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Abstract

We study the possibilities for the number of nontrivial invariant polynomials of the
product of two nonsingular matrices, with prescribed similarity classes, over an algebra-
ically closed field. © 1998 Elsevier Science Inc. All rights reserved.

1. Introduction

Let F be an algebraically closed field. For 4 € F"*"_ denote by i(4) the num-
ber of nontrivial invariant polynomials of A.
In this paper, we study the range of i(XAX ' YBY '), when 4 and B are given
n x nnonsingular matrices over F and X, Y run over the set of nonsingular ma-
trices over F.
Define
R(4) = mi/n rank(4 + AI,),
LEF
where 7, is the n x n identity matrix. In [1], it was proved that
i(A) =n— R(A).
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Thus the study of the range of i(4’B’) is equivalent to the study of the range of
R(A'B’) with A" and B’ similar to 4 and B, respectively. In this paper, instead of
i(4'B’), we prefer to consider R(4'B').

If X and Y are n-square invertible matrices over F, then XAX~'YBY~' is sim-
ilar to (Y'X)4(X'Y)B and to 4(X~'Y)B(Y~'X), so our problem is equivalent
to studying the range of i(4'B) or i(AB’), with 4’ and B’ similar to 4 and B, re-
spectively.

Since a square matrix is similar to its transpose, the problem is also equivalent
to studying the range of i(B’A’), with 4’ and B’ similar to 4 and B, respectively.

For any polynomial f(x) over F, we denote by d(f) the degree of f(x). Given
two polynomials f(x) and g(x), we write f(x)|g(x) whenever f(x) divides g(x).

Let o (x), 00(x), ..., 2,(x) and B,(x), B,(x),..., B,{x) be the invariant polyno-
mials of 4 and B, respectively, and let y,(x, 1}, y,(x, 4), ..., 7,(x, 1) be the invari-
ant polynomials of 1B~'. We assume that the invariant polynomials are always
monic and have been ordered so that each one divides the following of its group.

It is easy to see that if f,(x) = (x — &))" (x — b2)7 - - (x — b,)”, then

2\ 2\" AN?
y,(x,/l)z(x—b—l) (x—b—2> -~<x—b:> .

Let (= i(4)) be the number of invariant polynomials of 4 which are different
from 1. In the same manner, let s:=i(B). This means that o;(x)=---=
2, (x)=1, and «, . (x) has degree at least one. Similarly, f,(x)=---=
B, ,(x)=1and f, . (x) has degree at least one.

Given a monic polynomial f(x) = x* — ax* ' — ... — aox — a; with degree
k = 1, we denote by C(f) and C'(f) the companion matrices of f(x), defined by

C(f) = ler,e3,...,er,a) and C'(f) =[d el ....e-1],
where ¢; is the ith column of the 4-identity matrix, 7 € {1,...,k} and
a=laay...,al, d=la,a,... Lay,

where the superscript ““t”” means transpose.

Let us define fi(x) := otipyr(x), and g;(x) := f,,_,(x) for i=1,...,r and
j=1,...,s,and let &;(x, A), i = 1,...,s be the nontrivial invariant polynomials
of AB~!.

We take K, =C(f}), i=1,....,r, L;=C'(g;), j=1,...,s, and define
K=K & --®oK.andL=1L, & - & L,. The matrices K and L are respectively
similar to 4 and B.

We say that the pair (4, B) is spectrally complete for the product if for any n-

tuple (4;,...,4,) of elements of F satisfying 4, ... A, = det(4B), there exist ma-
trices A" and B’ similar to 4 and B, respectively, such that 4'B’ has eigenvalues
(Ayenydn)e

In [2], Silva characterized all such pairs when F has at least four elements.
The following is the corresponding result when F is algebraically closed.
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Theorem 1 [2}. Let A and B be n x n nonsingular matrices, over an algebraically

closed field, with n = 2. Then (A, B) is spectrally complete for the product if and

only if i(4) + i(B) < n and at least one of the following conditions is satisfied:

l.n=2,

2. at least one of the nontrivial invariant polynomials of A or B has degree differ-
ent from two.

The following theorem, proved in [3] will be used in the sequel.
Define

R(4,B) = melg {rank(4 — cl,) 4+ rank(B — cI,)}.

Theorem 2 [3]. Let A and B be n x n matrices over an algebraically closed field
and t € {0,1,..., n}. There exist matrices A and B’ similar to A and B,

respectively, such that
rank(4' — B) =t
if and only if the following conditions are satisfied:
% () Bin (%), Bi(x)|otine(x) Jor ie{l.....n—t} and t<R(A.B).
(1)

If condition (1) is satisfied, we shall say (4, B) is a ¢-pair. It is easy to check
that the set of integers ¢ € {0, 1,...,n — 1} for which there exists 4 € F, such that

() | i, (e A, i (x A) | 2 (%), i=1,....n—t (2)

is not empty. So let 4, be the minimum of this set.

Remark 1. Clearly, ty > [R(4) — R(B)| and R(4) + R(B) <R(A, B~ ").

2. Main result
We are going to prove the following theorem, which is our main result.

Theorem 3. For any n x n nonsingular matrices, A and B, over an algebraically
closed field F, there exist A' and B' similar to A and B, respectively, such that
R(A'B"Y =t if and only if

Hh<t< min{n — 1,R(4) + R(B)}. (3)
Lemma 1 (Necessity). For any n x n nonsingular matrices A and B, over an
algebraically closed field F, we have

to <R(4AB) < min{n — 1,R(4) + R(B)}. 4)
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Proof. For any nonzero A, f§ € F, we have
R(4B) < rank(4B + Al)
= rank(4 + AB~'I + BI — BI)
< rank(4 — BI) + rank(AB~' + BI)

rank(4 — BI) + rank <B‘l +E/>
/L

= rank(4 — fI) + rank(B +%1).

So R(4B) < R(A) + R(B).
Denoting by ‘=" the similarity relation and bearing Theorem 2 in mind, we
have

min min rank(4'B'— A[) = min  min rank(4' — .B"")
A=A B>8 JcF A=A B'=B  icF

=min min rank(4' ~ 2B"")
el A'=AB'=B

= min min  rank(4' — C) = g,
eF A'=24.0=28"!

So
R(AB) = minrank(4 — /87" = 4.

reF

So (4) holds. [J

To prove the sufficiency, we have to consider several cases.

Remark 2. If 4 and B are nonsingular matrices, it is easy to see that there exist
A4’ and B’ similar to 4 and B, respectively, such that R(4’8’) = 0 if and only if 4
and B! are similar, up to a scalar factor (i.e., there exists o € F, so that
B =~ ad).

Lemma 2. If A and B are both n X n nonderogatory matrices, over an
algebraically closed field, then for te€ {1,..., n— 1}, there exist A and B

similar to A and B, respectively, such that R(A'B') = 1.
Proof. In this case, 4 and B are respectively similar to matrices of the forms

0 a) b” l
Lo a oo
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Aan—{1—1) 42

Let X = diag(cy,....c1. 4 yevstys o), Where e, i =1
are any nonzero elements of F.
Let B” = XB'X~'. Then we have

t—1land /1()

% d, -
0
dr—l
B = n ’
* 0 /1()
L* 0]

where d; = ¢;/c; 4.

/

i=1,....,t—2,and d,_,

~n-{r-1)
=c¢,1/7 . Then

a

d

A/B// —

*

* Ao

where a) = aib A/ c).
Since F'is an infinite field, we may choose the ¢/s and 4o, such that ¢}, /, and
the d's are pairwise distinct. Then we have

R(A'B") = rank(A'B" — il) = t. O

Lemma 3. If A and B are n x n nonsingular matrices, over an algebraically closed
field, and either A or B is nonderogatory, then for any t satisfving

ty < { < n—1
there exist A and B’ similar to A and B, respectively, such that
R(A'B) =1.

Proof. Without loss of generality, we may assume that A4 is nonderogatory.
Then f)(x) is the only invariant polynomial of 4 different from one. As before,
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let gi(x)|---|g(x) be the nontrivial invariant polynomials of B, and
hi(x, )| - |hs(x, A) be the nontrivial invariant polynomials of 18~!.

If s=n, then B is scalar. In this case, it is easy to see that
R(AB) = R(4) = n— 1, and the lemma is trivial.

Now we assume that 4 is nonderogatory and B is nonscalar. We consider
two cases.

Case 1: There does not exist 4y € F such that & (x, 4} | fi(x). Then we have
to=R(4)—R(B)+1=s. Factorize fi(x) in the following way:
SHi(x) =1i(x)lx(x) ... L(x), where the degree of /,(x) is the same as the degree
of g(x), i=1,...,s. For R(4) —R(B) +1<t<n~—1, we do the following.
Let B’ be the following normal form of B

[ Gyg) 1 1

©g

a2 o1

a) 0

byigs) 1
B= - = b 1
. . 0
Clar) h
Cdip,) 1
. 0 "
[+] L |
l. [} 0 ]
Since B is nonsingular, ay, b, .. ., ¢| are nonzero. A4 is similar to the following
matrix
o |
. .
.0
1 pag)
1 0 m
1 my
.0 :
L
A — 1 m 1
th :
110 ni
1 ny
.0
[ 1 "‘(h) -
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where the diagonal blocks have /,(x), /»(x), ..., [i(x) as characteristic polyno-
mials.
Let X = diag(xy,...,x,, 45 ..., 23, A), wherex,, i = 1,..., p and A are any
nonzero elements of F, p € {0,...,.n—1}.
Then A'XB'X ' =
r n
* n
b A Yi(g)
* Y9y )41
; “ 4 g)
* ) Yas )42
. .
Ao ’
. A
* . Ao
. 20
Dk
Ao d

where the elements denoted with % are in the positions

k k-1
(Zd(g,)+l,2d(gi)+l>, k=1,....5—1.
i=1

i=1

The blank places are zero. Because 4 and B are nonsingular matrices, the s
and the diagonal elements are all nonzero. The number of the xs equals
|R(4) — R(B)|, so we have at least |[R(4) — R(B)| columns which are linearly in-
dependent. And we may choose the x/s so that the y/s are distinct and also dif-
ferent from 4iy. We can see that rank(4'XB'X ' — iI) > |R(4) — R(B)| + 1+
p—1i forzeF.

So we have

RAXBX")=|R(A) —RB)|+1+p—i,
where
d(ge)+ - +dg)<p<d(gy)+---+dg) i=0,...,: s — 1.

(Define d(gy) = 0.)

Cuse 2: There exists 4y € F' such that A (x,4y)|fi(x). Then we have
ty = |R(4) — R(B)]=s—1. Factorize fi(x) in the following way:
Silx) = I(x)l5(x) ... I'(x), where
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L(x) =hi(x, ) = (x —a))(x —a2) - (x — au,))

and the degree of //(x) is the same as the degree of 4, i =1,....s.
Clearly, A 1s similar to

'al 1
az
1
G4(h)
* 1
* 0
1
' _
A= * 0] 1 !
1
*
* 0
1
* 0

where the diagonal blocks have /|(x), /5(x)....,[.(x) as characteristic polyno-
mials. The matrix 2,8~ is similar to a matrix of the following form:

[ a1 1
az
1
Gd(hy)
« 1
* 0
AoB'—l = 1 ,

* 0
« 1
* 0

1
* 0 J
where the diagonal blocks have A (x, Ag), h2(x, 4¢), ..., hy(x. Ay) as characteristic

polynomials. The inverse of B'~! is in the form
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b
-*
»*

* *

where the diagonal blocks have g/(x),...,g,(x) as characteristic polynomials.
Then we have A'B’

o

Xo *

Ao *

where the s are in the positions (3/_ d(g)). >/"1d(g,)). 1 =1,....s— 1. Since

4 and B are nonsingular, the elements «’s are nonzero. This way we get £, col-
umns which are linearly independent. So
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R(A'B") = minrank(4'B — AI) = rank(4'B' — Agl) =ty = |R(4) — R(B)|.

eF

For R(4) — R(B) + 1 <t<n— 1, we do the same as we did for Case 1. [

Proof of Theorem 3. Here we assume that 4 and B are both derogatory. If one
of them is scalar, the theorem is trivial. Now suppose neither of 4 and B is
scalar or nonderogatory. The proof goes by induction on ». Whenn = 1,2,3.4,
it can be verified easily.

Suppose n = 5 and 4 and AB~! satisfy (2). From Theorem 2, there are 4’ and
B similar to A and B, respectively, such that
rank(4'B' — il) = rank(4' — A(B')"') = ; then we have that

R4 — A(B) )<

If we have equality, the proof is complete. Now suppose R(4d — 4
(B) 'Y<t —1, then (4,iB™") is (t — 1)-pair.

Note that, if 7 < n/2, equality always holds, otherwise there exists y such that
R(4' — u(B')™") <t — 1. That means u is an eigenvalue of 4'B' of algebraic mul-
tiplicity at least » — ¢ + 1. Since 4 is an eigenvalue of 4’'B’ of algebraic multiplic-
ityatleastn —t,so(n—t+ 1)+ (n—1t)<m,ie.,t = (n+ 1)/2, a contradiction.
Henceforth we consider only the case r = (n + 1)/2.

Without loss of generality, suppose that d(f1) = d(g1) = p with p <n. Let
L'=La -3l If dlg,) =d(f1), take K' =K, ®--- & K,. (Bear in mind
the definition of K; and L;.) If d(f}) > d(g) = p, K, is similar to a matrix of
the form

r N 0 7
0 0 1
0
K = ‘ Ml
0 :
L 0 -

where N € FP*7_ In this case, take K' =M © K, & --- B K,. Since (4,iB7') is
(t — 1)-pair, it is not difficult to verify, in any case (K’,AL'"") is also a
(¢ — 1)-pair.

Case 1: Suppose that d(f}) = d(g)) =p = 2.

Without loss of generality, suppose that M and N are companion matrices,
and suppose N # aL;'. Consider the polynomial ¢(y) = —y* + (n +2)y — 2n,
with coefficients in the field of real numbers. Its roots are 2 and n. Since
2 < p<n, we have ¢(p) = 0. We also have » <n/p and s <n/p. Therefore

2 1
RK')+R(L')=2n-2 —;n+1=;¢(p)+n—p—1>n—p—l.
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So the maximum value ¢ can be attained. On the other hand, from
t=2(n+1)/2 wecan get t — 1 = |R(K') — R(L")].

Case 1.1: Suppose that n — p > ¢. By the induction assumption, there is
X € FimPx(=P) such that R(K'XL'X ') = rank(K'XL'X™' — Al) =1t — 1.

If d(g)) = d(f1), then, by Lemma 2, there is a nonsingular matrix ¥ € F7>®
such that

R(K\YL,Y ') = rank(K, YL, Y ' — A1) = 1.
Then

RIK(YBX)L(Y X)) = rank(K(Y @ X)L(Y & X) ' =) =1

Now suppose that d(f1) > d(g)). If the column [#,0,...,0]' € F"="*! is a lin-
ear combination of the columns of K’XL'X !, then, by Lemma 2, there is a non-
singular matrix ¥ € F7? such that R(NYL,Y~!) = rank(NYL, Y~! —AI) = 1; if
not, by Lemma 2 again, there is Y € F7*? such that

o |x 0
NYLIY o I:* /}Jpq ]

In any case,
RK(YSX)L(Y&X) ") =rank(K(Y B X)L(Y & X) ' = A) =1.

Case 1.2: Suppose that n—p <t <n—1. Since n —p— 1 <R(K') + R(L"),
by the induction assumption, there exists a nonsingular matrix
X € Flm=pixtn=p) guch that

RK'XLUX ™) =rank(K'XL'X ™' =) =n—p—1.

If d(g\) = d(f1), then, by Lemma 2, there exists a nonsingular matrix ¥ € Fr=»
such that

RIK\YLiY™) =rank(K, YL)Y ' =) =t—(n—p—1).
Then
RK(Y®X)L(Y & X)) =rank(K(Y @ X)L(Y & X)™' — ) =1.

Now suppose that d(f,) > d(gi). If the column [+,0,...,0]' € Fi*?! js a
linear combination of the columns of X’XL'X !, then, by lemma 2, there exists
a nonsingular matrix ¥ € F7*? such that

R(INYL )Y ™" =rank(NYL,Y ' —il) =t - (n—p—1).
Then
RIK(Y ®X)L(Y © X)) = rank(K(Y ® X)L(Y & X)™' — ) = 1.



264 Z.Y. Lin | Linear Algebra and its Applications 277 (1998 253-269

If not, by Lemma 2 again, there is ¥ € F?*# such that

* 0
NYL, Y™ ' = )

* /~1nfl— |

We have R(NYL, Y'Y =¢— (n—p—1). In any case,
RK(Y &X)LY & X)) =rank(K(Y 2 X)L(Y & X) ' =) =1t

Case 1.3: Suppose that ¢ = n — 1. Because p = 2, we have R(4) + R(B) = n,
that is i(4) + i(B) < n. Assume one of the nontrivial invariant polynomials of 4
and B is not of degree 2. By Theorem 1, (4, B) is spectrally complete for the
product. We may choose 4’s such that all of them are distinct. Then we have
R(AB)Y=n—1.

Assume all the nontrivial invariant polynomials of 4 and B are of degree 2.
Without loss of generality, suppose

0 1 by by
a) a> 1 0
A= and B =
0 1 h> by
a as | 0
Let X = diag(ci, 1, ¢, 1,... ¢, 1), where the ¢s are nonzero elements of

chosen so that the diagonal elements of the matrix

[C) 0 ]
arhy
<l

*

XAX'B =

- 5 J

are all distinct. Then we have R(XAX 'B) =n — 1.

Case 2: Suppose that d(f)) = d(g)) = 1.

Case 2.1: d(f1) = d(g)) = 1. In this case, 4’ = a® K" and B' = b & L. Since
R(4) = R(K') and R(B) = R(L'), we have |[R(K') — R(L')| <t <R(K') + R(L').

Now let |[R(K') — R(L')] < t < n — 2. By the induction assumption there exists
X, such that

R(K'XL'X™") = rank(K'XL'X™" — abl) = t.
Consequently, R(A'(1 & X)B/(1 @X)fl) =t
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Now assume t =n — 1.

1. R(4) + R(B) = n, that means i(4) + i(B) < n. According to Theorem 1. the
pair (4.B) is spectrally complete for the product. Then we can get
R(AB)y=n-1.

. RA)+RB)=n—1. From R(A)=R(K')., R(B)=R(L), we have
R(K') + R(L') =n — 1. Again by Theorem 1, (K’.L’) is spectrally complete
for the product. We may choose 4;..... 4, € F — {ab} to be distinct and
also conclude that R(A'B) =n — 1.

Cuse 2.2: d(fi) =q >d(g)) = 1.
Let w be the number of linear invariant polynomials of B, and u = d(g,., ).

Note that 2< g <n/2.

(1), w<g=u.
In this case, 4 and B are similar to

A=C(fi)yd K and B =C(g.1)&L".

12

respectively.  Since RK')YzZ(n—qg)—-n—¢)/q. R{L)=Zmn—qg—w)
—(n—q—w)/q, we have R(K') + R(L") 2 2n —2g +2 —-2n/qg— (g — D)w/q =
2n—2¢+2 - 2n/q — (g — 1) (g —~ 1)/q. Notice the fact that the quadratic ex-
pression 2¢* — (n + 5)q + 2n + 1 is nonpositive for 2< ¢ <n/2. We have that
RIK'Y+R(L"y2n—gq—1, and we can verify that (K'.JL"") is also a
(t — 1)-pair.
We are going to use the same technique as we used in Case 1.
Suppose that n—g¢q >t By the induction assumption, there is
X € Fi=axt9) such that R(K'XL"X ") = rank(K’XL"X "' — JI) = ¢ — 1. Then,
by Lemma 2. there is a nonsingular matrix Y € F¢”¢ such that
R(C(A)YC(g1)Y ™) = rank(C(/)YC (g, )Y = 21) = 1.
Then
RUCU) & KDY = X)(Clgurn) L)Y X))
= rank(A(Y & X)B(Y &£ X)) = ) =1
Suppose that n — g < ¢t < n — 1. Since R(K") + R(L") =2 n — g — 1, by the in-
duction assumption there exists a nonsingular matrix X € £ 4=} guch that
RIK'XL'X™ ") = rank(K'XL'X"" —}I)=n—q—~ 1.
Then, by Lemma 2, there exists a nonsingular matrix ¥ € F9*¢ such that
R(C(f)YC(gw)Y ") = rank(C(f))YC(g, )Y "= i) =t—(n—g—1).
Then
RU(C{/)EKYY 2 X)Clgy )b LYY & X) |)
=rank(A(Y SXB(Y & X) ' — i) = 1.
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Suppose that t = n — 1.

. R(4) + R(B) = n, that is the pair (4, B) is spectrally complete for the prod-
uct.
2. R(4) + R(B) = n — 1. We prove this is impossible.

Note that r<n/g and s<(n—w)/2+w. Hence n+1=r+s<wt
(n—w)/2+n/q. Asw< g~ 1, we have ¢ — (3 +n)g + 2n > 0, a contradiction
because ¢* — (3 4+ n)g +2n < 0 for 2< g < n/2.

(2).w<q<u.

Note that 4 and B are similar to

Clg) | 0

A=C(f)ek and B = |°
0

respectively, where C(g) € F**%. Assuming that u > n/2, then R(K') >n
—n/q—(q—1), R{L)=n-w-g—1. So RK)+RL")=2n—w-1
—q-n/qg—(q—1)=22n—(g—1)-29—n/g=2n—3qg+1—n/gq. Notice
the fact that the quadratic expression 2¢* — (n+2)g +n <0 for 2< g< n/2
and n > 4. We have that R(K') + R(L") = n — g — 1. It s also easy to check that
IR(K") = R(L")| < |w+ 1 —1|<qg—1<t— 1. Assume that u < n/2. Note that
u = 3 and « cannot be n/2 because, in this case, as B is nonderogatory, we will
have w=n/2. So R(L") = (n—¢q)— (w+ (n—w)/3) and R(K') > (n -q)
—(n/q—1). We have that R(K')+R(L") > 2n~2g+1—n/q —2w+n)/3
22 —29+1-n/qg—(2(q—1)+n)/3=2n—29—(2¢* - 5¢+ nq + 3n)/3q.
Notice the fact that the quadratic expression 5¢° — (8 + 2n)g + 32 <0 for
2<g<n/3 and n>4. We have that R(K') +R(L")>n—g—1. When
n/3 <q<n/2, we have r =2, it is obvious R(K') +R(L") = n—qg — 1. So in
any case we have R(K')+R(L")=2n—q~—1. On the other hand,
IR(K') = RIL")| < Jw+ (0 — w)fu = 1| < Ju— 2 (n — u— 2)/2| < (n — 1)/2,
the last inequality holds because 2<u<n/2. So the induction assumption
holds for the pair (K',L").

Bear in mind that a square matrix is similar to its transpose, so we may
change the order of 4’ and B'. Now we reduced our problem to the same type
as Case 1, and we may do the same analysis as we did before.

(3).w<gand u <gq.

Note that 4 and B are similar to

cif) 0

K/ and C(gw+1) & LH*,
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respectively, where C(f) e F***. In this case we have that
uz?2 g=23 w<qg-—1 Since RK') = (n—u)—n/3 and R(L") = (n —u)—
wt+mn—u-w)u)yzn—u)—(nfu—1+(g—Dw—-1)/u). We have
RKY+R(LY22n-2u—n/3—(n+(q—- 1)(u—1))/u+ 1. Notice the fact
that the quadratic expression 3u? — (2n—3q+ 9u+3n—3¢g+3<0 for
2<u<g—1and 3 g<n/3. We have that R(K') + R(L") 2 n—u— 1. When
n/3 < q<n/2, we have r =2, it is obvious R(K') + R(L"} zn—u—~1. So in
any case we have R(K')+R(L")2n—u—1. And we can verify that
(K',AL" "} is also a (z — 1)-pair.

Again we reduced our problem to the same form as Case 1, and we may do
the same analysis as we did before.

(4). g<w.

In this case, 4 and B are similar to

A =C(fiysK and B =x,9L",
respectively, where x, € F*¢ is a scalar matrix. First suppose that
R(K') = R(L"). As
IR(A") — R(B)| <t < R(A) + R(B'),
we have
(g— 1) +RK') = R(L") <t < (g — 1) + R(K") + R(L").
That means R(K')—R(L")<t—(g—1)<RK')+R(L"). Note that
t — (g —1)<n— g — 1. By the induction assumption, there exists X such that
RIK'XL'X™") = rank(K'XL"X ™" — i) =t — (¢ — 1).

Then R((C(f1) @ K') I, & X)(x, ® L"), & X)) = 1.

Second, suppose that R(B') > R(A'). That means R(L") > (¢ — 1) + R(K'). If
t—(qg—1)=R(L") — R(K"), then we may do the same as we did in the first
case. Now consider ¢t — (¢ — 1) < R(L") — R(K"). As R(L") > R(A4'), there must
be one diagonal block in L” whose order is greater or equal to the order of
C(f1). Moving it to the first diagonal block we can get a matrix similar to B’
of the form

o

where C(g) € Fi*,
We have R(L") — R(K') = R(L") — R(K') — q. Because ¢ > |R(4') - R(B)| =
R(L") — R(K') — (¢ — 1), by induction assumption there exists X such that

R(L"XK'X™") = rank(L"XK'X™" — i) =1, > R(L") — R(K') — q.
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Then by Lemma 2. there exists Y such that
R(C(2)YC(f)Y ') = rank(C(@)YC(f1)Y ' — i) =t —1t,.
Thus we have
R(A'B') = 1.

Third, suppose that R(4") =2 R(B') =R(L") > R(K'). If t — (g — 1) = R(L")
—R(K'"), then we may do the same as we did in the first case. Now consider
t—(g—1) <R(L"Y - R(K'). Let z=R(L") — R(K'). Clearly, z<¢g—1, and
t2RA)—R(B)=RK)+(g—1)—R(L") =(qg—1)—z. As R(L") > R(K'),
there must be one diagonal block in L” whose order is greater or equal to
the order of C(f,). Then we may get a matrix B”, similar to B, of the form

xq—: & C(g) | 0
0 ... 01

L///
0

where C(g) € F7 and R(x,_- > C(g)} =z — 1. (If there is a block in L” with
size z + 1, then let B" =x,. .-y, 2 C(g) = L")
Since C(f)) is nonderogatory, by Lemma 3. there is ¥ € F¢*¢ such that

R((x, - Clg)YC(/)Y ) = rank((x,- & C(g))YC(£1)Y " = A1)
=g-1—-(E-1)=q-=z
On the other hand, by the induction assumption, there is X € FV~47"~¢ guch
that
R(L"XK'X Yrank(L"XK'X ' —il)=1t— (g — 2).
So
R(A'B) =1t.

Assume that ¢t = n — I.
1. R(4) + R(B) = n, the pair (4.B) is spectrally complete for the product.
2. R(A)+R(B) =n—1, ie.. (g— 1+ RK)+R(L")=n-1 Then
RK'V+R(L")y=n—gq.
That means the pair (K’. L") is spectrally complete for the product. We may
choose distinct nonzero elements, 4. ....4,_,, different from the eigenvalues
of C(fi)x, (we recall that x, is a ¢ x ¢ scalar matrix) and satisfying
At ... imy = det K'L”. Then it is easy to conclude that R(A'B') = n—1. [
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