible tour τ , m ∈ N, κ ∈ K∗;

(iii) if M(w1) ∼= M(w2) for two different admissible walks w1 and w2, then w1 = wt2;

(iv) if M(τ1,m1, κ1) ∼= M(τ2,m2, κ2) for (τ1,m1, κ1) 6= (τ2,m2, κ2), then m1 = m2,
κ1 = κ2 and τ2 is a cyclic shift of either τ1 or τ t1.

We can now state the classification of finite type for Borel-Schur algebras.

Theorem 6.6. 1. The algebra S(B+, 2, r) has finite type if and only if one of the
following holds:

(i) char(K) = 0;

(ii) char(K) = p ≥ 5 and r ≤ p;

(iii) char(K) = 3 and r ≤ 4;

(iv) char(K) = 2 and r ≤ 3.

2. For n ≥ 3, the algebra S(B+, n, r) has finite type if and only if r = 1.

Proof. (1) We show first that the algebras listed above have finite type.
(a) If char(K) = 0, or if char(K) = p and r < p, then by Proposition 2.6 S(B+, 2, r)

is isomorphic to KQ, where Q is the Dynkin quiver of type Ar+1 with linear orientation.
By Gabriel’s Theorem [8, Theorem 1.2], the algebra has finite type.

From now we assume that K has characteristic p.
(b) If r = p then S(B+, 2, p) has finite type: its quiver described in Proposition 2.6

has the form

pp−1

αp
oop−2

αp−1

oo21
α2

oo0
α1

oozz

β

with αi : i → i − 1 and β : p → 0, where the only relation is that the product of all
the αi is zero. This is (trivially) special biserial. Any admissible walk is a subwalk of
α2α3 . . . αpβ

tα1α2 . . . αp−1 (or its transpose) and there are no admissible tours. Hence
there are only finitely many admissible words and the algebra has finite type.

(c) The algebra S(B+, 2, 3) for p = 2 is also special biserial. By Proposition 2.6, its
quiver is

3
α3

2ooα2

1
oo

α10
oo

β3

__

β2

��

(6.1)
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and the relations are α1α2 = 0, α2α3 = 0, and α1β3 = β2α3. The only injective-projective
indecomposable module of S(B+, 2, 3) is S(B+, 2, 3)ξ(0,3). Its socle is the one-dimensional
subspace of S(B+, 2, 3) generated by α1β3. Thus the corresponding string algebra Astr

has the same quiver (6.1) and the relations α1α2 = 0, α2α3 = 0, α1β3 = 0, and β2α3 = 0.
Now every admissible walk for Astr is either a subwalk of w = α3β

t
3α2β

t
2α1 or of wt. In

particular, there are no admissible tours and therefore, by Remark 6.5, both Astr and A
have finite representation type.

(d) The algebra S(B+, 2, 4) has finite type for p = 3. To prove this, we calculate
Auslander-Reiten sequences, and we find that the Auslander-Reiten quiver has a finite
component, a drawing of which we include (see Figure 1). Auslander’s Theorem (see
for example Proposition on page 116 of [15]) states that if the Auslander-Reiten quiver
of an indecomposable algebra has a connected component whose modules have lengths
bounded by some natural number, then this component is finite and it contains precisely
all indecomposable modules. In particular the algebra is of finite type. It is clear that the
modules in the component of the Auslander-Reiten quiver of S(B+, 2, 4) on Figure 1 have
bounded length since there are finitely many of them. Hence by Auslander’s Theorem
the algebra S(B+, 2, 4) has finite type.

Now we find four classes of algebras and show they have infinite type.
(e) Consider S(B+, 2, p+ 1) for p ≥ 7. Define

e = ξ(p+1,0) + ξ(p,1) + ξ(p−1,2) + ξ(p−2,3) + ξ(3,p−2) + ξ(2,p−1) + ξ(1,p) + ξ(0,p+1).

From Proposition 2.6 it follows that the algebra eS(B+, 2, p+1)e is a basic algebra whose
quiver is

32
oo

1
oo

0
oo

poop−1oop−2oo p+1

����

(6.2)

with commuting square and no other relation. The quiver (6.2) is number 32 in Ringel’s
list [16] and thus the algebra S(B+, 2, p+ 1) has infinite type.

(f) Consider S(B+, 2, 6) for p = 5. By Proposition 2.6, it has the quiver presentation

5

α6

6
oo

α5

4oo
α4

3oo
α3

2ooα2

1
oo

α10
oo

β6

bb

β5

||

(6.3)

with the relations

α1α2α3α4α5 = 0, α2α3α4α5α6 = 0, α1β6 = β5α6. (6.4)

Let us consider the quiver

3′′2′′oo1′′oo

0′′
����

5′′4′′oo3′oo2′oo1′oo

0′
�� ��

5′4′oo OO��

6′′

����

6′

�� (6.5)
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Figure 1: Auslander-Reiten quiver for S(B+, 2, 4), p = 3.
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with an action of the symmetric group Σ2 given by interchanging ′ with ′′. Then the
quiver (6.3) is a quotient of (6.5) under this action. The full subquiver of (6.5) spanned
by the vertices 3′, and i′′ with 0 ≤ i ≤ 6 is isomorphic to the quiver (6.2). Therefore
there is an infinite set J of pairwise non-isomorphic indecomposable representations V
of the quiver (6.5) such that Vi′ = 0 for i 6= 3, and the square

V6′′

""||
V5′′

""

V1′′

||
V0′′

commutes. It is easy to check that for every such V the representation φ∗(V ) of (6.3)
satisfies relations (6.4).

Now we show that φ∗V is indecomposable. Suppose that φ∗V is not indecomposable.
Then by Theorem 6.2 there is a non-unit element σ ∈ Σ2 such that σ∗V ∼= V . Since Σ2

contains a unique non-unit element and its action on (6.5) is given by swapping i′ and i′′

for every 1 ≤ i ≤ 6, we get Vi′′ ∼= Vi′ for all i. In particular Vi′′ = 0 for i 6= 3. Thus the
support of V is {3′, 3′′}. Since there are no arrows connecting 3′ and 3′′ in (6.5), V is a
direct sum of several copies of the simple modules S3′ and S3′′ . As V is indecomposable
we get that either V ∼= S3′ or V ∼= S3′′ . But in the fist case σ∗V ∼= S3′′ 6∼= S3′

∼= V , and
in the second case σ∗V ∼= S3′ 6∼= S3′′

∼= V . Thus we get a contradiction to the existence
of σ 6= 1 such that σ∗V ∼= V . This shows that φ∗V is indecomposable.

Further, if V and W ∈ J are two different representations of (6.5) such that φ∗(V ) ∼=
φ∗(W ), then by Theorem 6.2, we have V ∼= σ∗W , where σ = (12) ∈ Σ2. This implies that
Vi′′ ∼= Wi′ = 0 if i 6= 3. Therefore either V is isomorphic to the simple module S3′ or to
the simple module S3′′ . Let J ′ = J \{S3′ , S3′′}. Then J ′ is infinite and {φ∗(V )|V ∈ J ′}
is the set of pairwise non-isomorphic indecomposable representations of S(B+, 2, 6) over
a field of characteristic 5. This shows that S(B+, 2, 6) is of infinite type for p = 5.

(g) Consider S(B+, 2, 5) for p = 3. By Proposition 2.6 it is isomorphic to the quiver
algebra of the quiver

α5

54oo
α4

3oo
α3

2oo
α2

1oo
α1

0oo

β5

��

β4

\\

β3

��

(6.6)

with relations

α1α2α3 = 0, α2α3α4 = 0, α3α4α5 = 0, α1β4 = β3α4, α2β5 = β4α5. (6.7)

Let us consider the quiver

5′′4′′oo3′′oo
2′
oo

1′
oo

0′
oo��

oo
2′′1′′

oo
0′′
oo�� ����

��

5′4′oo3′oo

�� (6.8)
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with an action of Σ2 given by interchanging ′ and ′′. Then (6.6) is the quotient of
(6.8) under this action. Let J be the set of isomorphism classes of finite-dimensional
indecomposable representations V of (6.8), such that

V0′ = 0, V1′ = 0, V5′′ = 0,

the map from V3′ to V2′′ is zero, and the square

V3′′

��

V4′′
oo

��
V0′′ V1′′
oo

commutes. Then the elements of J can be identified with the isomorphism classes of
finite-dimensional indecomposable representations of the quiver 33 in Ringel’s list [16].
Thus J is infinite.

Now, for every isomorphism class [V ] in J , one can check that φ∗V satisfies relations
(6.7) and therefore can be considered as a representation of S(B+, 2, 5) over a field of
characteristic 3. Theorem 6.2 implies that φ∗V is indecomposable. In fact, if this is not
the case, then σ∗V ∼= V and thus V0′′ = V1′′ = V5′ = 0. Moreover, the map from V3′′ to
V2′ is zero. Hence V is the direct sum of subrepresentations V ′ and V ′′ defined by

V ′i′ = Vi′ , V ′i′′ = 0; V ′′i′ = 0, V ′′i′′ = Vi′′ , (6.9)

where 0 ≤ i ≤ 5. Since V is indecomposable, we get that either V ′ = 0 or V ′′ = 0. But
σ∗V ∼= V implies that σ∗V

′ ∼= V ′′ and σ∗V
′′ ∼= V ′. Thus in both cases, we get that V = 0.

Further, for every [V ] ∈ J there is at most one [W ] ∈ J different from [V ] such that
[φ∗V ] = [φ∗W ]. In fact, by Theorem 6.2, we get that V ∼= σ∗W , where σ = (12) ∈ Σ2.
Therefore the set

{ [φ∗V ] | [V ] ∈ J }
is infinite, and we get that S(B+, 2, 5) for p = 3 has infinitely many pairwise non-
isomorphic indecomposable representations.

(h) Consider S(B+, 2, 4) for p = 2. By Proposition 2.6 it has the quiver

α4 43oo
α32
oo

α2

1ooα10 oo ��

β2

��

β4

γ

ZZ ZZ

β3 (6.10)

and its ideal of relations is generated by

α1α2 = 0, α2α3 = 0, α3α4 = 0, α1β3 = β2α3, α2β4 = β3α4, β2β4 = 0. (6.11)

Let us consider the quiver

4′′
3′′oo2′′oo

1′
oo

0′
oo��

oo
1′′0′′

oo�� ��ww

2′
��

��

4′3′oooo

��ww

(6.12)
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with an action of Σ2 given by interchanging ′ and ′′. Then (6.10) is the quotient of
(6.12) under this action. Let J be the set of isomorphism classes of indecomposable
representations V of (6.12) such that Vi′ = 0 for i 6= 2 and the maps from V3′′ to V1′′ ,
from V3′′ to V2′′ and from V2′ to V1′′ are zero maps. Then J can be identified with the
set of isomorphism classes of indecomposable representations of the quiver

2′′

0′′xxff

1′′

//4′′

2′
ff

3′′
xx

of type D̃5. Thus J is infinite. One can check that for every [V ] ∈ J the repre-
sentation φ∗V of (6.10) satisfies the relations (6.11) and thus can be considered as a
representation of S(B+, 2, 4) over a field of characteristic 2. Using Theorem 6.2 one can
verify as above that φ∗V is indecomposable. Moreover, if [V ] and [W ] ∈ J are different
and [φ∗V ] = [φ∗W ] then [V ] = [σ∗W ]. Therefore the set { [φ∗V ] | [V ] ∈ J } is infinite.
Hence S(B+, 2, 4) defined over a field of characteristic 2 has infinitely many pairwise
non-isomorphic indecomposable representations. This completes the proof of part (1) of
Theorem 6.6.

(2) Now we study S(B+, 3, r) for r ≥ 2. The quiver of S(B+, 3, r) contains a full
subquiver Q′ given by

//(r−1,0,1)(r−2,1,1)

��
(r−2,2,0) (r−1,1,0)

//��

Let e be the idempotent e = ξ(r−2,1,1)+ξ(r−1,0,1)+ξ(r−2,2,0)+ξ(r−1,1,0). Then eS(B+, 3, r)e is
isomorphic to KQ′ and this is of infinite type, by Gabriel’s Theorem. Hence S(B+, 3, r)
is of infinite type, by Lemma 6.1. Now it follows, from (5.1) and Lemma 6.1, that
S(B+, n, r) is of infinite type for any n ≥ 3 and r ≥ 2.

Finally, the algebra S(B+, n, 1) is isomorphic to KQ where Q is a quiver of type An
with linear orientation, hence it has finite type.
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