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Abstract

Schizophrenia is a severe mental disorder and one of the leading causes of disease burden worldwide. It represents a 
source of significant suffering and disability to the affected individuals, and is associated with substantial societal and 
economical costs.

The diagnosis of schizophrenia still depends exclusively on the detection of symptoms that are also present in other 
mental disorders. This situation causes overlapping of the boundaries of the diagnostic categories and constitutes a 
source of diagnostic errors. Moreover, current treatment algorithms do not take into account the substantial interindi-
vidual variability in response to antipsychotic drugs. As a result, around one-third of patients are treatment-resistant to 
first line antipsychotic drugs. This deleterious consequence is associated with poor individual outcomes and elevated 
healthcare costs.

Neuroimaging research in schizophrenia has shed some light in a vast array of structural and functional connectivity 
abnormalities and neurochemical (dopamine and glutamate) imbalances, which may constitute ‘organic surrogates’ of 
this disorder. However, the neuroimaging field, so far, has not been able to identify biomarkers that could facilitate early 
detection and allow individualised treatment management. 

This paper reviews neuroimaging studies from different modalities that may provide relevant biomarkers for schizo-
phrenia. We discuss how the current application of novel Machine Learning methods to the analyses of imaging data is 
allowing the translation of such findings into potential biomarkers enabling the prediction of clinical outcomes at the 
individual level, towards the development of innovative and personalised treatment strategies.
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Introduction

Schizophrenia has an estimated lifetime prevalence of 0.30–
0.66% in the general population [1], representing a source 
of substantial distress to affected individuals and their rel-
atives. It has been considered one of the leading factors of 
global disease burden, reducing the life expectancy of pa-
tients by more than 18 years due to factors such as increased 
substance use, poverty, neglect of personal well-being, 
smoking, metabolic syndrome, and suicide [2, 3]. 

Schizophrenia’s definition is still based exclusively on 
clinical criteria, which have remained virtually identical 
over the last 100 years, grounding its diagnosis on centu-
ry-old diagnostic categories [4]. Moreover, clinical presen-
tation is heterogeneous not only when comparing between 
different individuals but also depending on the illness stage, 
varying from positive symptoms (hallucinations, delusions, 
disturbances of self, thought disorders, psychomotor ab-
normalities) to negative, affective and cognitive symptoms 
[5].  There is also considerable diversity in outcome:  35 to 
65% of patients show an undulating course (i.e., episodic 
and neither continuous nor episodic) with good outcome 
and 12% to 32% present a chronic course with poor out-
come [6].  Antipsychotic drugs are the mainstay of treat-
ment for psychosis, yet there is considerable heterogeneity 
in their therapeutic efficacy [7, 8]. Consequently, adequate 
response to treatment is not universal in schizophrenia. Al-
though the majority of patients respond to typical or atypi-
cal non-clozapine antipsychotics, roughly a third of patients 
do not respond well and are considered treatment-resistant 
[9]. Nonresponse to first-line antipsychotic agents is asso-
ciated with poor functional outcomes and poses important 
financial challenges to health care systems, including up to 
a tenfold increase in total health resource utilization [10]. 
Treatment algorithms for patients in their first psychotic 
episode are devoid of prognostic measures, and therefore 
treatments are still chosen by “trial and error”, without ref-
erence to, or guidance from, the biological background of 
the individual. Moreover, when patients do not have an 
adequate clinical response to treatment, they may endure 
prolonged periods of untreated illness. Current practice 
suggests a need for reliable, biologically based prognostic 
measures of treatment response to antipsychotic agents.  

In the last decade, considerable research efforts re-
vealed a vast array of chemical [11] functional [12] and 
structural brain abnormalities [13] that may constitute the 
‘organic surrogate’ of the illness [14]. The field of neuro-
imaging leveraged unprecedented insight into brain biol-
ogy, showing promising progress towards the identifica-
tion of putative biomarkers, which could be used for early 
diagnosis, treatment planning, and monitoring of disease 
progression. However, to date, the results of neuroimag-
ing studies have not been successfully integrated into the 
diagnostic process as disease biomarkers operating at the 
single-subject level [14, 15]. As a result, psychiatrists are 
still constrained to rely on traditional and often ineffective 

diagnostic and prognostic tools. One of the reasons for the 
limited impact of the findings on clinical practice is that 
neuroimaging studies have typically reported differences 
between patients and controls, but at group level; in con-
trast, doctors working in a psychiatric ward have to make 
clinical decisions about individuals [16)]. To overcome 
these methodological drawbacks, an increasing number 
of studies have now applied novel multivariate Machine 
Learning methods, which provide statistical inferences at 
the individual level [14, 17].  This progress may pave the 
way to improved diagnosis and development of innovative 
and personalised treatment strategies. 

In this paper, we review recent neuroimaging findings 
on structural and functional connectivity as well on the 
chemistry of the brain of individuals with schizophrenia 
and discuss how obstacles for translating them into clinical 
practice are being challenged with advanced methods of 
data analysis. 

The development of techniques that allow clinicians 
to improve early diagnosis and prediction of outcome 
and treatment is a major translational goal for research 
in this field.

Neurochemical biomarkers

Two of the most influential hypotheses concerning the un-
derlying neurobiology of the disorder involve dopamine 
and glutamate [11]. The first evidence supporting these 
hypotheses goes back to the 1970s originating from in vitro 
studies on dopamine receptors and antipsychotics. Since 
then, molecular imaging studies with both Single Photon 
Emission Computed Tomography (SPECT) and Positron 
Emission Tomography (PET) extended these in vitro find-
ings to patients. PET and SPECT imaging allows the in vivo 
quantification of dopamine synthesis, the degree of dopa-
mine release in response to stimuli, and the availability of 
the post-synaptic dopaminergic receptors and transporters 
[18]. Studies with these imaging modalities provided com-
pelling evidence of abnormal dopaminergic function in 
schizophrenia with increased presynaptic dopamine avail-
ability and dopamine release [11, 12]. In addition, research 
with PET has validated the link between elevated dopa-
minergic synthesis and specific psychotic symptoms [19] 
and their severity. Importantly, it has been demonstrated 
that evaluation of striatal [18F]-DOPA uptake allows for 
classification of schizophrenia patients and controls with 
approximately 60–90% sensitivity and specificity, depend-
ing on the quantification method used [20].

The dopaminergic model of schizophrenia was also 
strongly based on early evidence demonstrating that all an-
tipsychotic drugs cross the blood–brain barrier and block 
D2/3 striatal receptors in vivo at clinically effective doses. 
These data extended, and have provided the foundation for 
studies in which the relationship between D2 occupancy 
and clinical response could be established [11]. Accordingly, 
in the treatment of schizophrenia with antipsychotic drugs, 
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an average 60% occupancy of brain D2 dopamine receptors 
is required to produce a therapeutic response [21]. How-
ever, approximately, a third of patients with schizophrenia 
show limited if any response to antipsychotic medications, 
despite high levels of dopamine D2 receptor blockade, with 
exception to clozapine. This fraction of non-responders 
has been labelled “treatment-resistant schizophrenia” [22]. 
The current evidence supports the notion that dysfunction 
of glutamatergic neurotransmission could be responsible 
for treatment-resistance. Indeed, glutamatergic abnor-
malities are thought to contribute to the pathophysiology 
of schizophrenia and the prevailing hypothesis is for the 
primary involvement of N-Methyl-D-Aspartate (NMDA) 
receptor dysfunction [11]. Although the direct evidence 
of NMDA receptor hypofunction in schizophrenia is still 
limited, one SPECT imaging study using an NMDA recep-
tor tracer reported a reduction in NMDA receptor binding 
in medication-free patients with schizophrenia [23]. In ad-
dition, human Proton Magnetic Resonance Spectroscopy 
([1H]-MRS) studies have shown that ketamine, a NMDA 
antagonist that induces a schizophrenia-like phenotype, 
increases glutamate (or glutamine) levels in human pre-
frontal cortex [24, 25]. The mechanism that explains these 
changes is still controversial, although it has been shown 
that  inhibition of NMDA receptors leads to reduced GAB-
Aergic interneuron function, resulting in disinhibition of 
pyramidal neurons and excessive glutamate spillover [26]. 
[1H]-MRS studies at field strengths of 3-Tesla or above in 
antipsychotic-naive or minimally medicated first-episode 
psychosis patients have identified increases in the gluta-
mate metabolite glutamine (Gln) or the Gln/glutamate 
ratio in the anterior cingulate cortex [27, 28], increases 
in Gln in the thalamus [28], and increases in glutamate in 
the associative striatum [29]. This suggests that brain glu-
tamatergic activity is increased in the early stages of the 
disorder, when patients are usually experiencing acute psy-
chotic symptoms [30].

Glutamatergic levels traced by [1H]-MRS and dopa-
mine synthesis capacity measured by [18F]-DOPA may 
have potential to be used as biomarkers to predict treat-
ment responsiveness allowing the stratification of treat-
ment-resistant and treatment-responsive patients. Demja-
ha et al. [31, 32] have found increased glutamate levels in 
patients vs controls, but no difference in striatal dopamine 
synthesis capacity in treatment-resistant patients whereas 
responders showed increased striatal dopamine synthesis 
capacity, but no difference in anterior cingulate glutamate 
levels compared to controls. Furthermore, elevated gluta-
mate levels were found in non-remitted first episode pa-
tients compared to patients in remission in the anterior 
cingulate cortex and left frontal lobe [30]. These findings 
where replicated in studies comparing treatment-resistant 
and treatment-responsive patients. Mouchlianitis and col-
leagues [33] demonstrated, for the first time, that chron-
ically ill patients with treatment-resistant schizophrenia 
show significantly elevated anterior cingulate cortex glu-

tamate levels when directly compared to treatment-re-
sponsive schizophrenia patients. In addition, a recent 
[18F]-DOPA PET study has found that patients treated 
with clozapine (treatment-resistant schizophrenia) show 
lower dopamine synthesis capacity than patients who have 
responded to first-line treatment [34].  

Based on the findings described above it has been ar-
gued that elevated anterior cingulate glutamate may con-
stitute a stable neurobiological trait in treatment-resistant 
patients, which is preserved after a number of treatment 
courses with different non-clozapine medications and that 
the effectiveness of clozapine or novel glutamatergic anti-
psychotics in treatment-resistant patients might be related 
to attenuation of glutamatergic dysfunction [33]. To ad-
dress this question, future studies should use a prospective 
design, measuring glutamate in medication-naive patients 
and repeating it when treatment resistance has been de-
termined. Notwithstanding, it has been hypothesized that 
“treatment-resistant” individuals have a different strain of 
schizophrenia not characterized by mesolimbic dopami-
nergic dysfunction. Accordingly, Howes and Kapur [35] 
proposed two types of schizophrenia: type A (hyperdopa-
minergic) which is characterized by elevated striatal dopa-
mine synthesis and release capacity, creating a state of hy-
perdopaminergia which underlies the onset of the disorder, 
increases as the illness first develops and leads to the de-
velopment of symptoms; and type B (normodopaminergic) 
where dopaminergic function is normal and symptoms are 
not related to dopaminergic function. It is expected that an-
other neurochemical dysfunction underlies type B schizo-
phrenia, being glutamatergic function the most likely. 

In summary, we might say that neuroimaging studies 
suggest that a different neurobiology may underlie treat-
ment-responsive and treatment-resistant schizophrenia. If 
elevated glutamate levels are found to be a stable neurobi-
ological trait of treatment resistance, they could be used to 
fast-track such patients to clozapine and/or towards newer 
glutamatergic compounds under current development. 

Connectivity biomarkers

Schizophrenia may be considered a disorder of brain con-
nectivity. In fact, the name itself implies a splitting (schi-
zen) of the mind's (phren) normal processing that is mani-
fest in the patient's clinical signs and symptoms. 

This link between symptoms and brain connectivity was 
well noted by pioneers like Carl Wernicke (1848–1905) who 
argued that the disorder arose from pathology of the brain's 
association fibers. Later, Swiss psychiatrist Eugen Bleuler 
(1857–1939) who coined the term “schizophrenia” in 1911, 
defined the illness as a disease whose core involves a de-cou-
pling of the brain’s normally integrated processes [36].

In the last 30 years, the evidence derived from Mag-
netic Resonance Imaging (MRI), has provided a wealth 
of evidence indicating that schizophrenia does not solely 
arise from isolated damage to one or a few brain regions. 
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1The distinction between the prefixes ‘dis’ and ‘dys’ was drawn on etymologi-
cal grounds by Stephan et al.: in Latin, ‘dis’ refers to a reduction or breakdown; 
in Greek, ‘dys’ connotes bad or ill and implies that changes could involve both 
abnormal decreases and/or increases.

Rather, it is characterized by abnormal structural and func-
tional brain connectivity supporting the notion that it is 
essentially a disorder of dysconnectivity, accounting for a 
wide-range of connectivity disturbances, beyond a simple 
“disconnection”, or reduced connectivity [37-41]1. A criti-
cal point is that these brain connectivity abnormalities are 
already evident in the initial stages of the disorder and pro-
ceed with ongoing illness [42]. This suggests that assess-
ment of brain connectivity patterns with neuroimaging 
approaches may permit early diagnosis and prediction of 
disease course.

In recent years, the study of connectivity abnormalities 
in schizophrenia has been approached not only by exam-
ining single functional and structural connections but also 
from a "connectomic" perspective of neural systems. Con-
nectomics refers to scientific attempts to accurately map 
the set of neural elements and connections comprising the 
brain, collectively referred to as the human connectome, at 
either micro-, meso- or macroscopic resolutions [43].

In this section, we summarize contemporary neuro-
imaging evidence for abnormal structural and functional 
brain connectivity, and discuss studies showing aberrant 
connectome organization in schizophrenia and how these 
changes have been reported to relate to phenomenology, 
treatment response and clinical outcome. 

Structural Connectivity
Structural connectivity reflects how brain regions are in-
terconnected by white matter fiber bundles and can be as-
sessed using Diffusion-Weighted Imaging (DWI), an im-
aging method that uses the diffusion of water molecules to 
generate contrast in MRI [44]. Diffusion Tensor Imaging 
(DTI), a diffusion-weighted MRI method, can measure 
macroscopic axonal organization in nervous system tissues 
by estimating the constrains to diffusion of water molecules 
in the brain imposed by white matter fiber tracts, allowing 
these tracts to be delineated [45]. In addition, DTI can be 
used to approximate the strength or quality of structural 
connections, by mapping microscopic details about white 
matter fiber structure [46]. Commonly used metrics of 
inter-regional connectivity include the number of recon-
structed fibers between two regions as a proxy of connec-
tion strength [47] as well as measures of connection quality 
such as Fractional Anisotropy (FA) (how constrained the 
water diffusion is), Mean Diffusivity (MD) (i.e., the level 
of water diffusion along each point of a tract), Radial Dif-
fusivity (RD) (i.e., the degree of diffusion perpendicular to 
the primary tract axis; often taken as an indirect estimate of 
myelin integrity) and Axial Diffusivity (AD; the degree of 
water diffusion parallel to the tract trajectory; often taken as 
an indirect measure of local fiber organization) [48]. 

DTI Scans can be analysed by different methods: trac-
tography allows calculation and visualization of probable 
trajectories of fiber tracts with an index of fiber integrity av-
eraged over the reconstructed tract, allowing tract-specific 
measurements; Voxel-Based Morphometry (VBM) allows 
DTI metrics to be calculated on a voxel by voxel basis over 
a normalized stereotaxic brain atlas [46]. Statistical compar-
ison between different populations is then applied to the 
whole brain or specific regions of interest (ROIs). More re-
cently, Tract-Based Spatial Statistics (TBSS) has been devel-
oped in which voxel-based diffusion metrics are projected 
onto an alignment-invariant tract representation [46].

DTI investigations have reported that changes in white 
matter may reflect a critical pathophysiological marker for 
psychosis and schizophrenia. These studies have put in ev-
idence a set of structural brain connectivity impairments in 
schizophrenia [43, 46, 49]. Altered structural integrity of 
white matter has been found in major white matter bun-
dles across the brain of schizophrenia patients, especially 
those connecting the frontal, temporal and parietal lobes, 
namely the corpus callosum, cingulum bundle, uncinate 
fasciculus, and internal capsule [49]. These white matter 
tracts were shown to have reduced fractional anisotropy, 
believed to be an indicator of affected overall microstruc-
ture, together with increased mean and radial diffusivity, 
which has been suggested to reflect possible decreases in 
level of myelination and organization of these tracts [49, 
50]. In addition to tract-specific differences, diffusion ab-
normalities have been demonstrated throughout the entire 
white matter [46], globally suggesting impairment of mul-
tiple brain circuits in schizophrenia.

Anticipating the importance of structural connectivity 
measurements in supporting clinical decision-making in 
the near future, some studies have reported relationships 
between structural connectivity alterations and charac-
teristic clinical features of schizophrenia. One of those 
studies has found that deficits in working memory and re-
duced speed in information processing, two of the funda-
mental cognitive deficits in schizophrenia, are associated 
with impaired whole-brain white matter microstructure 
[51]. In deficit syndrome schizophrenia, characterized by 
prominent negative symptoms and poor functional out-
come [52], impairments in specific white matter tracts 
have been found, particularly in the uncinate fasciculus, 
inferior longitudinal fasciculus, and arcuate fasciculus 
[53]. Another study, in a more clinically heterogeneous 
sample of schizophrenia participants, also found that re-
duced FA in the inferior longitudinal and arcuate fascicu-
lus was associated with functional outcomes at both base-
line and 6-month follow-up [54].

A valuable approach that can assist the research for bio-
markers in schizophrenia are neuroimaging studies of pa-
tients who are experiencing their first-episode of psychosis. 
Such studies look for white matter abnormalities already 
present at illness onset. Many of these studies are performed 
when patients have had none or minimal exposure to anti-
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psychotic medications. Thus, they can help to distinguish 
between what is an intrinsic marker of the disorder, and 
what are secondary effects of long-term medication and 
chronicity. In first-episode patients evidence exists for tract 
specific white matter abnormalities in many of the same 
tracts identified in chronic patients, though findings are 
less consistent [46]. In contrast, several DTI studies of first 
episode schizophrenia subjects have reported widespread 
white matter changes that range from diffusion alterations 
in frontal, parietal and temporal lobes [55, 56] to an over-
all reduction in white matter tissue [57]. Conversely other 
studies have found no differences in all regions assessed in 
first-episode samples of patients compared to healthy indi-
viduals [58-60]. This may be due to some of these studies 
being underpowered as a result of having small sample sizes 
as these patients are more difficult to recruit. 

Additionally, white matter integrity has been associ-
ated to treatment response with first-line antipsychotics 
in first psychotic episode patients. In a prospective design 
study, Reis Marques et al. [61] found that non-responders 
showed lower FA than both responders and healthy con-
trol subjects mainly in the uncinate, cingulum and corpus 
callosum, whereas responders were indistinguishable from 
healthy control subjects. Interestingly, after 12 weeks of 
treatment, there was an increase in FA in both respond-
ers and non-responders that positively correlated with 
antipsychotic exposure, raising the possibility that antipsy-
chotics may restore white matter integrity as part of the 
therapeutic response.

Altogether, studies in first-episode patients suggest 
that white matter abnormalities are present in the initial 
stages of schizophrenia and their identification may assist 
early diagnosis and inform patient stratification to antici-
pate care needs.

Functional Connectivity 
Functional connectivity refers to a statistical depen-

dence between spatially distinct neurophysiological signals 
[62]. This construct assumes that synchronized activity be-
tween two or more brain regions reflects some degree of 
communication occurring between them [50]. 

Functional Magnetic Resonance Imaging (fMRI) is a 
form of MRI that enables measurement of brain activi-
ty and connectivity [63]. fMRI is commonly performed 
using the Blood Oxygenation Level-Dependent (BOLD) 
contrast technique which is a non-invasive imaging tech-
nique that indirectly measures brain activation by quanti-
fying magnetic effects of the so-called hemodynamic re-
sponse. The magnitude of the BOLD signal is an indirect 
measure of neuronal activity, and is a composite, which 
reflects changes in regional cerebral blood flow, volume, 
and oxygenation [64]. 

fMRI studies typically measure functional connectivi-
ty by analysing the distinct neuronal responses to various 
forms of stimuli and activity during task performance. 
More recently, technical advances in neuroimaging have 

revealed intrinsic signal fluctuations during "resting-state", 
that is, in the absence of external stimuli or demands of 
imposed tasks [65]. Resting state fMRI (rs-fMRI) studies 
have been decisive to the recognition that the brain is more 
accurately portrayed as a network of functionally connect-
ed (co-varying) and constantly interacting regions [64, 66].

In schizophrenia, functional imaging studies have 
found aberrant connectivity within an array of functional 
brain systems, including fronto-parietal networks involved 
in cognitive function [67, 68], cingulo-opercular systems 
associated with salience processing and interoception [69], 
the default mode network implicated in self-reflective 
thinking, as well as specific  [70] fronto-striatal [71], fron-
to-temporal [72] and cerebellar [73] circuits. In addition, 
functional decoupling between distinct subnetworks has 
been shown in schizophrenia patients [74].

Similarly to structural connectivity, functional con-
nectivity alterations have been reported in association 
with clinical variables, revealing their potential as candi-
date biomarkers. In a case-control study of Fornito and 
colleagues [71] a widespread dysregulation of corticostri-
atal systems, characterized most prominently by hypo-
connectivity of dorsal and hyperconnectivity of ventral 
frontostriatal circuits, was associated with the early stages 
of psychosis reflecting differences between first-episode 
patients and healthy controls. In addition, these changes 
correlated with the severityof both positive and negative 
symptoms, and were also present in unaffected first-degree 
relatives, suggesting that it represents a candidate risk phe-
notype for psychotic illness. Using resting-state functional 
MRI, Hadley et al [75] examined the functional connec-
tivity of the ventral tegmental area (VTA) in a sample of 
unmedicated schizophrenia patients and healthy controls, 
at baseline and after 1 week of treatment with the antipsy-
chotic drug risperidone. Compared with controls, patients 
exhibited significantly reduced baseline VTA/midbrain 
connectivity to multiple cortical and subcortical regions, 
including the dorsal anterior cingulate cortex (dACC) and 
thalamus. Importantly, baseline VTA/midbrain connec-
tivity strength to dACC was positively correlated with 
good response to a 6-week course of risperidone, whereas 
VTA/midbrain connectivity strength to the default mode 
network was negatively correlated, suggesting that VTA/
midbrain resting-state connectivity may be a useful bio-
marker for the prediction of treatment response. More-
over, antipsychotic treatment was shown to re-establish 
deficient baseline VTA/midbrain connectivity to bilateral 
regions of the thalamus. The effects of treatment in func-
tional connectivity were also examined by Sarpal et al. [76] 
in a prospective study where the efficacy of treatment of 
psychosis with second-generation antipsychotic medica-
tions was shown to be associated with alterations in func-
tional corticostriatal circuitry. In this study, antipsychotic 
treatment increased functional connectivity between the 
striatum and the prefrontal—as well as limbic regions—to 
the extent that psychosis successfully improved, raising the 



Biomarkers in Schizophrenia: neuroimaging to machine learning6

ARC Publishing

hypothesis that increased functional connectivity between 
these brain regions could be used to predict improvement 
in symptoms associated with antipsychotic treatment. 
Building on these findings, in a subsequent study [77], the 
same authors aimed to develop and test a prognostic bio-
marker, based on functional connectivity of the striatum, 
with the potential for clinical utility in the prediction of 
positive symptom response to antipsychotic treatment. To 
that end, resting-state functional MRI was used to develop 
a prognostic baseline striatal connectivity index in a dis-
covery cohort of patients with first-episode schizophre-
nia, which was then tested in a generalizability cohort of 
patients with chronic psychotic illness who were newly 
hospitalized for an acute psychotic episode. This striatal 
connectivity index predicted response to antipsychotic 
treatment with high sensitivity and specificity in both the 
discovery and generalizability cohorts, providing evidence 
that individual differences in striatal functional connec-
tivity predict response to antipsychotic drug treatment in 
acutely psychotic patients. 

With further development, the evidence from these 
studies may have the potential to generate diagnostic and 
prognostic biomarkers with clinical utility and to reduce 
the overall burden associated with psychotic illnesses.

Imaging Connectomics and Brain Networks
The field of ‘connectomics’ is concerned with accurate-
ly mapping the brain’s connectivity architecture and un-
derstanding how the architectural organization of these 
neural maps underlies brain function [50]. Imaging con-
nectomics refers to the use of neuroimaging techniques to 
map various properties of structural and functional brain 
connectivity, principally at macroscopic resolution [43]. 
Contributions from network science, mainly based on the 
mathematical graph theory, have facilitated the study brain 
networks and their relation to other complex systems 
[78-80]. Application of graph theory provides a mathe-
matical framework that describes structural or functional 
connections between every pair of regions comprising the 
brain in the form of a graph consisting of a set of nodes 
(representing neurons, or macroscopic cortical regions) 
and edges, which describe the interactions between nodes 
(being axons, macroscopic white matter pathways, level of 
inter-regional functional coupling) [50] (see Figure 1 for 
a comprehensive description of the steps involved in the 
generation of structural and functional brain networks). 
One the basis of such formal, mathematical description of 
a network, graph theory metrics can be used to describe 
the network topology (Figure 2), allowing investigation 
of emergent features that are otherwise not measurable by 
focusing exclusively on information from single brain re-
gions or single pair-wise connections.

Based on the type of information the measure provides 
about the network organization, graph metrics can be ap-
proximately divided into measures of segregation and in-
tegration. Measures of segregation reflect the degree to 

which the network can be subdivided into local commu-
nities of clusters or modules that are strongly intercon-
nected, with relatively sparse connectivity to the rest of 
the network. Network clustering can be quantified using 
the clustering coefficient, indicating the extent to which 
the neighbours of a node are also mutually connected and 
therefore have tendency to cluster. Modularity reflects the 
extent to which the network as a whole can be decom-
posed into modules. 

Measures of integration reflect the efficiency of com-
munication among all nodes in the overall network. Two 
commonly used and inversely related measures are path 
length and global efficiency. Path length indicates the 
average length of the shortest communication paths in-
tegrating otherwise spatially disparate node pairs. Global 
efficiency, calculated as the inverse of the number of steps 
(i.e, shortest path length) needed to travel between each 
pair of nodes in the network, reflects the efficiency with 
which information can be distributed throughout the 
network (i.e, the degree to which inter-regional commu-
nication is globally integrated). Furthermore, degree and 
centrality metrics provide information on the role of each 
node and edge in the overall communication architecture 
of the network [50]. Degree measures the number of edg-
es each node possesses and the level of closeness centrality 
provides an indication of the travel distance from a node to 
every other node in the network. In addition, a node’s be-
tweenness centrality is a ratio of the number of all shortest 
paths between any two nodes in the network that travel 
through an index node, providing an indication of how to-
pologically central a node’s role is in overall network com-
munication. Nodes that display a high degree and high of 
centrality are often referred to as ‘hubs’ meaning they have 
a central placement in the network [50, 81, 82] (Figure 2). 

Using graph theoretical approaches, studies of the hu-
man connectome have identified a non-random organiza-
tion in the brain’s wiring architecture, including a propen-
sity for nodes (i.e, brain regions) to cluster into structural 
communities [83]. The brain’s tendency for local cluster-
ing is coupled with a high capacity for global information 
flow, as indicated by high global efficiency and short path 
length [78, 83]. This type of network architecture, com-
bining a high level of local information processing while 
at the same time permitting a high level of global integra-
tion of information has been referred to as a small-world 
topology [83, 84]. The connectome’s modular communi-
ty structure is thought to be advantageous to brain func-
tion because high connectivity between nodes in the same 
module provides a topological foundation for segregation 
[43, 85, 86] of specialized functions such as primary senso-
ry processing while reducing wiring cost [87]. The struc-
tural communities and associated functional systems of the 
brain have been shown to be interconnected by a relatively 
small set of putative ‘brain hubs’ localized in association re-
gions of the frontal, parietal, and insular cortex that display 
a high pattern of connectivity and a high level of network 
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Figure 1. Steps for generation of structural and functional brain networks derived from neuroimaging data. (A) Structural connectiv-
ity maps can be generated with diffusion tensor imaging (left) and functional connectivity maps can be generated with fMRI (right). (B) Network 
nodes, corresponding to different brain regions, are identified by parcellation scheme, which can be derived from a priori anatomical landmarks 
(left), random parcellation (middle) or using functionally defined regions-of-interest (right). (C) After definition of brain regions, structural con-
nectivity between brain regions can be derived from whole-brain tractography for diffusion tensor imaging (left); Functional connectivity is often 
derived from correlation analysis of statistical dependencies in recorded regional-activity time courses for fMRI (right). (D) After some measure of 
connectivity has been calculated for every pair of brain regions, connectome architecture can be represented by a connectivity matrix encoding 
the strength and type of connectivity between each regional pair. (E) The connectivity matrix is used to construct a graph-based representation of 
brain network connectivity, termed a brain graph (left) from which several measures of network connectivity and topology can be computed (right).  
fMRI=functional MRI. Panels A-E adapted from Fornito et al. (39) 
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Figure 2. Graph metrics of network topology. (A) The ‘clustering’ of a graph provides insight into the level of local connectedness of the graph, 
describing how strong the connected neighbours of a node are connected themselves. (B) The modular structure of the network describes the ten-
dency of nodes to form local connected clusters that share a relative high level of connectivity with each other than with other regions. (C) The ‘charac-
teristic path length’ of a graph describes the average number of edges that have to be crossed to travel between any two nodes in the network. Black 
arrows depict the shortest path between the two blue nodes. (D) The blue node represents a hub node, displaying a high degree, a short global path 
length and being involved in a large number of communication paths in the network. (E) Besides being individually rich in connectivity, high degree 
nodes can display a high level of interconnectivity, forming a densely connected ‘rich club’.

centrality [82]. Besides being individually ‘rich’ in connec-
tivity, recent studies have suggested that these brain hubs 
are densely interconnected amongst themselves, together 
forming a central rich club or core [50, 81] (Figure 2). 
Due to their central embedding in the overall network, 
rich clubs have been suggested to play a pivotal role in 
global brain communication, and to form putative central 
points for neural convergence and global integration of 
information [82].

Numerous topological disturbances of structural and 
functional brain networks have been found in schizophre-
nia. Structural studies have generally found evidence of 
increased segregation (i.e., clustering and modularity) and 
reduced integration (higher path length and lower global 
efficiency and rich-club organization), indicating a subtle 
randomization of network connectivity [50]. In contrast, 
functional brain network studies paint a more diffuse pic-
ture, some reporting reductions in measures of local in-
formation-processing such as reduced clustering, local ef-
ficiency and/or modularity [88, 89] along with increases in 
measures of global functional integration others with no 
significant changes in measures of global integration [88, 
90]. Similarly, graph-analysis MRI studies of whole-brain 
connectivity almost always show impaired structural con-

nectivity [41] while studies of functional connectivity have 
included reports of both abnormally increased and abnor-
mally decreased functional connectivity, even in the same 
sample [91]. This apparent discrepancy between findings 
from structural and functional studies may result from ei-
ther pathophysiological processes or merely represent an 
artefact of different methods applied to fMRI and dwM-
RI data when mapping brain connectivity. Although a de-
tailed discussion on this topic is beyond the scope of this 
review (for an in-depth overview see [92]), several lines of 
evidence suggest that a critical factor in determining these 
topological alterations appears to be a core disturbance of 
hub node organization schizophrenia [82, 93, 94]. Collec-
tively, these findings indicate that deficient wiring of these 
hubs and their rich clubs can dysregulate communication 
across widespread areas, causing complex changes in brain 
dynamics involving both abnormal increases and decreas-
es in functional connectivity. In some cases, the increases 
may be a compensatory response to dysregulated signalling 
in specific parts of the network; in other cases, abnormal 
wiring of structural connections may lead to a breakdown 
of normally segregated systems and a de-differentiation of 
neural activity [92]. Overall affected hub connectivity and 
topology may underlie a broad range of network abnormal-
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ities observed in patients, having a pronounced effect on 
the functional dynamics and functional capacity of the brain 
and consequently on global cognitive functioning [50].

Potential of connectomics in informing clinical practice
Beyond demonstrating brain disturbances in schizophre-
nia, differences in network connectivity or topology may 
relate to clinical symptoms, treatment response, and func-
tional outcome in schizophrenia.

In patients, positive symptom severity has been linked 
to reduced levels of overall structural connectivity, both 
decreases and increases in structural and functional cou-
pling, connectivity strength of temporal and frontal re-
gion pairs, reduced global network efficiency [96] and 
reduced levels of clustering [95, 96]. The severity of neg-
ative symptoms has been associated with reductions in 
global functional connectivity, increases in global struc-
tural-functional coupling, increases in structural-func-
tional coupling in default mode subnetworks, as well as 
reduced levels of global network efficiency and global 
clustering [95, 96]. Lower functional connectivity has also 
been associated with poorer cognitive performance [74].

Network-level connectivity analysis may be also 
valuable for early diagnosis. A recent functional connec-
tivity study that used resting-state functional MRI found 
that network-level alterations are present in drug-naive 
individuals with a first-episode of psychosis and suggest-
ed that aberrant internetwork connectivity between the 
default mode network and the central executive network 
is a distinctive feature of psychosis whereas aberrant in-
tranetwork connectivity is a transdiagnostic feature of 
psychiatric illness [97].  

Concerning treatment response, Crossley and col-
leagues [98] evaluated connectome-based descriptions of 
brain structural networks of patients at their first episode 
psychosis, and found that those who had an efficient-
ly-wired connectome (higher global efficiency) at first on-
set of psychosis showed a better subsequent response to 
antipsychotics. However, response to treatment was not 
accompanied by specific structural changes over time.

In terms of functional performance, impaired rich 
club organization has been linked to global functioning 
[99] and is predictive of subsequent changes in function-
al outcome. Finally, connectome clustering at baseline 
has been shown to predict longitudinal changes in symp-
toms and intellectual performance in patients [100].

Taken together these findings suggest that topologi-
cal alterations in brain wiring have a potential value as 
markers of disease severity, early detection, treatment 
response, and outcome prediction.

Machine learning approaches

Neuroimaging studies such as those mentioned until this 
point have investigated possible biomarkers for early di-
agnosis, treatment planning and monitoring of disease 

progression in schizophrenia. To date, however, the re-
sults of these studies have had minimal clinical impact 
despite much interest in the use of brain scans for di-
agnostic and prognostic purposes [16]. One explanation 
for the limited impact of the findings on clinical practice 
is that neuroimaging studies have described average dif-
ferences between groups whereas decisions in the clini-
cal setting need to be made at the individual level rather 
than the group. This has been a consequence of relying 
on mass-univariate analytical techniques (e.g. statistical 
parametric mapping) which can only be used to detect 
differences between groups but do not allow statistical 
inferences at the level of the individual [101]. In addi-
tion, with mass-univariate techniques statistical infer-
ences are drawn from multiple independent compari-
sons (i.e. one for each voxel) based on the assumption 
that different brain regions act independently, although 
current evidence argues for a network-level brain func-
tion in health and disease [102].

Over the past few years there has been growing inter-
est within the neuroimaging community in the use of an-
alytical methods based in Machine Learning (ML), an area 
of artificial intelligence that aims to develop algorithms 
that discover trends and patterns in existing data and use 
this information to make predictions on new data. 

Relative to traditional methods of analysis based on 
the mass-univariate analytical techniques, the advan-
tages of applying ML methods are twofold. Firstly, ML 
methods allow statistical inferences at the level of the in-
dividual therefore yielding results with a potentially high 
level of clinical translation [16]. Secondly, as inherently 
multivariate approaches, they take the intercorrelation 
between voxels into account, and thereby are sensitive 
to spatially distributed and subtle effects in the brain that 
would be otherwise undetectable using traditional uni-
variate methods [101].

ML methods can be divided into two broad catego-
ries: supervised and unsupervised learning. In supervised 
ML, one seeks to develop a function which maps two or 
more sets of observations to predefined categories or val-
ues. In contrast, unsupervised methods seek to determine 
how the data are organized without using any a priori in-
formation supplied by the operator; here the main objec-
tive is to discover unknown structure in the data [101].

One specific form of supervised multivariate pattern 
recognition analysis (MVPA) algorithm is that used for 
classification, concerned with the automatic discovery 
of regularities in the data that can be used to classify the 
data into different predefined categories [16]. Examples 
of MVPA techniques include, but are not limited to, ar-
tificial neural networks, decision trees, Gaussian pro-
cess classification and Support Vector Machine (SVM). 
Of these, the most popular technique in the neuroim-
aging literature is SVM [103], which to date has been 
applied in several studies of neurological and psychi-
atric disorders, allowing the classification of individual 
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observations (e.g. scans) into distinct groups or classes 
(e.g. diagnostic categories) based on data in high-di-
mensional space [104].

The SVM is a supervised classification algorithm that 
learns from an initial ‘training’ data set to classify new 
cases into two or more groups previously defined by the 
operator (e.g. patients vs. controls) [16]. For example, an 
SVM can be trained on a data set of baseline neuroim-
aging measurements from first-episode subjects defined 
by whether they subsequently developed a clinically de-
fined outcome or not, and it can then be applied to a new 
sample of first-episode individuals [16]. An SVM is val-
idated by demonstrating that it can classify individuals 
in a sample independent of the data set it was originally 
trained on. Ideally, this is done using a second data set 
that has been acquired separately from the original [16]. 
Validation can also be attempted without a second data 
set, for example, by splitting the original sample (repeat-
edly), with one portion being used as the training data 
set and other portions being used for cross validation 
(e.g., k-fold cross-validation; [105]. However, any over-
lap between the training and test data sets will result in 
the model over-fitting. 

Several studies have used ML to examine the diag-
nostic and prognostic potential of neuroimaging in a 
range of neurological and psychiatric disorders and, to 
date, a number of promising results have been report-
ed.  In schizophrenia, a meta-analysis of studies that 
applied MVPA to brain functional and structural im-
aging data revealed that this ML method differentiates 
schizophrenic patients from healthy controls with 80% 
sensitivity and specificity [14]. Another potential appli-
cation of MVPA is in the field of differential diagnostics. 
In fact, because of the substantial symptomatic hetero-
geneity within and overlap across different psychiatric 
diagnoses, differential diagnostics might represent the 
greatest clinical challenge in everyday care [106]. Thus, 
MRI based differential diagnosis may develop into one 
of the most promising applications of MVPA. In recent 
study, structural MRI-based multivariate pattern classi-
fication was used to identify and cross-validate a neuro-
anatomical signature that allowed differential diagnosis 
of patients with first-episode and recurrent stages of 
schizophrenia from patients with major depression with 
a balanced accuracy of 76% [107]. 

Results from the application of SVMs in first-epi-
sode samples have also been promising. A SVM trained 
on volumetric MRI data obtained at the first psychot-
ic episode was used to predict future illness course at 
the individual level [108]. The trained SVM was able 
to distinguish patients with a continuous course from 
both patients presenting an episodic course (accura-
cy=70%, sensitivity=71, specificity=68, p=0.004) and 
healthy individuals (accuracy=67%, sensitivity=71, 
specificity=61, p=0.01). This study provided novel, 
methodologically sound, proof of concept that ML 

methods applied to MRI data can be used at illness on-
set to predict clinical outcome.

Overall, findings show that application of ML meth-
ods to neuroimaging data may provide generalizable 
tools for diagnosis and improved treatment-manage-
ment of schizophrenia early in the course of the disorder.

Concluding remarks and directions for future 
research

In recent years, precision medicine has become a ubiq-
uitous paradigm across all areas of medicine, including 
schizophrenia, boosting research for personalised care. 
The neuroimaging studies reviewed above support the 
perspective that use of imaging methods that assess neu-
rochemical brain functioning such as dopamine PET or 
[1H]-MRS or newer methodologies measuring functional 
or structural connectivity, may be suitable to discover bio-
markers of the disorder. 

An important step in the research for biomarkers in 
schizophrenia is the identification of pathological phe-
notypes that are characteristic of the disorder.  However, 
many of the pathological features of schizophrenia may 
be elusive to "resting-state" neuroimaging methods, re-
quiring challenge paradigms to be revealed. As such, task-
based studies should be considered crucial for detecting 
the characteristic features upon which biomarkers can be 
developed. In addition, the identification of new candidate 
biomarkers may require the use of several imaging modali-
ties. Indeed, schizophrenia is a heterogeneous and complex 
disorder and biomarkers of a single imaging modality do 
not capture the heterogeneity and complexity of this brain 
disorder. Until recently, integration of different imaging 
modalities into a single candidate biomarker represented 
a significant methodological challenge, since multimod-
al studies require broader expertise in collecting, analys-
ing, and interpreting the results than do unimodal studies 
[109]. Nevertheless, the recent development of toolboxes 
designed to pipeline well-known neuroimaging software, 
allows automated connectivity analyses and extraction of 
graph theory metrics from multimodal imaging data such 
as PET, MRS, fMRI and DTI [110]. In addition, the appli-
cation of new machine-learning methods using multivar-
iate approaches to fuse brain imaging data from different 
modalities and non-imaging data has the potential to iden-
tify endophenotypes and increase knowledge on individual 
diagnosis and treatment response [109, 111, 112].

Since the final purpose of developing neuroimaging 
biomarkers is to provide tools to aid real-world clinical 
management of schizophrenia patient, neuroimaging find-
ings can be developed as biomarkers either with diagnostic 
purposes by indexing a biological process associated with 
health or the disorder or as predictive biomarkers reflect-
ing a process associated with treatment-response, that can 
be used in clinical stratification [113]. However, a neural 
abnormality found in a clinical population will only be 
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assigned as a real biomarker if it can be used as an accu-
rate surrogate of clinically relevant outcomes, such as di-
agnosis, prognosis or treatment response, which means it 
needs to have sufficient sensitivity, specificity and clinical 
predictive value. One of the first obstacles for determin-
ing the predictive power of biomarkers for schizophrenia 
relates to the lack of a gold standard definition for diag-
nosis. The current diagnostic criteria are solely based on 
combinations of symptoms and there are no gold-standard 
objective methods that can be used for definitive valida-
tion of clinical diagnosis. A possible solution has been to 
conduct longitudinal follow-up studies, which are consid-
ered equivalent to a gold standard in psychiatry and allow 
comparison of the biomarker prediction with the final 
diagnosis or observed clinical outcome. An alternative 
approach could be the use of new classification schemes 
such as the Research Domain Criteria (RDoC) initiative, 
which is based on dimensions of observable behavior and 
neurobiological measures, rather than categorical diagno-
sis as in the Diagnostic and Statistical Manual of Mental 
Disorders (DSM) or the International Classification of 
Diseases (ICD). The RDoC approach can aid the search 
for biomarkers because it might lead to the identification 
of neuroimaging markers of discrete symptom domains 
of schizophrenia, which then can be targeted by specific 
treatments instead of treating the disorder as a whole.

A major limitation for the development of biomark-
ers in schizophrenia has been the relatively small sample 
sizes of studies published until now, resulting in lack of 
statistical power to allow validity assessment of suggest-
ed candidates. Systematic imaging of a critical number 
of patients may unveil new biomarkers that otherwise 
would go undetected in underpowered studies. A promis-
ing strategy to enable well-powered studies could emerge 
from precise-medicine initiatives like the PSYSCAN 
project (http://www.psyscan.eu/), a multi-centre study 
funded by the European Commission, involving a large 
number of patients, aimed at developing a neuroimag-
ing-based tools that can be used to help predict outcomes 
in the early phase of schizophrenia. Of course, multi-site 
studies are challenging, as they require standardization of 
neuroimaging methods in order to ensure reproducibil-
ity across sites. This could be tackled with standardized 
protocols that provide homogeneous data acquisition 
and analysis across sites, including procedures for subject 
preparation, performance of quality-assurance tests on 
the scanner before data acquisition is carried out, as well 
as specific analysis software for data processing [113].

Finally, a practical issue that that can limit the clinical 
use of imaging biomarkers is the restricted availability of 
imaging centres and the substantial costs associated with 
brain imaging. Nevertheless, the cost-effectiveness defined 
by the clinical usefulness of the biomarker in avoiding ex-
penses related with misdiagnosis, treatment failure, func-
tional impairment and other disease-related burden may 
be more important than cost [113].

In sum, for a biomarker to be translated as a useful tool 
for clinical management of schizophrenia patients, it is re-
quired to have an acceptable level of sensitivity, specificity 
and predictive value, to be easily quantifiable and practical-
ly feasible, easily accessible and cost effective. 

In the future, biomarker development in schizophre-
nia should rely on a cost-effective platform that balanc-
es between hypothesis-driven development, exploring 
well-replicated imaging phenotypes with the potential to 
result in useful biomarkers, and data-driven approaches 
aimed at ‘blindly’ exploring multimodal data sets [113]. 
Ultimately, once developed, these methods could allow 
a patient to be assigned to targeted assertive case-man-
agement at first presentation to services, with optimized 
pharmacological treatment, cognitive and family inter-
ventions, which have been shown to improve treatment 
adherence and reduce relapse rates eventually improving 
outcome [108]. This means that the discovery of neuroim-
aging-based biomarkers of schizophrenia would represent 
a paradigm shift in patient care, positively influencing the 
social perception of mental illness and the quality of psy-
chiatric practice.
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