

The Inertia of Certain Hermitian Block Matrices

C. M. da Fonseca Departamento de Matemática Universidade de Coimbra 3000 Coimbra, Portugal

Submitted by Hans Schneider

ABSTRACT

We characterize sets of inertias of some partitioned Hermitian matrices by a system of inequalities involving the orders of the blocks, the inertias of the diagonal blocks, and the ranks of the nondiagonal blocks. The main result generalizes some well-known characterizations of Sá and Cain and others. © 1998 Elsevier Science Inc.

1. INTRODUCTION

Define the inertia of an $n \times n$ Hermitian matrix H as the triple $In(H) = (\pi, \nu, \delta)$, where π is the number of positive eigenvalues, ν is the number of negative eigenvalues and $\delta = n - \pi - \nu$. We will simply write $(\pi, \nu, *)$ for the inertia of H, without any mention of the value of δ .

We denote by I_r the identity matrix of order r, and by I the same matrix when we do not need to specify the order.

In [2] Cain and Sá characterized the inertia of a Hermitian skew-triangular 3×3 block matrix by a system of inequalities involving the orders of the blocks, the inertias of the diagonal blocks, and the ranks of the nondiagonal blocks.

LINEAR ALGEBRA AND ITS APPLICATIONS 274:193-210 (1998)

© 1998 Elsevier Science Inc. All rights reserved. 655 Avenue of the Americas, New York, NY 10010 0024-3795/98/\$19.00 PII S0024-3795(97)00338-8 THEOREM 1.1 [2]. Let us assume that $\pi_1, \nu_1, \pi_2, \nu_2, n_1, n_2, n_3$ are nonnegative and

$$\begin{aligned} \pi_i + \nu_i &\leq n_i \quad for \quad i = 1, 2, \\ 0 &\leq r_{1i} \leq R_{1i} \leq \min\{n_1, n_i\} \quad for \quad i = 2, 3. \end{aligned}$$

Then the following conditions are equivalent:

(I) For i = 1, 2, and j = 2, 3, there exist $n_i \times n_i$ Hermitian matrices H_i and $n_1 \times n_j$ matrices X_{1j} such that $\text{In}(H_i) = (\pi_i, \nu_i, *)$, $r_{1j} \leq \text{rank } X_{1j} \leq R_{1j}$, and

$$H = \begin{bmatrix} H_1 & X_{12} & X_{13} \\ X_{12}^* & H_2 & 0 \\ X_{13}^* & 0 & 0 \end{bmatrix}$$

has inertia $(\pi, \nu, *)$.

(II) Let $k \in \{1, 2\}$. Let W_{kk} be any fixed $n_k \times n_k$ Hermitian matrix with inertia $(\pi_k, \nu_k, *)$. (I) holds with $H_k = W_{kk}$.

(III) Let $k \in \{2, 3\}$. Let W_{1k} be any fixed $n_1 \times n_k$ matrix with $r_{1k} \leq rank W_{1k} \leq R_{1k}$. (I) holds with $X_{1k} = W_{1k}$.

(IV) For k = 1, 2 let W_{kk} be any fixed $n_k \times n_k$ Hermitian matrix with inertia $(\pi_k, \nu_k, *)$. (I) holds with $H_1 = W_{11}$ and $H_2 = W_{22}$.

(V) Let W_{22} be any fixed $n_2 \times n_2$ Hermitian matrix with inertia $(\pi_2, \nu_2, *)$, and let W_{13} be any fixed $n_1 \times n_3$ matrix with $r_{13} \leq \operatorname{rank} W_{13} \leq R_{13}$. (I) holds with $H_2 = W_{22}$ and $X_{13} = W_{13}$.

(VI) The following inequalities hold:

$$\begin{split} \pi &\geq \max\{\pi_1, \pi_2 + r_{13}, \pi_1 + \pi_2 - R_{12}, r_{12} - \nu_1, r_{12} - \nu_2\},\\ \nu &\geq \max\{\nu_1, \nu_2 + r_{13}, \nu_1 + \nu_2 - R_{12}, r_{12} - \pi_1, r_{12} - \pi_2\},\\ \pi &\leq \min\{n_1 + \pi_2, \pi_1 + n_2 + R_{13}, \pi_1 + \pi_2 + R_{12} + R_{13}\},\\ \nu &\leq \min\{n_1 + \nu_2, \nu_1 + n_2 + R_{13}, \nu_1 + \nu_2 + R_{12} + R_{13}\},\\ \pi - \nu &\leq \min\{\pi_1 + \pi_2, \pi_1 + \pi_2 + R_{12} - \nu_2\},\\ \nu - \pi &\leq \min\{\nu_1 + \nu_2, \nu_1 + \nu_2 + R_{12} - \nu_2\},\\ \pi + \nu &\geq \pi_1 + \pi_2 + \nu_1 + \nu_2 - R_{12},\\ \pi + \nu &\leq \min\{n_1 + n_2 + R_{13}, n_1 + \pi_2 + \nu_2 + R_{12} + R_{13},\\ \pi_1 + \nu_1 + n_2 + R_{12} + 2R_{13}\}.\end{split}$$

In this work we will generalize this result by allowing a nonzero block in the (3, 3) entry. We will combine the tools used in [1], [2], and [3], with the Schur complement technique.

2. THE INERTIA OF SUMS OF SEVERAL HERMITIAN MATRICES

In this section we extend some results achieved by Sá in [6].

Let us assume the $n, p, \pi_i, \nu_i, n_i, r_i$, and R_i are nonnegative integers such that $r_i \leq R_i \leq n_i \leq n$ for i = 1, ..., p. We denote also by $\overline{\pi}_i, \overline{\nu}_i$ and $\overline{\rho}_i$ the nonnegative integers

$$\begin{aligned} \overline{\pi}_i &= \min\{\pi_i, R_i\}, \\ \overline{\nu}_i &= \min\{\nu_i, R_i\}, \\ \overline{\rho}_i &= \min\{\pi_i + \nu_i, R_i\} \end{aligned}$$

for i = 1, ..., p.

THEOREM 2.1. For i = 1, ..., p, let H_i be an $n_i \times n_i$ Hermitian matrix with inertia $(\pi_i, \nu_i, *)$. Then there exist matrices S_i of dimensions $n \times n_i$ and $r_i \leq \operatorname{rank} S_i \leq R_i$, i = 1, ..., p, such that

$$\ln(S_1H_1S_1^* + \dots + S_pH_pS_p^*) = (\pi, \nu, *)$$

if and only if (maximizing over $i \in \{1, ..., p\}$) the following inequalities hold:

$$\max_{i} \left\{ \pi_{i} + \overline{\nu}_{i} + r_{i} - n_{i} \right\} - \sum_{t=1}^{p} \overline{\nu}_{t} \leqslant \pi \leqslant \sum_{t=1}^{p} \overline{\pi}_{t},$$
$$\max_{i} \left\{ \nu_{i} + \overline{\pi}_{i} + r_{i} - n_{i} \right\} - \sum_{t=1}^{p} \overline{\pi}_{t} \leqslant \nu \leqslant \sum_{t=1}^{p} \overline{\nu}_{t},$$
$$\max_{i} \left\{ \overline{\rho}_{i} + 2r_{i} - 2n_{i} + \pi_{i} + \nu_{i} \right\} - \sum_{t=1}^{p} \overline{\rho}_{t} \leqslant \pi + \nu \leqslant \sum_{t=1}^{p} \overline{\rho}_{t},$$
$$\pi + \nu \leqslant n.$$

COROLLARY 2.2. Let H_1 and H_2 be $n_i \times n_i$ Hermitian matrices with inertias $(\pi_i, \nu_i, *)$ for i = 1, 2. Then there exists a matrix S of dimension $n_1 \times n_2$ and $r \leq \text{rank } S \leq R$ such that

$$\ln(H_1 + SH_2S^*) = (\pi, \nu, *)$$

if and only if the following inequalities hold:

$$\begin{aligned} \pi &\leq \min\{\pi_1 + \pi_2, \pi_1 + R\}, \\ \nu &\leq \min\{\nu_1 + \nu_2, \nu_1 + R\}, \\ \pi &\geq \max\{0, \pi_1 - \nu_2, \pi_1 - R, \pi_2 - \nu_1 + r - n_2\}, \\ \nu &\geq \max\{0, \nu_1 - \pi_2, \nu_1 - R, \nu_2 - \pi_1 + r - n_2\}, \\ \pi + \nu &\leq \min\{n_1, \pi_1 + \nu_1 + R\}, \\ \pi + \nu &\geq \pi_1 + \nu_1 - R. \end{aligned}$$

3. THE MAIN RESULT

We present now the main result of this work.

THEOREM 3.1. Let us assume that for i = 1, 2, 3, the quantities π_i , ν_i , n_i are nonnegative and

$$\begin{split} \pi_i &\ge 0, \quad \pi_i + \nu_i \leqslant n_i, \qquad i = 1, 2, 3, \\ 0 &\leqslant r_{1j} \leqslant R_{1j} \leqslant \min\{n_1, n_j\}, \qquad j = 2, 3. \end{split}$$

Then the following conditions are equivalent:

(I) For i = 1, 2, 3, and j = 2, 3, there exist $n_i \times n_i$ Hermitian matrices H_i and $n_1 \times n_j$ matrices X_{1j} such that $\text{In}(H_i) = (\pi_i, \nu_i, *), r_{1j} \leq \text{rank } X_{1j}$

 $\leq R_{1i}$, and

$$H = \begin{bmatrix} H_1 & X_{12} & X_{13} \\ X_{12}^* & H_2 & 0 \\ X_{13}^* & 0 & H_3 \end{bmatrix}$$

has inertia $(\pi, \nu, *)$.

(II) Let $k \in \{1, 2, 3\}$. Let W_{kk} be any fixed $n_k \times n_k$ Hermitian matrix with inertia $(\pi_k, \nu_k, *)$. (I) holds with $H_k = W_{kk}$.

(III) Let $k \in \{2, 3\}$. Let W_{1k} be any fixed $n_1 \times n_k$ matrix with $r_{1k} \leq rank W_{1k} \leq R_{1k}$. (I) holds with $X_{1k} = W_{1k}$.

(IV) For k = 1, 2, 3 let W_{kk} be any fixed $n_k \times n_k$ Hermitian matrix with inertia ($\pi_k, \nu_k, *$). (I) holds with $H_1 = W_{11}, H_2 = W_{22}$, and $H_3 = W_{33}$.

(V) Let $j, k \in \{2, 3\}$ and $j \neq k$. Let W_{kk} be any fixed $n_k \times n_k$ Hermitian matrix with inertia $(\pi_k, \nu_k, *)$, and let W_{1j} be any fixed $n_1 \times n_j$ matrix with $r_{1j} \leq \operatorname{rank} W_{1j} \leq R_{1j}$. (I) holds with $H_k = W_{kk}$ and $X_{1j} = W_{1j}$.

(VI) The following inequalities hold:

$$\begin{split} \pi &\ge \max \{ \pi_1, r_{13} - \nu_1, r_{12} - \nu_1, \\ &\pi_2 - \nu_1 + r_{13} - R_{12}, \pi_2 - \nu_3 + r_{13}, \\ &\pi_3 - \nu_1 + r_{12} - R_{13}, \pi_3 - \nu_2 + r_{12}, \\ &\pi_1 + \pi_2 - R_{12}, \pi_1 + \pi_3 - R_{13}, \pi_2 + \pi_3, \\ &\pi_1 + \pi_2 + \pi_3 - R_{12} - R_{13} \}, \end{split}$$

 $\nu \ge \max\{\nu_1, r_{13} - \pi_1, r_{12} - \pi_1,$

$$\begin{split} \nu_2 &- \pi_1 + r_{13} - R_{12}, \nu_2 - \pi_3 + r_{13}, \\ \nu_3 &- \pi_1 + r_{12} - R_{13}, \nu_3 - \pi_2 + r_{12}, \\ \nu_1 &+ \nu_2 - R_{12}, \nu_1 + \nu_3 - R_{13}, \nu_2 + \nu_3, \\ \nu_1 &+ \nu_2 + \nu_3 - R_{12} - R_{13} \}, \end{split}$$

 $\pi \leqslant \min\{\pi_1 + n_2 + n_3,$

 $n_1 + \pi_2 + \pi_3, \pi_1 + n_2 + \pi_3 + R_{13}, \pi_1 + \pi_2 + n_3 + R_{12}, \\ \pi_1 + \pi_2 + \pi_3 + R_{12} + R_{13} \},$

$$\begin{split} \nu &\leqslant \min \{ \nu_1 + n_2 + n_3, \\ &n_1 + \nu_2 + \nu_3, \nu_1 + n_2 + \nu_3 + R_{13}, \nu_1 + \nu_2 + n_3 + R_{12}, \\ &\nu_1 + \nu_2 + \nu_3 + R_{12} + R_{13} \}, \\ &\pi - \nu &\leqslant \min \{ \pi_1 + \pi_2 + \pi_3, \end{split}$$

$$\pi_1 + \pi_2 + \pi_3 - \nu_2 + R_{12}, \pi_1 + \pi_2 + \pi_3 - \nu_3 + R_{13}$$

$$\begin{split} \nu - \pi &\leq \min\{\nu_1 + \nu_2 + \nu_3, \\ \nu_1 + \nu_2 + \nu_3 - \pi_2 + R_{12}, \nu_1 + \nu_2 + \nu_3 - \pi_3 + R_{13}\}, \\ \pi + \nu &\geq \max\{\pi_1 + \nu_1 + \pi_2 + \nu_2 - R_{12}, \pi_1 + \nu_1 + \pi_3 + \nu_3 - R_{13}, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 - R_{12} - R_{13}, \\ \pi_2 + \nu_2 - \pi_1 - \nu_1 + 2r_{13} - R_{12}, \\ \pi_3 + \nu_3 - \pi_1 - \nu_1 + 2r_{12} - R_{13}\}, \end{split}$$

 $\pi + \nu \leq \min\{n_1 + n_2 + n_3,$

$$\begin{split} n_1 + n_2 + \pi_3 + \nu_3 + R_{13}, \\ n_1 + \pi_2 + \nu_2 + n_3 + R_{12}, \\ \pi_1 + \nu_1 + n_2 + n_3 + R_{12} + R_{13}, \\ n_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13}, \\ \pi_1 + \nu_1 + n_2 + \pi_3 + \nu_3 + R_{12} + 2R_{13}, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + n_3 + 2R_{12} + R_{13} \}. \end{split}$$

Of course this theorem can easily be adapted to the two other different prescribed 3×3 block decomposition of a Hermitian matrix H, when two of the nondiagonal blocks are zero, i.e., in the case

$$H = \begin{bmatrix} H_1 & 0 & X_{13} \\ 0 & H_2 & X_{23} \\ X_{13}^* & X_{23}^* & H_3 \end{bmatrix},$$

and when the decomposition is tridiagonal

$$H = \begin{bmatrix} H_1 & X_{12} & 0 \\ X_{12}^* & H_2 & X_{23} \\ 0 & X_{23}^* & H_3 \end{bmatrix}.$$

Proof. The proof that (I) is equivalent to each of (II)–(V) is the same as one can find in the proof of the Theorem 2.1 in [2]. We include this part of the proof for completeness.

It is obvious that each of (II)–(V) implies (I). Suppose now that H satisfies (I). Let M be a block diagonal matrix $M_1 \oplus M_2 \oplus M_3$, where M_i denotes an $n_i \times n_i$ invertible matrix. For i = 1, 2, 3 and j = 2, 3 set $Y_{ii} = M_i^* H_i M_i$, $Y_{1j} = M_1^* X_{1j} M_j$, and $Y_{23} = 0$. We have $Y = (Y_{ij})_{i,j} = M^* H M$. Then rank $Y_{1j} = \operatorname{rank} X_{1j}$, and by Sylvester's theorem $\operatorname{In}(Y) = \operatorname{In}(H)$ and $\operatorname{In}(Y_{ii}) = \operatorname{In}(H_i)$. Thus Y has all the rank and inertia properties required in (II)–(V). In each of these cases the only additional requirement is that, for certain $i, j, M_1^* X_{1j} M_j = W_{ij}$ and $M_i^* H_i M_i = W_{ii}$. Such M_i 's can always be found [5].

Let us prove that (II) is equivalent to (VI). Assume that $r_{13} = R_{13} = r$. We set

$$H_3 = \begin{bmatrix} \tilde{H_3} & 0\\ 0 & 0 \end{bmatrix}, \quad \text{where} \quad \tilde{H_3} = \begin{bmatrix} I_{\pi_3} & 0\\ 0 & -I_{\nu_3} \end{bmatrix}.$$

Our choice of H_3 allows us to partition H as

$$H = \begin{bmatrix} H_1 & X_{12} & Y & Z \\ X_{12}^* & H_2 & 0 & 0 \\ Y^* & 0 & \tilde{H}_3 & 0 \\ Z^* & 0 & 0 & 0 \end{bmatrix}$$

where $[Y \ Z] = X_{13}$. Let s be the rank of Z. There exist nonsingular matrices, say U and V, such that

$$UZV = \begin{bmatrix} 0 & I_s \\ 0 & 0 \end{bmatrix}.$$

Let us define the matrix

 $H' = (U \oplus I \oplus I \oplus V^*) H(U^* \oplus I \oplus I \oplus V)$ $= \begin{bmatrix} UH_1U^* & UX_{12} & UY & 0 & I_s \\ (UX_{12})^* & H_2 & 0 & 0 \\ (UY)^* & 0 & \tilde{H_3} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$

which is conjunctive to H, so In(H) = In(H'). Note that for the same reason $In(H_1) = In(UH_1U^*)$.

Let us make a new partition of H' in the following way:

$$H' = \begin{bmatrix} * & * & * & * & 0I_s \\ * & \tilde{H_1} & \tilde{X_{12}} & \tilde{X_{13}} & 00 \\ * & \tilde{X_{12}} & H_2 & 0 & 0 \\ * & \tilde{X_{13}} & 0 & \tilde{H_3} & 0 \\ 0 & 0 & 0 & 0 & 0 \\ I_s & 0 & 0 & 0 & 0 \end{bmatrix}$$

Then applying the Schur complement technique, H' is conjunctive to H'' defined by

$$H'' = \begin{bmatrix} * & * & * & * & 0 & I_s \\ * & \tilde{H_1} - \tilde{X_{13}}\tilde{H_3}^{-1}\tilde{X_{13}} & \tilde{X_{12}} & 0 & 0 \\ * & \tilde{X_{12}}^* & H_2 & 0 & 0 \\ * & 0 & 0 & \tilde{H_3} & 0 \\ 0 & & & & 0 & 0 \end{bmatrix}.$$

Applying a corollary and a lemma of [4], we get

$$In(H) = In(H'') = (s, s, 0) + (\pi_3, \nu_3, 0) + In(H),$$

where

$$\overline{H} = \begin{bmatrix} \tilde{H_1} - \tilde{X_{13}}\tilde{H_3}^{-1}\tilde{X_{13}} & \tilde{X_{12}} \\ \tilde{X_{12}}^* & H_2 \end{bmatrix}.$$

Now, describing the inertias $(\pi, \nu, 0)$ of H is equivalent to describing the inertias $(\overline{\pi}, \overline{\nu}, *) = (\pi' - s, \nu' - s, *)$ of \overline{H} , where $\pi' = \pi - \pi_3$ and $\nu' = \nu - \nu_3$.

Applying the Claim of [2], as X_{13} varies over the set of $n_1 \times n_3$ rank r matrices with rank Z = s, the matrices \tilde{X}_{13} form the set of all $(n_1 - s) \times (\pi_3 + \nu_3)$ matrices of rank r - s. On other hand, we easily prove that as X_{12} varies over the set of $n_1 \times n_2$ matrices X such that $r_{12} \leq \operatorname{rank} X \leq R_{12}$, \tilde{X}_{12} ranges over all $(n_1 - s) \times n_2$ matrices X such that $r_{12} - s \leq \operatorname{rank} X \leq R_{12}$. Hence we may apply Theorem 2.1 of [2]. According to it, $(\pi' - s, \nu' - s, *)$ will be the inertia of \overline{H} for some (1, 2) and (2, 2) blocks, with the (1, 1) block fixed, if and only if

$$\pi' + \nu' \leq n_1 + n_2 + s,$$

$$\max\{x, \pi_2\} \leq \pi' - s \leq \min\{n_1 - s + \pi_2, x + n_2\},$$

$$\max\{y, \nu_2\} \leq \nu' - s \leq \min\{n_1 - s + \nu_2, y + n_2\},$$

$$\pi' - \nu' \leq x + \pi_2,$$

$$\nu' - \pi' \leq y + \nu_2,$$

$$r_{12} \leq \min\{\pi' + y, \pi' + \nu_2, \nu' + x, \nu' + \pi_2\},$$

$$R_{12} \geq \max\{|x + \pi_2 - \pi' + s|, |y + \nu_2 - \nu' + s|\},$$

$$R_{12} + 2s \geq \pi' + \nu' - \min\{x + y + n_2, \pi_2 + \nu_2 + n_1 - s\},$$

$$R_{12} \geq x + y + \pi_2 + \nu_2 - \pi' - \nu' + 2s,$$
(3.1)

where (x, y, *) is the inertia of $\tilde{H}_1 - \tilde{X}_{13}\tilde{H}_3^{-1}\tilde{X}_{13}^*$.

We note that $s = \operatorname{rank} Z$ varies as

$$\max\{0, r - \pi_3 - \nu_3\} \leq s \leq \min\{n_3 - \pi_3 - \nu_3, r\},\$$

and, since $r_{13} \leq r \leq R_{13}$ and $r - s = \operatorname{rank} \tilde{X}_{13}$, eliminating r, we conclude

$$\max\{0, r_{13} - \pi_3 - \nu_3\} \leq s \leq \min\{n_3 - \pi_3 - \nu_3, R_{13}\}$$

and

$$r_{13} - s \leqslant \operatorname{rank} \tilde{X}_{13} \leqslant R_{13} - s.$$

According to the Corollary 2.2, the set of inertias (x, y, *) when $\operatorname{In}(\tilde{H}_1) = (\tilde{\pi}_1, \tilde{\nu}_1, *)$, $\operatorname{In}(-\tilde{H}_3^{-1}) = (\nu_3, \pi_3, *)$, and $r_{13} - s \leq \operatorname{rank} \tilde{X}_{13} \leq R_{13} - s$ is characterized by

$$x \leq \min\{\tilde{\pi}_{1} + \nu_{3}, \tilde{\pi}_{1} + R_{13} - s\},\$$

$$y \leq \min\{\tilde{\nu}_{1} + \pi_{3}, \tilde{\nu}_{1} + R_{13} - s\},\$$

$$x \geq \max\{0, \tilde{\pi}_{1} - \pi_{3}, \tilde{\pi}_{1} - R_{13} + s, -\pi_{3} - \tilde{\nu}_{1} + r_{13} - s\},\$$

$$y \geq \max\{0, \tilde{\nu}_{1} - \nu_{3}, \tilde{\nu}_{1} - R_{13} + s, -\nu_{3} - \tilde{\pi}_{1} + r_{13} - s\},\$$

$$x + y \leq \min\{n_{1} - s, \tilde{\pi}_{1} + \tilde{\nu}_{1} + R_{13} - s\},\$$

$$x + y \geq \tilde{\pi}_{1} + \tilde{\nu}_{1} - R_{13} + s,\$$
(3.2)

while, by Theorem 1 of [6], the set of inertias $(\tilde{\pi}_1, \tilde{\nu}_1, *)$ which arise as H_1 varies is characterized by

$$\max\{0, \pi_1 - s\} \leq \tilde{\pi}_1 \leq \pi_1,$$

$$\max\{0, \nu_1 - s\} \leq \tilde{\nu}_1 \leq \nu_1$$

$$\tilde{\pi}_1 + \tilde{\nu}_1 \leq n_1 - s.$$
 (3.3)

We know now that (x, y, *) is the inertia of $\tilde{H}_1 - \tilde{X}_{13}\tilde{H}_3^{-1}\tilde{X}_{13}^*$ if and only if there exist integers $\tilde{\pi}_1$ and $\tilde{\nu}_1$ satisfying (3.2) and (3.3). We combine these

two sets of inequalities to get

$$\begin{aligned} a &\leqslant \tilde{\pi}_1 \leqslant A, \\ b &\leqslant \tilde{\nu}_1 \leqslant B, \\ c &\leqslant \tilde{\pi}_1 + \tilde{\nu}_1 \leqslant C, \end{aligned} \tag{3.4}$$

Where

$$a = \max\{0, \pi_1 - s, x - \nu_3, x - R_{13} + s, -\nu_3 - y + r_{13} - s\},\$$

$$b = \max\{0, \nu_1 - s, y - \pi_3, y - R_{13} + s, -\pi_3 - x + r_{13} - s\},\$$

$$c = x + y - R_{13} + s,\$$

$$A = \min\{\pi_1, x + \pi_3, x + R_{13} - s\},\$$

$$B = \min\{\nu_1, y + \nu_3, y + R_{13} - s\},\$$

$$C = \min\{n_1 - s, x + y + R_{13} - s\}.\$$

Then there is an integral solution $\,\tilde{\pi}_1\,$ and $\,\tilde{\nu}_1\,$ to (3.4) if and only if

$$a \leq A$$
, $b \leq B$, $c \leq C$, $a + b \leq C$, $c \leq A + B$. (3.5)

Eliminating redundant inequalities from (3.5) (e.g., some inequalities are redundant by the $\pi\nu$ duality) gives rise to 7 + 7 + 1 + 21 + 3 = 39 inequalities, which can be reduced to

$$x \leq \min\{\pi_{1} + \nu_{3}, n_{1} + \nu_{3} - s, \pi_{1} + R_{13} - s\},\$$

$$y \leq \min\{\nu_{1} + \pi_{3}, n_{1} + \pi_{3} - s, \nu_{1} + R_{13} - s\},\$$

$$x \geq \max\{0, \pi_{1} - \pi_{3} - s, \pi_{1} - R_{13}, -\pi_{3} - \nu_{1} + r_{13} - s\},\$$

$$y \geq \max\{0, \nu_{1} - \nu_{3} - s, \nu_{1} - R_{13}, -\nu_{3} - \pi_{1} + r_{13} - s\},\$$

$$x + y \leq \min\{n_{1} - s, \pi_{1} + \nu_{1} + R_{13} - s\},\$$

$$x + y \geq \pi_{1} + \nu_{1} - R_{13} - s.$$
(3.6)

Using the same idea we have used before, we will eliminate x and y. We know that $(\pi' + \pi_3, \nu' + \nu_3, *)$ is the inertia of H if and only if there exist integers x and y satisfying (3.1) and (3.6). Again, we combine these two sets of inequalities to get

$$a \leq x \leq A,$$

$$b \leq y \leq B,$$

$$c \leq x + y \leq C,$$

and some inequalities not involving x or y, where

$$a = \max\{0, \pi_1 - \pi_3 - s, \pi_1 - R_{13}, -\pi_3 - \nu_1 + r_{13} - s, \\\pi' - s - n_2, \pi' - \nu' - \pi_2, r_{12} - \nu', \pi' - R_{12} - \pi_2 - s\}, \\b = \max\{0, \nu_1 - \nu_3 - s, \nu_1 - R_{13}, -\nu_3 - \pi_1 + r_{13} - s, \\\nu' - s - n_2, \nu' - \pi' - \nu_2, r_{12} - \pi', \nu' - R_{12} - \nu_2 - s\}, \\c = \max\{\pi_1 + \nu_1 - R_{13} - s, \pi' + \nu' - n_2 - R_{12} - 2s\}, \\A = \min\{\pi_1 + \nu_3, \pi_1 + R_{13} - s, n_1 + \nu_3 - s, \pi' - s, \pi' + R_{12} - \pi_2 - s\}, \\B = \min\{\nu_1 + \pi_3, \nu_1 + R_{13} - s, n_1 + \pi_3 - s, \nu' - s, \nu' + R_{12} - \nu_2 - s\}, \\C = \min\{n_1 - s, \pi_1 + \nu_1 + R_{13} - s, \pi' + \nu' - \pi_2 - \nu_2 + R_{12} - 2s\}.$$

When the redundancies have been eliminated we have

$$\begin{aligned} \pi_i &\ge 0, \quad \pi_i + \nu_i \le n_i, \qquad i = 1, 2, 3, \\ 0 &\le r_{1j} \le R_{1j} \le \min\{n_1, n_j\}, \qquad j = 2, 3, \end{aligned}$$

 $\pi \ge \max\{\pi_1, r_{13} - \nu_1, r_{12} - \nu_1,$

$$\begin{aligned} \pi_2 &- \nu_1 + r_{13} - R_{12}, \pi_3 - \nu_1 + r_{12} - R_{13} + s, \\ \pi_3 &- \nu_2 + r_{12}, \pi_2 + \pi_3 + s, \\ \pi_1 &+ \pi_2 - R_{12}, \pi_1 + \pi_3 - R_{13} + s, \pi_1 + \pi_2 + \pi_3 \\ &- R_{12} - R_{13} + s \}, \end{aligned}$$

$$\begin{split} \nu \geqslant \max\{\nu_1, r_{13} - \pi_1, r_{12} - \pi_1, \\ \nu_2 - \pi_1 + r_{13} - R_{12}, \nu_3 - \pi_1 + r_{12} - R_{13} + s, \\ \nu_3 - \pi_2 + r_{12}, \nu_2 + \nu_3 + s, \\ \nu_1 + \nu_2 - R_{12}, \nu_1 + \nu_3 - R_{13} + s, \nu_1 + \nu_2 + \nu_3 - R_{12} - R_{13} + s\}, \\ \pi \leqslant \min\{n_1 + n_2 + \pi_3, \pi_1 + n_2 + \pi_3 + \nu_3 + s, \\ \pi_1 + n_2 + \pi_3 + R_{13}, \pi_1 + \pi_2 + \pi_3 + \nu_3 + R_{12} + s, \\ \pi_1 + \pi_2 + \pi_3 + R_{12} + R_{13}\}, \\ \nu \leqslant \min\{n_1 + n_2 + \nu_3, \pi_1 + n_2 + \pi_3 + \nu_3 + s, \\ \pi_1 + n_2 + \nu_3 + R_{13}, \nu_1 + \nu_2 + \pi_3 + \nu_3 + R_{12} + s, \\ \nu_1 + \nu_2 + \nu_3 + R_{12} + R_{13}\}, \\ \pi - \nu \leqslant \min\{\pi_1 + \pi_2 + \pi_3, \\ \pi_1 + \pi_2 + \pi_3 - \nu_3 + R_{13} - s\}, \\ \nu - \pi \leqslant \min\{\nu_1 + \nu_2 + \nu_3, \\ \nu_1 + \nu_2 + \nu_3 - \pi_3 + R_{13} - s\}, \\ \pi + \nu \geqslant \max\{\pi_1 + \nu_1 + \pi_2 + \nu_2 - R_{12}, \\ \pi_1 + \nu_1 + \pi_3 + \nu_3 - R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 - R_{12} - R_{13} + s, \\ \pi_2 + \nu_2 - \pi_1 - \nu_1 + 2r_{13} - R_{12}, \\ \pi_3 + \nu_3 - \pi_1 - \nu_1 + 2r_{12} - R_{13} + s\}, \\ \pi + \nu \leqslant \min\{n_1 + n_2 + \pi_3 + \nu_3 + s, \\ n_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + s, \\ \pi_1 + \nu_1 + \pi_2 + \nu_2 + \pi_3 + \nu_3 + R_{12} + R_{13} + R_{13} + s, \\$$

$$\pi_1 + \nu_1 + n_2 + \pi_3 + \nu_3 + R_{12} + 2R_{13}$$

$$\mathscr{S}, \quad d \leqslant s \leqslant D,$$

where \mathcal{S} is a subsystem of inequalities not involving s, and d and D are defined below:

$$d = \max\{0, r_{13} - \pi_3 - \nu_3, \\ \pi + \nu - \pi_3 - \nu_3 - n_1 - n_2, \\ \pi + \nu - \pi_3 - \nu_3 - n_1 - \pi_2 - \nu_2 - R_{12}, \\ \pi - \pi_3 - \nu_3 - \pi_1 - n_2, \nu - \pi_3 - \nu_3 - \nu_1 - n_2, \\ \pi - \pi_3 - \nu_3 - \pi_1 - \pi_2 - R_{12}, \nu - \pi_3 - \nu_3 - \nu_1 - \nu_2 - R_{12}, \\ \pi + \nu - \pi_3 - \nu_3 - \pi_1 - \nu_1 - n_2 - R_{12} - R_{13}, \\ \pi + \nu - \pi_3 - \nu_3 - \pi_1 - \nu_1 - \pi_2 - \nu_2 - 2R_{12} - R_{13}\},$$

 $D = \min\{n_3 - \pi_3 - \nu_3, R_{13},$

$$\begin{aligned} \pi &- \pi_3 - \pi_2, \nu - \nu_3 - \nu_2, \\ \pi &- \nu - \pi_3 + \nu_1 + \nu_2 + \nu_3 + R_{13}, \\ \nu &- \pi - \nu_3 + \pi_1 + \pi_2 + \pi_3 + R_{13}, \\ \pi &- \pi_3 + \nu_1 - r_{12} + R_{13}, \nu - \nu_3 + \pi_1 - r_{12} + R_{13}, \\ \pi &- \pi_1 - \pi_3 + R_{13}, \nu - \nu_1 - \nu_3 + R_{13}, \\ \pi &- \pi_1 - \pi_2 - \pi_3 + R_{12} + R_{13}, \nu - \nu_1 - \nu_2 - \nu_3 + R_{12} + R_{13}, \\ \pi &+ \nu - \pi_1 - \nu_1 - \pi_2 - \nu_2 - \pi_3 - \nu_3 + R_{12} + R_{13}, \\ \pi &+ \nu + \pi_1 + \nu_1 - \pi_3 - \nu_3 - 2r_{12} + R_{13}, \\ \pi &+ \nu - \pi_1 - \nu_1 - \pi_3 - \nu_3 + R_{13} \right\}. \end{aligned}$$

Finally, eliminating s, we prove equivalence between (II) and the inequalities defined in (VI).

4. A GENERALIZATION

In this final section we generalize the Theorem 3.1 to the decompositions of H of the type

$$H = \begin{bmatrix} H_1 & X_{12} & X_{13} & \cdots & X_{1p} \\ H_{12}^* & H_2 & 0 & \cdots & 0 \\ X_{13}^* & 0 & H_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ X_{1p}^* & 0 & 0 & \cdots & H_p \end{bmatrix}.$$
 (4.1)

Let us define

$$\Pi_{p} = \{0, \pi_{2} - R_{12}, \dots, \pi_{p} - R_{1p}\},$$
$$\Omega_{p} = \{0, \nu_{2} - R_{12}, \dots, \nu_{p} - R_{1p}\},$$

and, for k = 1, ..., p - 1,

$$\Sigma_k \Pi_p = \left\{ \sum_{a \in P} a \middle| P \subset \Pi_p \text{ and } \#P = k \right\},$$

$$\Sigma_k \Omega_p = \left\{ \sum_{a \in P} a \middle| P \subset \Omega_p \text{ and } \#P = k \right\}.$$

The symbol r_p will denote the set $\{r_{12}, \ldots, r_{1p}\}$. We define Γ_p as the set

$$\left\langle \sum_{i=2}^{p} a_{i} \middle| a_{i} \in \left\{ 0, \, \pi_{i} + \nu_{i} - R_{1i} \right\} \right\rangle \smallsetminus \left\{ 0 \right\}.$$

The symbol Δ_p will be used to denote the set

$$\left\langle \sum_{i=2}^{p} a_i \middle| a_i \in \{n_i, \pi_i + \nu_i + R_{1i}\} \right\rangle,$$

and $\Delta_p \smallsetminus \{\sum_{i=2}^p (\pi_i + \nu_i + R_{1i})\}$ will be represented by Δ_p' . The set

$$\left\{r_{1j}-\nu_j+\sum_{i\in C}\pi_i\middle|C\subset\{2,\ldots,p\}, \#C=p-2, \text{ and } j\in\{2,\ldots,p\}\setminus C\right\}$$

is represented by Υ_p , and Λ_p represents the set

$$\left\{ r_{1j} - \pi_j + \sum_{i \in C} \nu_i \middle| C \subset \{2, \dots, p\}, \#C = p - 2, \text{ and } j \in \{2, \dots, p\} \setminus C \right\}$$

Finally, Φ_{p} denotes the set

$$\left\langle \sum_{i=2}^{p} a_{i} \middle| a_{i} \in \{n_{i}, \pi_{i} + R_{1i}\} \right\rangle$$

and, by $\pi \nu$ duality, Ψ_p denotes the set

$$\left\langle \sum_{i=2}^{p} a_i \middle| a_i \in \{n_i, \nu_i + R_{1i}\} \right\rangle.$$

Now we are ready to state the result of this section.

THEOREM 4.1. Let us assume that all symbols represent nonnegative integers and

 $\begin{aligned} \pi_i &\ge 0, \quad \pi_i + \nu_i \leqslant n_i, \qquad i = 1, \dots, p, \\ 0 &\leqslant r_{1j} \leqslant R_{1j} \leqslant \min\{n_1, n_j\}, \qquad j = 2, \dots, p. \end{aligned}$

Then the following conditions are equivalent:

(I) For i = 1, ..., p and j = 2, ..., p, there exist $n_i \times n_i$ Hermitian matrices H_i and $n_i \times n_j$ matrices X_{1j} such that $In(H_i) = (\pi_i, \nu_i, *), r_{1j} \leq rank X_{1j} \leq R_{1j}$, and H defined in (4.1) has inertia $(\pi, \nu, *)$.

(II) For k = 1, ..., p let W_{kk} be any fixed $n_k \times n_k$ Hermitian matrix with inertia $(\pi_k, \nu_k, *)$. (I) holds with $H_1 = W_{11}, ..., and H_p = W_{pp}$.

(III) The following inequalities hold:

$$\begin{split} \pi &\geq \max \left\{ \sum_{i=2}^{p} \pi_{i}, \Upsilon_{p}, r_{p} - \nu_{1} + \Sigma_{1} \Pi_{p}, \dots, r_{p} - \nu_{1} + \Sigma_{p-2} \Pi_{p}, \\ \pi_{1} + \Sigma_{1} \Pi_{p}, \dots, \pi_{1} + \Sigma_{p-1} \Pi_{p} \right\}, \\ \nu &\geq \max \left\{ \sum_{i=2}^{p} \nu_{i}, \Lambda_{p}, r_{p} - \pi_{1} + \Sigma_{1} \Omega_{p}, \dots, r_{p} - \pi_{1} + \Sigma_{p-2} \Omega_{p}, \\ \nu_{1} + \Sigma_{1} \Omega_{p}, \dots, \nu_{1} + \Sigma_{p-1} \Omega_{p} \right\}, \\ \pi &\leq \min \left\{ n_{1} + \sum_{i=2}^{p} \pi_{i}, \pi_{1} + \Phi_{p} \right\}, \\ \nu &\leq \min \left\{ n_{1} + \sum_{i=2}^{p} \nu_{i}, \nu_{1} + \Psi_{p} \right\}, \\ \pi - \nu &\leq \min \left\{ \sum_{i=1}^{p} \pi_{i} - \Sigma_{1} \Omega_{p}, \dots, \sum_{i=1}^{p} \pi_{i} - \Sigma_{p-2} \Omega_{p} \right\}, \\ \nu - \pi &\leq \min \left\{ \sum_{i=1}^{p} \nu_{i} - \Sigma_{1} \Pi_{p}, \dots, \sum_{i=1}^{p} \nu_{i} - \Sigma_{p-2} \Pi_{p} \right\}, \\ \pi + \nu &\geq \max \{ \pi_{1} + \nu_{1} + \Gamma_{p}, 2r_{p} + \Gamma_{p} - \pi_{1} - \nu_{1} \}, \\ \pi + \nu &\leq \min \left\{ n_{1} + \Delta_{p}, \pi_{1} + \nu_{1} + \sum_{i=2}^{p} R_{1i} + \Delta_{p} \right\}. \end{split}$$

Proof. The proof is done by induction on *p*.

REMARK. Concerning (III), there occur some redundant inequalities. For instance, we have $\pi \ge r_{12} - \nu_1 + \pi_2 - R_{12} + \pi_3 - R_{13}$, which is clearly redundant, since $\pi \ge \sum_{i=2}^{p} \pi_i$ and $r_{12} \le R_{12}$. Moreover, this phenomenon is even more general, since when $\pi_i - R_{1i}$ or $\nu_i - R_{1i}$ and r_{1i} occur simultaneously in the same inequality, that inequality is redundant.

I am indebted to Professor E. Marques de Sá for many helpful discussions on this matter.

REFERENCES

- 1 B. E. Cain and E. Marques de Sá, The inertia of a Hermitian matrix having prescribed complementary principal submatrices, *Linear Algebra Appl*. 37:161–171 (1981).
- 2 B. E. Cain and E. Marques de Sá, The inertia of Hermitian matrices with a prescribed 2 × 2 block decomposition, *Linear and Multilinear Algebra* 31:119–130 (1992).
- 3 B. E. Cain and E. Marques de Sá, The inertia of certain skew-triangular block matrices, *Linear Algebra Appl.* 160:75-85 (1992).
- 4 E. V. Haynsworth and A. M. Ostrowski, On the inertia of some classes of partitioned matrices, *Linear Algebra Appl.* 1:299-316 (1968).
- 5 S. Perlis, Theory of Matrices, Addison-Wesley, Reading, Mass., 1952.
- 6 E. Marques de Sá, On the inertia of sums of Hermitian matrices, *Linear Algebra Appl.* 37:143-159 (1981).

Received 23 January 1997; final manuscript accepted 28 July 1997