NORTH-HOLLAND

The Inertia of Certain Hermitian Block Matrices

C. M. da Fonseca
Departamento de Matemática
Universidade de Coimbra
3000 Coimbra, Portugal

Submitted by Hans Schneider

Abstract

We characterize sets of inertias of some partitioned Hermitian matrices by a system of inequalities involving the orders of the blocks, the inertias of the diagonal blocks, and the ranks of the nondiagonal blocks. The main result generalizes some well-known characterizations of Sá and Cain and others. © 1998 Elsevier Science Inc.

1. INTRODUCTION

Define the inertia of an $n \times n$ Hermitian matrix H as the triple $\operatorname{In}(H)=$ (π, ν, δ), where π is the number of positive eigenvalues, ν is the number of negative eigenvalues and $\delta=n-\pi-\nu$. We will simply write ($\pi, \nu, *$) for the inertia of H, without any mention of the value of δ.

We denote by I_{r} the identity matrix of order r, and by I the same matrix when we do not need to specify the order.

In [2] Cain and Sá characterized the inertia of a Hermitian skew-triangular 3×3 block matrix by a system of inequalities involving the orders of the blocks, the inertias of the diagonal blocks, and the ranks of the nondiagonal blocks.

Theorem 1.1 [2]. Let us assume that $\pi_{1}, \nu_{1}, \pi_{2}, \nu_{2}, n_{1}, n_{2}, n_{3}$ are nonnegative and

$$
\begin{array}{r}
\pi_{i}+\nu_{i} \leqslant n_{i} \quad \text { for } \quad i=1,2 \\
0 \leqslant r_{1 i} \leqslant R_{1 i} \leqslant \min \left\{n_{1}, n_{i}\right\} \quad \text { for } \quad i=2,3
\end{array}
$$

Then the following conditions are equivalent:
(I) For $i=1,2$, and $j=2,3$, there exist $n_{i} \times n_{i}$ Hermitian matrices H_{i} and $n_{1} \times n_{j}$ matrices. $X_{1 j}$ such that $\operatorname{In}\left(H_{i}\right)=\left(\pi_{i}, \nu_{i}, *\right), r_{1 j} \leqslant \operatorname{rank} X_{1 j} \leqslant$ $R_{1 j}$, and

$$
H=\left[\begin{array}{ccc}
H_{1} & X_{12} & X_{13} \\
X_{12}^{*} & H_{2} & 0 \\
X_{13}^{*} & 0 & 0
\end{array}\right]
$$

has inertia $(\pi, \nu, *)$.
(II) Let $k \in\{1,2\}$. Let $W_{k k}$ be any fixed $n_{k} \times n_{k}$ Hermitian matrix with inertia $\left(\pi_{k}, \nu_{k}, *\right)$. (I) holds with $H_{k}=W_{k k}$.
(III) Let $k \in\{2,3\}$. Let $W_{1 k}$ be any fixed $n_{1} \times n_{k}$ matrix with $r_{1 k} \leqslant$ rank $W_{1 k} \leqslant R_{1 k}$. (I) holds with $X_{1 k}=W_{1 k}$.
(IV) For $k=1,2$ let $W_{k k}$ be any fixed $n_{k} \times n_{k}$ Hermitian matrix with inertia $\left(\pi_{k}, \nu_{k}, *\right)$. (I) holds with $H_{1}=W_{11}$ and $H_{2}=W_{22}$.
(V) Let W_{22} be any fixed $n_{2} \times n_{2}$ Hermitian matrix with inertia $\left(\pi_{2}, \nu_{2}, *\right)$, and let W_{13} be any fixed $n_{1} \times n_{3}$ matrix with $r_{13} \leqslant \operatorname{rank} W_{13} \leqslant$ R_{13}. (I) holds with $H_{2}=W_{22}$ and $X_{13}=W_{13}$.
(VI) The following inequalities hold:

$$
\begin{aligned}
& \pi \geqslant \max \left\{\pi_{1}, \pi_{2}+r_{13}, \pi_{1}+\pi_{2}-R_{12}, r_{12}-\nu_{1}, r_{12}-\nu_{2}\right\}, \\
& \nu \geqslant \max \left\{\nu_{1}, \nu_{2}+r_{13}, \nu_{1}+\nu_{2}-R_{12}, r_{12}-\pi_{1}, r_{12}-\pi_{2}\right\} \\
& \pi \leqslant \min \left\{n_{1}+\pi_{2}, \pi_{1}+n_{2}+R_{13}, \pi_{1}+\pi_{2}+R_{12}+R_{13}\right\} \\
& \nu \leqslant \min \left\{n_{1}+\nu_{2}, \nu_{1}+n_{2}+R_{13}, \nu_{1}+\nu_{2}+R_{12}+R_{13}\right\} \\
& \pi-\nu \leqslant \min \left\{\pi_{1}+\pi_{2}, \pi_{1}+\pi_{2}+R_{12}-\nu_{2}\right\} \\
& \nu-\pi \leqslant \min \left\{\nu_{1}+\nu_{2}, \nu_{1}+\nu_{2}+R_{12}-\nu_{2}\right\} \\
& \pi+\nu \geqslant \pi_{1}+\pi_{2}+\nu_{1}+\nu_{2}-R_{12} \\
& \pi+\nu \leqslant \min \left\{n_{1}+n_{2}+R_{13}, n_{1}+\pi_{2}+\nu_{2}+R_{12}+R_{13}\right. \\
& \pi \\
& \left.\pi+\nu_{1}+n_{2}+R_{12}+2 R_{13}\right\}
\end{aligned}
$$

In this work we will generalize this result by allowing a nonzero block in the $(3,3)$ entry. We will combine the tools used in [1], [2], and [3], with the Schur complement technique.

2. THE INERTIA OF SUMS OF SEVERAL HERMITIAN MATRICES

In this section we extend some results achieved by Sá in [6].
Let us assume the $n, p, \pi_{i}, \nu_{i}, n_{i}, r_{i}$, and R_{i} are nonnegative integers such that $r_{i} \leqslant R_{i} \leqslant n_{i} \leqslant n$ for $i=1, \ldots, p$. We denote also by $\bar{\pi}_{i}, \bar{v}_{i}$ and $\bar{\rho}_{i}$ the nonnegative integers

$$
\begin{aligned}
& \bar{\pi}_{i}=\min \left\{\pi_{i}, R_{i}\right\} \\
& \bar{\nu}_{i}=\min \left\{\nu_{i}, R_{i}\right\} \\
& \bar{\rho}_{i}=\min \left\{\pi_{i}+\nu_{i}, R_{i}\right\}
\end{aligned}
$$

for $i=1, \ldots, p$.

Theorem 2.1. For $i=1, \ldots, p$, let H_{i} be an $n_{i} \times n_{i}$ Hermitian matrix with inertia $\left(\pi_{i}, \nu_{i}, *\right)$. Then there exist matrices S_{i} of dimensions $n \times n_{i}$ and $r_{i} \leqslant \operatorname{rank} S_{i} \leqslant R_{i}, i=1, \ldots, p$, such that

$$
\operatorname{In}\left(S_{1} H_{1} S_{1}^{*}+\cdots+S_{p} H_{p} S_{p}^{*}\right)=(\pi, \nu, *)
$$

if and only if (maximizing over $i \in\{1, \ldots, p\}$) the following inequalities hold:

$$
\begin{gathered}
\max _{i}\left\{\pi_{i}+\bar{\nu}_{i}+r_{i}-n_{i}\right\}-\sum_{t=1}^{p} \bar{\nu}_{t} \leqslant \pi \leqslant \sum_{t=1}^{p} \bar{\pi}_{t} \\
\max _{i}\left\{\nu_{i}+\bar{\pi}_{i}+r_{i}-n_{i}\right\}-\sum_{t=1}^{p} \bar{\pi}_{t} \leqslant \nu \leqslant \sum_{t=1}^{p} \bar{\nu}_{t} \\
\max _{i}\left\{\bar{\rho}_{i}+2 r_{i}-2 n_{i}+\pi_{i}+\nu_{i}\right\}-\sum_{t=1}^{p} \bar{\rho}_{t} \leqslant \pi+\nu \leqslant \sum_{t=1}^{p} \bar{\rho}_{t} \\
\pi+\nu \leqslant n
\end{gathered}
$$

Corollary 2.2. Let H_{1} and H_{2} be $n_{i} \times n_{i}$ Hermitian matrices with inertias $\left(\pi_{i}, \nu_{i}, *\right)$ for $i=1,2$. Then there exists a matrix S of dimension $n_{1} \times n_{2}$ and $r \leqslant \operatorname{rank} S \leqslant R$ such that

$$
\operatorname{In}\left(H_{1}+S H_{2} S^{*}\right)=(\pi, \nu, *)
$$

if and only if the following inequalities hold:

$$
\begin{aligned}
\pi & \leqslant \min \left\{\pi_{1}+\pi_{2}, \pi_{1}+R\right\} \\
\nu & \leqslant \min \left\{\nu_{1}+\nu_{2}, \nu_{1}+R\right\} \\
\pi & \geqslant \max \left\{0, \pi_{1}-\nu_{2}, \pi_{1}-R, \pi_{2}-\nu_{1}+r-n_{2}\right\}, \\
\nu & \geqslant \max \left\{0, \nu_{1}-\pi_{2}, \nu_{1}-R, \nu_{2}-\pi_{1}+r-n_{2}\right\} \\
\pi+\nu & \leqslant \min \left\{n_{1}, \pi_{1}+\nu_{1}+R\right\} \\
\pi+\nu & \geqslant \pi_{1}+\nu_{1}-R
\end{aligned}
$$

3. THE MAIN RESULT

We present now the main result of this work.
Theorem 3.1. Let us assume that for $i=1,2,3$, the quantities $\boldsymbol{\pi}_{i}, \nu_{i}, n_{i}$ are nonnegative and

$$
\begin{gathered}
\pi_{i} \geqslant 0, \quad \pi_{i}+\nu_{i} \leqslant n_{i}, \quad i=1,2,3 \\
0 \leqslant r_{1 j} \leqslant R_{1 j} \leqslant \min \left\{n_{1}, n_{j}\right\}, \quad j=2,3 .
\end{gathered}
$$

Then the following conditions are equivalent:
(I) For $i=1,2,3$, and $j=2,3$, there exist $n_{i} \times n_{i}$ Hermitian matrices H_{i} and $n_{1} \times n_{j}$ matrices $X_{1 j}$ such that $\operatorname{In}\left(H_{i}\right)=\left(\pi_{i}, \nu_{i}, *\right), r_{1 j} \leqslant \operatorname{rank} X_{1 j}$
$\leqslant R_{1 j}$, and

$$
H=\left[\begin{array}{ccc}
H_{1} & X_{12} & X_{13} \\
X_{12}^{*} & H_{2} & 0 \\
X_{13}^{*} & 0 & H_{3}
\end{array}\right]
$$

has inertia $(\pi, \nu, *)$.
(II) Let $k \in\{1,2,3\}$. Let $W_{k k}$ be any fixed $n_{k} \times n_{k}$ Hermitian matrix with inertia $\left(\pi_{k}, \nu_{k}, *\right)$. (I) holds with $H_{k}=W_{k k}$.
(III) Jet $k \in\{2,3\}$. Let $W_{1 k}$ be any fixed $n_{1} \times n_{k}$ matrix with $r_{1 k} \leqslant$ rank $W_{1 k} \leqslant R_{1 k}$. (I) holds with $X_{1 k}=W_{1 k}$.
(IV) For $k=1,2,3$ let $W_{k k}$ be any fixed $n_{k} \times n_{k}$ Hermitian matrix with inertia ($\left.\pi_{k}, \nu_{k}, *\right)$. (I) holds with $H_{1}=W_{11}, H_{2}=W_{22}$, and $H_{3}=W_{33}$.
(V) Let $j, k \in\{2,3\}$ and $j \neq k$. Let $W_{k k}$ be any fixed $n_{k} \times n_{k}$ Hermitian matrix with inertia $\left(\pi_{k}, \nu_{k}, *\right)$, and let $W_{1 j}$ be any fixed $n_{1} \times n_{j}$ matrix wilh $r_{1 j} \leqslant \operatorname{rank} W_{1 j} \leqslant R_{1 j}$. (I) holds with $H_{k}=W_{k k}$ and $X_{1 j}=W_{1 j}$.
(VI) The following inequalities hold:

$$
\begin{gathered}
\pi \geqslant \max \left\{\pi_{1}, r_{13}-\nu_{1}, r_{12}-\nu_{1},\right. \\
\pi_{2}-\nu_{1}+r_{13}-R_{12}, \pi_{2}-\nu_{3}+r_{13}, \\
\pi_{3}-\nu_{1}+r_{12}-R_{13}, \pi_{3}-\nu_{2}+r_{12}, \\
\pi_{1}+\pi_{2}-R_{12}, \pi_{1}+\pi_{3}-R_{13}, \pi_{2}+\pi_{3}, \\
\left.\pi_{1}+\pi_{2}+\pi_{3}-R_{12}-R_{13}\right\} \\
\nu \geqslant \max \left\{\nu_{1}, r_{13}-\pi_{1}, r_{12}-\pi_{1},\right. \\
\nu_{2}-\pi_{1}+r_{13}-R_{12}, \nu_{2}-\pi_{3}+r_{13}, \\
\nu_{3}-\pi_{1}+r_{12}-R_{13}, \nu_{3}-\pi_{2}+r_{12}, \\
\nu_{1}+\nu_{2}-R_{12}, \nu_{1}+\nu_{3}-R_{13}, \nu_{2}+\nu_{3}, \\
\left.\nu_{1}+\nu_{2}+\nu_{3}-R_{12}-R_{13}\right\}, \\
\pi \leqslant \min \left\{\pi_{1}+n_{2}+n_{3},\right. \\
n_{1}+\pi_{2}+\pi_{3}, \pi_{1}+n_{2}+\pi_{3}+R_{13}, \pi_{1}+\pi_{2}+n_{3}+R_{12}, \\
\left.\pi_{1}+\pi_{2}+\pi_{3}+R_{12}+R_{13}\right\}, \\
\nu \leqslant \min \left\{\nu_{1}+n_{2}+n_{3},\right. \\
n_{1}+\nu_{2}+\nu_{3}, \nu_{1}+n_{2}+\nu_{3}+R_{13}, \nu_{1}+\nu_{2}+n_{3}+R_{12}, \\
\left.\nu_{1}+\nu_{2}+\nu_{3}+R_{12}+R_{13}\right\}, \\
\pi \leqslant \min \left\{\pi_{1}+\pi_{2}+\pi_{3},\right. \\
\left.\pi_{1}+\pi_{2}+\pi_{3}-\nu_{2}+R_{12}, \pi_{1}+\pi_{2}+\pi_{3}-\nu_{3}+R_{13}\right\}
\end{gathered}
$$

$\nu-\pi \leqslant \min \left\{\nu_{1}+\nu_{2}+\nu_{3}\right.$,

$$
\left.\nu_{1}+\nu_{2}+\nu_{3}-\pi_{2}+R_{12}, \nu_{1}+\nu_{2}+\nu_{3}-\pi_{3}+R_{13}\right\}
$$

$$
\pi+\nu \geqslant \max \left\{\pi_{1}+\nu_{1}+\pi_{2}+\nu_{2}-R_{12}, \pi_{1}+\nu_{1}+\pi_{3}+\nu_{3}-R_{13}\right.
$$

$$
\begin{aligned}
& \pi_{1}+\nu_{1}+\pi_{2}+\nu_{2}+\pi_{3}+\nu_{3}-R_{12}-R_{13} \\
& \pi_{2}+\nu_{2}-\pi_{1}-\nu_{1}+2 r_{13}-R_{12} \\
& \left.\pi_{3}+\nu_{3}-\pi_{1}-\nu_{1}+2 r_{12}-R_{13}\right\}
\end{aligned}
$$

$\pi+\nu \leqslant \min \left\{n_{1}+n_{2}+n_{3}\right.$,

$$
\begin{aligned}
& n_{1}+n_{2}+\pi_{3}+\nu_{3}+R_{13} \\
& n_{1}+\pi_{2}+\nu_{2}+n_{3}+R_{12} \\
& \pi_{1}+\nu_{1}+n_{2}+n_{3}+R_{12}+R_{13} \\
& n_{1}+\pi_{2}+\nu_{2}+\pi_{3}+\nu_{3}+R_{12}+R_{13} \\
& \pi_{1}+\nu_{1}+n_{2}+\pi_{3}+\nu_{3}+R_{12}+2 R_{13} \\
& \left.\pi_{1}+\nu_{1}+\pi_{2}+\nu_{2}+n_{3}+2 R_{12}+R_{13}\right\}
\end{aligned}
$$

Of course this theorem can easily be adapted to the two other different prescribed 3×3 block decomposition of a Hermitian matrix H, when two of the nondiagonal blocks are zero, i.e., in the case

$$
H=\left[\begin{array}{ccc}
H_{1} & 0 & X_{13} \\
0 & H_{2} & X_{23} \\
X_{13}^{*} & X_{23}^{*} & H_{3}
\end{array}\right],
$$

and when the decomposition is tridiagonal

$$
H=\left[\begin{array}{ccc}
H_{1} & X_{12} & 0 \\
X_{12}^{*} & H_{2} & X_{23} \\
0 & X_{23}^{*} & H_{3}
\end{array}\right]
$$

Proof. The proof that (I) is equivalent to each of (II)-(V) is the same as one can find in the proof of the Theorem 2.1 in [2]. We include this part of the proof for completeness.

It is obvious that each of (II)-(V) implies (I). Suppose now that H satisfies (I). Let M be a block diagonal matrix $M_{1} \oplus M_{2} \oplus M_{3}$, where M_{i} denotes an $n_{i} \times n_{i}$ invertible matrix. For $i=1,2,3$ and $j=2,3$ set $Y_{i i}=$ $M_{i}^{*} H_{i} M_{i}, Y_{1 j}=M_{1}^{*} X_{1 j} M_{j}$, and $Y_{23}=0$. We have $Y=\left(Y_{i j}\right)_{i, j}=M^{*} H M$. Then rank $Y_{1 j}=\operatorname{rank} X_{1 j}$, and by Sylvester's theorem $\operatorname{In}(Y)=\operatorname{In}(I I)$ and $\operatorname{In}\left(Y_{i i}\right)=\operatorname{In}\left(H_{i}\right)$. Thus Y has all the rank and inertia properties required in (II)-(V). In each of these cases the only additional requirement is that, for certain $i, j, M_{1}^{*} X_{1 j} M_{j}=W_{i j}$ and $M_{i}^{*} H_{i} M_{i}=W_{i i}$. Such M_{i} 's can always be found [5].

Let us prove that (II) is equivalent to (VI). Assume that $r_{13}=R_{13}=r$. We set

$$
H_{3}=\left[\begin{array}{cc}
\bar{H}_{3} & 0 \\
0 & 0
\end{array}\right], \quad \text { where } \quad \tilde{H}_{33}=\left[\begin{array}{cc}
I_{\pi_{3}} & 0 \\
0 & -I_{\nu_{3}}
\end{array}\right] .
$$

Our choice of H_{3} allows us to partition H as

$$
H=\left[\begin{array}{cccc}
H_{1} & X_{12} & Y & Z \\
X_{12}^{*} & H_{2} & 0 & 0 \\
Y^{*} & 0 & \tilde{H}_{33} & 0 \\
Z^{*} & 0 & 0 & 0
\end{array}\right]
$$

where $\left[\begin{array}{ll}Y Z\end{array}\right]=X_{13}$. Let s be the rank of Z. There exist nonsingular matrices, say U and V, such that

$$
U Z V=\left[\begin{array}{ll}
0 & I_{s} \\
0 & 0
\end{array}\right] .
$$

Let us define the matrix

$$
\begin{aligned}
H^{\prime} & =\left(U \oplus I \oplus I \oplus V^{*}\right) H\left(U^{*} \oplus I \oplus I \oplus V\right) \\
& =\left[\begin{array}{ccccc}
U H_{1} U^{*} & U X_{12} & U Y & 0 & I_{s} \\
\left(U X_{12}\right)^{*} & H_{2} & 0 & 0 & 0 \\
(U Y)^{*} & 0 & \tilde{H}_{3} & 0 \\
0 & 0 & 0 & 0 & 0 \\
I_{s} & 0 & 0 & &
\end{array}\right]
\end{aligned}
$$

which is conjunctive to H, so $\operatorname{In}(H)=\operatorname{In}\left(H^{\prime}\right)$. Note that for the same reason $\operatorname{In}\left(H_{1}\right)=\operatorname{In}\left(U H_{1} U^{*}\right)$.

Let us make a new partition of H^{\prime} in the following way:

$$
H^{\prime}=\left[\begin{array}{ccccc}
* & * & * & * & 0 I_{s} \\
* & \tilde{H}_{1} & \tilde{X}_{12} & \tilde{X}_{13} & 00 \\
* & \tilde{X}_{12}^{*} & H_{2} & 0 & 0 \\
* & \tilde{X}_{13}^{*} & 0 & \tilde{H}_{3} & 0 \\
0 & 0 & 0 & 0 & 0 \\
I_{s} & 0 & & &
\end{array}\right] .
$$

Then applying the Schur complement technique, H^{\prime} is conjunctive to $H^{\prime \prime}$ defined by

$$
H^{\prime \prime}=\left[\begin{array}{cccccc}
* & * & * & * & 0 & I_{s} \\
* & \tilde{H}_{1}-\tilde{X}_{13} \tilde{H}_{3}^{-1} \tilde{X}_{13}^{*} & \tilde{X}_{12} & 0 & 0 \\
* & \tilde{X}_{12}^{*} & H_{2} & 0 & 0 \\
* & 0 & 0 & \tilde{H}_{3} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Applying a corollary and a lemma of [4], we get

$$
\operatorname{In}(H)=\operatorname{In}\left(H^{\prime \prime}\right)=(s, s, 0)+\left(\pi_{3}, \nu_{3}, 0\right)+\operatorname{In}(\bar{H})
$$

where

$$
\bar{H}=\left[\begin{array}{cc}
\tilde{H}_{1}-\tilde{X}_{13} \tilde{H}_{3}^{-1} \tilde{X}_{13}^{*} & \tilde{X}_{12} \\
\tilde{X}_{12}^{*} & H_{2}
\end{array}\right] .
$$

Now, describing the inertias ($\pi, \nu, 0$) of H is equivalent to describing the inertias $(\bar{\pi}, \bar{\nu}, *)=\left(\pi^{\prime}-s, \nu^{\prime}-s, *\right)$ of \bar{H}, where $\pi^{\prime}=\pi-\pi_{3}$ and $\nu^{\prime}=\nu-\nu_{3}$.

Applying the Claim of [2], as X_{13} varies over the set of $n_{1} \times n_{3}$ rank r matrices with $\operatorname{rank} Z=s$, the matrices \tilde{X}_{13} form the set of all $\left(n_{1}-s\right) \times$ $\left(\pi_{3}+\nu_{3}\right)$ matrices of rank $r-s$. On other hand, we easily prove that as X_{12} varies over the set of $n_{1} \times n_{2}$ matrices X such that $r_{12} \leqslant \operatorname{rank} X \leqslant R_{12}, \tilde{X}_{12}$ ranges over all $\left(n_{1}-s\right) \times n_{2}$ matrices X such that $r_{12}-s \leqslant \operatorname{rank} X \leqslant R_{12}$. Hence we may apply Theorem 2.1 of [2]. According to it, ($\left.\pi^{\prime}-s, \nu^{\prime}-s, *\right)$ will be the inertia of \bar{H} for some $(1,2)$ and $(2,2)$ blocks, with the $(1,1)$ block fixed, if and only if

$$
\begin{gather*}
\pi^{\prime}+\nu^{\prime} \leqslant n_{1}+n_{2}+s, \\
\max \left\{x, \pi_{2}\right\} \leqslant \pi^{\prime}-s \leqslant \min \left\{n_{1}-s+\pi_{2}, x+n_{2}\right\}, \\
\max \left\{y, \nu_{2}\right\} \leqslant \nu^{\prime}-s \leqslant \min \left\{n_{1}-s+\nu_{2}, y+n_{2}\right\}, \\
\pi^{\prime} \quad \nu^{\prime} \leqslant x \mid \pi_{2}, \\
\nu^{\prime}-\pi^{\prime} \leqslant y+\nu_{2}, \\
r_{12} \leqslant \min \left\{\pi^{\prime}+y, \pi^{\prime}+\nu_{2}, \nu^{\prime}+x, \nu^{\prime}+\pi_{2}\right\}, \\
R_{12} \geqslant \max \left\{\left|x+\pi_{2}-\pi^{\prime}+s\right|,\left|y+\nu_{2}-\nu^{\prime}+s\right|\right\}, \\
R_{12}+2 s \geqslant \pi^{\prime}+\nu^{\prime}-\min \left\{x+y+n_{2}, \pi_{2}+\nu_{2}+n_{1}-s\right\}, \\
R_{12} \geqslant x+y+\pi_{2}+\nu_{2}-\pi^{\prime}-\nu^{\prime}+2 s, \tag{3.1}
\end{gather*}
$$

where $(x, y, *)$ is the inertia of $\tilde{H}_{1}-\tilde{X}_{13} \tilde{H}_{3}^{-1} \tilde{X}_{13}^{*}$.

We note that $s=\operatorname{rank} Z$ varies as

$$
\max \left\{0, r-\pi_{3}-\nu_{3}\right\} \leqslant s \leqslant \min \left\{n_{3}-\pi_{3}-\nu_{3}, r\right\}
$$

and, since $r_{13} \leqslant r \leqslant R_{13}$ and $r-s=\operatorname{rank} \tilde{X}_{13}$, eliminating r, we conclude

$$
\max \left\{0, r_{13}-\pi_{3}-\nu_{3}\right\} \leqslant s \leqslant \min \left\{n_{3}-\pi_{3}-\nu_{3}, R_{13}\right\}
$$

and

$$
r_{13}-s \leqslant \operatorname{rank} \tilde{X}_{13} \leqslant R_{13}-s
$$

According to the Corollary 2.2, the set of inertias $(x, y, *)$ when $\operatorname{In}\left(\tilde{H}_{1}\right)$ $=\left(\tilde{\pi}_{1}, \tilde{\nu}_{1}, *\right), \operatorname{In}\left(-\tilde{H}_{3}^{-1}\right)=\left(\nu_{3}, \pi_{3}, *\right)$, and $r_{13}-s \leqslant \operatorname{rank} \tilde{X}_{13} \leqslant R_{13}-s$ is characterized by

$$
\begin{gather*}
x \leqslant \min \left\{\tilde{\pi}_{1}+\nu_{3}, \tilde{\pi}_{1}+R_{13}-s\right\}, \\
y \leqslant \min \left\{\tilde{\nu}_{1}+\pi_{3}, \tilde{\nu}_{1}+R_{13}-s\right\}, \\
x \geqslant \max \left\{0, \tilde{\pi}_{1}-\pi_{3}, \tilde{\pi}_{1}-R_{13}+s,-\pi_{3}-\tilde{\nu}_{1}+r_{13}-s\right\}, \\
y \geqslant \max \left\{0, \tilde{\nu}_{1}-\nu_{3}, \tilde{\nu}_{1}-R_{13}+s,-\nu_{3}-\tilde{\pi}_{1}+r_{13}-s\right\}, \\
x+y \leqslant \min \left\{n_{1}-s, \tilde{\pi}_{1}+\tilde{\nu}_{1}+R_{13}-s\right\}, \\
x+y \geqslant \tilde{\pi}_{1}+\tilde{\nu}_{1}-R_{13}+s, \tag{3.2}
\end{gather*}
$$

while, by Theorem 1 of [6], the set of inertias ($\tilde{\pi}_{1}, \tilde{\nu}_{1}, *$) which arise as H_{1} varies is characterized by

$$
\begin{gather*}
\max \left\{0, \pi_{1}-s\right\} \leqslant \tilde{\pi}_{1} \leqslant \pi_{1} \\
\max \left\{0, \nu_{1}-s\right\} \leqslant \tilde{\nu}_{1} \leqslant \nu_{1} \\
\tilde{\pi}_{1}+\tilde{\nu}_{1} \leqslant n_{1}-s \tag{3.3}
\end{gather*}
$$

We know now that $(x, y, *)$ is the inertia of $\tilde{H}_{1}-\tilde{X}_{13} \tilde{H}_{3}^{-1} \tilde{X}_{13}^{*}$ if and only if there exist integers $\tilde{\pi}_{1}$ and $\tilde{\nu}_{1}$ satisfying (3.2) and (3.3). We combine these
two sets of inequalities to get

$$
\begin{gather*}
a \leqslant \tilde{\pi}_{1} \leqslant A \\
b \leqslant \tilde{\nu}_{1} \leqslant B \\
c \leqslant \tilde{\pi}_{1}+\tilde{\nu}_{1} \leqslant C \tag{3.4}
\end{gather*}
$$

Where

$$
\begin{aligned}
& a=\max \left\{0, \pi_{1}-s, x-\nu_{3}, x-R_{13}+s,-\nu_{3}-y+r_{13}-s\right\} \\
& b=\max \left\{0, \nu_{1}-s, y-\pi_{3}, y-R_{13}+s,-\pi_{3}-x+r_{13}-s\right\} \\
& c=x+y-R_{13}+s \\
& A=\min \left\{\pi_{1}, x+\pi_{3}, x+R_{13}-s\right\} \\
& B=\min \left\{\nu_{1}, y+\nu_{3}, y+R_{13}-s\right\} \\
& C=\min \left\{n_{1}-s, x+y+R_{13}-s\right\} .
\end{aligned}
$$

Then there is an integral solution $\tilde{\pi}_{1}$ and $\tilde{\nu}_{1}$ to (3.4) if and only if

$$
\begin{equation*}
a \leqslant A, \quad b \leqslant B, \quad c \leqslant C, \quad a+b \leqslant C, \quad c \leqslant A+B \tag{3.5}
\end{equation*}
$$

Eliminating redundant inequalities from (3.5) (e.g., some inequalities are redundant by the $\pi \nu$ duality) gives rise to $7+7+1+21+3=39$ inequalities, which can be reduced to

$$
\begin{gather*}
x \leqslant \min \left\{\pi_{1}+\nu_{3}, n_{1}+\nu_{3}-s, \pi_{1}+R_{13}-s\right\}, \\
y \leqslant \min \left\{\nu_{1}+\pi_{3}, n_{1}+\pi_{3}-s, \nu_{1}+R_{13}-s\right\}, \\
x \geqslant \max \left\{0, \pi_{1}-\pi_{3}-s, \pi_{1}-R_{13},-\pi_{3}-\nu_{1}+r_{13}-s\right\}, \\
y \geqslant \max \left\{0, \nu_{1}-\nu_{3}-s, \nu_{1}-R_{13},-\nu_{3}-\pi_{1}+r_{13}-s\right\}, \\
x+y \leqslant \min \left\{n_{1}-s, \pi_{1}+\nu_{1}+R_{13}-s\right\}, \\
x+y \geqslant \pi_{1}+\nu_{1}-R_{13}-s . \tag{3.6}
\end{gather*}
$$

Using the same idea we have used before, we will eliminate x and y. We know that ($\left.\pi^{\prime}+\pi_{3}, \nu^{\prime}+\nu_{3}, *\right)$ is the inertia of H if and only if there exist integers x and y satisfying (3.1) and (3.6). Again, we combine these two sets of inequalities to get

$$
\begin{aligned}
& a \leqslant x \leqslant A \\
& b \leqslant y \leqslant B \\
& c \leqslant x+y \leqslant C
\end{aligned}
$$

and some inequalities not involving x or y, where
$a=\max \left\{0, \pi_{1}-\pi_{3}-s, \pi_{1}-R_{13},-\pi_{3}-\nu_{1}+r_{13}-s\right.$,

$$
\begin{aligned}
& \left.\quad \pi^{\prime}-s-n_{2}, \pi^{\prime}-\nu^{\prime}-\pi_{2}, r_{12}-\nu^{\prime}, \pi^{\prime}-R_{12}-\pi_{2}-s\right\} \\
& b=\max \left\{0, \nu_{1}-\nu_{3}-s, \nu_{1}-R_{13},-\nu_{3}-\pi_{1}+r_{13}-s,\right. \\
& \left.\nu^{\prime}-s-n_{2}, \nu^{\prime}-\pi^{\prime}-\nu_{2}, r_{12}-\pi^{\prime}, \nu^{\prime}-R_{12}-\nu_{2}-s\right\} \\
& c=\max \left\{\pi_{1}+\nu_{1}-R_{13}-s, \pi^{\prime}+\nu^{\prime}-n_{2}-R_{12}-2 s\right\} \\
& A=\min \left\{\pi_{1}+\nu_{3}, \pi_{1}+R_{13}-s, n_{1}+\nu_{3}-s, \pi^{\prime}-s, \pi^{\prime}+R_{12}-\pi_{2}-s\right\} \\
& B=\min \left\{\nu_{1}+\pi_{3}, \nu_{1}+R_{13}-s, n_{1}+\pi_{3}-s, \nu^{\prime}-s, \nu^{\prime}+R_{12}-\nu_{2}-s\right\} \\
& C=\min \left\{n_{1}-s, \pi_{1}+\nu_{1}+R_{13}-s, \pi^{\prime}+\nu^{\prime}-\pi_{2}-\nu_{2}+R_{12}-2 s\right\}
\end{aligned}
$$

When the redundancies have been eliminated we have

$$
\begin{gathered}
\pi_{i} \geqslant 0, \quad \pi_{i}+\nu_{i} \leqslant n_{i}, \quad i=1,2,3, \\
0 \leqslant r_{1 j} \leqslant R_{1 j} \leqslant \min \left\{n_{1}, n_{j}\right\}, \quad j=2,3, \\
\pi \geqslant \max \left\{\pi_{1}, r_{13}-\nu_{1}, r_{12}-\nu_{1},\right. \\
\pi_{2}-\nu_{1}+r_{13}-R_{12}, \pi_{3}-\nu_{1}+r_{12}-R_{13}+s, \\
\pi_{3}-\nu_{2}+r_{12}, \pi_{2}+\pi_{3}+s, \\
\pi_{1}+\pi_{2}-R_{12}, \pi_{1}+\pi_{3}-R_{13}+s, \pi_{1}+\pi_{2}+\pi_{3} \\
\left.-R_{12}-R_{13}+s\right\}
\end{gathered}
$$

$$
\begin{aligned}
& \nu \geqslant \max \left\{\nu_{1}, r_{13}-\pi_{1}, r_{12}-\pi_{1},\right. \\
& \nu_{2}-\pi_{1}+r_{13}-R_{12}, \nu_{3}-\pi_{1}+r_{12}-R_{13}+s, \\
& \nu_{3} \quad \pi_{2}+r_{12}, \nu_{2}+\nu_{3}+s, \\
& \left.\nu_{1}+\nu_{2}-R_{12}, \nu_{1}+\nu_{3}-R_{33}+s, \nu_{1}+\nu_{2}+\nu_{3}-R_{12}-R_{13}+s\right\}, \\
& \pi \leqslant \min \left\{n_{1}+n_{2}+\pi_{3}, \pi_{1}+n_{2}+\pi_{3}+\nu_{3}+s,\right. \\
& \pi_{1}+n_{2}+\pi_{3}+R_{13}, \pi_{1}+\pi_{2}+\pi_{3}+\nu_{3}+R_{12}+s, \\
& \left.\pi_{1}+\pi_{2}+\pi_{3}+R_{12}+R_{13}\right\}, \\
& \nu \leqslant \min \left\{n_{1}+n_{2}+\nu_{3}, \pi_{1}+n_{2}+\pi_{3}+\nu_{3}+s,\right. \\
& \pi_{1}+n_{2}+\nu_{3}+R_{13}, \nu_{1}+\nu_{2}+\pi_{3}+\nu_{3}+R_{12}+s, \\
& \left.\nu_{1}+\nu_{2}+\nu_{3}+R_{12}+R_{13}\right\}, \\
& \pi-\nu \leqslant \min \left\{\pi_{1}+\pi_{2}+\pi_{3},\right. \\
& \left.\pi_{1}+\pi_{2}+\pi_{3}-\nu_{3}+R_{13}-s\right\}, \\
& \nu-\pi \leqslant \min \left\{\nu_{1}+\nu_{2}+\nu_{3},\right. \\
& \left.\boldsymbol{\nu}_{1}+\nu_{2}+\boldsymbol{\nu}_{3}-\boldsymbol{\pi}_{3}+\boldsymbol{R}_{1.3}-s\right\}, \\
& \pi+\nu \geqslant \max \left\{\pi_{1}+\nu_{1}+\pi_{2}+\nu_{2}-R_{12},\right. \\
& \pi_{1}+\nu_{1}+\pi_{3}+\nu_{3}-R_{13}+s, \\
& \pi_{1}+\nu_{1}+\pi_{2}+\nu_{2}+\pi_{3}+\nu_{3}-R_{12}-R_{13}+s, \\
& \pi_{2}+\nu_{2}-\pi_{1}-\nu_{1}+2 r_{13}-R_{12}, \\
& \left.\pi_{3}+\nu_{3}-\pi_{1}-\nu_{1}+2 r_{12}-R_{13}+s\right\},
\end{aligned}
$$

$\pi+\nu \leqslant \min \left\{n_{1}+n_{2}+\pi_{3}+\nu_{3}+s\right.$,

$$
\begin{aligned}
& n_{1}+\pi_{2}+\nu_{2}+\pi_{3}+\nu_{3}+R_{12}+s, \\
& \pi_{1}+\nu_{1}+n_{2}+\pi_{3}+\nu_{3}+R_{12}+R_{13}+s, \\
& \pi_{1}+\nu_{1}+\pi_{2}+\nu_{2}+\pi_{3}+\nu_{3}+2 R_{12}+R_{13}+s, \\
& \left.\pi_{1}+\nu_{1}+n_{2}+\pi_{3}+\nu_{3}+R_{12}+2 R_{13}\right\}
\end{aligned}
$$

Now we get a system of inequalities of the type

$$
\mathscr{S}, \quad d \leqslant s \leqslant D
$$

where \mathscr{S} is a subsystem of inequalities not involving s, and d and D are defined below:

$$
\begin{aligned}
& d=\max \left\{0, r_{13}-\pi_{3}-\nu_{3},\right. \\
& \pi+\nu-\pi_{3}-\nu_{3}-n_{1}-n_{2}, \\
& \pi+\nu-\pi_{3}-\nu_{3}-n_{1}-\pi_{2}-\nu_{2}-R_{12}, \\
& \pi-\pi_{3}-\nu_{3}-\pi_{1}-n_{2}, \nu-\pi_{3}-\nu_{3}-\nu_{1}-n_{2}, \\
& \pi-\pi_{3}-\nu_{3}-\pi_{1}-\pi_{2} \cdots R_{12}, \nu \pi_{3}-\nu_{3}-\nu_{1}-\nu_{2}-R_{12}, \\
& \pi+\nu-\pi_{3}-\nu_{3}-\pi_{1}-\nu_{1}-n_{2}-R_{12}-R_{13}, \\
&\left.\pi+\nu-\pi_{3}-\nu_{3}-\pi_{1}-\nu_{1}-\pi_{2}-\nu_{2}-2 R_{12}-R_{13}\right\}, \\
& \pi-\pi_{3}-\pi_{2}, \nu-\nu_{3}-\nu_{2}, \\
& \pi-\nu-\pi_{3}+\nu_{1}+\nu_{2}+\nu_{3}+R_{13}, \\
& \nu-\pi-\nu_{3}+\pi_{1}+\pi_{2}+\pi_{3}+R_{13}, \\
& \pi-\pi_{3}+\nu_{1}-r_{12}+R_{13}, \nu-\nu_{3}+\pi_{1}-r_{12}+R_{13}, \\
& \pi-\pi_{1}-\pi_{3}+R_{13}, \nu-\nu_{1}-\nu_{3}+R_{13}, \\
& \pi-\pi_{1}-\pi_{2}-\pi_{3}+R_{12}+R_{13}, \nu-\nu_{1}-\nu_{2}-\nu_{3}+R_{12}+R_{13}, \\
& \pi+\nu-\pi_{1}-\nu_{1}-\pi_{2}-\nu_{2}-\pi_{3}-\nu_{3}+R_{12}+R_{13}, \\
& \pi+\nu+\pi_{1}+\nu_{1}-\pi_{3}-\nu_{3}-2 r_{12}+R_{13} \\
&\left.\pi+\nu-\pi_{1}-\nu_{1}-\pi_{3}-\nu_{3}+R_{13}\right\}
\end{aligned}
$$

Finally, eliminating s, we prove equivalence between (II) and the inequalities defined in (VI).

4. A GENERALIZATION

In this final section we generalize the Theorem 3.1 to the decompositions of H of the type

$$
H=\left[\begin{array}{ccccc}
H_{1} & X_{12} & X_{13} & \cdots & X_{1 p} \tag{4.1}\\
H_{12}^{*} & H_{2} & 0 & \cdots & 0 \\
X_{13}^{*} & 0 & H_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X_{1 p}^{*} & 0 & 0 & \cdots & H_{p}
\end{array}\right]
$$

Let us define

$$
\begin{aligned}
& \Pi_{p}=\left\{0, \pi_{2}-R_{12}, \ldots, \pi_{p}-R_{1 p}\right\} \\
& \Omega_{p}=\left\{0, \nu_{2}-R_{12}, \ldots, \nu_{p}-R_{1 p}\right\}
\end{aligned}
$$

and, for $k=1, \ldots, p-1$,

$$
\begin{aligned}
& \Sigma_{k} \Pi_{p}=\left\{\sum_{a \in P} a \mid P \subset \Pi_{p}\right. \text { and \#P=k\}} \\
& \Sigma_{k} \Omega_{p}=\left\{\sum_{a \in P} a \mid P \subset \Omega_{p}\right. \text { and \#P=k\}}
\end{aligned}
$$

The symbol r_{p} will denote the set $\left\{r_{12}, \ldots, r_{1 p}\right\}$.
We define Γ_{p} as the set

$$
\left\{\sum_{i=2}^{p} a_{i} \mid a_{i} \in\left\{0, \pi_{i}+\nu_{i}-R_{1 i}\right\}\right\} \backslash\{0\}
$$

The symbol Δ_{p} will be used to denote the set

$$
\left\{\sum_{i=2}^{p} a_{i} \mid a_{i} \in\left\{n_{i}, \pi_{i}+\nu_{i}+R_{1 i}\right\}\right\}
$$

and $\Delta_{p} \backslash\left\{\sum_{i-2}^{p}\left(\pi_{i}+\nu_{i}+R_{1 i}\right)\right\}$ will be represented by Δ_{p}^{\prime}. The set $\left\{r_{1 j}-\nu_{j}+\sum_{i \in C} \pi_{i} \mid C \subset\{2, \ldots, p\}, \# C=p-2\right.$, and $\left.j \in\{2, \ldots, p\} \backslash C\right\}$
is represented by Υ_{p}, and Λ_{p} represents the set

$$
\left\{r_{1 j}-\pi_{j}+\sum_{i \in C} \nu_{i} \mid C \subset\{2, \ldots, p\}, \# C=p-2, \text { and } j \in\{2, \ldots, p\} \backslash C\right\}
$$

Finally, Φ_{p} denotes the set

$$
\left\{\sum_{i=2}^{p} a_{i} \mid a_{i} \in\left\{n_{i}, \pi_{i}+R_{1 i}\right\}\right\}
$$

and, by $\pi \nu$ duality, Ψ_{p} denotes the set

$$
\left\{\sum_{i=2}^{p} a_{i} \mid a_{i} \in\left\{n_{i}, \nu_{i}+R_{1 i}\right\}\right\}
$$

Now we are ready to state the result of this section.

Theorem 4.1. Let us assume that all symbols represent nonnegative integers and

$$
\begin{gathered}
\pi_{i} \geqslant 0, \quad \pi_{i}+\nu_{i} \leqslant n_{i}, \quad i=1, \ldots, p \\
0 \leqslant r_{1 j} \leqslant R_{1 j} \leqslant \min \left\{n_{1}, n_{j}\right\}, \quad j=2, \ldots, p
\end{gathered}
$$

Then the following conditions are equivalent:
(I) For $i=1, \ldots, p$ and $j=2, \ldots, p$, there exist $n_{i} \times n_{i}$ Hermitian matrices H_{i} and $n_{i} \times n_{j}$ matrices $X_{1 j}$ such that $\operatorname{In}\left(H_{i}\right)=\left(\pi_{i}, \nu_{i}, *\right), r_{1 j} \leqslant$ rank $X_{1 j} \leqslant R_{1 j}$, and H defined in (4.1) has inertia ($\pi, \nu, *$).
(II) For $k=1, \ldots, p$ let $W_{k k}$ be any fixed $n_{k} \times n_{k}$ Hermitian matrix with inertia $\left(\pi_{k}, \nu_{k}, *\right)$. (I) holds with $H_{1}=W_{11}, \ldots$, and $H_{p}=W_{p p}$.
(III) The following inequalities hold:

$$
\begin{aligned}
& \pi \geqslant \max \left\{\sum_{i=2}^{p} \pi_{i}, \Upsilon_{p}, r_{p}-\nu_{1}+\Sigma_{1} \Pi_{p}, \ldots, r_{p}-\nu_{1}+\Sigma_{p}{ }_{2} \Pi_{p},\right. \\
& \left.\pi_{1}+\Sigma_{1} \Pi_{p}, \ldots, \pi_{1}+\Sigma_{p-1} \Pi_{p}\right\}, \\
& \nu \geqslant \max \left\{\sum_{i=2}^{p} \nu_{i}, \Lambda_{p}, r_{p}-\pi_{1}+\Sigma_{1} \Omega_{p}, \ldots, r_{p}-\pi_{1}+\Sigma_{p-2} \Omega_{p},\right.
\end{aligned}
$$

$$
\left.\nu_{1}+\Sigma_{1} \Omega_{p}, \ldots, \nu_{1}+\Sigma_{p-1} \Omega_{p}\right\}
$$

$$
\pi \leqslant \min \left\{n_{1}+\sum_{i=2}^{p} \pi_{i}, \pi_{1}+\Phi_{p}\right\}
$$

$$
\nu \leqslant \min \left\{n_{1}+\sum_{i=2}^{p} \nu_{i}, \nu_{1}+\Psi_{j}^{\prime}\right\},
$$

$$
\pi-\nu \leqslant \min \left\{\sum_{i=1}^{p} \pi_{i}-\Sigma_{1} \Omega_{p}, \ldots, \sum_{i=1}^{p} \pi_{i}-\Sigma_{p-2} \Omega_{p}\right\}
$$

$$
\nu-\pi \leqslant \min \left\{\sum_{i=1}^{p} \nu_{i}-\Sigma_{1} \Pi_{p}, \ldots, \sum_{i=1}^{p} \nu_{i}-\Sigma_{p-2} \Pi_{p}\right\}
$$

$$
\pi+\nu \geqslant \max \left\{\pi_{1}+\nu_{1}+\Gamma_{p}, 2 r_{p}+\Gamma_{p}-\pi_{1}-\nu_{1}\right\}
$$

$$
\pi+\nu \leqslant \min \left\{n_{1}+\Delta_{p}, \pi_{1}+\nu_{1}+\sum_{i=2}^{p} R_{1 i}+\Delta_{p}^{\prime}\right\}
$$

Proof. The proof is done by induction on p.
Remark. Concerning (III), there occur some redundant inequalities. For instance, we have $\pi \geqslant r_{12}-\nu_{1}+\pi_{2}-R_{12}+\pi_{3}-R_{13}$, which is clearly redundant, since $\pi \geqslant \sum_{i=2}^{p} \pi_{i}$ and $r_{12} \leqslant R_{12}$. Moreover, this phenomenon is even more general, since when $\pi_{i}-R_{1 i}$ or $\nu_{i}-R_{1 i}$ and $r_{1 i}$ occur simultaneously in the same inequality, that inequality is redundant.

I am indebted to Professor E. Marques de Sá for many helpful discussions on this matter.

REFERENCES

1 B. E. Cain and E. Marques de Sá, The inertia of a Hermitian matrix having prescribed complementary principal submatrices, Linear Algebra Appl. 37:161-171 (1981).

2 B. E. Cain and E. Marques de Sá, The inertia of Hermitian matrices with a prescribed 2×2 block decomposition, Linear and Multilinear Algebra 31:119-130 (1992).

3 B. E. Cain and E. Marques de Sá, The inertia of certain skew-triangular block matrices, Linear Algebra Appl. 160:75-85 (1992).
4 E. V. Haynsworth and A. M. Ostrowski, On the inertia of some classes of partitioned matrices, Linear Algebra Appl. 1:299-316 (1968).
5 S. Perlis, Theory of Matrices, Addison-Wesley, Reading, Mass., 1952.
6 E. Marques de Sá, On the inertia of sums of Hermitian matrices, Linear Algebra Appl. 37:143-159 (1981).

Received 23 January 1997; final manuscript accepted 28 July 1997

