Associations between sleep quality and domains of quality of life in a non-clinical sample: Results from higher-education students

Daniel Ruivo Marques, PhD ${ }^{\text {ab, b, } 1}$, Ana Maria Soares Meia-Via, MPsych ${ }^{\text {a, } 1}$, Carlos Fernandes da Silva, PhD ${ }^{\text {a,c }}$, Ana Allen Gomes, PhD ${ }^{\text {d,e,* }}$
${ }^{\text {a }}$ University of Aveiro, Department of Education and Psychology, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
${ }^{\text {b }}$ Institute for Biomedical Imaging and Life Sciences, IBILI, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
${ }^{\text {c }}$ CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
${ }^{\text {d }}$ University of Coimbra, Faculty of Psychology and Educational Sciences, Rua do Colégio Novo, 3000-115 Coimbra, Portugal
${ }^{\text {e }}$ CINEICC - FCT RED Unit: Cognitive and Behavioural Research and Intervention Center, Faculty of Psychology and Educational Sciences, Rua do Colégio Novo, $3001-802$ Coimbra, Portugal

A R T I C L E IN F O

Article history:

Received 27 January 2017
Received in revised form 16 June 2017
Accepted 11 July 2017
Available online xxxx

Keywords:

Normal sleep
Quality of life
Sleep quality
Psychopathology
Adult
University students
PSQI

Abstract

Objective: The association between sleep quality and quality of life (QoL) in clinical samples diagnosed with sleep disorders, mental disorders, or other medical conditions has been widely investigated. However, few studies focused on this relationship in samples of mostly young and healthy adults. This study analyzed the associations between sleep quality and several dimensions of QoL in higher education students and examined whether or not sleep quality would significantly predict QoL after statistically controlling for psychopathological symptoms. Design: Observational and transversal. Setting: Non-clinical; higher education. Participants: A sample of 324 college students, aged 17 to 47 years ($M=20.89 \pm 2.85$) were enrolled. Measurements: European Portuguese versions of the Pittsburgh Sleep Quality Index (PSQI), the WHOQOLBref to measure QoL, and the Brief Symptom Inventory (BSI) to measure psychopathological symptoms. Results: All PSQI components were significantly associated with general QoL and the psychological and physical QoL domains. The subjective sleep quality and daytime dysfunction PSQI components were consistently associated with all WHOQOL-Bref domains and general QoL. Hierarchical regression analyses further showed that the PSQI components as a whole, in particular subjective sleep quality, added significant contributions to the general QoL facet and to the psychological, physical, and environmental QoL domains, after controlling for psychopathological symptoms. Conclusions: Several components of sleep quality and different facets/domains of QoL are associated in higher education students, particularly subjective sleep quality, which remains a significant predictor of most aspects of QoL, regardless of the presence of psychopathological symptoms.

© 2017 Published by Elsevier Inc. on behalf of National Sleep Foundation.

Introduction

Quality of life (QoL) refers to the "individuals' perception of their position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards and concerns" (p. 1403). ${ }^{1}$ Several studies have systematically demonstrated adverse effects when sleep behavior is compromised. ${ }^{2}$ For example, sleep deprivation may cause emotional problems; impaired

[^0]social, work, and academic performance; sleepiness; and impairment 53 of cognitive functions, etc. ${ }^{3,4}$

According to the literature, the association between sleep quality 55 and QoL in clinical samples diagnosed with sleep disorders (eg, in- 56 somnia) or other medical conditions (eg, cancer) has been extensive- 57 ly investigated. Notwithstanding, studies focused on the relationship 58 between sleep quality and QoL in community samples of mostly 59 healthy young adults are lacking despite the vast amount of publish 60 research about the general topic of sleep and QoL. For instance, 61 when searching on Scopus database for published research 62 concerning the association between quality of sleep and QoL (requir- 63 ing in title the key-words: quality of sleep AND QoL), thousands of 64 references are retrieved; but after removing clinical conditions, and 65
after that particular situations or professional groups (eg, pregnancy; menopause women; elderly; shift workers; caregivers), the initial figures fall to dozens of studies. When further examining the abstracts to consider community/nonclinical samples comprising young adults with an emphasis on sleep quality (not just sleep duration or other sleep parameter) and QoL (not just well-being or satisfaction with life), we found only seven relevant results. ${ }^{5-11}$ However, none of these seven studies were controlled for general psychological symptoms.

For example, Zeitlhofer et al. ${ }^{10}$ studied an Austrian cohort ($N=$ 1049) aged over 15 years and found a moderate correlation between quality of sleep and QoL. Chen et al. ${ }^{8}$ studied a sample of 2391 US young adults and found that the overall and mental health-related QoL were associated with various sleep disturbances. Andruskiene et al. ${ }^{5}$ observed that self-reported sleep disturbances contributed to a worse health-related QoL as measured by the SF-36 in a large study ($N=1602$). Baldwin et al. ${ }^{6}$ found that some sleep disturbances and health-related QoL are associated, but only studied people aged 40 years and older. Bower et al. ${ }^{7}$ compared individuals with and without mood disorders and examined associations among sleep quality and positive and negative affect. Overall, sleep quality predicted positive affect. Other studies have focused on a sample of Israeli adolescents and reported several associations between sleep variables and QoL. However, this research focused on morningness and did not control for general psychological symptoms. ${ }^{9}$ In a study comprising a large community sample $(N=3225)$ aged 18 to 55 , Zhou et al. ${ }^{11}$ found negative associations between sleep quality (measured by the PSQI) and QoL (SF-36) as expected-even when controlling for socio-demographic variables.

From all of these studies, we conclude that (i) the most common sleep quality metric was the PSQI; (ii) the QoL measure was variable and none of the studies used the WHOQOL-100 or WHOQOL-Bref; and (iii) the psychological symptoms were not consistently controlled.

Indeed, there are very few studies focused on healthy or nonclinical samples, and thus there is little knowledge on how the quality of sleep variations in these samples impact QoL. The few existing studies suggest a relationship between sleep quality and wellness, life satisfaction, or QoL even in samples comprising mostly healthy young adults (eg, college students ${ }^{10,12,13}$). These findings enhance the idea that the sleep may have significant impact on QoL even in the absence of sleep disorders or other health problems. This scenario is in accordance with the "sleep health" concept suggested by Buysse. ${ }^{14}$

Despite being mainly composed by healthy and young adults, many studies have shown that sleeping problems are quite common among college students. ${ }^{15,16}$ For example, Wolfson ${ }^{17}$ reported that 75% of college students have occasional sleep problems such as sleep-onset difficulties and excessive diurnal sleepiness. Also, delayed sleep phase syndrome is a frequent sleep problem in this population. ${ }^{18}$ In a large study of university students, it was found that insomnia and insufficient sleep duration were the most common sleep problems. ${ }^{19,20}$ A pattern characterized by poor sleep quality and a significant sleep restriction is common in college students, and various studies have suggested that poor quality of sleep is associated with a reduction in physical and psychological wellness. ${ }^{12,13}$ Valdez, Ramirez and Garcia ${ }^{21}$ posited that college students have an irregular sleep pattern characterized by the so-called "restrictionextension" sleep pattern. This is a reality consistent with the developmental tasks students face when transitioning to the university. ${ }^{22,23}$ Some of these challenges pertain to alterations in students' social lives such as increased going out at night, leaving parents' home, reduction in parental control, ${ }^{23}$ etc. These modifications may have a prominent role in inducing sleep disruption or sleep problems.

It is also known that psychological symptoms have an important 131 role on self-reported QoL, and studies suggest that psychopathology 132 might increase among college students for the past several 133 years. ${ }^{24,25}$ In a review by Hunt and Eisenberg, ${ }^{26}$ it was observed 134 that 17% of students reported depressive symptomatology, and 10\% 135 of them reported anxiety and stress-related symptomatology. In an- 136 other study of 763 college students, more than a third had some 137 kind of psychological problem. ${ }^{27}$ Several factors can contribute to 138 this scenario such as academic pressure, interpersonal problems, pre- 139 occupations about the future, and financial difficulties. ${ }^{28}$ As expected, 140 psychological disturbances can affect sleeping behavior; still, this as- 141 sociation is bidirectional. ${ }^{29,30}$

142
In sum, given the importance of sleeping behavior in several do- 143 mains of students' life, it is thus germane to examine whether sleep 144 quality-related variables constitute independent predictors of QoL 145 apart from psychological symptomatology. In summary, the purpose 146 of our study was twofold: (i) to analyze the associations between 147 subjective sleep quality and several dimensions of QoL in higher edu- 148 cation students, and (ii) to examine whether or not sleep quality is a 149 significant predictor of QoL after statistically controlling for psycho- 150 pathological symptoms. This study refers to the frequently assumed 151 conceptualization of sleep quality as a broad concept generally 152 encompassing quantitative aspects such as sleep duration and laten- 153 cy, number of nocturnal awakenings, and more subjective topics in- 154 cluding self-assessed sleep depth and quality. ${ }^{31,32}$

Method 156

Participants 157

We recruited 361 participants from the University of Aveiro (UA) 158 both in the classroom context and across campus. Only cases with 159 complete datasets were used, and only 324 cases were analyzed. Par- 160 ticipants had a mean age of 20.89 years $(S D=2.85)$. The majority 161 were female (65.7%) attending the 1 st cycle of the university 162 (66.7\%) as full-time students (92.6\%) after having left their parents' 163 home to study at the university (65.1\%) and now living in rented 164 rooms in flats (59.6\%). Most students reported that the places 165 where they sleep have good conditions (good $=44.1 \%$ and very 166 good $=41.0 \%$). Furthermore, the majority did not identify sleep 167 problems (88.6\%) or mental health disturbances (95.7\%).

Measures

 169
Sociodemographic and clinical data

 170Sociodemographic and clinical data were collected through a sec- 171 tion based on a previous questionnaire section used in earlier re- 172 search in undergraduates. ${ }^{20}$ This section encompassed questions on 173 age, sex, number of enrollments in university, field of study, student 174 status (i.e., ordinary, worker-student), whether the entry in university 175 implied left parents' home, type of housing, the quality of the habitual 176 sleep place, and whether the students self-identified a sleeping 177 problem and/or a mental health problem. These data were only 178 used to characterize the sample and were not used to perform 179 inferential analyses.

Sleep quality

181
The Pittsburgh Sleep Quality Index (PSQI) was used to assess self- 182 reported sleep quality over the last month ${ }^{31}$. The PSQI contains 19183 items (0-3 Likert scale). Furthermore, the items clustered together 184 form seven components (i.e., subjective sleep quality, sleep latency, 185 sleep duration, habitual sleep efficiency, sleep disturbances, use of 186 sleeping medication, and daytime dysfunction). There were five addi- 187 tional questions such as whether the subject has a roommate, but 188 these were not considered for quantitative scoring. The sum of the 189
seven components ranged from 0-21 and gives an overall score of sleep quality. Greater scores denote worse sleep quality. In this study, internal consistency values were acceptable/satisfactory ranging from $\alpha=.65$ (total seven components) to $\alpha=.74$ (considering the sixteen Likert-type items). We used the official PSQI European Portuguese Version by Mapi Institute-cf. psychometric characterization in Marques et al. ${ }^{33}$

Psychological symptoms

The brief symptom inventory (BSI) is a scale that evaluates generic psychological symptoms comprising 53 items. ${ }^{34}$ The individuals rate the extent to which they have been disturbed $(0=$ not at all to $4=$ extremely) in the past week by various symptoms. It comprises nine subscales: somatization, obsessive-compulsive, interpersonal sensitivity, depression, anxiety, hostility, phobia, paranoia, and psychoticism. Moreover, it enables calculation of three indexes: global severity index, positive symptoms, and positive symptoms distress index. In our study, the Cronbach's alpha scores had minimum and maximum values of .68 (psychoticism) and .84 (depression), respectively. The Cronbach alpha for the total scale was .96 . We used the official European Portuguese Version of the BSI^{35}.

Self-perceived QoL

The WHOQOL-Bref is a short form version of the WHOQOL-100 generic measure of self-perceived QoL that was developed by the World Health Organization (WHO). ${ }^{36}$ It comprises 26 items that are organized in four domains: physical domain, psychological domain, social relationships domain, and environment domain. Furthermore, it is possible to calculate a general facet constituted by the sum of the two first items of the questionnaire. In our study, the internal consistency indexes ranged from $\alpha=.74$ (social relationships domain) to $\alpha=.78$ (psychological domain). We used the official WHOQOLBref European Portuguese Version. ${ }^{37}$

Procedure

This study followed the principles outlined in the Declaration of Helsinki, and we sought permission for all measures. We asked professors at the University of Aveiro to allow the students to complete the questionnaires during or after their classes. This increased the sample size. Other participants were identified across campus (eg, library). Before the participants completed the questionnaires, one of the researchers explained the purpose of the study and guaranteed anonymity of the collected data. They also explained that the participants could quit the study without any consequences at any time. Informed consent was then obtained. The estimated time for completing the entire protocol was 15-20 minutes. The order of the applied measures in the protocol was demographic data sheet, PSQI, WHOQOL-Bref, and BSI. Psychology undergraduate students who collaborated in this study were given partial credit for completing the questionnaires. Data were collected in the first academic semester outside of the examination period.

Statistical analysis

All calculations were performed using IBM SPSS Statistics (version 19.0). First, we computed descriptive statistics such as relative and absolute frequencies, means, and standard deviations to characterize the sample. The Pearson product-moment correlation coefficients were measured to explore the associations among sleep quality, psychological symptoms and QoL variables. Then, considering variables significantly associated with QoL, we carried out four hierarchical multiple regression analyses with two steps in each. In step 1, psychopathology-related measures were entered; in step 2, sleeprelated variables were entered in a different block. Hierarchical
regression analyses aimed to clarify whether sleep quality variables 249 would remain associated with QoL after controlling for the influence 250 of psychopathology. Hierarchical linear regression is a statistical tech- 251 nique that allows the researcher to constitute blocks of variables that 252 will serve as covariates for those entered later. Consequently, one 253 may examine the unique contributions of the variables of interest in- 254 dependent from the other related variables. ${ }^{38}$ A significance value of 255 $P<.05$ was considered for all analyses.

Results

 257
Descriptive analysis

 258Table 1 displays the mean scores for all the variables considered in 259 our study. The mean score of the total PSQI was 5.25, and the compo- 260 nent scores ranged between 0.1 (sleep efficiency) and 1.16 (daytime 261 dysfunction). The mean overall score was similar-albeit systematically 262 lower compared to other studies of university students (${ }^{16,39-44}$). 263 Regarding the WHOQOL-Bref results, we found that the domains' 264 means raged between 67.12 (environment domain) and 74.61265 (physical domain). The mean score of the general facet of the 266 WHOQOL-Bref was 73.23. We found that the WHOQOL-Bref 267 mean scores were higher for our sample in psychological and en- 268 vironmental domains compared to the normative Portuguese 269 data. The scores in the remaining domains were lower for our 270 sample. However, we note that the age range of our group was 271 not as broad as the normative group, and this might account for 272 this difference. ${ }^{37}$ Finally, BSI mean scores ranged between 0.38273 (phobic anxiety) and obsessive-compulsive (1.11). The global 274 severity index mean score was 0.61 . The BSI scores of our sample 275 are lower than the normative scores of a non-clinical Portuguese 276

Table 1
Descriptive statistics concerning sleep quality, quality of life and psychopathological t1.2 symptoms scores

	Total sample $(N=324)$		t1.4
	$\mathrm{M}(\mathrm{SD})$		
	$1.01(0.57)$	$0-3$	t 1.5
PSQI (C1)	$1.02(0.87)$	$0-3$	t 1.6
PSQI (C2)	$0.74(0.76)$	$0-3$	t 1.7
PSQI (C3)	$0.10(0.36)$	$0-3$	t 1.8
PSQI (C4)	$1.09(0.46)$	$0-3$	t 1.9
PSQI (C5)	$0.14(0.49)$	$0-3$	t 1.10
PSQI (C6)	$1.16(0.72)$	$0-3$	t 1.11
PSQI (C7)	$5.25(2.51)$	$0-17$	t 1.12
PSQI (total)	$73.23(12.85)$	$25-100$	t 1.13
WHOQOL-Bref (D1)	$74.61(12.81)$	$32.1-100$	t 1.14
WHOQOL-Bref (D2)	$69.16(13.57)$	$29.2-100$	t 1.15
WHOQOL-Bref (D3)	$73.01(14.83)$	$25-100$	t 1.16
WHOQOL-Bref (D4)	$67.12(11.26)$	$25-96.9$	t 1.17
WHOQOL-Bref	$0.43(0.49)$	$0-2.1$	t 1.18
BSI somatization	$1.11(0.69)$	$0-3.3$	t 1.19
BSI obsessive-compulsive	$0.68(0.64)$	$0-3.8$	t 1.20
BSI interpersonal sensitivity	$0.78(0.66)$	$0-3.7$	t 1.21
BSI depression	$0.72(0.62)$	$0-3.0$	t 1.22
BSI anxiety	$0.81(0.64)$	$0-3.2$	t 1.23
BSI hostility	$0.38(0.52)$	$0-3.2$	t 1.24
BSI phobia	$0.84(0.64)$	$0-2.8$	t 1.25
BSI paranoia	$0.57(0.56)$	$0-2.6$	t 1.26
BSI psychoticism	$0.61(0.49)$	$0-2.4$	t 1.27
BSI global severity index	$24.23(12.86)$	$1-52$	t 1.28
BSI positive symptoms	$1.42(0.37)$	$1-3$	t 1.29
BSI positive symptoms distress index			

Note. $M=$ Mean; $\mathrm{SD}=$ Standard Deviation; PSQI (C1) = subjective sleep quality; t 1.30 PSQI $(C 2)=$ sleep latency; PSQI $(C 3)=$ sleep duration; PSQI $(C 4)=$ habitual sleep $t 1.31$ efficiency; PSQI (C5) = sleep disturbances; PSQI (C6) = use of sleeping medication; t1.32 PSQI (C7) = daytime dysfunction; PSQI (total) = PSQI total score; WHOQOL-Bref t1.33 (D1) = physical; WHOQOL-Bref (D2) = psychological; WHOQOL-Bref (D3) = social t1.34 relationships; WHOQOL-Bref (D4) = environment; WHOQOL-Bref $=$ general facet. \quad t1.35

Table 2
Correlation matrix between QoL, sleep quality and psychological symptoms variables

	WHOQOL-Bref	WHOQOL-Bref (D1)	WHOQOL-Bref (D2)	WHOQOL-Bref (D3)	WHOQOL-Bref (D4)
PSQI (C1)	$-0.367^{* *}$	$-0.546^{* *}$	$-0.446^{* *}$	-0.190*	$-0.307^{* *}$
PSQI (C2)	-0.168*	$-0.312^{* *}$	$-0.307^{* *}$	n.s.	n.s.
PSQI (C3)	-0.140*	$-0.217^{* *}$	-0.151*	n.s.	-0.133*
PSQI (C4)	-0.120*	-0.141*	-0.136*	n.s.	n.s.
PSQI (C5)	$-0.291 * *$	$-0.333^{* *}$	$-0.328^{* *}$	n.s.	$-0.212^{* *}$
PSQI (C6)	-0.181*	$-0.329^{* *}$	$-0.312^{* *}$	n.s.	n.s.
PSQI (C7)	$-0.249^{* *}$	$-0.370^{* *}$	$-0.379^{* *}$	-0.164^{*}	-0.164*
PSQI (total)	$-0.362^{* *}$	$-0.551^{* *}$	$-0.504^{* *}$	-0.170*	$-0.256^{* *}$
BSI somatization	$-0.348^{* *}$	$-0.524^{* *}$	$-0.414^{* *}$	n.s.	$-0.374^{* *}$
BSI obsessive-compulsive	$-0.274^{* *}$	$-0.607^{* *}$	$-0.614^{* *}$	$-0.250^{* *}$	$-0.349^{* *}$
BSI interpersonal sensitivity	$-0.293 * *$	$-0.435^{* *}$	$-0.516^{* *}$	$-0.278^{* *}$	$-0.326^{* *}$
BSI depression	$-0.353^{* *}$	$-0.542^{* *}$	$-0.648^{* *}$	$-0.334^{* *}$	$-0.359^{* *}$
BSI anxiety	-0.299**	$-0.539^{* *}$	$-0.526^{* *}$	-0.142^{*}	$-0.346^{* *}$
BSI hostility	$-0.286^{* *}$	$-0.469^{* *}$	$-0.462^{* *}$	$-0.202^{* *}$	$-0.348^{* *}$
BSI phobia	$-0.228 * *$	$-0.356^{* *}$	$-0.321^{* *}$	-0.145^{*}	$-0.303^{* *}$
BSI paranoia	$-0.290^{* *}$	$-0.402^{* *}$	$-0.456^{* *}$	$-0.283^{* *}$	$-0.363^{* *}$
BSI psychoticism	$-0.308^{* *}$	$-0.487^{* *}$	$-0.560^{* *}$	$-0.319^{* *}$	$-0.341^{* *}$

${ }^{*} P<.05 ;{ }^{* *} P<.001 ;$ n.s. $=$ not significant.
Note. WHOQOL-Bref = general facet, WHOQOL-Bref (D1) = physical, WHOQOL-Bref (D2) = psychological, WHOQOL-Bref (D3) = social relationships, WHOQOLBref (D4) = environment. PSQI (C1) = subjective sleep quality, PSQI (C2) = sleep latency, PSQI (C3) = sleep duration, PSQI (C4) $=$ habitual sleep efficiency, PSQI $(\mathrm{C} 5)=$ sleep disturbances, PSQI $(\mathrm{C} 6)=$ use of sleeping medication, PSQI $(\mathrm{C} 7)=$ daytime dysfunction.
population. This might be because of the broader age range in the normative sample. ${ }^{35}$

Correlational analysis

In terms of the association between QoL and quality of sleep, we found that the general, physical, and psychological domains exhibited significant negative correlations ($P<.05$) with all PSQI components and the PSQI total score (cf. Table 2). On the other hand, the domain of social relations only showed significant negative correlations with the subjective quality of sleep, daytime dysfunction, and total PSQI. The environmental domain showed significant and inverse correlations with subjective quality of sleep, sleep duration, sleep disturbances, daytime dysfunction and total PSQI.

As for the relationship between QoL and psychopathological symptoms, all areas of the WHOQOL-Bref-except for the social relationships domain-show significant negative correlations with all BSI dimensions (cf. Table 2). Note that the association between the social relationships domain and somatization was the only correlation that was not statistically significant ($P>.05$).

Regarding the relationship between quality of sleep and psychopathological symptoms, we found that the components of subjective sleep quality, sleep disturbances, use of sleeping medication and daytime dysfunction showed significant positive correlations with all BSI dimensions. However, components related to sleep latency, sleep duration and habitual sleep efficiency showed no significant relationships with psychopathological dimensions (see Table 3).

Hierarchical multiple regression analysis

Next, we performed hierarchical multiple linear regression analyses to examine sleep quality as a potential predictor of QoL while controlling for psychopathological symptoms. Based on the correlational analyses performed previously, we entered only the variables that presented statistically significant correlations (see correlational analyses section).

Considering the general facet of the WHOQOL-Bref, we found that both psychopathology and sleep quality contributed significantly to general QoL accounting for 24% of the explained variance. While controlling for psychological symptoms, the sleep quality block still adds a significant contribution to the general QoL of about 8% (see Table 4). It is important to note that despite these results, only three
components significantly contributed to general QoL-specifically so- 315 matization ($\beta=-0.20 ; P<.05$), depression ($\beta=-0.21 ; P<.05$), 316 and subjective sleep quality ($\beta=-0.24 ; P<.001$). Considering 317 the analysis of standardized regression coefficients (β), the subjec- 318 tive quality of sleep best accounted for the variance in the general 319 QoL. 320
As to the physical domain of WHOQOL-Bref, we found that psy- 321 chological symptoms, and sleep quality blocks also contributed sig- 322 nificantly explaining about 54% of the total variance (cf. Table 5). 323 Controlling for psychopathological symptoms, the sleep quality 324 block accounted for 11% of the observed results in the physical do- 325 main of QoL. In addition to somatization ($\beta=-.20 ; P<.01$) and sub- 326 jective sleep quality ($\beta=-0.03, P<.001$), the obsessive-compulsive 327 dimension was also a significant predictor of the physical domain of 328 $\operatorname{QoL}(\beta=0.10 ; P<.001)$. We again found that subjective sleep quality 329 was the component with the most weight in the model.

When considering the psychological domain of the WHOQOL-Bref 331 as a criterion, we observed that both blocks were significant and ex- 332 plained about 54% of the variance. Sleep quality yet again had a signif- 333 icant and unique contribution (6\%) in addition to psychopathological 334 symptoms (see Table 6). The obsessive-compulsive ($\beta=-0.23$; 335 $P<.01$) and depression dimensions ($\beta=-0.36 ; P<.001$) and sub- 336 jective sleep quality ($\beta=-0.20 ; P<.001$) significantly contributed 337 to the psychological domain of QoL. In this case, depression had the 338 most weight in the model.

The results of hierarchical regression using the social relationship 340 domain of the WHOQOL-Bref as criterion variable are shown in 341 Table 7. In contrast to previous analyses, we found that sleep quality 342 did not significantly predict QoL. Thus, none of the entered sleep- 343 related variables (i.e., subjective sleep quality and daytime dysfunc- 344 tion) added a significant contribution to the model. Depression 345 ($\beta=-0.27 ; P<.05$) and anxiety ($\beta=0.32 ; P<.01$) were the only 346 significant components of the BSI.

Regarding the environmental domain of the QoL, the results 348 indicated that psychological symptoms and sleep quality explained 349 a significant 23% of the environmental domain of WHOQOL-Bref 350 (cf. Table 8). Three variables contributed significantly to the environ- 351 mental domain of the QoL namely somatization ($\beta=-0.17$; 352 $P<.05$), paranoia ($\beta=-0.17 ; P<.05$) and subjective sleep quality 353 ($\beta=-0.17 ; P<.01$). Subjective sleep quality was the only PSQI 354 component which added a significant contribution (3\%) to this 355 domain of QoL regardless of psychopathological symptoms.

Table 3
Correlation matrix between sleep quality and psychological symptoms variables

	BSI somatization	BSI obsessive-compulsive	BSI interpersonal sensitivity	BSI depression	BSI anxiety	BSI hostility	BSI phobia	$\begin{gathered} \text { BSI } \\ \text { paranoia } \end{gathered}$	BSI psychoticism
PSQI (C1)	$0.311^{* *}$	$0.331^{* *}$	0.264**	0.330**	0.313**	0.300**	0.203**	0.224**	0.272**
PSQI (C2)	0.196**	0.279**	0.137*	0.205**	0.208**	0.227**	n.s.	n.s.	0.179*
PSQI (C3)	0.116*	0.125*	0.152*	0.168*	0.153*	0.142*	n.s.	0.128*	0.152*
PSQI (C4)	n.s.	n.s.	0.122*	n.s.	n.s.	0.138*	0.111*	n.s.	n.s.
PSQI (C5)	0.394**	$0.353^{* *}$	0.300**	0.321**	0.387**	0.349**	0.269**	0.282**	$0.346^{* *}$
PSQI (C6)	0.295**	0.307**	0.145**	0.251 **	0.292**	0.181*	0.211**	0.127*	0.228**
PSQI (C7)	$0.337^{* *}$	0.452**	0.298**	$0.414^{* *}$	0.365**	$0.371 * *$	0.225**	0.288**	0.365**

${ }^{*} P<.05 ;{ }^{* *} P<.001 ;$ n.s. $=$ not significant.
Note. PSQI $(C 1)=$ subjective sleep quality, PSQI $(C 2)=$ sleep latency, PSQI $(C 3)=$ sleep duration, PSQI $(C 4)=$ habitual sleep efficiency, PSQI $(C 5)=$ sleep disturbances, PSQI $(C 6)=$ use of sleeping medication, PSQI $(C 7)=$ daytime dysfunction.

Discussion

In this study, we examined the association between sleep quality and QoL while controlling for the effect of psychological symptomatology in a non-clinical sample. According to the literature, sleep problems can affect many areas of life and be associated with several health problems. ${ }^{44,45}$

This study agrees with other studies that have observed correlations between sleep quality measures and self-reported QoL measures (eg, ${ }^{5-11}$). Furthermore, our results suggest that the QoL of college students may be significantly predicted by their quality of sleep even when psychopathology indicators are statistically controlled. Only the social relationships domain of QoL is not significantly predicted by sleep quality. These findings concur with Pilcher et al. ${ }^{13}$ and Buboltz et al. ${ }^{12}$ who reported that poor sleep quality is associated with a significant reduction in the physical and psychological wellbeing. Other studies have verified that college students exhibited better scores in QoL or QoL-related measures when they had a good night of sleep. ${ }^{46,47}$ Zeitlhofer et al. ${ }^{10}$ found a moderate and significant
association between sleep quality and QoL. However, unlike our 375 study, none of these studies controlled for psychological symptoms; 376 thus, those studies could not rule out the possibility that the associa- 377 tion between sleep quality and QoL could be explained by psychopa- 378 thology. Therefore, our results contribute to knowledge about the 379 associations between sleep quality and QoL. The results suggest that 380 sleep quality adds an independent and significant contribution to 381 QoL beyond psychopathological symptoms. 382
We found that college students have a mean sleep quality near the 383 threshold for poor sleep according to the PSQI cut-off point $>5^{31}$ with 384 increased scores in daytime dysfunction component. Similar or even 385 higher mean scores (indicating poorer sleep quality) have been re- 386 ported in college samples from other countries. ${ }^{16,39-44}$ The present 387 results also concur with other studies on sleep habits in Portuguese 388 college students using different self-report instruments. ${ }^{19,48}$

389
The entry into higher education may not only cause changes in 390 sleep quality but also in the QoL of students. Ducinskiene et al. ${ }^{49} 391$ found that the physical health domain of the students' QoL improved 392 while they remained in college. Our results support this finding 393

Table 4
Summary of a hierarchical regression analysis predicting general facet of QoL

	B	SE	β	t	p	R^{2}	ΔR^{2}	ΔF	$p \Delta F$
Step 1a						0.165	0.165	6.908	0.000
Somatization	-7.219	2.158	$-.273$	-3.346	. 001				
Obsessive-compulsive	. 571	1.545	. 031	. 370	. 712				
Interpersonal sensitivity	. 085	1.738	. 004	. 049	. 961				
Depression	-5.178	2.007	-. 268	-2.580	. 010				
Anxiety	1.182	2.090	. 057	. 566	. 572				
Hostility	. 021	1.593	. 001	. 013	. 989				
Phobic anxiety	1.488	1.858	. 060	. 801	. 424				
Paranoia	-1.990	1.576	$-.100$	-1.262	. 208				
Psychoticism	. 944	2.270	. 041	. 416	. 678				
Step 2b						0.241	0.075	4.359	0.000
Somatization	-5.338	2.124	$-.202$	-2.514	. 012				
Obsessive-compulsive	1.865	1.580	. 101	1.180	. 239				
Interpersonal sensitivity	. 092	1.696	. 005	. 054	. 957				
Depression	-4.076	1.967	-. 211	-2.072	. 039				
Anxiety	1.282	2.042	. 061	. 628	. 531				
Hostility	. 697	1.563	. 035	. 446	. 656				
Phobic anxiety	1.134	1.836	. 046	. 618	. 537				
Paranoia	-2.279	1.551	$-.114$	-1.469	. 143				
Psychoticism	. 737	2.201	. 032	. 335	. 738				
PSQI (C1)	-5.292	1.361	$-.235$	-3.887	. 000				
PSQI (C2)	. 112	. 856	. 008	. 130	. 896				
PSQI (C3)	. 091	. 959	. 005	. 095	. 924				
PSQI (C4)	-. 971	1.884	-. 028	-. 515	. 607				
PSQI (C5)	-3.066	1.623	-. 110	-1.890	. 060				
PSQI (C6)	-. 036	1.491	$-.001$	-. 024	. 981				
PSQI (C7)	-1.472	1.047	$-.083$	-1.405	. 161				

$B=$ unstandardized beta coefficient; $S E=$ standard error; $\beta=$ standardized beta coefficient; $\Delta R^{2}=\mathrm{R}^{2}$ Change; $\Delta F=\mathrm{F}$ Change; $p \Delta F=$ Sig. F Change.
${ }^{\text {a }}$ Predictors: (constant), psychoticism, phobia, obsessive-compulsive, hostility, paranoia, somatization, interpersonal sensitivity, anxiety, depression.
${ }^{\mathrm{b}}$ Predictors: (constant), psychoticism, phobia, obsessive-compulsive, hostility, paranoia, somatization, interpersonal sensitivity, anxiety, depression, PSQI (C1) $=$ subjective sleep quality, PSQI $(C 2)=$ sleep latency, PSQI $(C 3)=$ sleep duration, PSQI $(C 4)=$ habitual sleep efficiency, PSQI $(C 5)=$ sleep disturbances, PSQI $(C 6)=$ use of sleeping medication, PSQI (C7) = daytime dysfunction.

Table 5
Summary of a hierarchical regression analysis predicting physical QoL domain (D1)

	B	SE	β	t	p	R^{2}	ΔR^{2}	ΔF	p ΔF
Step 1a						0.433	0.433	26.646	0.000
Somatization	-6.628	1.772	-. 252	-3.740	. 000				
Obsessive-compulsive	-7.016	1.269	-. 380	-5.529	. 000				
Interpersonal sensitivity	. 494	1.427	. 025	. 346	. 730				
Depression	-4.182	1.648	-. 217	-2.537	. 012				
Anxiety	-. 408	1.716	-. 020	-. 238	. 812				
Hostility	-. 007	1.308	. 000	-. 005	. 996				
Phobic anxiety	1.017	1.525	. 041	. 667	. 506				
Paranoia	. 881	1.295	. 044	. 681	. 496				
Psychoticism	. 710	1.864	. 031	. 381	. 704				
Step 2b						0.541	0.108	10.328	0.000
Somatization	-4.867	1.645	-. 202	-2.958	. 003				
Obsessive-compulsive	-5.695	1.224	. 101	-4.652	. 000				
Interpersonal sensitivity	. 472	1.314	. 005	. 359	. 720				
Depression	-2.680	1.524	-. 211	-1.759	. 080				
Anxiety	-. 389	1.582	-. 185	-. 246	. 806				
Hostility	. 494	1.211	-. 309	. 408	. 684				
Phobic anxiety	. 597	1.422	. 024	. 420	. 675				
Paranoia	. 412	1.202	-. 139	. 343	. 732				
Psychoticism	. 164	1.705	-. 019	. 096	. 923				
PSQI (C1)	-7.311	1.055	. 025	-6.932	. 000				
PSQI (C2)	-. 162	. 663	. 024	-. 245	. 807				
PSQI (C3)	-. 329	. 743	. 021	-. 443	. 658				
PSQI (C4)	-. 853	1.459	. 007	-. 585	. 559				
PSQI (C5)	. 097	1.257	-. 325	. 077	. 939				
PSQI (C6)	-. 974	1.155	-. 011	-.843	. 400				
PSQI (C7)	-. 648	. 811	-. 019	-. 799	. 425				

$B=$ unstandardized beta coefficient; $S E=$ standard error; $\beta=$ standardized beta coefficient; $\Delta R^{2}=\mathrm{R}^{2}$ Change; $\Delta F=\mathrm{F}$ Change; $p \Delta F=$ Sig. F Change.
${ }^{\text {a }}$ Predictors: (constant), psychoticism, phobia, obsessive-compulsive, hostility, paranoia, somatization, interpersonal sensitivity, anxiety, depression.
${ }^{\text {b }}$ Predictors: (constant), psychoticism, phobia, obsessive-compulsive, hostility, paranoia, somatization, interpersonal sensitivity, anxiety, depression, PSQI (C1) $=$ subjective sleep quality, PSQI $(C 2)=$ sleep latency, PSQI $(C 3)=$ sleep duration, PSQI $(C 4)=$ habitual sleep efficiency, PSQI $(C 5)=$ sleep disturbances, PSQI $(C 6)=$ use of sleeping medication, PSQI (C7) = daytime dysfunction.

Table 6
Summary of a hierarchical regression analysis predicting psychological QoL domain (D2)

	B	SE	β	t	p	R^{2}	ΔR^{2}	ΔF	$p \Delta F$
Step 1a						0.480	0.480	32.262	0.000
Somatization	-. 638	1.798	-. 023	-. 355	. 723				
Obsessive-compulsive	-6.320	1.288	-. 323	-4.908	. 000				
Interpersonal sensitivity	-1.164	1.448	-. 055	-. 804	. 422				
Depression	-8.625	1.672	-. 422	-5.157	. 000				
Anxiety	-. 324	1.741	-. 015	-. 186	. 852				
Hostility	1.352	1.327	. 064	1.018	. 309				
Phobic anxiety	2.157	1.548	. 083	1.394	. 164				
Paranoia	. 405	1.314	. 019	. 308	. 758				
Psychoticism	-1.191	1.892	-. 049	-. 629	. 530				
Step 2b						0.543	0.062	5.958	0.000
Somatization	. 994	1.741	. 036	. 571	. 568				
Obsessive-compulsive	-4.508	1.295	-. 231	-3.480	. 001				
Interpersonal sensitivity	-1.463	1.390	-. 069	-1.053	. 293				
Depression	-7.399	1.612	-. 362	-4.589	. 000				
Anxiety	-. 566	1.674	-. 026	-. 338	. 736				
Hostility	1.897	1.281	. 090	1.480	. 140				
Phobic anxiety	2.341	1.505	. 090	1.555	. 121				
Paranoia	-. 411	1.272	-. 019	-. 323	. 747				
Psychoticism	-1.534	1.804	-. 063	-.850	. 396				
PSQI (C1)	-4.741	1.116	-. 199	-4.248	. 000				
PSQI (C2)	-1.013	. 702	-. 065	-1.444	. 150				
PSQI (C3)	1.099	. 787	. 061	1.398	. 163				
PSQI (C4)	-1.350	1.544	-. 036	-. 874	. 383				
PSQI (C5)	-. 645	1.330	-. 022	-. 485	. 628				
PSQI (C6)	-1.793	1.222	-. 065	-1.467	. 143				
PSQI (C7)	-1.281	. 859	-. 068	-1.492	. 137				

$B=$ unstandardized beta coefficient; $S E=$ standard error; $\beta=$ standardized beta coefficient; $\Delta R^{2}=\mathrm{R}^{2}$ Change; $\Delta F=\mathrm{F}$ Change; $p \Delta F=$ Sig. F Change.
${ }^{a}$ Predictors: (constant), psychoticism, phobia, obsessive-compulsive, hostility, paranoia, somatization, interpersonal sensitivity, anxiety, depression.
${ }^{\mathrm{b}}$ Predictors: (constant), psychoticism, phobia, obsessive-compulsive, hostility, paranoia, somatization, interpersonal sensitivity, anxiety, depression, PSQI (C1) $=$ subjective sleep quality, PSQI (C2) = sleep latency, PSQI (C3) = sleep duration, PSQI (C4) = habitual sleep efficiency, PSQI (C5) = sleep disturbances, PSQI (C6) $=$ use of sleeping medication, PSQI $(C 7)=$ daytime dysfunction.

Table 7
Summary of a hierarchical regression analysis predicting social relationships QoL domain (D3)

		B	SE	β	t	p	R^{2}

$B=$ unstandardized beta coefficient; $S E=$ standard error; $\beta=$ standardized beta coefficient; $\Delta R^{2}=\mathrm{R}^{2}$ Change; $\Delta F=\mathrm{F}$ Change; $p \Delta F=$ Sig. F Change.
${ }^{\text {a }}$ Predictors: (constant), psychoticism, phobia, obsessive-compulsive, hostility, paranoia, interpersonal sensitivity, anxiety, depression.
${ }^{\mathrm{b}}$ Predictors: (constant), psychoticism, phobia, obsessive-compulsive, hostility, paranoia,, interpersonal sensitivity, anxiety, depression, PSQI (C1) = subjective sleep quality, PSQI
$(C 7)=$ daytime dysfunction.
because the participants reported that this domain contributes most to their QoL. ${ }^{50}$

This study also assessed the psychological symptomatology of students because this seems to be increasing in both the frequency and intensity in this population. ${ }^{25,26}$ According to Hunt and Eisenberg, ${ }^{26}$ college students have elevated scores on measures of depression and anxiety. According to Storrie et al., ${ }^{51}$ about 47% of young people reported suffering from mental health problems. The results we found through BSI are in accordance with this trend. Our
participants scored higher in obsessive-compulsive symptoms, para- 403 noia and hostility.

In general, our results are similar to the literature and suggest that 405 poor sleep quality in college students is associated with a decrease in 406 variables related to QoL. This is the case in the physical or psycholog- 407 ical health domains. ${ }^{12,13,19,44,46,47}$ However, to the best of our knowl- 408 edge, no study has yet evaluated the relationship between the sleep 409 quality and the QoL using a WHOQOL instrument on young healthy 410 adults.

411

Table 8

	B	SE	β	t	p	R^{2}	ΔR^{2}	ΔF	$p \Delta F$
Step 1a						0.197	0.197	8.574	0.000
Somatization	-4.433	1.854	-. 192	-2.392	. 017				
Obsessive-compulsive	-1.333	1.327	-. 082	-1.004	. 316				
Interpersonal sensitivity	. 354	1.493	. 020	. 237	. 813				
Depression	-2.091	1.724	-. 123	-1.213	. 226				
Anxiety	1.146	1.795	. 063	. 639	. 524				
Hostility	-1.185	1.369	-. 067	-. 866	. 387				
Phobic anxiety	-1.232	1.596	-. 057	-. 772	. 441				
Paranoia	-2.906	1.354	-. 166	-2.146	. 033				
Psychoticism	1.199	1.950	. 059	. 615	. 539				
Step 2b						0.228	0.030	0.3051	0.017
Somatization	-3.820	1.860	-. 165	-2.053	. 041				
Obsessive-compulsive	-1.247	1.356	-. 077	-. 919	. 359				
Interpersonal sensitivity	. 528	1.479	. 030	. 357	. 721				
Depression	-1.721	1.726	-. 102	-. 998	. 319				
Anxiety	1.355	1.785	. 074	. 759	. 448				
Hostility	-1.049	1.356	-. 060	-. 774	. 440				
Phobic anxiety	-1.607	1.604	-. 074	-1.002	. 317				
Paranoia	-2.970	1.339	-. 170	-2.218	. 027				
Psychoticism	. 999	1.934	. 049	. 517	. 606				
PSQI (C1)	-3.319	1.135	-. 168	-2.926	. 004				
PSQI (C3)	-. 689	. 819	-. 046	-. 841	. 401				
PSQI (C5)	-. 222	1.385	-. 009	-. 161	. 873				
PSQI (C7)	. 920	. 920	. 059	1.000	. 318				

[^1]${ }^{a}$ Predictors: (constant), psychoticism, phobia, obsessive-compulsive, hostility, paranoia, somatization, interpersonal sensitivity, anxiety, depression. quality, PSQI $(C 3)=$ sleep duration, PSQI $(C 5)=$ sleep disturbances, PSQI $(C 7)=$ daytime dysfunction

One important finding of our study is that the subjective quality of sleep seems to be the PSQI component that contributes most to QoL (except in the social relationships domain). In addition, our results show that, at least in college students, the potential impact of sleep quality on QoL is not attributable to the influence of psychopathological symptoms, i.e., sleep quality is a unique predictor of QoL regardless of psychopathological symptoms. We believe that this result highlights the potential role of sleep quality per se in QoL even in a sample composed of mostly healthy and successful young adults.

Despite these interesting results, we acknowledge some limitations: the inclusion criteria for participating in the study were very broad, and our sample was non-probabilistic. This is an observational study, and therefore no causal relationship may be inferred. Furthermore, we did not control/evaluate whether the participants were taking medication that might interfere with sleep patterns or improve it. In addition, the translation of PSQI we used was not performed by Portuguese researchers (albeit the one we used is an official European Portuguese version). Despite these limitations, this study has many strong points due to the sample size and the use of widely accepted instruments to evaluate the variables. In order to minimize some of these limitations, we proposed to use objective measures of sleep such as actimetry as a complement to self-report instruments. It would also be very interesting to examine a large group of college students at different points in their academic path as longitudinal research. This could measure the stability of the findings.

In summary, we found that the QoL of college students is predicted by the quality of sleep even when indicators of psychopathology are controlled. More specifically, sleep quality can predict all domains of the self-reported QoL (except one). This was the only sleep component of the PQSI that remains a significant predictor regardless of psychopathological symptoms. The other components in the PSQI lost significance. Finally, in terms of implications, and in the same line as Buboltz et al., ${ }^{12}$ our results encourage the creation of sleep psychology consultations in college settings as well as sleep education interventions/programs to improve sleep quality-even in individuals without sleep disorders. This could contribute to so-called "sleep health". ${ }^{14}$

Conflicts of interest

None of the authors declares conflict of interest.

Acknowledgement

This article was supported by ERDF (European Regional Development Fund) through the operation POCI-01-0145-FEDER007746 funded by the Programa Operacional Competitividade e Internacionalização-COMPETE2020 and by National Funds through FCT-Fundação para a Ciência e a Tecnologia within CINTESIS, R\&D Unit (reference UID/IC/4255/2013).

Special thanks are also due to the Department of Education and Psychology, University of Aveiro, Portugal, for the support with the printed materials.

We are grateful to all the students who participated in this study, and to Ana R. Salgueiro, Carolina T. Carlos, Joana M. Ribeiro and Raphaëlle G. Dischler, for their help in data collection.

Results from this study have been previously presented at the World Congress on Sleep Medicine in 2013, and published in abstract form (Meiavia et al., 2013), and were based in a master degree research developed by A. M. Meia-Via with the academic supervision of A. A. Gomes (corresponding author), with close cooperation of D. R. Marques.

References

471

1. WHOQOL Group. The World Health Organization quality of life assessment 472 (WHOQOL). Position paper from the World Health Organization. Soc Sci Med. 473 1995;41:1403-1409. http://dx.doi.org/10.1016/0277-9536(95)00112-K.

474
2. Carskadon M, Dement W. Normal Human Sleep: An Overview. In: Kryger M, Roth 475 T, Dement W, editors. Principles and Practice of Sleep Medicine ($\left.5^{\text {th }}\right)$. Missouri: 476 Elsevier Saunders; 2011. p. 16-26.
3. Alhola P, Polo-Kantola P. Sleep deprivation: impact on cognitive performance. 478 Neuropsychiatr Dis Treat. 2007;3:553-567.
4. Banks S, Dorrian J, Basner M, et al. Sleep deprivation. In: Kryger M, Roth T, Dement 480 W, editors. Principles and Practice of Sleep Medicine ($6^{\text {th }}$). Missouri: Elsevier 481 Saunders; 2016. p. 49-55.
5. Andruskiene J, Varoneckas G, Martinkenas A, et al. Factors associated with poor 483 sleep and health-related quality of life. Medicina (Kaunas). 2008;44:240-246. 484
6. Baldwin C, Ervin A, Mays M, et al. Sleep disturbances, quality of life, and ethnicity: 485 the sleep heart health study. J Clin Sleep Med. 2010;6:176-183. 486
7. Bower B, Bylsma L, Morris B, et al. Poor reported sleep quality predicts low positive 487 affect in daily life among healthy and mood-disordered persons: sleep quality and 488 positive affect. J Sleep Res. 2010;19:323-332. http://dx.doi.org/10.1111/j.1365-489 2869.2009.00816.x.
8. Chen X, Gelaye B, Williams M. Sleep characteristics and health-related quality of 491 life among a national sample of American young adults: assessment of possible 492 health disparities. Qual Life Res. 2014;23:613-625. http://dx.doi.org/10.1007/ 493 s11136-013-0475-9.
9. Tzischinsky O, Shochat T. Eveningness, sleep patterns, daytime functioning, and 495 quality of life in Israeli adolescents. Chronobiol Int. 2011;28:338-343. http://dx. 496 doi.org/10.3109/07420528.2011.560698.
10. Zeitlhofer J, Schmeiser-Rieder A, Tribl G, et al. Sleep and quality of life in the 498 Austrian population. Acta Neurol Scand. 2000;102:249-257. http://dx.doi.org/10. 499 1034/j.1600-0404.2000.102004249.x.

500
11. Zhou M, Chen M, Feng P, et al. Partial canonical correlation analysis on the associ- 501 ation between quality of sleep and quality of life among residents in Suzhou city. 502 Zhonghua Liu Xing Bing Xue Za Zhi. 2012;33:1040-1043. http://dx.doi.org/10.3760/ 503 cma.j.issn.0254-6450.2012.10.010.
12. Buboltz W, Jenkins S, Soper B, et al. Sleep habits and patterns of college students: 505 an expanded study. J Coll Couns. 2009;12:113-124. http://dx.doi.org/10.1002/j. 506 2161-1882.2009.tb00109.x.
13. Pilcher JJ, Ginter DR, Sadowsky B. Sleep quality versus sleep quantity: relation- 508 ships between sleep and measures of health, well-being and sleepiness in college 509 students. J Psychosom Res. 1997;42:583-596. http://dx.doi.org/10.1016/S0022-510 3999(97)00004-4.
14. Buysse D. Sleep health: can we define it? Does it matter? Sleep. 2014;37:9-17. 512 http://dx.doi.org/10.5665/sleep. 3298.
15. Altun I, Cinar N, Dede C. The contributing factors to poor sleep experiences in ac- 514 cording to the university students: a cross-sectional study. J Res Med Sci. 2012;17: 515 557-561.

516
16. Cheng SH, Shin CC, Lee H, et al. A study on the sleep quality of incoming university 517 students. Psychiatry Res. 2012;197:270-274. http://dx.doi.org/10.1016/j.psychres. 518 2011.08.011.
17. Wolfson A. Adolescents and emerging adults sleep patterns: new developments. J 520 Adolesc Health. 2010;46:97-99. http://dx.doi.org/10.1016/j.jadohealth.2009.11.210. 521
18. Gaultney J. The prevalence of sleep disorders in college students: impact on aca- 522 demic performance. J Am Coll Health. 2010;59:91-97. http://dx.doi.org/10.1080/ 523 07448481.2010.483708.
. Gomes AA, Tavares J, Azevedo MH. Padrões de sono em estudantes universitários 525 portugueses [Sleep-wake patterns in Portuguese undergraduates]. Acta Med Port. 526 2009;22:545-552.
20. Gomes AA, Tavares J, Azevedo MH. Sleep and academic performance in under- 528 graduates: a multi-measure, multi-predictor approach. Chronobiol Int. 2011;28: 529 786-801. http://dx.doi.org/10.3109/07420528.2011.606518.
21. Valdez P, Ramírez C, García A. Delaying and extending sleep during weekends: 531 sleep recovery or circadian effect? Chronobiol Int. 1996;13:191-198. http://dx. 532 doi.org/10.3109/07420529609012652.
22. Arnett JJ. Emerging adulthood: the winding road from the late teens through the 534 twenties. New York: Oxford University Press; 2004.
23. Carskadon MA, Davis SS. Sleep-wake patterns in the high-school-to-college tran- 536 sition: preliminary data. Sleep Res. 1989;18:113.

537
24. Pedrelli P, Nyer M, Yeung A, et al. College students: mental health problems and 538 treatment considerations. Acad Psychiatry. 2015;39:503-511. http://dx.doi.org/ 539 10.1007/s40596-014-0205-9.

Santos L Pereira A Veiga F. Será que a saúde mental dos estudantes universitários tem vindo a piorar? Revisão de literatura. In: Pereira A, Castanheira H, Melo A, 542 et al, editors. Apoio Psicológico no Ensino Superior: Modelos e Práticas. Actas do 543 I Congresso Nacional da RESAPES. Aveiro: University of Aveiro; 2010. p. 525-531. 544
26. Hunt J, Eisenberg D. Mental health problems and help-seeking behavior among 545 college students. J Adolesc Health. 2010;46:3-10. http://dx.doi.org/10.1016/j. 546 jadohealth.2009.08.008.

547
27. Zivin K, Eisenberg D, Gollust SE, Golberstein E. Persistence of mental health prob- 548 lems and needs in a college student population. J Affect Disord. 2009;117:180-185. 549 http://dx.doi.org/10.1016/j.jad.2009.01.001.
28. Tosevski D, Milovancevic M, Gajic S. Personality and psychopathology of universi- 551 ty students. Curr Opin Psychiatry. 2010;23:48-52. http://dx.doi.org/10.1097/YCO. 552 0b013e328333d625.
29. Fairholme C, Manber R. In: Babson K, Feldner M, editors. Sleep, emotions, and emotion regulation: an overview. in sleep and affect: assessment, theory, and clinical implications. USA: Academic Press; 2015. p. 45-61. http://dx.doi.org/10.1016/ B978-0-12-417188-6.00021-9.
30. Yoo SS, Gujar N, Hu P, et al. The human emotional brain without sleep: a prefrontal amygdala disconnect. Curr Biol. 2010;17:877-888. http://dx.doi.org/10.1016/j.cub.2007.08.007.
31. Buysse DJ, Reynolds CF, Monk T, et al. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28: 193-213. http://dx.doi.org/10.1016/0165-1781(89)90047-4.
32. Krystal A, Edinger J. Measuring sleep quality. Sleep Med. 2008;9:S10-S17. http:// dx.doi.org/10.1016/S1389-9457(08)70011-X.
33. Marques D, Allen Gomes A, Meiavia A, et al. Reliability and initial validation of the Pittsburgh sleep quality index, European Portuguese version: a preliminary study in a sample of higher education students (abstract). Sleep Med. 2013;14:e140. http://dx.doi.org/10.1016/j.sleep.2013.11.316.
34. Derogatis LR. BSI: Brief Symptom Inventory. $3^{\text {rd }}$ ed. Minneapolis: National Computers Systems; 1982/1993.
35. Canavarro MC. Inventário de sintomas psicopatológicos (BSI): uma revisão crítica dos estudos realizados em Portugal. In: Simões M, Machado C, Gonçalves M, et al, editors. Avaliação psicológica: Instrumentos validados para a população portuguesa (Vol. III). Coimbra: Quarteto; 2007. p. 305-331.
36. Skevington SM, Lotfy M, O'Connell KA. The World Health Organization's WHOQOL-Bref quality of life assessment: psychometric properties and results of the international field trial. A report from the WHOQOL group. Qual Life Res. 2004;13:299-310. http://dx.doi.org/10.1023/B:QURE.0000018486.91360.00.
37. Vaz-Serra A, Canavarro MC, Simões MR, et al. Estudos psicométricos do instrumento de avaliação da qualidade de vida da Organização Mundial de Saúde (WHOQOL-bref) para português de Portugal. Psiquiatr Clín. 2006;27:41-49.
38. Meyers L, Gamst G, Guarino A. Performing Data Analysis Using IBM SPSS. New Jersey: John Wiley \& Sons, Inc.; 2013.
39. Carney CE, Edinger JD, Meyer B, et al. Daily activities and sleep quality in college students. Chronobiol Int. 2006;23:623-637.
40. Clegg-Kraynok M, McBean AL, Hawley E, et al. Sleep quality and characteristics of college students who use prescription psychostimulants nonmedically. Sleep Med. 2011;12:598-602. http://dx.doi.org/10.1016/j.sleep.2011.01.012.
41. Kabrita CS, Hajiar-Muça TA, Duffy JF. Predictors of poor sleep quality among Leb- 589 anese university students: association between evening typology, lifestyle behav- 590 iors, and sleep habits. Nat Sci Sleep. 2014;6:11-18. http://dx.doi.org/10.2147/NSS. 591 S55538.

592
42. Lemma S, Berhane Y, Worku A, et al. Good quality sleep is associated with 593 better academic performance among university students in Ethiopia. 594 Sleep Breath. 2014;18:257-263. http://dx.doi.org/10.1007/s11325-013-595 0874-8.
43. Lemma S, Gelaye B, Berhane Y. Sleep quality and its psychological correlates 597 among university students in Ethiopia: a cross-sectional study. BMC Psychiatry. 598 2012;12:237.
44. Lund HG, Reider BD, Whiting AB, et al. Sleep patterns and predictors of disturbed 600 sleep in a large population of college students. J Adolesc Health. 2010;46:124-132. 601 http://dx.doi.org/10.1016/j.jadohealth.2009.06.016.
45. Dement W. History of Sleep Physiology and Medicine. In: Kryger M, Roth T, 603 Dement W, editors. Principles and Practice of Sleep Medicine ($3^{\text {rd }}$). Missouri: 604 Elsevier Saunders; 2000. p. 51-73.
46. Souza JC. Quality of life and insomnia in university psychology students. Hum 606 Psychopharmacol. 1996;11:169-184. http://dx.doi.org/10.1002/(SICI)1099- 607 1077(199605)11:3<169::AID-HUP785>3.0.CO;2-F.
47. Zammit GK. Subjective ratings of the characteristics and sequelae of good and 609 poor sleep in normals. J Clin Psychol. 1988;44:123-130. http://dx.doi.org/10. 610 1002/1097-4679(198803)44:2<123::AID-JCLP2270440206>3.0.CO;2-D.
48. Gomes AA, Marques D, Meia-Via A, et al Basic scale on insomnia complaints and 612 quality of sleep (BaSIQS): reliability, initial validity and normative scores in higher 613 education students. Chronobiol Int. 2015;32:428-440. http://dx.doi.org/10.3109/ 614 07420528.2014.986681.
49. Ducinskiene D, Kalediene R, Petrauskiene J. Quality of life among Lithuanian uni- 616 versity students. Acta Med Litu. 2003;10:76-81.
50. Guthrie E, Black D, Bagalkote H. Psychological stress and burnout in medical stu- 618 dents: a five-year prospective study. J R Soc Med. 1991;91:237-243. http://dx. 619 doi.org/10.1177/014107689809100502.
51. Storrie K, Ahern K, Tuckett A. A systematic review: students with mental health 621 problems: a growing problem. Int J Nurs Pract. 2012;16:1-6. http://dx.doi.org/10. 622 1111/j.1440-172X.2009.01813.x.

AUTHOR QUERY FORM

为	Journal: SLEH	Please e-mail your responses and any corrections to:
ELSEVIER	Article Number: 206	E-mail: Corrections.ESSD@elsevier.spitech.com

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

We were unable to process your file(s) fully electronically and have proceeded by
Scanning (parts of) your article

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the 'Q' link to go to the location in the proof.

Location in article	Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof
Q1	The author names have been tagged as given names and surnames (surnames are highlighted in teal color). Please confirm if they have been identified correctly.
Please check this box if you have no corrections to make to the PDF file.	

Thank you for your assistance.

[^0]: * Corresponding author at: Faculty of Psychology and Educational Sciences, University of Coimbra, Rua do Colégio Novo, 3000-115 Coimbra, Portugal.

 E-mail address: a.allen.gomes@fpce.uc.pt (A.A. Gomes).
 ${ }^{1}$ Both authors contributed equally to this work.

[^1]: $B=$ unstandardized beta coefficient; $S E=$ standard error; $\beta=$ standardized beta coefficient; $\Delta R^{2}=\mathrm{R}^{2}$ Change; $\Delta F=\mathrm{F}$ Change; $p \Delta F=$ Sig. F Change.

