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Abstract 10 

In hydrometric stations, water levels are continuously observed and discharge rating curves 11 

are constantly updated to achieve accurate river levels and discharge observations. An 12 

adequate spatial distribution of hydrological gauging stations presents a lot of interest in 13 

linkage with the river regime characterization, water infrastructures design, water resources 14 

management and ecological survey. Due to the increase of riverside population and the 15 

associated flood risk, hydrological networks constantly need to be developed. This paper 16 

suggests taking advantage of kriging approaches to improve the design of a hydrometric 17 

network. The context deals with the application of an optimization approach using ordinary 18 

kriging and simulated annealing (SA) in order to identify the best locations to install new 19 

hydrometric gauges. The task at hand is to extend an existing hydrometric network in order to 20 

estimate, at ungauged sites, the average specific annual discharge which is a key basin 21 

descriptor. This methodology is developed for the hydrometric network of the transboundary 22 

Medjerda River in the North of Tunisia. A Geographic Information System (GIS) is adopted 23 

to delineate basin limits and centroids. The latter are adopted to assign the location of basins 24 

in kriging development. Scenarios where the size of an existing 12 stations network is 25 

alternatively increased by 1, 2, 3, 4 and 5 new station(s) are investigated using geo-regression 26 

and minimization of the variance of kriging errors. The analysis of the optimized locations 27 
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from a scenario to another shows a perfect conformity with respect to the location of the new 28 

sites. The new locations insure a better spatial coverage of the study area as seen with the 29 

increase of both the average and the maximum of inter-station distances after optimization. 30 

The optimization procedure selects the basins that insure the shifting of the mean drainage 31 

area towards higher specific discharges. 32 

Keywords hydrological gauging stations; network optimization; geo-regression; ordinary 33 

kriging; simulated annealing 34 

1. Introduction 35 

A hydrometric network is aimed at giving the hydrological information to be used for 36 

ecological survey, hydrological survey, hydrological regionalization as well as infrastructures 37 

design. Flood estimates are of major importance since they are needed for designing civil 38 

engineering works, inundation risk zoning and an estimation of ecological flows. Both water 39 

source infrastructure design and management (reservoirs, water distribution systems, 40 

irrigation networks, etc.) are based on flood estimation. Due to the increase of riverside 41 

population and the associated flood risk issues, the hydrological networks need to be 42 

developed.  43 

According to Mishra and Coulibaly (2009), a hydrometric network should be optimized to 44 

collect most hydrological information and in the most precise way. More generally, the 45 

commonly used processes for network optimization include statistical approaches, a user 46 

survey procedure, a hybrid approach, and sampling plans (Vivekanandan, 2012). Statistical 47 

approaches for hydrometric network optimization range from clustering methods (Bum and 48 

Goulter, 1991) and spatial regression (Tasker and Stedinger, 1989) to entropy-based 49 

techniques (Caselton and Husain, 1980). Clustering methods are usually used to identify 50 

groups of hydrometric gauging stations with similar flow characteristics on the basis of a 51 

similarity matrix defining the similarity of each station to every other station. This constitutes 52 
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an important step in the network design procedure. The annual average runoff is a main flow 53 

characteristic and spatial regression is often used to predict it at ungauged locations (Daigle et 54 

al., 2011). Entropy methods may also assist network design by quantifying the relative 55 

information content and by estimating incertitude (Vivekanandan, 2014). Moreover, the User 56 

survey procedure is based on the users' needs to continue or discontinue stations depending 57 

upon the type of data needed in the basin. This investigation by its nature relies on a certain 58 

amount of personal decisions (Davar and Brimley, 1990).  59 

The hybrid method combines models by adopting the output from one method as an input into 60 

another model for network optimization. For example an algorithm of numerical optimization 61 

permits to improve the optimal network design by variance reduction and allows the insertion 62 

of other criteria in the objective function such as the economic cost of the data collection 63 

(Mishra and Coulibaly, 2009). Hydrologic sampling plans are based on the influence of 64 

rainfall on stream flow processes. The effectiveness of sampling plans is evaluated by the 65 

variance of error in the estimate stream flow (Tarboton et al., 1987).  66 

On the other hand, the rainfall network design is often achieved by using the kriging 67 

interpolation method combined with optimization algorithms such as simulated annealing (see 68 

for example Barca et al., 2008; Chebbi et al., 2013). Kriging has also been used for 69 

piezometric networks optimization. For instance, Rouhani (1985) used two criteria for 70 

piezometric network optimization: the first concerns the reduction of the kriging variance 71 

while the second is related to the expected economic gain, measured by loss reduction. One 72 

fundamental upshot of kriging is that it results in the estimation of the variance of 73 

interpolation errors, making it possible to evaluate network performance. Whereas entropy 74 

method is worth for existing networks, the kriging interpolation method may be extended for 75 

planned networks. Kriging often employs a semivariogram function representing the structure 76 

of the spatial variability of the data. The semivariogram effectively gives the same 77 
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information as an auto-correlation function. However, it has a big advantage of being an 78 

unbiased estimator as it does not depend on the mean of the data set. So, it is proposed here to 79 

get profit of the kriging approaches in order to improve the design of a given hydrometric 80 

network. The main difficulty here resides in defining a suitable hydrometric study variable 81 

and a suitable objective function, as well in addition to a suitable kriging method.  82 

In this study, we have adopted a specific discharge as a prime study variable representing the 83 

ratio of the river discharge to the drainage area and which is also called average specific 84 

annual module. For a long time in flood studies, the record specific discharges are adopted as 85 

a key variable to obtain regionally-developed curves (Castellarin, 2007). So, a specific 86 

discharge is considered here as a key watershed descriptor.  87 

There are many other ways to handle the issue of hydrometric network optimization since the 88 

hydrologic response is multidimensional. Therefore, instantaneous hydrograph responses to 89 

rainfall events are described by at least three variables: flood duration, flood peak and flood 90 

volume. An objective function including these variables may be achieved but we cannot rely 91 

on this approach because of data limitations. We have no information about the flood series 92 

(except at daily resolutions). Basins have signatures which can be described by using some 93 

statistics of the basis of the flow-duration curve (Sadegh et al., 2016) obtained by analyzing 94 

daily discharges. These above-mentioned statistics may be used to optimize the hydrometric 95 

network. The only statistics adopted here is the sample mean of annual discharges. We did not 96 

apply other statistics even though they would be a possible extension of the current work. The 97 

Runoff coefficient is another basin signature which can be adopted to solve the optimization 98 

of hydrological networks. The difficulty with basin runoff coefficient is that it involves the 99 

estimation of the basin average rainfall, which in turn is a “rainfall product” that needs 100 

interpolation tools in order to be evaluated. Another alternative is the use of digital models 101 

(based on a Geographic Information System) associated to soil, land use information and 102 
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classification methods to find the most representative basins. The advantage of not adopting 103 

such an alternative is to limit the need of implementing digital models which themselves are 104 

to be verified using in situ data.  105 

Thus, this work intends to extend the use of a specific river discharge, as a study variable to 106 

the hydrometric network optimization. One implicit assumption is that the geographic regions 107 

in the study are hydrologically homogeneous.  108 

Many basin attributes may be included as a proxy for flood (and the specific discharge) 109 

estimation. They are often adopted in geo-regression approaches. The drainage area, the basin 110 

geology together with land use descriptors, soil characteristics, elevation data, and climate 111 

variables such as mean annual precipitation are often proposed as flood proxy or surrogates 112 

(Acreman and Sinclair, 1986). Wilson and Gallant (2000) noticed that steepness can be 113 

considered as a surrogate for overland and subsurface flow velocity and the runoff rate. 114 

Hundecha and Bardossy (2004) adopted basin size, slope and shape as characteristics for 115 

regionalizing Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall runoff model 116 

parameters. Kjeldsen and Jones (2007) adopted both the drainage area and the average annual 117 

rainfall together with an index of flood reduction attributable to reservoirs and lakes and a 118 

derived base flow index using the Hydrology of Soil Type classification.   119 

Here, the drainage area, which is the most commonly used variable in the literature, is 120 

adopted as a proxy variable for the estimation of the specific module, similarly to Kron and 121 

Willems (2002) who consider only the drainage area as proxy for flood discharge for a large-122 

scale flood hazard mapping. However, another alternative linking basin runoff to mean basin 123 

precipitation is tested. The ordinary kriging estimation involves the basin centroid inter-124 

distances. Topological kriging (or top-kriging) is recently proposed as an alternative to 125 

ordinary kriging. It is based on regularized semivariograms between catchments which are 126 

estimated on the basis of point semivariograms and the distances between basin centroids and 127 
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drainage areas are assumed as a proxy. The main difference is that top-kriging takes into 128 

account the nested nature of catchments by considering that the area is shared by two 129 

catchments. Yet, top-kriging requires a very large computation time compared to ordinary 130 

kriging. Laaha et al. (2014) found that for locations without upstream data points, the 131 

performances of the two methods are similar. Their study resulted in coefficients of 132 

determination in cross-validation that are 0.75 for the top-kriging and 0.68 for regional 133 

regression methods, including nested basins. A major interest of the top-kriging method is its 134 

ability to estimate (and allow to visualize) continuously the spatial variability of the specific 135 

flow over the whole hydrographic network. Nevertheless, in this study, we do not need to 136 

continuously estimate the specific flow rate. Therefore, in our opinion, the small gain in terms 137 

of explanatory power does not justify such an investment in computation time, especially that 138 

the kriging procedure is repeated as many times as it is necessary to optimize the objective 139 

function.  140 

Thus, the approach using ordinary kriging is selected as an alternative. It is also achieved in 141 

order to take advantage of the numerical tools developed so far by the authors in previous 142 

studies (Chebbi et al., 2011). 143 

To assign a geographical distance between basins (in semivariogram analysis and kriging 144 

estimation), the Euclidian distance between the basin's centroids is often adopted (see for 145 

example Daviau et al., 2000; Adamowski and Bocci, 2001; Eaton et al., 2002; Skøien et al., 146 

2003). In fact, it is not possible to consider the basin outlets for distance estimation because 147 

the runoff is a response of the basin as a whole. Some variables other than the geographic 148 

location by such as a basin mean altitude, basin slope, and basin mean annual precipitation 149 

can be adopted to build the distances between basins but for the reasons advocated above 150 

(lack of data availability), this is out of the scope of this study.  151 
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The main purpose of this study is to identify an optimal set of new locations to upgrade the 152 

size of an initial hydrometric network. The objective addressed in stating the optimization 153 

problem is to make a more accurate evaluation of the average specific annual module.  154 

The new contribution of this study is really to find a substitution variable for the runoff which 155 

is not suitable for the use of kriging because it is not an additive variable. The problem is 156 

solved by using the transformation of the runoff into an effective rainfall (by using the ratio of 157 

runoff and the drainage area which corresponds to the specific discharge) and also by using a 158 

scaling formula (geo-regression) allowing a basin runoff inter-comparison.   159 

The case study concerns the hydrometric network of the transboundary Medjerda River, in 160 

Northern Tunisia. This study area is selected because the Medjerda represents the main river 161 

in Tunisia with a 350 km length. The drainage area of the basin at the Mediterranean outlet in 162 

Kallat Landlous is about 23 500 km². Another reason for which this study area is chosen  163 

relies in taking  advantage of the long series of runoff observations available in this basin for a 164 

long time (Rodier et al., 1981).This insures a good accuracy in the estimation of the mean 165 

annual runoff.  166 

Section 2 presents the methods used in this paper. Section 3 presents the study area and data 167 

while Section 4 sets out the obtained results. The concluding remarks are presented in Section 168 

5. 169 

2. Methods 170 

The methods adopted in the current work are divided into three main topics: data mining, 171 

ordinary kriging and statement of the optimization problem.  172 

2.1 Data mining using geo-regression 173 

The analysis adopts (a) the average specific annual module as a primary study variable; (b) 174 

the coordinates of basin centroids as a basis to estimate the spatial variability structure, 175 

similarly to Merz and Blöschl (2005) (c) the drainage area as the proxy of a specific runoff.  176 
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The method requires defining a number M of evaluation basins and a number C of candidate 177 

basins as well a set of initial guesses. Because the M evaluation basins, the C candidate basins 178 

and the initial controlled basins are of various sizes, it is necessary to reduce the scale effect 179 

of drainage area. Assuming that the average specific annual module for a basin of size AN is 180 

QN and assuming the scaling relationship QN/Q=(AN/A)

, the average specific annual module 181 

Q is replaced by the standardized specific module QN following Merz and Blöschl (2005) who 182 

adopted AN= 100 km². It comes: 183 

  QAAQ NN

1
              (1a) 184 

where QN is the average specific annual module for a hypothetical 100 square km basin, A 185 

(km
2
) the gauged drainage area and Q is the observed average specific annual module. The 186 

scaling exponent β is found by a regression analysis between log(QN) and log(A). In Skøien et 187 

al. (2006), fitting resulted in =-0.33 for mean annual discharge for Austria. To estimate , 188 

several values are tested. Logarithmically transformed specific discharges are plotted as a 189 

function of the logarithm of drainage area for each tested  value to help verifying the model 190 

adequacy visually. Besides, the regression coefficient of determination R² is assumed as a 191 

quality criterion. Other criteria such as Root Mean Square Errors (RMSE) (Fair, 1986) or 192 

Akaike Information Criteria (AIC) (Bozdogan, 2000) can be assumed for model evaluation. 193 

However, R² is selected as an alternative to RMSE for it is dimensionless. The use of AIC is 194 

not needed because the number of parameters to be estimated is fixed regardless of the model 195 

(It is  which is to be estimated).    196 

Moreover, the alternative of linking mean basin runoff to mean basin rainfall instead to 197 

drainage area is tested. A model similar to Eq. (1a) is proposed.  198 

  QPPQ refN

1


            
(1b) 199 
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where QN is the average specific annual module for a hypothetical reference rainfall of 100 200 

mm, P (mm) the mean annual basin rainfall, Pref (mm) is a reference rainfall and Q is the 201 

observed average specific annual module. 202 

The best model (Eq. (1a) or Eq. (1b)) is finally selected on the basis of the performance 203 

measure R².  204 

2.2 Interpolation using ordinary kriging 205 

Kriging is a spatial interpolation method which takes into account the spatial variability of the 206 

data. This interpolation method is an unbiased estimator where the kriging (interpolation) 207 

error variance is minimized (Matheron, 1970). The basic idea of Euclidian kriging methods 208 

(such as ordinary kriging) is to estimate the value of a regionalized variable Z by a linear 209 

combination of the neighboring observations. Here, the neighboring observations are the 210 

basins which are “close” with respect to their centroid location when considering the 211 

prediction error Z of the fitted regression as a kriging variable.  212 

The semivariogram is the structure function used here to model variability associated with the 213 

regionalized variable, Z. It measures the spatial variability of squared differences between 214 

pairs of variables, which allows building the experimental semivariogram,  (h), given by: 215 

 
2)(

1

)()(
)(2

1
)( 




hN

i
i

xZh
i

xZ
hN

h                  (2) 216 

where xi and xi+h are two sampling locations separated by a distance h, N(h) represents the 217 

number of sample points using h, Z(xi) and Z(xi+h) represent values of the variable Z 218 

measured at both locations. In this study, the basin centroids are adopted to locate basin 219 

sampling locations and determine the lags h as reported in Merz and Blöschl (2005). They are 220 

estimated by using GIS as reported in the Data section. The variable Z is related to the 221 

average specific annual discharge.   222 



10 

 

A semivariogram model is fitted to the experimental semivariogram. The fitted 223 

semivariogram is characterized by three main parameters: range, sill, and nugget. ‘Range’ 224 

represents the distance limit beyond which the data are no longer correlated. ‘Sill’ represents 225 

the variable variance. The ‘Nugget’ effect is a random component of the field Z and it 226 

represents either measurement errors or the variation of the studied variable at a small scale 227 

(Cressie, 1993).  228 

Two semivariogram models are used here as alternatives: exponential and spherical. The 229 

exponential model for the semivariogram is given by Eq. (3): 230 

   0exp1)(   ahh
            

(3) 231 

where ω is the structural variance, ω0 is the nugget variance and a is the range parameter. In 232 

the case of the exponential model, the range is defined as the distance at which the 233 

semivariogram is of 95% of the sill. So, it is equal to 3a according to Eq. (3). The sill is equal 234 

to (ω + ω0) (Bardossy, 1997). 235 

The spherical model for the semivariogram is given by Eq. (4): 236 

     0

3
5.05.1)(   ahahh

                                                                                  
(4) 237 

Ordinary kriging is furthermore adopted. Thus, the estimated value Z*(x0) at a location x0 is a 238 

weighted linear combination of observations xi at neighboring gauged basins i=1,Nnb where 239 

Nnb is the number of observations within the exploring neighbourhood (Matheron, 1970): 240 





nbN

i
i

xZ
i

xZ

1

)()( 0

*                               (5) 241 

where Z
*
(x0) is the estimated value of Z at the ungauged location x0, i is the weight given to 242 

the observation at the location xi.  243 

The variable Z in Eq. (2) and Eq. (5) is stated as the error (or regression residual) between the 244 

logarithms of the observed QN and the logarithms of the estimated QN by the regression model 245 

of Eq. (1a) or Eq. (1b). 246 
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The kriging weights λi are estimated as the solution of the ordinary kriging system (Eq. (6)): 247 

  

1 

  N1,...,j   )xx(   

)xx(

nb

nb

N

1i

i

N

1i

nb0j

'

ijj



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


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






















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            (6) 248 

where ’
 is a Lagrange parameter accounting for the constraints on the weights (their sum is 249 

equal to unity). The xj and xi are the coordinates of the basin centroids, and (xj-xi) is the 250 

estimated semivariogram for the lag between basin centroids xj and xi, using the theoretical 251 

semivariogram model. Thus, the weights i and the Lagrange parameter  depend entirely on 252 

the semivariogram model. 253 

The kriging variance 0² helps to define and quantify the optimization objective function 254 

(Cressie, 1993; Barca et al., 2008). It is expressed for any ungauged location x0 
using the 255 

semivariogram model by: 256 

'

0

1

2

0 )()0(   


xxi

N

i

i

nb

            (7) 257 

As stated earlier, the sample semivariogram is fitted to an exponential model and to a 258 

spherical model. The model parameters are evaluated by manual calibration. In fact, the first 259 

guess for each parameter is graphically adjusted. The acceptability of the fitted semivariogram 260 

model is then tested through the leave-one-out cross-validation scheme. This method removes 261 

a single data point, just one at a given time, and it estimates the result at the now missing 262 

location. The quality of the prediction is then evaluated. The parameter values are thus 263 

modified in order to obtain the best cross-validation results. The leave-one-out cross-264 

validation is considered as one of the most commonly used methods to make an informed 265 

decision as to which model will provide the best predictions (Lin and Chen, 2004).  266 
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The standardized error and the coefficient of determination are adopted as criteria to evaluate 267 

the cross-validation results. The standardized error is equivalent to the value of the residuals 268 

between the observed values and the kriged Z* values, divided by the standard deviation of 269 

kriging errors (Glatzer and Muller, 2004). Standardized residuals which are more than 2 and 270 

less than -2 are usually considered too large and, consequently, the parameters of the model 271 

semivariogram are modified in order to insure an acceptable range for the standardized 272 

residuals. The coefficient of determination (R
2
) is also used for cross-validation (Laaha et al., 273 

2014).  274 

After performing the selection and validation of the fitted semivariogram model, the 275 

dependency ratio, which represents the percentage of the nugget effect (ω0) in relation to the 276 

sill (ω + ω0), is determined according to Cambardella et al. (1994). This ratio is used to 277 

interpret the strength of the dependency reported by the semivariogram structure. The higher 278 

the ratio is, the higher is the independency of the field observations. The values of 279 

dependency ratio are grouped and interpreted as follows: high dependency (< 25%), moderate 280 

dependency (25% - 75%), and low dependency (> 75%).  281 

2.3 Statement of the optimization problem 282 

2.3.1 Network design problem: Minimizing the average kriging variance 283 

The problem statement is to extend an existing hydrometric network in order to evaluate the 284 

average specific annual module more accurately in the study basin. Thus, the optimization 285 

problem consists in minimizing an objective function defined here as the average kriging 286 

variance of error over a fixed evaluation grid, composed by i=1,M evaluation basins. This 287 

criterion, based on the geostatistical estimation error, is mentioned by Cressie (1993) among 288 

the criteria to adopt in network design problems:  289 

MOF
M

i

i



1

2
               (8) 290 
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This objective function depends entirely on the semivariogram model and on the M selected 291 

grid points. The collection of the M centroids constitutes what is called the “grid nodes”. For 292 

kriging implementation, these evaluation basins are required to be different from the 293 

controlled basins.   294 

Thus, when a “grid” of M basins is adopted to compute the variance of kriging error and 295 

quantify the objective function OF, the minimization problem is solved by using a simulated 296 

annealing algorithm (Kirkpatrick et al., 1983). Indeed, the simplicity of the algorithm and the 297 

variety of optimization problems to which the algorithm is used are among the main 298 

advantages of simulated annealing (Fleischer, 1995). This algorithm is applied in Cunha 299 

(1999) for solving aquifers' management problems. It was also applied by Chebbi et al. (2011) 300 

in order to optimize the selection of rainfall stations in the issue of increasing the size of an 301 

existing rainfall network.   302 

2.3.2 Definition of candidate solutions and simulation scenarios 303 

The optimal locations are chosen from the C candidate stations which are represented by the 304 

centroids of their drainage area. The candidate stations are selected in such a way that they 305 

cover the whole study region. Besides, they are selected in such a way that they do include 306 

outlets representing upstream basins, and small to moderate size basins. Moss and Tasker 307 

(1991) recommended that the number of candidate stations should be at least three times the 308 

number of the desired optimal stations. In this work, due to the high cost of the hydrometric 309 

equipments and to the financial constraints, we seek to implement only one to five new 310 

stations. Thus, the new locations investigated by using the SA optimization scheme for five 311 

scenarios respectively involve: (1) a network consisting of 13 hydrometric gauges, (2) a 312 

network consisting of 14 hydrometric gauges, (3) a network consisting of 15 hydrometric 313 

gauges, (4) a network consisting of 16 hydrometric gauges, and (5) a network consisting of 17 314 

hydrometric gauges, including all N=12 existing stations. The same 15 candidate locations are 315 
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investigated for the five scenarios in order to allow for an inter-comparison scenario, 316 

whatever the final size of the optimized network.  317 

3. Study area and data 318 

The study area is the North of Tunisia, including the Medjerda basin (BV5), the Northern 319 

Coast Basin (BV3) and the Cap Bon – Méliane Basin (BV4). However, the optimization has 320 

been performed for the Medjerda Basin (BV5) which covers an area of 21,000 km
2
 in Tunisia. 321 

Figure 1 shows the hydrometric network of the study area composed of 19 controlled basins. 322 

Their names and drainage areas are reported in Table 1. Twelve out of the 19 controlled 323 

basins are located in Medjerda Basin (BV5) and the remaining are in its neighboring basins. 324 

Six stations are located in the North Coast Basin (BV3) and one single station is part of the 325 

Cap Bon – Méliane Basin (BV4). Neighboring basins belonging to BV3 and BV4 are used 326 

both for developing the spatial variability assessment during the sample semivariogram 327 

estimation and for kriging in the cross validation step. In addition to the twelve stations 328 

studied in Medjerda Basin (BV5), two other stations are located in the Tessa sub basin but are 329 

not included in the sample. They are Pont Route Souani on Oued Souani, a tributary of Tessa 330 

and Sidi Mediane on Oued Tessa. The reason is that the observed average annual modules of 331 

these two stations have singularities. In addition, Oued Souani is already controlled by a dam 332 

achieved since 2005. This is why these two stations are not taken into consideration in the 333 

initial hydrometric network of Medjerda. 334 

In this work, all basin boundaries are derived from a digital elevation model available within a 335 

30-meter resolution (ASTER, 2012). Furthermore, the coordinates of the basin centroids are 336 

derived from the resulting basin boundaries using ArcGIS. Sizes of the 12 gauged basins of 337 

the Medjerda basin range from 60 to 20811 km². 338 

A brief description of the Medjerda tributaries is required to understand the motivation that 339 

lies behind the selection of the M evaluation basins (grid nodes) and the C candidate basins.  340 
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In the right bank of  the Medjerda river, (viewed from upstream direction), the main direct 341 

tributaries are Oued (river) Mellegue which is partly situated in Algeria, Oued Tessa, Oued 342 

Siliana and Oued Lahmar. On the left bank, the main tributaries are Oued Rarai, Oued 343 

Bouheurtma, Oued Kasseb, Oued Beja and Oued Zerga. Oued Mkhachbia is a very small 344 

basin neighboring Oued Beja. Tributaries of the right bank are much longer and steeper than 345 

those of the left bank and they are much subjected to water erosion. On the other hand, some 346 

of the right bank tributaries, such as Rmil, a tributary of the Siliana river and Rmel, a tributary 347 

of the Mellegue river, are responsible for intense floods (Rodier et al., 1981; Ghorbel, 1997; 348 

Zahar et al., 2008). Thus, the selection of M and C basins requires considering the basin 349 

location: left bank or right bank.   350 

Table 1 displays the observed average annual module which is reported by using the National 351 

hydrological service (DGRE) annual reports. Figure 1 and Table 1 show that there is a lack in 352 

the observation of upstream sub basins of the Medjerda River. Indeed, historically speaking, 353 

this network is aimed to design the existing large dams. Besides, it is intended for flood 354 

forecasting purposes. This might explain why small basins are left aside in the current 355 

network conception. Thus, network size augmentation may help to correct this kind of bias in 356 

the drainage area coverage. So, the selection of M and C basins needs to include basins of 357 

small and moderate sizes.  358 

Because we deal with one to five new sites, it is assumed that M=20 is sufficient to compute 359 

the grid average kriging error with confidence. The sampling of evaluation grid basins is 360 

conceived in such a way as to cover the study domain (in both left and right banks) and to 361 

include small, moderate and large drainage areas. Figure 2 shows the “grid” node locations of 362 

the M=20 basins selected for the evaluation of the objective function. On the other hand, for 363 

the purpose of successively selecting one to five new basins to be controlled, 15 candidate 364 

locations are selected (Figure 3). Similarly, candidate stations are chosen on either the right or 365 
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the left bank. For example, for Tessa basin on the right bank, two candidate sites (C2 and 366 

C14), are prospected respectively upstream and downstream of an important river recharge 367 

area (Figure 3). For Zerga basin on the left bank, two candidate sites are also proposed (C9 368 

and C10) as their tributaries meet at a confluence (Figure 3). Table 2 reports the basin size 369 

and the tributary of the 15 candidate stations as well as the description of the reason of their 370 

selection. As needed to improve the network cover for small and moderate basins sizes, the 371 

candidate drainage areas vary from 107 to 755 km².  372 

To adjust the geo-regression parameter when using the drainage area as attribute (Eq. (1a)), 373 

a network of 39 well-documented gauged basins belonging to the National hydrometric 374 

network of Tunisia is considered. Their sizes vary from 3 to 20811 km². Their average annual 375 

modules vary between 0.05 and 27.5 m
3
/s. The plot of the logarithms of the observed average 376 

specific annual module versus the logarithms of the drainage area is reported in Figure 4 377 

where the 19 basins of Northern Tunisia are made distinguishable from the whole sample of 378 

39 basins. For the other alternative of linking mean basin runoff to the mean basin rainfall 379 

(Eq. (1b)), only a subgroup of 21gauged basins, among the existing 39 ones, is used to adjust 380 

the geo-regression parameter . In fact, mean annual rainfall data are available only for these 381 

21 stations. 382 

 4. Results 383 

4.1 Scaling and regression results  384 

The scaled specific discharge QN sample (Eq. (1a)) is estimated for various hypothetical  385 

values using the 39 stations. The best estimator of the exponent β is achieved for β=-1.5 386 

according to R². The Ln-Ln linear regression relation is reported in Figure 5a. It results in 387 

R²>0.8, reflecting a good performance. The alternative of linking mean basin runoff to mean 388 

basin rainfall rather than to drainage area (Eq. (1b)) results in β=0.1 with Pref =100 mm as the 389 

most appropriate estimation. The Ln-Ln linear regression relation is reported in Figure 5b. 390 
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The coefficient of determination R
2
 is equal to 0.79, which is less satisfactory than the R

2
 391 

obtained using drainage area (0.89). Thus, we further assume the drainage area as the sole 392 

attribute. 393 

The scatter plot of the residuals against the explanatory variables (logarithm of drainage 394 

areas) is now examined. Figure 5c shows no decrease or increase of residuals with the 395 

increase in the logarithm of drainage areas, thus revealing no heteroscedasticity of the 396 

variable Z (errors). The resulting values are shown in Table 3.  397 

4.2 Spatial variability results  398 

The residuals of regression estimation of the average specific annual modules QN in the 19 399 

gauged basins are assumed as a variability pattern Z to be analyzed and to be used to quantify 400 

the sample semivariogram. The latter is reported in Figure 6 as well as the size of the samples 401 

which are used to derive it.  402 

The fitted exponential model is without any nugget effect, displaying a range parameter of 30 403 

km and a sill parameter of 1.4 (m
3
/s/km

2
)
2
. The fitted spherical model is without any nugget 404 

effect, with a range of 50 km and a sill parameter of 1.2 (m
3
/s/km

2
)
2
. For these two models, 405 

the dependency ratio is equal to 0, which translates a strong spatial dependency in the data. 406 

This is well-understood since residual errors originate from regression using mean squares 407 

errors with unbiased mean error.  408 

The exponential semivariogram model yields satisfactory cross validation results since the 409 

standardized errors are all varying in the acceptable interval range [-2, 2] (see Table 3). 410 

Besides, the determination coefficient R
2
 is equal to 0.72 which is nearly the value obtained in 411 

Laaha et al. (2014) for top-kriging (R
2
=0.75). For the spherical model, the cross-validation 412 

results are less convincing than those obtained with the exponential model. For instance, for 413 

the Mkhachbia station (O4), the standardized error is less than -2 (see Table 3). Besides, the 414 



18 

 

determination coefficient R
2
 is equal to 0.45, namely much lower than that of the exponential 415 

model. 416 

Thus, the exponential model is adopted as a spatial variability structure since it gives the best 417 

results in cross-validation.  418 

4.3 Augmented hydrometric networks results 419 

As presented in the methodology, to achieve the optimization objective, the spatial average 420 

kriging variance of the interpolation error Z is minimized over the candidate networks using 421 

simulated annealing. As expected, we notice that, as the network size goes up, the estimation 422 

average variance goes (Table 4), thus reflecting the increase in spatial interpolation accuracy 423 

with the increase in the number of network hydrometric gauges. Moreover, seemingly, the 424 

number of additional stations may still go up since the curve relating spatial average kriging 425 

variance to the number of additional stations has not reached a sill. In this work, it is assumed 426 

a maximum of 5 new stations only because of financial constraints. It seems that this size can 427 

be increased as the optimal size of the network has not been reached yet.  428 

As an example, Figure 7 shows the spatial distribution of an optimized network for Scenario 429 

5. The five new stations are spared between the left and right banks. One basin upstream at 430 

the Algerian frontier is selected (C15). Various basin sizes are covered by the selected 431 

locations ranging from 209 to 594 km
2
 while the range for the candidate locations is from 107 432 

to 755 km
2
. Indeed, the selected stations are distributed adequately around the Medjerda 433 

River. It seems that the algorithm operated a synthesis in both upstream and downstream 434 

directions, as well as between the left bank and the right bank.  435 

The resulting optimal stations obtained from the five scenarios are listed in Table 5. From a 436 

scenario to another, it is worth noticing that there is a perfect conformity with regards to the 437 

new sites when progressing from 1 to 5 stations. This means that, for a given scenario, the 438 

locations of the new sites include the optimal stations which have already been chosen in the 439 
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previous scenario. This indicates the robustness of the location identification and its practical 440 

importance. 441 

4.4 Interpretation  442 

The presentation of the results is as follows: in Scenario 1, the selected station is the candidate 443 

C14 located upstream on the Tessa's tributary (right bank) with a 509 square kilometer basin. 444 

In Scenario 2, in addition to station C14, the optimization indicates that a station (C4) should 445 

be implemented downstream in Lahmar tributary (right bank) for a 594 square kilometer 446 

basin. In Scenario 3, the previously selected stations (C14 and C4) are also reselected and the 447 

third location is recommended on Beja tributary, on the left bank (candidate C5) with 209 448 

square kilometer basin. In Scenario 4, the selection of the previous stations (C14, C4 and C5) 449 

is confirmed and the fourth station is recommended on the Rmil tributary of Siliana River in 450 

the right bank (C7) for a 277 square kilometer basin. Finally, in Scenario 5, the four previous 451 

recommended stations (C14, C4, C5 and C7) are maintained with an additional basin C15 on 452 

the left bank, located on a Medjerda's tributary at the Algerian frontier with a 245 square 453 

kilometer drainage area. This last new station is proposed for the upper stream near the river 454 

course, far from the first four selections.  455 

What are the implications of the findings with respect to the average inter-station distance, 456 

average drainage area as well as minimum and maximum inter-stations distances? 457 

Table 5 reports the average inter-station distances as well as the average drainage area for 458 

each scenario, together with the minimum and maximum inter-stations distances. The lowest 459 

minimum inter-stations distance (about 11 km) is given by the initial network of 12 stations. 460 

As no candidate is proposed with a smaller inter-distance, the minimum remains unchanged.   461 

For Scenario 1 (adding one single station), maximum inter stations distance remains that 462 

given by the initial network of 12 stations (about 168 km). In fact, this maximum value is the 463 

distance between Mkhachbia and Mellegue K13 basins (from respectively the East side and 464 
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the West side of the Medjerda basin). Figure 8 shows the progression in mean centroids inter-465 

distances. The algorithm decreases the basin inter-distances when selecting one new location 466 

(Scenario 1). This insures a better spatial coverage. The addition of two best locations to the 467 

initial network is achieved in order to extend the network, which is reflected by the 468 

augmentation of the maximum basins inter-distance (Figure 8). The increase of a maximum 469 

inter-distance is achieved together with an increase in mean inter-distance in Scenario 2.      470 

From Scenario (3) to Scenario (5) the average inter-station distance is increased and then 471 

decreased (Table 5), while conversely, the mean drainage area is regularly decreased from 472 

Scenario (1) to Scenario (5) (Table 5). This shows that the optimized networks keep 473 

candidates that shift the average drainage area of the optimized network towards higher 474 

specific discharges ranges.  475 

5. Conclusions 476 

An approach based on geo-regression combined to ordinary kriging of log specific runoff 477 

versus log drainage area residuals is adopted to extend a hydrometric network in order to 478 

evaluate an important hydrological descriptor, the average specific annual module, more 479 

accurately. To achieve the optimization objective, the spatial average kriging variance of the 480 

kriging interpolation error is considered. The kriged variable is the error of estimation of the 481 

normalized (scaled) average specific discharge by regression using drainage area.  482 

The minimization of the objective function represented by the mean areal variance of kriging 483 

error is achieved by using simulated annealing. 484 

The Northern region of Tunisia, which has a sub-humid to semi-arid climate, is used in order 485 

to develop the methodology. The approach is based on the evaluation of five scenarios for 486 

augmenting the size of an initial network of 12 stations. The analysis of the optimized 487 

locations from a scenario of one single additional station to five additional stations shows a 488 

perfect agreement in relation to the new sites’ location. Actually, the locations of the new sites 489 
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include the optimal stations already chosen in the previous scenarios. The new locations 490 

insure a better spatial coverage of the study area as seen from the increase of the average and 491 

the maximum inter-station distances after optimization. The results also show that the 492 

optimized networks introduce basins that insure the shifting of the mean drainage area 493 

towards higher specific discharges ranges. There is no limitation to apply this kind of study 494 

elsewhere provided that a significant link exists between the drainage area and the specific 495 

mean runoff, and also, provided that a scaling formula may be fitted. In the absence of a 496 

significant link between the drainage area and the specific discharge, other proxy variables 497 

should be selected. If the scaling formula could not be fitted for the whole study area, a 498 

regionalization of the scaling formula is recommended. The type of semivariogram model 499 

(exponential) selection is not considered as a limitation. In fact, the only limitation is that the 500 

optimization should be performed in accordance with the range of the semivariogram (the 501 

location of the new sites must respect the de-correlation distance of the fitted semivariogram). 502 

The perspectives in research topics aim to develop a multi-objective optimization problem so 503 

that it can include the financial concerns and the optimal size of the network. Besides, the 504 

method of Particle swarm optimization (Taormina and Chau, 2015) is proposed as a 505 

perspective for the optimization algorithm. 506 
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Figure 1. Gauged basin outlets for the 19 stations 
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 Figure 2. Basins centroids and oulets of “grid” nodes for M=20 selected basins 
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 Figure 3. Centroids of the fifteen candidate locations for composing the optimal network 
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Figure 4. The logarithms of observed average specific annual module versus the logarithms of 

drainage area 
 

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 2 4 6 8 10 12

Ln
(Q

, m
3
/s

/K
m

2
)

Ln(A, km2)

The whole sample of 39 basins

The 19 basins of Northern Tunisia 

Figure 4



 

 

Figure 5a. Linear regression relation between the logarithm of scaled specific discharge QN 

and the logarithm of drainage area A. 

 

 

Figure 5b. Linear regression relation between the logarithm of scaled specific discharge QN 

and the logarithm of basin mean rainfall P (for 21 gauged basins with rainfall information) 
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Figure 5c. Regression residuals versus logarithm of drainage areas 
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Figure 6. Calibration of the semivariogram of residuals of estimation of the scaled average 

specific discharge (with the corresponding sample size of pairs) 
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Figure 7. Spatial distribution of the optimized hydrometric network for Scenario 5 with 5 new 

sites. 
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Figure 8. The progression in mean and maximum centroids interdistance according to the 

Scenario (1) to (5) 
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Table 1. Presentation of the 19 hydrometric stations of the study area 

Station name 

 

Basin 
Station 
Code in 
Fig. 1 

Drainage 
area 

(km
2
) 

Average 
annual 
module 

(m
3
/s) 

Ghezala in Bouheurtma basin  BV5 O1 137 1.25 

Rarai Supérieur in Rarai basin  BV5 O2 99 0.29 

Pont Route Sarrath in Mellegue basin  BV5 O3 1500 0.56 

Mkhachbia in Mkhachbia basin  BV5 O4 104 0.06 

Siliana Djebel Laouedj in Siliana basin  BV5 O5 2191 1.54 

Izid Barrage in Tessa basin  BV5 O6 60 0.06 

Mellegue K13 in Mellegue basin  BV5 O7 8988 5.29 

Bousalem along the Medjerda river BV5 O8 15993 18.70 

Sloughia along the Medjerda river  BV5 O9 20811 27.50 

Rarai plaine in Rarai basin  BV5 O10 368 1.88 

Haidra Sidi Abdelkader in Mellegue basin  BV5 O11 304 0.13 

Mellegue Rmel in Mellegue basin  BV5 O12 400 0.47 

Rmel Sidi Abdallah in Rmel basin, BV4 BV4 O13 676 0.95 

Joumine Mateur in Joumine basin  BV3 O14 1121 4.96 

Joumine Cassis Tine in Joumine basin  BV3 O15 416 0.66 

Joumine Jebel Antra in Joumine basin  BV3 O16 231 2.82 

Barbara in Barbara basin  BV3 O17 109 1.43 

Zouara Sidi Barrak in Zouara basin  BV3 O18 874 6.24 

Sejnane in Sejnane basin  BV3 O19 375 2.43 
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Table 2. Presentation of the 15 candidate stations (area, tributary and location). RB: right 

bank, LB: left bank of Medjerda river 

 
Station code Drainage 

area (km
2
) 

Name of the tributary and description of location 

C1 214 In upstream Sarrat river, in Mellegue basin, RB 
C2 419 On Tessa river, RB 
C3 755 On Ouzafa river, tributary of Siliana river, RB 
C4 594 On Lahmar river, RB  
C5 209 On Beja river, LB  
C6 124 On Massouge river, tributary of Siliana river, RB  
C7 277 On Rmil river, tributary of Siliana river, RB 
C8 107 On Bazina river, tributary of Zarga river, LB  
C9 112 On Zerga river, LB 
C10 219 On Zerga river, LB 
C11 147 On Massila river, LB 
C12 116 On Thibar river, RB  
C13 236 On Kasseb river, LB  
C14 503 On Tessa river, RB 
C15 245 Ezana direct tributary of the Medjerda basin, at 

the Algerian boundary, LB 
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Table 3. Error for the selected variogram and cross-validation results: the standardized errors 

at the 19 stations of the study area  

 
Station name Station 

Code 
Error Z for 
the 
selected 
variogram 
(m

3
/s/Km

2
) 

For the 
exponential 
model 

For the 
spherical 
model 

Ghezala in Bouheurtma basin O1 -1.40 0.68 0.10 

Rarai Supérieur in Rarai basin O2 -0.17 -0.47 -0.74 

Pont Route Sarrath in Mellegue basin O3 1.05 -0.48 -0.38 

Mkhachbia in Mkhachbia basin O4 1.36 -1.71 -2.44 

Siliana Djebel Laouedj in Siliana basin O5 0.30 -0.29 -0.60 

Izid Barrage in Tessa basin O6 1.13 -0.56 -0.84 

Mellegue K13 in Mellegue basin O7 0.040 0.25 0.12 

Bousalem along the Medjerda river O8 -0.82 -0.61 0.33 

Sloughia along the Medjerda river O9 -1.03 1.17 0.98 

Rarai plaine in Rarai basin O10 -1.13 0.70 0.59 

Haidra Sidi Abdelkader in Mellegue basin O11 1.41 -1.14 -1.12 

Mellegue Rmel in Mellegue basin O12 0.31 -0.79 -0.46 

Rmel Sidi Abdallah in Rmel basin, BV4 O13 -0.03 0.20 -0.38 

Joumine Mateur in Joumine basin O14 -1.33 0.86 1.32 

Joumine Cassis Tine in Joumine basin O15 0.00 -0.46 -0.65 

Joumine Jebel Antra in Joumine basin O16 -1.86 0.80 1.41 

Barbara in Barbara basin O17 -1.70 -0.26 0.60 

Zouara Sidi Barrak in Zouara basin O18 -1.73 0.48 0.83 

Sejnane in Sejnane basin O19 -1.37 -0.72 -0.31 
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Table 4. Reduction of uncertainty by increase of network density 

 

Increasing the existing 

network by 

spatial average kriging 

variance (m
3
/s/km

2
)
2
 

Initial 12 stations network 

1 new station 

0.92 

0.82 

2 new stations 0.78 

3 new stations 0.73 

4 new stations 0.70 

5 new stations 0.67 
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Table 5. Optimal solutions for the five scenarios and corresponding interdistances 

 

Increasing the 
existing 
network by 

Code of the 
selected 
candidate(s) 

Minimum 
interdistance  
(km) 

Maximum  
interdistance  
(km) 

Mean 
interdistance  
(km) 

Mean 
drainage  
area 
(km²) 

Initial network 
 

 10.9 
 

168.5 
 

74.4 
 

4246 

1 new station {C14} 10.9 168.5 73.1 3958 

2 new stations {C14, C4} 10.9 171.7 78.8 3718 

3 new stations {C14, C4, C5} 10.9 171.7 81.0 3484 

4 new stations {C14, C4, C5, 
C7} 

10.9 171.7 81.4 3284 

5 new stations {C14, C4, C5, 
C7, C15} 

10.9 171.7 79.4 3105 
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Figure captions 

Figure 1. Gauged basin outlets locations for the 19 stations 

Figure 2. Basins centroids and oulets of “grid” nodes for M=20 selected basins 

Figure 3. Centroids of the fifteen candidate locations for composing the optimal network  

Figure 4. The logarithms of observed average specific annual module versus the logarithms of 

drainage area 

Figure 5a. Linear regression relation between the logarithm of scaled specific discharge QN 

and the logarithm of drainage area A. 

Figure 5b. Linear regression relation between the logarithm of scaled specific discharge QN 

and the logarithm of basin mean rainfall P (for 21 gauged basins with rainfall information) 

Figure 5c. Regression residuals versus logarithm of drainage areas 

Figure 6. Calibration of the semivariogram of residuals of estimation of the scaled average 

specific discharge (with the corresponding sample size of pairs) 

Figure 7. Spatial distribution of the optimized hydrometric network for Scenario 5 with 5 new 

sites. 

Figure 8. The progression in mean and maximum centroids interdistance according to the 

Scenario (1) to (5) 
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