On the number of invariant polynomials of the product of matrices with prescribed similarity classes

Zhang Yu Lin ${ }^{1}$
Departamento de Matemática. Universidade de Coimbra, 3000 Coimbra, Portugal

Received 20 September 1995; accepted 30 September 1997
Submitted by G. de Oliveira

Abstract

We study the possibilities for the number of nontrivial invariant polynomials of the product of two nonsingular matrices, with prescribed similarity classes, over an algebraically closed field. © 1998 Elsevier Science Inc. All rights reserved.

1. Introduction

Let F be an algebraically closed field. For $A \in F^{n \times n}$, denote by $i(A)$ the number of nontrivial invariant polynomials of A.

In this paper, we study the range of $i\left(X A X^{-1} Y B Y^{-1}\right)$, when A and B are given $n \times n$ nonsingular matrices over F and X, Y run over the set of nonsingular matrices over F.

Define

$$
R(A)=\min _{\lambda \in H^{H}} \operatorname{rank}\left(A+\hat{\lambda} I_{n}\right)
$$

where I_{n} is the $n \times n$ identity matrix. In [1], it was proved that

$$
i(A)=n-R(A)
$$

[^0]Thus the study of the range of $i\left(A^{\prime} B^{\prime}\right)$ is equivalent to the study of the range of $R\left(A^{\prime} B^{\prime}\right)$ with A^{\prime} and B^{\prime} similar to A and B, respectively. In this paper, instead of $i\left(A^{\prime} B^{\prime}\right)$, we prefer to consider $R\left(A^{\prime} B^{\prime}\right)$.

If X and Y are n-square invertible matrices over F, then $X A X^{-1} Y B Y^{-1}$ is similar to $\left(Y^{-1} X\right) A\left(X^{-1} Y\right) B$ and to $A\left(X^{-1} Y\right) B\left(Y^{-1} X\right)$, so our problem is equivalent to studying the range of $i\left(A^{\prime} B\right)$ or $i\left(A B^{\prime}\right)$, with A^{\prime} and B^{\prime} similar to A and B, respectively.

Since a square matrix is similar to its transpose, the problem is also equivalent to studying the range of $i\left(B^{\prime} A^{\prime}\right)$, with A^{\prime} and B^{\prime} similar to A and B, respectively.

For any polynomial $f(x)$ over F, we denote by $d(f)$ the degree of $f(x)$. Given two polynomials $f(x)$ and $g(x)$, we write $f(x) \mid g(x)$ whenever $f(x)$ divides $g(x)$.

Let $\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{n}(x)$ and $\beta_{1}(x), \beta_{2}(x), \ldots, \beta_{n}(x)$ be the invariant polynomials of A and B, respectively, and let $\gamma_{1}(x, \lambda), \gamma_{2}(x, \lambda), \ldots, \gamma_{n}(x, \lambda)$ be the invariant polynomials of λB^{-1}. We assume that the invariant polynomials are always monic and have been ordered so that each one divides the following of its group.

It is easy to see that if $\beta_{i}(x)=\left(x-b_{1}\right)^{\epsilon_{1}}\left(x-b_{2}\right)^{\epsilon_{2}} \cdots\left(x-b_{p}\right)^{\epsilon_{p}}$, then

$$
\gamma_{i}(x, \lambda)=\left(x-\frac{\lambda}{b_{1}}\right)^{\epsilon_{1}}\left(x-\frac{\lambda}{b_{2}}\right)^{\epsilon_{2}} \cdots\left(x-\frac{\lambda}{b_{p}}\right)^{\epsilon_{p}} .
$$

Let $r(=i(A))$ be the number of invariant polynomials of A which are different from 1. In the same manner, let $s:=i(B)$. This means that $\alpha_{1}(x)=\cdots=$ $\alpha_{n-r}(x)=1$, and $\alpha_{n-r+1}(x)$ has degree at least one. Similarly, $\beta_{1}(x)=\cdots=$ $\beta_{n-s}(x)=1$ and $\beta_{n-s+1}(x)$ has degree at least one.

Given a monic polynomial $f(x)=x^{k}-a_{k} x^{k-1}-\cdots-a_{2} x-a_{1}$ with degree $k \geqslant 1$, we denote by $C(f)$ and $C^{\prime}(f)$ the companion matrices of $f(x)$, defined by

$$
C(f)=\left[e_{2}, e_{3}, \ldots, e_{k}, a\right] \quad \text { and } \quad C^{\prime}(f)=\left[a^{\prime}, e_{1}, \ldots, e_{k-1}\right],
$$

where e_{i} is the i th column of the k-identity matrix, $i \in\{1, \ldots, k\}$ and

$$
a=\left[a_{1}, a_{2}, \ldots, a_{k}\right]^{\mathrm{t}}, \quad a^{\prime}=\left[a_{k}, a_{k-1}, \ldots, a_{1}\right]^{\mathrm{t}}
$$

where the superscript " t " means transpose.
Let us define $f_{i}(x):=x_{i+n-r}(x)$, and $g_{j}(x):=\beta_{i+n-s}(x)$ for $i=1, \ldots, r$ and $j=1, \ldots, s$, and let $h_{i}(x, \lambda), i=1, \ldots, s$ be the nontrivial invariant polynomials of λB^{-1}.

We take $K_{i}=C\left(f_{i}\right), \quad i=1, \ldots, r, L_{j}=C^{\prime}\left(g_{j}\right), j=1, \ldots, s$, and define $K=K_{1} \oplus \cdots \oplus K_{r}$ and $L=L_{1} \oplus \cdots \oplus L_{s}$. The matrices K and L are respectively similar to A and B.

We say that the pair (A, B) is spectrally complete for the product if for any n tuple $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of elements of F satisfying $\lambda_{1} \ldots \lambda_{n}=\operatorname{det}(A B)$, there exist matrices A^{\prime} and B^{\prime} similar to A and B, respectively, such that $A^{\prime} B^{\prime}$ has eigenvalues $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

In [2], Silva characterized all such pairs when F has at least four elements. The following is the corresponding result when F is algebraically closed.

Theorem 1 [2]. Let A and B be $n \times n$ nonsingular matrices, over an algebraically closed field, with $n \geqslant 2$. Then (A, B) is spectrally complete for the product if and only if $i(A)+i(B) \leqslant n$ and at least one of the following conditions is satisfied: 1. $n=2$,
2. at least one of the nontrivial invariant polynomials of A or B has degree different from two.

The following theorem, proved in [3] will be used in the sequel.
Define

$$
R(A, B)=\min _{c \in F}\left\{\operatorname{rank}\left(A-c I_{n}\right)+\operatorname{rank}\left(B-c I_{n}\right)\right\}
$$

Theorem 2 [3]. Let A and B be $n \times n$ matrices over an algebraically closed field and $t \in\{0,1, \ldots, n\}$. There exist matrices A^{\prime} and B^{\prime} similar to A and B, respectively, such that

$$
\operatorname{rank}\left(A^{\prime}-B^{\prime}\right)=t
$$

if and only if the following conditions are satisfied:

$$
\begin{equation*}
x_{i}(x)\left|\beta_{i+t}(x), \quad \beta_{i}(x)\right| \alpha_{i+t}(x) \quad \text { for } \quad i \in\{1, \ldots, n-t\} \text { and } t \leqslant R(A, B) \tag{1}
\end{equation*}
$$

If condition (1) is satisfied, we shall say (A, B) is a t-pair. It is easy to check that the set of integers $t \in\{0,1, \ldots, n-1\}$ for which there exists $\lambda \in F$, such that

$$
\begin{equation*}
\alpha_{i}(x)\left|\gamma_{i+t}(x, \lambda), \quad \gamma_{i}(x, \lambda)\right| \alpha_{i+i}(x), \quad i=1, \ldots, n-t \tag{2}
\end{equation*}
$$

is not empty. So let t_{0} be the minimum of this set.
Remark 1. Clearly, $t_{0} \geqslant|R(A)-R(B)|$ and $R(A)+R(B) \leqslant R\left(A, \lambda B^{-1}\right)$.

2. Main result

We are going to prove the following theorem, which is our main result.
Theorem 3. For any $n \times n$ nonsingular matrices, A and B, over an algebraically closed field F, there exist A^{\prime} and B^{\prime} similar to A and B, respectively, such that $R\left(A^{\prime} B^{\prime}\right)=t$ if and only if

$$
\begin{equation*}
t_{0} \leqslant t \leqslant \min \{n-1, R(A)+R(B)\} . \tag{3}
\end{equation*}
$$

Lemma 1 (Necessity). For any $n \times n$ nonsingular matrices A and B, over an algebraically closed field F, we have

$$
\begin{equation*}
t_{0} \leqslant R(A B) \leqslant \min \{n-1, R(A)+R(B)\} \tag{4}
\end{equation*}
$$

Proof. For any nonzero $\lambda, \beta \in F$, we have

$$
\begin{aligned}
R(A B) & \leqslant \operatorname{rank}(A B+\lambda I) \\
& =\operatorname{rank}\left(A+\dot{\lambda} B^{-1} I+\beta I-\beta I\right) \\
& \leqslant \operatorname{rank}(A-\beta I)+\operatorname{rank}\left(\lambda B^{-1}+\beta I\right) \\
& =\operatorname{rank}(A-\beta I)+\operatorname{rank}\left(B^{-1}+\frac{\beta}{i} I\right) \\
& =\operatorname{rank}(A-\beta I)+\operatorname{rank}\left(B+\frac{\lambda}{\beta} I\right) .
\end{aligned}
$$

So $R(A B) \leqslant R(A)+R(B)$.
Denoting by " \cong " the similarity relation and bearing Theorem 2 in mind, we have

$$
\begin{aligned}
\min _{A^{\prime} \cong A B^{\prime} \cong B} \min _{i \in F} \operatorname{rank}\left(A^{\prime} B^{\prime}-\lambda I\right) & =\min _{A^{\prime} \cong A \cdot B^{\prime} \cong B} \min _{i \in F} \operatorname{rank}\left(A^{\prime}-\lambda B^{\prime-1}\right) \\
& =\min _{i \in F} \min _{A^{\prime} \cong A, B^{\prime} \cong B} \operatorname{rank}\left(A^{\prime}-\lambda B^{\prime-1}\right) \\
& =\min _{i \in F} \min _{A^{\prime} \cong A, C \cong \lambda B^{-1}} \operatorname{rank}\left(A^{\prime}-C\right)=t_{0} .
\end{aligned}
$$

So

$$
R(A B)=\min _{i \in F} \operatorname{rank}\left(A-i B^{-1}\right) \geqslant t_{0} .
$$

So (4) holds.

To prove the sufficiency, we have to consider several cases.
Remark 2. If A and B are nonsingular matrices, it is easy to see that there exist A^{\prime} and B^{\prime} similar to A and B, respectively, such that $R\left(A^{\prime} B^{\prime}\right)=0$ if and only if A and B^{-1} are similar, up to a scalar factor (i.e., there exists $\alpha \in F$, so that $B^{-1} \cong \alpha A$).

Lemma 2. If A and B are both $n \times n$ nonderogatory matrices, over an algebraically closed field, then for $t \in\{1, \ldots, n-1\}$, there exist A^{\prime} and B^{\prime} similar to A and B, respectively, such that $R\left(A^{\prime} B^{\prime}\right)=t$.

Proof. In this case, A and B are respectively similar to matrices of the forms

$$
A^{\prime}=\left[\begin{array}{cccc}
0 & & & a_{1} \\
1 & \ddots & & a_{2} \\
& \ddots & 0 & \vdots \\
& & 1 & a_{n}
\end{array}\right], \quad B^{\prime}=\left[\begin{array}{cccc}
b_{n} & 1 & & \\
\vdots & 0 & \ddots & \\
b_{2} & & \ddots & 1 \\
b_{1} & & & 0
\end{array}\right]
$$

Let $X=\operatorname{diag}\left(c_{1}, \ldots, c_{t-1}, \lambda_{0}^{n-(t-1)}, \ldots, \lambda_{0}^{2}, \lambda_{0}\right)$, where $c_{i}, i=1, \ldots t-1$ and λ_{0} are any nonzero elements of F.

Let $B^{\prime \prime}=X B^{\prime} X^{-1}$. Then we have

$$
B^{\prime \prime}=\left[\begin{array}{ccccccc}
* & d_{1} & & & & & \\
& 0 & \ddots & & & & \\
\vdots & & \ddots & d_{t-1} & & & \\
\vdots & & & \ddots & \lambda_{0} & & \\
& & & & \ddots & \ddots & \\
* & & & & 0 & \lambda_{0} \\
* & & & & & 0
\end{array}\right]
$$

where $d_{i}=c_{i} / c_{i+1}, i=1, \ldots, t-2$, and $d_{t-1}=c_{i-1} / i_{0}^{n-\{t-1!}$. Then

$$
A^{\prime} B^{\prime \prime}=\left[\begin{array}{ccccccc}
a_{1}^{\prime} & & & & & & \\
& d_{1} & & & & & \\
* & & \ddots & & & & \\
\vdots & & & d_{t-1} & & & \\
& & & & \lambda_{0} & & \\
* & & & & & \ddots & \\
* & & & & & & \lambda_{0}
\end{array}\right]
$$

where $a_{1}^{\prime}=a_{1} b_{1} \hat{\iota}_{0} / c_{1}$.
Since F is an infinite field, we may choose the c_{i}^{\prime} s and i_{0}, such that a_{1}^{\prime}, i_{9} and the d_{i} 's are pairwise distinct. Then we have

$$
R\left(A^{\prime} B^{\prime \prime}\right)=\operatorname{rank}\left(A^{\prime} B^{\prime \prime}-\dot{\lambda}_{1} I\right)=t
$$

Lemma 3. If A and B are $n \times n$ nonsingular matrices, over an algebraically closed field, and either A or B is nonderogatory, then for any t satisfying

$$
t_{0} \leqslant t \leqslant n-1
$$

there exist A^{\prime} and B^{\prime} similar to A and B, respectively, such that

$$
R\left(A^{\prime} B^{\prime}\right)=t
$$

Proof. Without loss of generality, we may assume that A is nonderogatory. Then $f_{1}(x)$ is the only invariant polynomial of A different from one. As before,
let $g_{1}(x)|\cdots| g_{s}(x)$ be the nontrivial invariant polynomials of B, and $h_{1}(x, \lambda)|\cdots| h_{s}(x, \lambda)$ be the nontrivial invariant polynomials of λB^{-1}.

If $s=n$, then B is scalar. In this case, it is easy to see that $R(A B)=R(A)=n-1$, and the lemma is trivial.

Now we assume that A is nonderogatory and B is nonscalar. We consider two cases.

Case 1: There does not exist $\lambda_{0} \in F$ such that $h_{1}\left(x, \lambda_{0}\right) \mid f_{1}(x)$. Then we have $t_{0}=R(A)-R(B)+1=s$. Factorize $f_{1}(x) \quad$ in the following way: $f_{1}(x)=l_{1}(x) l_{2}(x) \ldots l_{s}(x)$, where the degree of $l_{i}(x)$ is the same as the degree of $g_{i}(x), i=1, \ldots, s$. For $R(A)-R(B)+1 \leqslant t \leqslant n-1$, we do the following. Let B^{\prime} be the following normal form of B

Since B is nonsingular, $a_{1}, b_{1}, \ldots, c_{1}$ are nonzero. A is similar to the following matrix

where the diagonal blocks have $l_{1}(x), l_{2}(x), \ldots, l_{s}(x)$ as characteristic polynomials.

Let $X=\operatorname{diag}\left(x_{1}, \ldots, x_{\rho}, \lambda_{0}^{n-\rho}, \ldots, \lambda_{0}^{2}, \lambda_{0}\right)$, where $x_{i}, i=1, \ldots, \rho$ and λ_{0} are any nonzero elements of $F, \rho \in\{0, \ldots, n-1\}$.

Then $A^{\prime} X B^{\prime} X^{-1}=$
where the elements denoted with $*$ are in the positions

$$
\left(\sum_{i=1}^{k} d\left(g_{i}\right)+1, \sum_{i=1}^{k-1} d\left(g_{i}\right)+1\right), \quad k=1, \ldots, s-1 .
$$

The blank places are zero. Because A and B are nonsingular matrices, the $\star s$ and the diagonal elements are all nonzero. The number of the $\star s$ equals $|R(A)-R(B)|$, so we have at least $|R(A)-R(B)|$ columns which are linearly independent. And we may choose the $x_{i}^{\prime} \mathrm{S}$ so that the $y_{i}^{\prime} \mathrm{s}$ are distinct and also different from λ_{0}. We can see that $\operatorname{rank}\left(A^{\prime} X B^{\prime} X^{-1}-\lambda I\right) \geqslant|R(A)-R(B)|+1+$ $\rho-i$, for $\lambda \in F$.

So we have

$$
R\left(A^{\prime} X B^{\prime} X^{-1}\right)=|R(A)-R(B)|+1+\rho-i,
$$

where

$$
d\left(g_{0}\right)+\cdots+d\left(g_{i}\right) \leqslant \rho<d\left(g_{0}\right)+\cdots+d\left(g_{i+1}\right) \quad i=0 \ldots, s-1 .
$$

(Define $d\left(g_{0}\right)=0$.)
Case 2: There exists $\dot{\lambda}_{0} \in F$ such that $h_{1}\left(x, \lambda_{0}\right) \mid f_{1}(x)$. Then we have $t_{0}=|R(A)-R(B)|=s-1$. Factorize $f_{1}(x)$ in the following way: $f_{1}(x)=l_{1}^{\prime}(x) l_{2}^{\prime}(x) \ldots l_{s}^{\prime}(x)$, where

$$
l_{1}^{\prime}(x)=h_{1}\left(x, \lambda_{0}\right)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{d\left(h_{1}\right)}\right)
$$

and the degree of $l_{i}^{\prime}(x)$ is the same as the degree of $h_{i}, i=1, \ldots, s$.
Clearly, A is similar to

where the diagonal blocks have $l_{1}^{\prime}(x), l_{2}^{\prime}(x) \ldots, l_{s}^{\prime}(x)$ as characteristic polynomials. The matrix $\lambda_{\cdot 1} B^{-1}$ is similar to a matrix of the following form:

where the diagonal blocks have $h_{1}\left(x, \lambda_{0}\right), h_{2}\left(x, \lambda_{0}\right), \ldots, h_{s}\left(x, \lambda_{0}\right)$ as characteristic polynomials. The inverse of $B^{\prime-1}$ is in the form

where the diagonal blocks have $g_{1}(x), \ldots, g_{s}(x)$ as characteristic polynomials.
Then we have $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$

where the \star s are in the positions $\left(\sum_{i=1}^{t} d\left(g_{i}\right), \sum_{i=1}^{t+1} d\left(g_{i}\right)\right), t=1, \ldots, s-1$. Since A and B are nonsingular, the elements \star 's are nonzero. This way we get t_{0} columns which are linearly independent. So

$$
R\left(A^{\prime} B^{\prime}\right)=\min _{i, F} \operatorname{rank}\left(A^{\prime} B^{\prime}-\lambda I\right)=\operatorname{rank}\left(A^{\prime} B^{\prime}-\lambda_{0} I\right)=t_{0}=|R(A)-R(B)| .
$$

For $R(A)-R(B)+1 \leqslant t \leqslant n-1$, we do the same as we did for Case 1 .
Proof of Theorem 3. Here we assume that A and B are both derogatory. If one of them is scalar, the theorem is trivial. Now suppose neither of A and B is scalar or nonderogatory. The proof goes by induction on n. When $n=1,2,3,4$, it can be verified easily.

Suppose $n \geqslant 5$ and A and λB^{-1} satisfy (2). From Theorem 2, there are A^{\prime} and B^{\prime} similar to A and B, respectively, such that $\operatorname{rank}\left(A^{\prime} B^{\prime}-\lambda I\right)=\operatorname{rank}\left(A^{\prime}-\lambda\left(B^{\prime}\right)^{-1}\right)=t$; then we have that

$$
R\left(A^{\prime}-\lambda\left(B^{\prime}\right)^{-1}\right) \leqslant t
$$

If we have equality, the proof is complete. Now suppose $R\left(A^{\prime}-\lambda\right.$ $\left.\left(B^{\prime}\right)^{-1}\right) \leqslant t-1$, then $\left(A, \lambda B^{-1}\right)$ is $(t-1)$-pair.

Note that, if $t \leqslant n / 2$, equality always holds, otherwise there exists μ such that $R\left(A^{\prime}-\mu\left(B^{\prime}\right)^{-1}\right) \leqslant t-1$. That means μ is an eigenvalue of $A^{\prime} B^{\prime}$ of algebraic multiplicity at least $n-t+1$. Since λ is an eigenvalue of $A^{\prime} B^{\prime}$ of algebraic multiplicity at least $n-t$, so $(n-t+1)+(n-t) \leqslant n$, i.e., $t \geqslant(n+1) / 2$, a contradiction. Henceforth we consider only the case $t \geqslant(n+1) / 2$.

Without loss of generality, suppose that $d\left(f_{1}\right) \geqslant d\left(g_{1}\right)=p$ with $p<n$. Let $L^{\prime}=L_{2} \oplus \cdots \oplus L_{s}$. If $d\left(g_{1}\right)=d\left(f_{1}\right)$, take $K^{\prime}=K_{2} \oplus \cdots \oplus K_{r}$. (Bear in mind the definition of K_{i} and L_{i}.) If $d\left(f_{1}\right)>d\left(g_{1}\right)=p, K_{1}$ is similar to a matrix of the form

$$
K_{1}^{\prime}=\left[\begin{array}{cccc|c}
N & & 0 \\
\hline 0 & \cdots & 0 & 1 & \\
& & & 0 & \\
& 0 & & \vdots & M \\
& & & 0 &
\end{array}\right]
$$

where $N \in F^{p \times p}$. In this case, take $K^{\prime}=M \oplus K_{2} \oplus \cdots \oplus K_{r}$. Since $\left(A, \lambda B^{-1}\right)$ is ($t-1$)-pair, it is not difficult to verify, in any case ($K^{\prime}, \lambda L^{\prime-1}$) is also a ($t-1$)-pair.

Case 1: Suppose that $d\left(f_{1}\right) \geqslant d\left(g_{1}\right)=p \geqslant 2$.
Without loss of generality, suppose that M and N are companion matrices, and suppose $N \neq \alpha L_{1}^{-1}$. Consider the polynomial $\phi(y)=-y^{2}+(n+2) y-2 n$, with coefficients in the field of real numbers. Its roots are 2 and n. Since $2 \leqslant p \leqslant n$, we have $\phi(p) \geqslant 0$. We also have $r \leqslant n / p$ and $s \leqslant n / p$. Therefore

$$
R\left(K^{\prime}\right)+R\left(L^{\prime}\right) \geqslant 2 n-2 p-\frac{2 n}{p}+1=\frac{1}{p} \phi(p)+n-p-1 \geqslant n-p-1 .
$$

So the maximum value t can be attained. On the other hand, from $t \geqslant(n+1) / 2$ we can get $t-1 \geqslant\left|R\left(K^{\prime}\right)-R\left(L^{\prime}\right)\right|$.

Case 1.1: Suppose that $n-p \geqslant t$. By the induction assumption, there is $X \in F^{(n-p) \times(n-p)}$ such that $R\left(K^{\prime} X L^{\prime} X^{-1}\right)=\operatorname{rank}\left(K^{\prime} X L^{\prime} X^{-1}-\lambda I\right)=t-1$.

If $d\left(g_{1}\right)=d\left(f_{1}\right)$, then, by Lemma 2, there is a nonsingular matrix $Y \in F^{p \times p}$ such that

$$
R\left(K_{1} Y L_{1} Y^{-1}\right)=\operatorname{rank}\left(K_{1} Y L_{1} Y^{-1}-\lambda I\right)=1
$$

Then

$$
R\left(K(Y \oplus X) L(Y \oplus X)^{-1}\right)=\operatorname{rank}\left(K(Y \oplus X) L(Y \oplus X)^{-1}-\lambda I\right)=t
$$

Now suppose that $d\left(f_{1}\right)>d\left(g_{1}\right)$. If the column $[*, 0, \ldots, 0]^{t} \in F^{(n-p) \times 1}$ is a linear combination of the columns of $K^{\prime} X L^{\prime} X^{-1}$, then, by Lemma 2, there is a nonsingular matrix $Y \in F^{p \times p}$ such that $R\left(N Y L_{1} Y^{-1}\right)=\operatorname{rank}\left(N Y L_{1} Y^{-1}-\lambda I\right)=1$; if not, by Lemma 2 again, there is $Y \in F^{p \times p}$ such that

$$
N Y L_{1} Y^{-1}=\left[\begin{array}{c|c}
* & 0 \\
\hline * & \lambda I_{p-1}
\end{array}\right]
$$

In any case,

$$
R\left(K(Y \oplus X) L(Y \oplus X)^{-1}\right)=\operatorname{rank}\left(K(Y \oplus X) L(Y \oplus X)^{-1}-\lambda I\right)=t
$$

Case 1.2: Suppose that $n-p<t<n-1$. Since $n-p-1 \leqslant R\left(K^{\prime}\right)+R\left(L^{\prime}\right)$, by the induction assumption, there exists a nonsingular matrix $X \in F^{(n-p) \times(n-p)}$ such that

$$
R\left(K^{\prime} X L^{\prime} X^{-1}\right)=\operatorname{rank}\left(K^{\prime} X L^{\prime} X^{-1}-\lambda I\right)=n-p-1
$$

If $d\left(g_{1}\right)=d\left(f_{1}\right)$, then, by Lemma 2, there exists a nonsingular matrix $Y \in F^{p \times p}$ such that

$$
R\left(K_{1} Y L_{1} Y^{-1}\right)=\operatorname{rank}\left(K_{1} Y L_{1} Y^{-1}-\lambda I\right)=t-(n-p-1)
$$

Then

$$
R\left(K(Y \oplus X) L(Y \oplus X)^{-1}\right)=\operatorname{rank}\left(K(Y \oplus X) L(Y \oplus X)^{-1}-\lambda I\right)=t
$$

Now suppose that $d\left(f_{1}\right)>d\left(g_{1}\right)$. If the column $[*, 0, \ldots, 0]^{t} \in F^{(n-p) \times 1}$ is a linear combination of the columns of $K^{\prime} X L^{\prime} X^{-1}$, then, by lemma 2, there exists a nonsingular matrix $Y \in F^{p \times p}$ such that

$$
R\left(N Y L_{1} Y^{-1}\right)=\operatorname{rank}\left(N Y L_{1} Y^{-1}-i I\right)=t-(n-p-1)
$$

Then

$$
R\left(K(Y \oplus X) L(Y \oplus X)^{-1}\right)=\operatorname{rank}\left(K(Y \oplus X) L(Y \oplus X)^{-1}-\lambda I\right)=t
$$

If not, by Lemma 2 again, there is $Y \in F^{p \times p}$ such that

$$
N Y L_{1} Y^{-1}=\left[\begin{array}{c|c}
* & 0 \\
\hline * & \hat{\lambda} I_{n-t-1}
\end{array}\right] .
$$

We have $R\left(N Y L_{1} Y^{-1}\right)=t-(n-p-1)$. In any case,

$$
R\left(K(Y \oplus X) L(Y \oplus X)^{-1}\right)=\operatorname{rank}\left(K(Y \oplus X) L(Y \oplus X)^{-1}-\lambda I\right)=t
$$

Case 1.3: Suppose that $t=n-1$. Because $p \geqslant 2$, we have $R(A)+R(B) \geqslant n$, that is $i(A)+i(B) \leqslant n$. Assume one of the nontrivial invariant polynomials of A and B is not of degree 2 . By Theorem $1,(A, B)$ is spectrally complete for the product. We may choose i_{i}^{\prime} s such that all of them are distinct. Then we have $R\left(A^{\prime} B^{\prime}\right)=n-1$.

Assume all the nontrivial invariant polynomials of A and B are of degree 2 . Without loss of generality, suppose

Let $X=\operatorname{diag}\left(c_{1}, 1, c_{2}, 1, \ldots, c_{(n / 2)}, 1\right)$, where the c_{i}^{\prime} s are nonzero elements of F chosen so that the diagonal elements of the matrix

$$
X A X^{-1} B=\left[\begin{array}{cc|c|cc}
c_{1} & 0 & & & \\
* & \frac{a_{1} h_{1}}{c_{1}} & & & \\
\hline & & \ddots & \\
\hline & & & c_{\frac{n_{2}}{2}} & \\
& & & * & \frac{a_{1} b_{1}}{c_{\frac{n_{2}}{2}}}
\end{array}\right]
$$

are all distinct. Then we have $R\left(X A X^{-1} B\right)=n-1$.
Case 2: Suppose that $d\left(f_{1}\right) \geqslant d\left(g_{1}\right)=1$.
Case 2.1: $d\left(f_{1}\right)=d\left(g_{1}\right)=1$. In this case, $A^{\prime}=a \oplus K^{\prime}$ and $B^{\prime}=b \oplus L^{\prime}$. Since $R(A)=R\left(K^{\prime}\right)$ and $R(B)=R\left(L^{\prime}\right)$, we have $\left|R\left(K^{\prime}\right)-R\left(L^{\prime}\right)\right| \leqslant t \leqslant R\left(K^{\prime}\right)+R\left(L^{\prime}\right)$.

Now let $\left|R\left(K^{\prime}\right)-R\left(L^{\prime}\right)\right| \leqslant t \leqslant n-2$. By the induction assumption there exists X, such that

$$
R\left(K^{\prime} X L^{\prime} X^{-1}\right)=\operatorname{rank}\left(K^{\prime} X L^{\prime} X^{-1}-a b I\right)=t
$$

Consequently, $R\left(A^{\prime}(1 \oplus X) B^{\prime}(1 \oplus X)^{-1}\right)=t$.

Now assume $t=n-1$.

1. $R(A)+R(B) \geqslant n$, that means $i(A)+i(B) \leqslant n$. According to Theorem 1, the pair (A, B) is spectrally complete for the product. Then we can get $R\left(A^{\prime} B^{\prime}\right)=n-1$.
2. $R(A)+R(B)=n-1$. From $\quad R(A)=R\left(K^{\prime}\right) . \quad R(B)=R\left(L^{\prime}\right)$, we have $R\left(K^{\prime}\right)+R\left(L^{\prime}\right)=n-1$. Again by Theorem $1,\left(K^{\prime}, L^{\prime}\right)$ is spectrally complete for the product. We may choose $\lambda_{1} \ldots, \lambda_{n-1} \in F-\{a b\}$ to be distinct and also conclude that $R\left(A^{\prime} B^{\prime}\right)=n-1$.
Case 2.2: $d\left(f_{1}\right)=q>d\left(g_{1}\right)=1$.
Let w be the number of linear invariant polynomials of B, and $u=d\left(g_{w+1}\right)$. Note that $2 \leqslant q \leqslant n / 2$.

$$
\text { (l) } w<q=u
$$

In this case, A and B are similar to

$$
A^{\prime}=C\left(f_{1}\right) \oplus K^{\prime} \quad \text { and } \quad B^{\prime}=C\left(g_{w-1}\right) \oplus L^{\prime \prime}
$$

respectively. Since $\quad R\left(K^{\prime}\right) \geqslant(n-q)-(n-q) / q, \quad R\left(L^{\prime \prime}\right) \geqslant(n-q-w)$ $-(n-q-w) / q$, we have $R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) \geqslant 2 n-2 q+2-2 n / q-(q-1) w / q \geqslant$ $2 n-2 q+2-2 n / q-(q-1)(q-1) / q$. Notice the fact that the quadratic expression $2 q^{2}-(n+5) q+2 n+1$ is nonpositive for $2 \leqslant q \leqslant n / 2$. We have that $R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) \geqslant n-q-1$, and we can verify that $\left(K^{\prime}, \hat{\lambda} L^{\prime \prime-1}\right)$ is also a $(t-1)$-pair.

We are going to use the same technique as we used in Case 1.
Suppose that $n-q \geqslant t$. By the induction assumption, there is $X \in F^{(n-q) \times(n \cdot q)}$ such that $R\left(K^{\prime} X L^{\prime \prime} X^{-1}\right)=\operatorname{rank}\left(K^{\prime} X L^{\prime \prime} X^{-1}-\lambda I\right)=t-1$. Then, by Lemma 2, there is a nonsingular matrix $Y \in F^{q^{\prime 4}}$ such that

$$
R\left(C\left(f_{1}\right) Y C\left(g_{w+1}\right) Y^{-1}\right)=\operatorname{rank}\left(C\left(f_{1}\right) Y C\left(g_{w-1}\right) Y^{-1}-i I\right)=1
$$

Then

$$
\begin{aligned}
& R\left(\left(C\left(f_{1}\right) \oplus K^{\prime}\right)(Y \oplus X)\left(C\left(g_{w+1}\right) \oplus L^{\prime \prime}\right)(Y \oplus X)^{-1}\right) \\
& \quad=\operatorname{rank}\left(A^{\prime}(Y \oplus X) B^{\prime}(Y \oplus X)^{-1}-\lambda I\right)=t .
\end{aligned}
$$

Suppose that $n-q<t<n-1$. Since $R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) \geqslant n-q-1$, by the induction assumption there exists a nonsingular matrix $X \in F^{\mid n-q) \times(n-q)}$ such that

$$
R\left(K^{\prime} X L^{\prime \prime} X^{-1}\right)=\operatorname{rank}\left(K^{\prime} X L^{\prime \prime} X^{-1}-\lambda I\right)=n-q-1
$$

Then, by Lemma 2 , there exists a nonsingular matrix $Y \in F^{q \times q}$ such that

$$
R\left(C\left(f_{1}\right) Y C\left(g_{w+1}\right) Y^{-1}\right)=\operatorname{rank}\left(C\left(f_{1}\right) Y C\left(g_{w}\right) Y^{-1}-i I\right)=t-(n-q-1)
$$

Then

$$
\begin{aligned}
& R\left(\left(C\left(f_{1}\right) \oplus K^{\prime}\right)(Y \oplus X)\left(C\left(g_{w}\right) \oplus L^{\prime \prime}\right)(Y \oplus X)^{\prime}\right) \\
& \quad=\operatorname{rank}\left(A^{\prime}(Y \oplus X) B^{\prime}(Y \oplus X)^{-1}-i I\right)=t
\end{aligned}
$$

Suppose that $t=n-1$.

1. $R(A)+R(B) \geqslant n$, that is the pair (A, B) is spectrally complete for the product.
2. $R(A)+R(B)=n-1$. We prove this is impossible.

Note that $r \leqslant n / q$ and $s \leqslant(n-w) / 2+w$. Hence $n+1=r+s \leqslant w+$ $(n-w) / 2+n / q$. As $w \leqslant q-1$, we have $q^{2}-(3+n) q+2 n \geqslant 0$, a contradiction because $q^{2}-(3+n) q+2 n<0$ for $2 \leqslant q \leqslant n / 2$.
(2). $w<q<u$.

Note that A and B are similar to

$$
A^{\prime}=C\left(f_{1}\right) \oplus K^{\prime} \text { and } B^{\prime}=\left[\begin{array}{cccc|c}
C(g) & & 0 \\
\hline 0 & \cdots & 0 & 1 & \\
& 0 & & & L^{\prime \prime}
\end{array}\right]
$$

respectively, where $C(g) \in F^{q \times q}$. Assuming that $u>n / 2$, then $R\left(K^{\prime}\right) \geqslant n$ $-n / q-(q-1), \quad R\left(L^{\prime \prime}\right)=n-w-q-1 . \quad$ So $\quad R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) \geqslant 2 n-w-1$ $-q-n / q-(q-1) \geqslant 2 n-(q-1)-2 q-n / q=2 n-3 q+1-n / q$. Notice the fact that the quadratic expression $2 q^{2}-(n+2) q+n \leqslant 0$ for $2 \leqslant q \leqslant n / 2$ and $n \geqslant 4$. We have that $R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) \geqslant n-q-1$. It is also easy to check that $\left|R\left(K^{\prime}\right)-R\left(L^{\prime \prime}\right)\right| \leqslant|w+1-1| \leqslant q-1 \leqslant t-1$. Assume that $u<n / 2$. Note that $u \geqslant 3$ and u cannot be $n / 2$ because, in this case, as B is nonderogatory, we will have $w=n / 2$. So $R\left(L^{\prime \prime}\right) \geqslant(n-q)-(w+(n-w) / 3)$ and $R\left(K^{\prime}\right) \geqslant(n-q)$ $-(n / q-1)$. We have that $R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) \geqslant 2 n-2 q+1-n / q-(2 w+n) / 3$ $\geqslant 2 n-2 q+1-n / q-(2(q-1)+n) / 3=2 n-2 q-\left(2 q^{2}-5 q+n q+3 n\right) / 3 q$. Notice the fact that the quadratic expression $5 q^{2}-(8+2 n) q+3 n \leqslant 0$ for $2 \leqslant q \leqslant n / 3$ and $n \geqslant 4$. We have that $R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) \geqslant n-q-1$. When $n / 3<q \leqslant n / 2$, we have $r=2$, it is obvious $R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) \geqslant n-q-1$. So in any case we have $R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) \geqslant n-q-1$. On the other hand, $\left|R\left(K^{\prime}\right)-R\left(L^{\prime \prime}\right)\right| \leqslant|w+(n-w) / u-1| \leqslant|u-2-(n-u-2) / 2| \leqslant(n-1) / 2$,
the last inequality holds because $2 \leqslant u \leqslant n / 2$. So the induction assumption holds for the pair ($K^{\prime}, L^{\prime \prime}$).

Bear in mind that a square matrix is similar to its transpose, so we may change the order of A^{\prime} and B^{\prime}. Now we reduced our problem to the same type as Case 1, and we may do the same analysis as we did before.
(3). $w<q$ and $u<q$.

Note that A and B are similar to
$\left[\begin{array}{cccc|c}C(f) & & 0 \\ \hline 0 & \ldots & 0 & 1 & \\ & 0 & & & K^{\prime}\end{array}\right]$ and $C\left(g_{w+1}\right) \oplus L^{\prime \prime}$,
respectively, where $C(f) \in F^{u \times u}$. In this case we have that $u \geqslant 2, q \geqslant 3, w \leqslant q-1$. Since $R\left(K^{\prime}\right) \geqslant(n-u)-n / 3$ and $R\left(L^{\prime \prime}\right) \geqslant(n-u)-$ $(w+(n-u-w) / u) \geqslant(n-u)-(n / u-1+(q-1)(u-1) / u)$. We have $R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) \geqslant 2 n-2 u-n / 3-(n+(q-1)(u-1)) / u+1$. Notice the fact that the quadratic expression $3 u^{2}-(2 n-3 q+9) u+3 n-3 q+3 \leqslant 0$ for $2 \leqslant u \leqslant q-1$ and $3 \leqslant q \leqslant n / 3$. We have that $R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) \geqslant n-u-1$. When $n / 3<q \leqslant n / 2$, we have $r=2$, it is obvious $R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) \geqslant n-u-1$. So in any case we have $R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) \geqslant n-u-1$. And we can verify that ($K^{\prime}, \lambda L^{\prime \prime-1}$) is also a ($t-1$)-pair.

Again we reduced our problem to the same form as Case 1, and we may do the same analysis as we did before.
(4). $q \leqslant w$.

In this case, A and B are similar to

$$
A^{\prime}=C\left(f_{1}\right) \oplus K^{\prime} \quad \text { and } \quad B^{\prime}=x_{q} \oplus L^{\prime \prime}
$$

respectively, where $x_{q} \in F^{4 \times q}$ is a scalar matrix. First suppose that $R\left(K^{\prime}\right) \geqslant R\left(L^{\prime \prime}\right)$. As

$$
\left|R\left(A^{\prime}\right)-R\left(B^{\prime}\right)\right| \leqslant t \leqslant R\left(A^{\prime}\right)+R\left(B^{\prime}\right)
$$

we have

$$
(q-1)+R\left(K^{\prime}\right)-R\left(L^{\prime \prime}\right) \leqslant t \leqslant(q-1)+R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right) .
$$

That means $R\left(K^{\prime}\right)-R\left(L^{\prime \prime}\right) \leqslant t-(q-1) \leqslant R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right)$. Note that $t-(q-1) \leqslant n-q-1$. By the induction assumption, there exists X such that

$$
R\left(K^{\prime} X L^{\prime \prime} X^{-1}\right)=\operatorname{rank}\left(K^{\prime} X L^{\prime \prime} X^{-1}-\lambda I\right)=t-(q-1) .
$$

Then $R\left(\left(C\left(f_{1}\right) \oplus K^{\prime}\right)\left(I_{q} \oplus X\right)\left(x_{q} \oplus L^{\prime \prime}\right)\left(I_{q} \oplus X\right)^{-1}\right)=t$.
Second, suppose that $R\left(B^{\prime}\right)>R\left(A^{\prime}\right)$. That means $R\left(L^{\prime \prime}\right)>(q-1)+R\left(K^{\prime}\right)$. If $t-(q-1) \geqslant R\left(L^{\prime \prime}\right)-R\left(K^{\prime}\right)$, then we may do the same as we did in the first case. Now consider $t-(q-1)<R\left(L^{\prime \prime}\right)-R\left(K^{\prime}\right)$. As $R\left(L^{\prime \prime}\right)>R\left(A^{\prime}\right)$, there must be one diagonal block in $L^{\prime \prime}$ whose order is greater or equal to the order of $C\left(f_{1}\right)$. Moving it to the first diagonal block we can get a matrix similar to B^{\prime} of the form

$$
\left[\begin{array}{cccc|c}
c(g) & & & 0 \\
\hline 0 & \ldots & 0 & 1 & \\
& 0 & & & L^{\prime \prime \prime}
\end{array}\right]
$$

where $C(g) \in F^{q \times q}$.
We have $R\left(L^{\prime \prime \prime}\right)-R\left(K^{\prime}\right)=R\left(L^{\prime \prime}\right)-R\left(K^{\prime}\right)-q$. Because $t \geqslant\left|R\left(A^{\prime}\right)-R\left(B^{\prime}\right)\right|=$ $R\left(L^{\prime \prime}\right)-R\left(K^{\prime}\right)-(q-1)$, by induction assumption there exists X such that

$$
R\left(L^{\prime \prime \prime} X K^{\prime} X^{-1}\right)=\operatorname{rank}\left(L^{\prime \prime \prime} X K^{\prime} X^{-1}-\dot{\lambda} I\right)=t_{1} \geqslant R\left(L^{\prime \prime}\right)-R\left(K^{\prime}\right)-q .
$$

Then by Lemma 2, there exists Y such that

$$
R\left(C(g) Y C\left(f_{1}\right) Y^{-1}\right)=\operatorname{rank}\left(C(g) Y C\left(f_{1}\right) Y^{-1}-\lambda I\right)=t-t_{1} .
$$

Thus we have

$$
R\left(A^{\prime} B^{\prime}\right)=t
$$

Third, suppose that $R\left(A^{\prime}\right) \geqslant R\left(B^{\prime}\right)=R\left(L^{\prime \prime}\right)>R\left(K^{\prime}\right)$. If $t-(q-1) \geqslant R\left(L^{\prime \prime}\right)$ $-R\left(K^{\prime}\right)$, then we may do the same as we did in the first case. Now consider $t-(q-1)<R\left(L^{\prime \prime}\right)-R\left(K^{\prime}\right)$. Let $z=R\left(L^{\prime \prime}\right)-R\left(K^{\prime}\right)$. Clearly, $z \leqslant q-1$, and $t \geqslant R\left(A^{\prime}\right)-R\left(B^{\prime}\right)=R\left(K^{\prime}\right)+(q-1)-R\left(L^{\prime \prime}\right)=(q-1)-z$. As $R\left(L^{\prime \prime}\right)>R\left(K^{\prime}\right)$, there must be one diagonal block in $L^{\prime \prime}$ whose order is greater or equal to the order of $C\left(f_{1}\right)$. Then we may get a matrix $B^{\prime \prime}$, similar to B^{\prime}, of the form

$$
\left[\begin{array}{ccc|c}
x_{q-z} & \oplus & \mathrm{C}(\mathrm{~g}) & 0 \\
\hline 0 & \ldots & 0 & 1 \\
& 0 & & \\
& 0 & & L^{\prime \prime \prime}
\end{array}\right]
$$

where $C(g) \in F^{-\times}=$and $R\left(x_{q-=} \Theta C(g)\right)=z-1$. (If there is a block in $L^{\prime \prime}$ with size $z+1$, then let $B^{\prime \prime}=x_{q-(z+1)} \oplus C(g) \oplus L^{\prime \prime \prime}$.)

Since $C\left(f_{1}\right)$ is nonderogatory, by Lemma 3, there is $Y \in F^{q \times 4}$ such that

$$
\begin{aligned}
R\left(\left(x_{i j}-=\oplus C(g)\right) Y C\left(f_{i}\right) Y^{-1}\right) & =\operatorname{rank}\left(\left(x_{i-z} \oplus C(g)\right) Y C\left(f_{1}\right) Y^{-1}-\lambda I\right) \\
& =(q-1)-(z-1)=q-z
\end{aligned}
$$

On the other hand, by the induction assumption, there is $X \in F^{(n-q) \times(n-q)}$ such that

$$
R\left(L^{\prime \prime \prime} X K^{\prime} X^{\prime}\right) \operatorname{rank}\left(L^{\prime \prime \prime} X K^{\prime} X^{\prime}-\lambda I\right)=t-(q-z)
$$

So

$$
R\left(A^{\prime} B^{\prime}\right)=t
$$

Assume that $t=n-1$.

1. $R(A)+R(B) \geqslant n$, the pair (A, B) is spectrally complete for the product.
2. $R(A)+R(B)=n-1, \quad$ i.e., $\quad(q-1)+R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right)=n-1$. Then $R\left(K^{\prime}\right)+R\left(L^{\prime \prime}\right)=n-q$.
That means the pair $\left(K^{\prime}, L^{\prime \prime}\right)$ is spectrally complete for the product. We may choose distinct nonzero elements, $i_{1}, \ldots . i_{n-q}$, different from the eigenvalues of $C\left(f_{1}\right) x_{q}$ (we recall that x_{q} is a $q \times q$ scalar matrix) and satisfying $\lambda_{1} \ldots \lambda_{n-\varphi}=\operatorname{det} K^{\prime} L^{\prime \prime}$. Then it is easy to conclude that $R\left(A^{\prime} B^{\prime}\right)=n-1$.

Acknowledgements

This paper is written under the supervision of Professor G.N. de Oliveira. I would like to thank Professor E.M. Sá for his useful suggestions and the referees for a very thorough and careful reading of the original draft.

References

[1] G.N. de Oliveira. E.M. Sá. J.A. Dias da Silva. On the eigenvalues of the matrix $A+X B X^{\prime}$. Linear and Multilinear Algebra 5 (1977) 119128.
[2] F.C. Silva, The eigenvalues of the product of matrices with prescribed similarity classes. Lincar and Multilinear Algebra 34 (1993) 269277.
[3] F.C. Silva, The rank of the difference of matrices with prescribed similarity classes, Linear and Multilinear Algebra 24 (1988) 51 58.
[4] F.C. Silva, Spectrally complete pairs of matrices, Linear Algebra and Its Applications 108 (1988) 239262.
[5] F.C. Silva, On the number of invariant polynomials of the matrix $X 4 X^{1}+B$. Linear Algebra and lts Applications 79 (1986) 1-21.
[6] Zhang Yu Lin. The range of $i\left(X A X^{-1}+B\right)$ (preprint).
[7] F.C. Silva, Wasin So, Possible number of invariant polynomials for the difference of two similarity classes (preprint).

[^0]: ${ }^{1}$ Supported by the Fundaçao Oriente. On leave from Northwest University, Xian, 710069. People's Republic of China.

