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Abstract. We analyze microscopic many-body calculations of the nuclear symmetry energy and its density
dependence. The calculations are performed in the framework of the Brueckner-Hartree-Fock and the self-
consistent Green’s functions methods. Within Brueckner-Hartree-Fock, the Hellmann-Feynman theorem
gives access to the kinetic energy contribution as well as the contributions of the different components
of the nucleon-nucleon interaction. The tensor component gives the largest contribution to the symmetry
energy. The decomposition of the symmetry energy in a kinetic part and a potential energy part provides
physical insight on the correlated nature of the system, indicating that neutron matter is less correlated
than symmetric nuclear matter. Within the self-consistent Green’s function approach, we compute the
momentum distributions and we identify the effects of the high momentum components in the symmetry
energy. The results are obtained for the realistic interaction Argonne V18 potential, supplemented by the
Urbana IX three-body force in the Brueckner-Hartree-Fock calculations.

1 Introduction

The nuclear symmetry energy, defined as the difference
between the energy per particle of pure neutron matter
(PNM) and symmetric nuclear matter (SNM), and, in
particular, its density dependence, is a crucial ingredient
to understand many properties of isospin-rich nuclei and
neutron stars [1,2]. A major scientific experimental and
theoretical effort is being devoted to study the proper-
ties of asymmetric nuclear systems. Laboratory experi-
ments, such as those recently performed or being planned
in existing or next-generation radioactive ion beam facil-
ities such as the Facility for Antiproton and Ion Research
(FAIR, Germany), Rikagaku Kenkyusho (RIKEN, Japan),
the Heavy Ion Research Facility in Lanzhou (HIRFL,
China), SPIRAL2 at the Grand Accelerateur National
d’Ions Lourds (GANIL, France), and the upcoming Fa-
cility for Rare Isotope Beams (FRIB, Michigan State Uni-
versity) can probe the density behavior of the symme-
try energy [1]. More precisely, experimental information
on the density dependence of the symmetry energy be-
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low, close to and above the saturation density of nu-
clear matter can be obtained from isospin diffusion mea-
surements [3], giant [4] and pygmy resonances [5,6], iso-
baric analog states [7], isoscaling [8] or meson produc-
tion in heavy-ion collisions [9,10]. Moreover, the accu-
rate measurements of the neutron skin thickness in 208Pb
via parity-violating electron scattering (PREX experi-
ment) [11,12] or by means of antiprotonic atom data [13–
15] also constrain the density dependence of the symme-
try energy because of the so-called Typel-Brown correla-
tion [16,17]. A recent update and a critical analysis of
these constraints on the nuclear symmetry energy can
be found in ref. [18]. Further details on these and other
methods are given in other contributions to this topical
issue.

Additional information on the symmetry energy can
be gathered from astrophysical observations of compact
objects, which open a new window into both the bulk
and microscopic properties of nuclear matter at extreme
isospin asymmetries [2]. In fact, the symmetry energy de-
termines to a large extent the composition of β-stable
matter and therefore the structure and mass of neutron
stars [19]. In particular, the characterization of the core-
crust transition in neutron stars [20–25], or the analysis of
power law correlations, such as the relation between the
radius of a neutron star and the equation of state [26], can
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put stringent constraints on the symmetry energy. From
the theoretical point of view, the symmetry energy has
been determined using both phenomenological and mi-
croscopic many-body approaches. Phenomenological ap-
proaches, either relativistic or non-relativistic, are based
on effective interactions that are usually fit to reproduce
the binding energy of stable nuclei [27]. Therefore, pre-
dictions at high asymmetries should be taken with care.
The Skyrme-Hartree-Fock [28] and the relativistic mean
field [29] methods are the most common ones. However,
in spite of the large amount of constraints imposed in the
fitting procedures of the effective interactions, there is still
a large dispersion on the results for the symmetry energy
(and its derivatives) provided by the phenomenological
approaches. Hence, fully microscopic approaches look as a
safe and necessary alternative.

Microscopic approaches start from realistic nucleon-
nucleon (NN) interactions that reproduce the scattering
and bound state properties of the free two-nucleon sys-
tem. In-medium correlations are then built using many-
body techniques that incorporate the effects of the nu-
clear medium and account for isospin asymmetry effects
such as, for instance, the difference in the Pauli block-
ing factors of neutrons and protons in asymmetric mat-
ter [30]. Among this type of approaches the most popular
ones are the Brueckner-Bethe-Goldstone (BBG) [31,32]
and the Dirac-Brueckner-Hartree-Fock [33–35] theories,
the variational method [36], the correlated basis function
formalism [37], the self-consistent Green’s function tech-
nique (SCGF) [38] or, recently, perturbative calculations
using Vlowk interactions [39]. In this work, we discuss re-
sults for the Brueckner-Hartree-Fock (BHF) [31] approxi-
mation of the BBG theory and for the SCGF approach.

Unfortunately, whatever realistic two-nucleon force
(2NF) is used in a non-relativistic many-body calcula-
tion, the saturation properties of nuclear matter fail to
be reproduced. Saturation densities are too large and sat-
uration energies too attractive, with calculations falling in
the so-called Coester band [40]. Three-body forces (3BF)
are expected to take care of this limitation. 3BFs are also
required in light nuclei, whose binding energies are not
correctly predicted when computed with 2NF only [41].
In this work, we employ the Argonne V18 (AV18) NN po-
tential [42] in all calculations. Moreover, BHF calculations
have been supplemented with the Urbana IX 3BF, reduced
to a two-body density-dependent force by averaging over
the third nucleon in the medium [43–46]. The extension of
the SCGF formalism to include 3BFs has been achieved
only recently [47].

In the following, we report microscopic calculations
of the nuclear symmetry energy and its density depen-
dence [48]. We also explore the different effect of NN cor-
relations on SNM and PNM. We discuss how the isospin
dependence of NN correlations affects the symmetry en-
ergy. To this end, we study the contribution of the different
terms in the NN interaction, particularly the tensor one,
to the symmetry energy [49]. We describe how NN correla-
tions produce high-momentum components and how these
affect the kinetic energy and the symmetry energy [50]. As
mentioned above, the calculations are performed in the
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Fig. 1. (Color online) Density dependence of the symmetry
energy coefficients S2 and S4 calculated in the BHF approxi-
mation using the AV18 interaction plus a 3BF of the Urbana
type, as indicated in the text.

framework of BHF and SCGF approaches, which are well
suited for this type of analysis.

2 Isospin asymmetric nuclear matter

Assuming charge symmetry for nuclear forces, the en-
ergy per particle of asymmetric nuclear matter can be ex-
panded around SNM in the isospin asymmetry parameter,
β = (N −Z)/(N +Z) = (ρn −ρp)/ρ only in terms of even
powers of β,

E

A
(ρ, β) = ESNM (ρ) + S2(ρ)β2 + S4(ρ)β4 + O(6) . (1)

Here, ESNM (ρ) is the energy per particle of SNM, S2(ρ)
is identified (neglecting surface contributions [7,14]) with
the usual symmetry energy in the semiempirical mass for-
mula

S2(ρ) =
1
2

∂2E/A

∂β2

∣
∣
∣
∣
β=0

, (2)

and

S4(ρ) =
1
24

∂4E/A

∂β4

∣
∣
∣
∣
β=0

. (3)

The dominant dependence of the energy per parti-
cle of asymmetric nuclear matter on β is essentially
quadratic [30,51,52]. Therefore, contributions from S4 and
other higher terms can be neglected. One can then esti-
mate the symmetry energy by subtracting the energy per
particle of PNM and that of SNM, according to

S2(ρ) ∼ E

A
(ρ, 1) − E

A
(ρ, 0) . (4)

To check this approximation, we plot in fig. 1 the density
dependence of the coefficients S2 and S4 obtained in our
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Fig. 2. (Color online) Isospin asymmetry dependence of the density (left panel), energy per particle (middle panel), and
incompressibility coefficient (right panel) at the saturation point of asymmetric nuclear matter. Solid lines show the results of
the BHF calculation whereas dashed lines indicate the results of the expansion of eqs. (12), (13) and (14). Units of E0(β) and
K0(β) are given in MeV, whereas ρ0(β) is given in fm−3.

BHF calculation. As expected, the coefficient S4 is very
small and S2(ρ) is an increasing function of ρ in the density
region considered (0–0.3 fm−3). In other words, the energy
per particle of PNM is always larger than that of SNM and
no isospin instability shows up [53].

To characterize the density dependence of the sym-
metry energy around saturation, it is useful to perform a
series expansion in terms of the density. To this end, one
considers first the density dependence of the energy per
particle of SNM around the saturation density ρ0 in terms
of a few bulk parameters,

ESNM (ρ) = E0+
K0

2

(
ρ − ρ0

3ρ0

)2

+
Q0

6

(
ρ − ρ0

3ρ0

)3

+O(4) .

(5)
The coefficients E0, K0 and Q0 correspond to the en-
ergy per particle, the incompressibility coefficient, and the
third derivative of the energy of SNM at saturation,

E0 = ESNM (ρ = ρ0), K0 = 9ρ2
0

∂2ESNM (ρ)
∂ρ2

∣
∣
∣
∣
ρ=ρ0

, (6)

and

Q0 = 27ρ3
0

∂3ESNM (ρ)
∂ρ3

∣
∣
∣
∣
ρ=ρ0

. (7)

Similarly, the symmetry energy around saturation can
also be characterized in terms of a few parameters,

S2(ρ) = Esym + L

(
ρ − ρ0
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)

+
Ksym

2
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6

(
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+ O(4) , (8)

where Esym is the symmetry energy at saturation, and
the quantities L, Ksym and Qsym are related to its slope,
curvature, and third derivative, at saturation density,

L = 3ρ0
∂S2(ρ)
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, Ksym = 9ρ2
0

∂2S2(ρ)
∂ρ2

∣
∣
∣
∣
ρ=ρ0
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and

Qsym = 27ρ3
0

∂3S2(ρ)
∂ρ3

∣
∣
∣
∣
ρ=ρ0

. (10)

Combining the expansions of eqs. (1), (5) and (8),
one can predict the existence of a saturation density, sat-
isfying a zero pressure condition. For a given asymme-
try, the energy per particle can be expanded around the
new, asymmetry-dependent saturation density, ρ0(β) ∼
ρ0(1 − 3(L/K0)β2), as

E

A
(ρ, β) = E0(β) +

K0(β)
2

(
ρ − ρ0(β)
3ρ0(β)

)2

+
Q0(β)

6

(
ρ − ρ0(β)
3ρ0(β)

)3

+ O(4) , (11)

where the coefficients E0(β), K0(β), and Q0(β) define the
energy per particle, the incompressibility coefficient, and
the third derivative at the new saturation density, ρ0(β).
These coefficients can be written in terms of the quantities
defined at ρ0, i.e., the saturation density for β = 0,

E0(β) = E0 + Esymβ2 + O(4) , (12)

K0(β) = K0 + (Ksym − 6L − Q0

K0
L)β2 + O(4) , (13)

Q0(β) = Q0 + (Qsym − 9L
Q0

K0
)β2 + O(4) . (14)

In fig. 2, we explore the behavior of the saturation den-
sity ρ0(β) (left panel), energy per particle E0(β) (middle
panel) and incompressibility K0(β) (right panel) as a func-
tion of β2, up to an asymmetry of β ∼ 0.6, for which one
still finds a saturation density. The figure shows the very
good agreement between the expansion up to second order
in β (dashed lines) and the exact numerical calculations
(solid lines). For β = 0, one recovers the results of SNM.
As β increases, however, the saturation density, the bind-
ing energy, and the incompressibility decrease.

We finish this section by showing in fig. 3 the density
dependence of the symmetry energy S2(ρ) and its slope
parameter, L, defined as L(ρ) = 3ρ∂S2(ρ)

∂ρ , obtained in our
BHF calculation.
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Fig. 3. (Color online) Density dependence of the symmetry
energy and the slope parameter L calculated in the BHF ap-
proximation using the AV18 interaction plus a 3BF of Urbana
type as indicated in the text.

3 The tensor component of the NN
interaction

Realistic NN interactions should fulfill a minimum set of
requirements. In particular, realistic potentials are built
to reproduce the Nijmegen database [54], which contains a
full set of NN elastic scattering phase shifts up to energies
of about 350MeV, with and accuracy of χ2/Ndata ∼ 1.
Only potentials that fulfill this condition should be used
as input for the so-called ab initio many-body schemes,
which aim at providing a first-principles description of
the equation of state (EoS) of PNM and SNM. The Ar-
gonne V18 potential [42] is one such realistic interaction,
that has been used for ab initio calculations in nuclear
matter and finite nuclei with a diversity of many-body
approaches [55].

Applying symmetry arguments, the strong interaction
part of the AV18 potential can be expressed as a sum of
18 operators,

Vij =
∑

p=1,18

vp(rij)O
p
ij . (15)

The first 14 operators are associated to the spin, isospin,
tensor, spin-orbit, and quadratic spin-orbit components of
the nuclear force,

Op=1,...,14
ij = 1, τi · τj ,σi · σj , (τi · τj)(σi · σj),

Sij , Sij(τi · τj),L · S,L · S(τi · τj),

L2, L2(τi · τj), L2(σi · σj),

L2(τi · τj)(σi · σj),

(L · S)2, (L · S)2(τi · τj) . (16)

Table 1. Deuteron D-state probability PD, quadrupole mo-
ment Qd (in fm2), total binding energy, kinetic and potential
energy, and their decomposition (in the second row) in partial
waves, calculated for the AV18 NN interaction. All energies are
given in MeV.

PD(%) Qd E K V

5.78 0.27 −2.24 19.86 −22.10

KS KD VS VD 2 VSD

11.30 8.56 −3.95 0.77 −18.91

The four additional operators,

Op=15,...,18
ij = Tij , Tij(σiσj), TijSij , (τzi + τzj) , (17)

where Tij = 3τziτzj −τiτj is the isotensor operator, break
charge independence. The radial functions that multiply
each operator are adjusted by fitting experimental data
on two-body scattering phase shifts as well as deuteron
properties.

The tensor component of the NN interaction, which
is crucial in the generation of NN correlations in the nu-
clear medium, plays a central role in the reproduction of
the experimental phase shifts. Moreover, the tensor is also
largely responsible for the structure and binding energy of
the deuteron, the simplest bound nucleonic system. Even
though the deuteron only probes the NN potential in the
3S1-3D1 partial waves, the analysis of the independent
contributions of the different waves (S−, D− and mixed
channel) highlights the importance of the different compo-
nents of the NN interaction [55,56]. The first observation is
that for a realistic potential, as AV18, the binding energy
of the deuteron results from a strong cancellation between
the kinetic and the interaction energies (see first row of ta-
ble 1). For the AV18, the binding energy, E = −2.24MeV,
comes from a large kinetic, K = 19.86MeV, and interac-
tion, V = −22.10MeV, energies. Note that this is the
binding energy obtained with only the strong interac-
tion part of AV18, i.e., when all small electromagnetic
terms are omitted. These repulsive electromagnetic terms
shift the binding energy to the true experimental value
E = −2.22MeV. It is also worth stressing that the charge-
dependent terms of Vp(p = 15, . . . , 18), described in terms
of an isotensor operator, have no contribution in the isos-
inglet deuteron state.

The D-state probability as well as the quadrupole mo-
ment are also a direct consequence of the tensor com-
ponent of the nuclear force that allows for the coupling
between the S- and the D-wave. It is instructive to sep-
arate the contributions of the 3S1 and 3D1 states to the
total kinetic and potential energies (see second row of ta-
ble 1). Assuming that the deuteron is a properly normal-
ized combination of the 3S1 and 3D1 partial waves, we
define the contributions of the S and D states to the ki-
netic energy, KS = 〈3S1|K|3S1〉 and KD = 〈3D1|K|3D1〉,
and to the potential energy, VS = 〈3S1|V |3S1〉 and VD =
〈3D1|V |3D1〉. The latter also receives a contribution from
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Table 2. Contribution of the different components of the NN
AV18 interaction to the binding energy of the deuteron. All
energies are given in MeV.

Central Tensor Spin-orbit L2

−4.45 −16.62 −3.75 2.72

the 3S1-3D1 mixing, VSD = 〈3S1|V |3D1〉. Actually the
largest contribution comes from the mixing term, VSD,
which accounts for more than 85% of the final value of
the potential energy.

Additional information can be obtained by looking
at the expectation values of the different components of
the potential on the ground-state wave function of the
deuteron. We have grouped the 18 components into four
sets: the first four operators (p = 1, . . . , 4), the tensor
components, Sij (p = 5, 6), the spin-orbit components
(p = 7, 8 and p = 13, 14), and the quadratic orbital angu-
lar momentum components L2 (p = 9, . . . , 12). The group
of charge-dependent terms, p = 15, . . . , 18, does not con-
tribute to the deuteron. The results of this decomposition
are presented in table 2. As expected, the largest contri-
bution corresponds to the tensor component. All contri-
butions are attractive, except the one proportional to L2,
which is slightly repulsive. Notice also that the spin-orbit
contribution is non-negligible and amounts to 17% of the
total potential energy.

4 Brueckner-Hartree-Fock results

The energy per particle of asymmetric nuclear matter in
the BHF approach is calculated as

E

A
(ρ, β) =

1
A

∑

τ

∑

|k|<kFτ

(
h̄2k2

2m
+

1
2
Re

[

Uτ(k)

]
)

, (18)

where Uτ (k) represents the mean field “felt” by a nucleon
(τ = n, p) due to its interaction with the other nucleons
of the medium. Uτ (k) is calculated through the “on-shell
energy” G-matrix,

Uτ =
∑

τ ′

∑

|k|<kF
τ′

〈kk′|Gττ ′;ττ ′(ω = ετ (k) + ετ ′(k′))|kk′〉A ,

(19)
where the sum runs over all neutron and proton occu-
pied states, and the matrix elements are properly antisym-
metrized. The single-particle energy, ετ (k), is defined in
terms of the single-particle kinetic energy and the single-
particle potential,

ετ (k) =
h̄2k2

2mτ
+ Re[Uτ (k)] . (20)

Finally, the G-matrices describing the effective interaction
between two nucleons in the medium are constructed by

Table 3. Bulk parameters characterizing the density depen-
dence of the energy of SNM and the symmetry energy around
the saturation density for our BHF calculation with and with-
out 3BF. All quantities are in MeV, except ρ0, given in fm−3.

ρ0 E0 K0 Q0

BHF (no 3BF) 0.240 −17.30 213.6 −225.1
BHF (3BF) 0.187 −15.23 195.5 −280.9

Esym L Ksym Qsym

BHF (no 3BF) 35.8 63.1 −27.8 −159.8
BHF (3BF) 34.3 66.5 −31.3 −112.8

solving the Bethe-Goldstone equation

Gτ1τ2;τ3τ4(ω) = Vτ1τ2;τ3τ4

+
∑

jk

Vτ1τ2;τjτk

Qτjτk

ω − εj − εk + iη
Gτjτk;τ3τ4(ω) , (21)

where V denotes the free-space NN interaction, Qτjτk

is the Pauli operator which allows only for intermediate
states compatible with the Pauli principle, and ω is the
so-called starting energy, which corresponds to the sum of
non-relativistic energies of the interacting nucleons. Note
that the whole procedure requires a self-consistent process.
It has been shown by Song et al., [57] that the contri-
bution to the energy from three-hole-line diagrams (that
account for the effect of three-body correlations) is min-
imized when the so-called continuous prescription [58] is
adopted for the in-medium potential, which is a strong
indication of the convergence of the BBG expansion. We
adopt this prescription in our calculation.

The BHF calculations discussed in this work have been
performed with the realistic AV18 NN interaction supple-
mented with a 3BF of Urbana type. This 3BF contains two
parameters that are fixed by requiring that the BHF cal-
culation reproduces the energy and saturation density of
SNM. The results reported here correspond to the original
set of parameters of Baldo and Ferreira in ref. [46]. More-
over, the 3BF has been reduced to a two-body density-
dependent force by averaging over the third nucleon in
the medium [46]. See also refs. [59–61] for an extensive
analysis of the use of 3BFs in nuclear and neutron mat-
ter.

We start the discussion of the BHF results by showing
in table 3 the bulk parameters characterizing the density
dependence of the energy of SNM and the symmetry en-
ergy around saturation density. We report the BHF results
obtained with and without three-body forces. The com-
parison of the different quantities is strongly influenced by
the fact that they are calculated at a value of the satura-
tion density which is different with and without 3BF. Note
that, in general, the effects of the 3BF are more important
on the isoscalar properties, like K0. Our BHF calculation
gives a value of L = 66.5MeV, compatible with recent
experimental constraints (see e.g., fig. 1 of ref. [62]).

The properties associated with the density dependence
of the symmetry energy are little affected by the 3BF.
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Table 4. Free-Fermi gas contribution, ΔEBHF and total en-
ergy per particle of PNM and SNM. The respective contri-
butions to Esym and L are also reported. The results corre-
spond to the saturation density of the BHF approach, ρ0 =
0.187 fm−3 for the AV18+3BF. All results are given in MeV.

EPNM ESNM Esym L

FFG 38.911 24.529 14.382 28.779
ΔEBHF −19.682 −39.600 19.918 37.721
Total 19.229 −15.071 34.300 66.500

This is due to both a shift in saturation density and to a
similarly repulsive effect on the energy of both SNM and
PNM once the density shift is taken into account. Overall,
there is a small dependence of the isovector properties on
the 3BF, even though the independent contributions on
SNM and PNM are not small. Recently, the importance
of 3BFs has been revisited in the context of chiral effec-
tive field theory [63]. New fitting protocols of two-nucleon
forces seem to indicate that the effect of 3BF could actu-
ally be rather small in PNM. Nevertheless, the relative im-
portance of the two- and three-body contributions change
with the resolution scale. It is not clear that such obser-
vations, valid for the somewhat soft chiral interactions,
apply when considering a hard interaction like AV18. In
any case, one does not expect isovector properties to de-
pend much on the presence or absence of 3BFs.

In the BHF approach, one calculates the correction,
ΔEBHF , to the energy of the free Fermi gas (FFG), i.e.,
the underlying non-interacting system, and expresses the
total energy as

EBHF = EFFG + ΔEBHF . (22)

In table 4, we report this decomposition for the energy
per particle of SNM and PNM, at the saturation density
provided by the AV18+3BF calculation. The symmetry
energy is calculated as the difference of the total energy
per particle of PNM and SNM. The FFG energy is larger
for neutron matter than for symmetric matter and there-
fore its contribution to the symmetry energy is positive
and amounts to ∼ 14.38MeV. ΔEBHF is less attractive
for neutron matter than for nuclear matter and also gives a
positive contribution (∼ 19.92MeV) to the symmetry en-
ergy. The addition of these two quantities, which are of the
same order, provides a symmetry energy of ∼ 34.3MeV.
The contributions to L can be decomposed similarly, but
in this case the contribution of ΔEBHF (37.22MeV) is
slightly larger than that of the FFG, which amounts to
28.78MeV.

To get a further physical insight into ΔEBHF , it is
useful to look at its spin-isospin (S, T ) decomposition, re-
ported in table 5. As expected, the main contribution is
from the (1, 0) channel which is acting only in SNM and
has a large attractive contribution. It is precisely in this
channel where the tensor component of the NN force is
active. Note that the T = 1 channels give similar contri-
butions in nuclear and neutron matter and therefore its
contribution to the symmetry energy is small. The chan-
nel (0, 0) gives a repulsive contribution to the total energy

Table 5. Spin-isospin (S, T ) channel decomposition of ΔEBHF

for PNM and SNM. The respective contributions to Esym and
L are also reported. The results correspond to the satura-
tion density of the BHF approach, ρ0 = 0.187 fm−3 for the
AV18+3BF. All results are given in MeV.

(S, T ) EPNM ESNM Esym L

(0, 0) 0 5.894 −5.894 −23.085
(0, 1) −21.041 −17.764 −3.277 −3.142
(1, 0) 0 −28.363 28.363 51.696
(1, 1) 1.359 0.633 0.726 12.252

Table 6. Partial wave decomposition of ΔEBHF for PNM and
SNM. The contributions of each partial wave to Esym and L are
also reported. The results correspond to the saturation density
of the BHF approach, ρ0 = 0.187 fm−3 for the AV18+3BF. All
results are given in MeV.

Partial wave EPNM ESNM Esym L

1S0 −14.330 −14.407 0.077 11.229
3S1 0 −24.865 24.865 35.521
1P1 0 5.193 −5.193 −20.201
3P0 −4.522 −3.713 −0.809 0.224
3P1 18.459 12.002 6.457 27.702
3P2 −13.550 −8.102 −5.448 −17.784
1D2 −5.850 −3.154 −2.696 −10.888
3D1 0 1.036 −1.036 −3.894
3D2 0 −3.795 3.795 15.844
3D3 0 −0.522 0.522 3.305
1F3 0 0.699 −0.699 −3.394
3F2 −0.651 −0.221 −0.430 −1.515
3F3 2.022 0.826 1.196 5.026
3F4 −0.743 −0.183 −0.560 −3.006
1G4 −0.810 −0.247 −0.563 −3.029
3G3 0 0.002 −0.002 0.425
3G4 0 −0.213 0.213 0.449
3G5 0 −0.053 0.053 0.617
1H5 0 0.029 −0.029 0.122
3H4 0.034 0.040 −0.007 0.224
3H5 0.226 −0.033 0.258 0.949
3H6 0.044 0.035 0.010 0.136

in SNM and since it does not play any role in neutron
matter, its contribution to the total symmetry energy is
negative. Notice again that the tensor force is not acting
in this channel.

Let us further this analysis by looking at the contribu-
tions of the different partial waves to ΔEBHF , as shown
in table 6. Notice that the 1S0 contribution, which is dom-
inated by the central component of the NN potential, has
a similarly large contribution to both PNM and SNM and
therefore its effect on the symmetry energy is almost negli-
gible. The largest contribution is provided by the 3S1-3D1

partial wave, which corresponds to T = 0, active only
in nuclear matter. For larger values of J , the contribu-
tions become smaller and many cancellations take place.
In general, one observes that the final energy is the result
of a large cancellation between EFFG and ΔEBHF and
that the absolute value of the correction ΔEBHF for neu-
tron matter is significantly smaller than for nuclear mat-
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Table 7. Kinetic, 〈K〉, and potential, 〈V 〉, contributions to
EPNM , ESNM , Esym and L. The results correspond to the
saturation density of the BHF approach, ρ0 = 0.187 fm−3 for
the AV18+3BF. Units are given in MeV.

EPNM ESNM Esym L

〈K〉 53.321 54.294 −0.973 14.896
〈V 〉 −34.251 −69.524 35.273 51.604
Total 19.070 −15.230 34.300 66.500

ter. This observation points to the well-accepted fact that
neutron matter is less correlated than nuclear matter.

In the case of the deuteron, the total binding energy
is the result of a strong cancellation between the kinetic
energy and the potential energy. The large kinetic energy
is a consequence of the NN correlations existing in the
deuteron, i.e., in the 3S1-3D1 channel. In that sense, we
would like to study the decomposition of the total energy
of the infinite system in the kinetic and potential energy.
This kinetic energy will contain the effects of correlations
and will be larger than the energy of the FFG. Therefore
the difference between the correlated kinetic energy and
EFFG can quantify NN correlations.

Unfortunately, the BHF approach does not give di-
rect access to the separate contribution of the kinetic and
potential energies because it does not provide the corre-
lated many-body wave function, |Ψ〉. However, it has been
shown [64–67] that the Hellmann-Feynman theorem [68,
69] can be used to estimate the ground-state expectation
value of the interaction energy. The kinetic energy can
then be calculated simply by subtracting the expectation
value of the potential energy from EBHF . Writing the nu-
clear Hamiltonian as H = T +V , and defining a λ depen-
dent potential, H(λ) = T + λV , the expectation value of
the potential energy is given by

〈V 〉 ≡ 〈Ψ |V |Ψ〉
〈Ψ |Ψ〉 =

(
dE

dλ

)

λ=1

. (23)

In table 7 we show the kinetic and potential energy con-
tributions to the total energy of PNM, SNM, Esym and
L at the saturation density, ρ0 = 0.187 fm−3, provided by
the AV18+3BF within the BHF approach.

As in the case of the deuteron, the total energy of
both PNM and SNM are the result of a strong cancella-
tion between the kinetic and potential energies. It is worth
noticing that the kinetic energy contribution to Esym is
very small and slightly negative. This is in contrast to
the results for the FFG (see table 4). The increase of the
kinetic energy with respect to the FFG energy, which is
due mainly to short-range and tensor correlations, is much
larger for SNM than for PNM. Again this is an indication
that, at the same density, SNM is more correlated than
PNM.

It is also worth mentioning that the kinetic contribu-
tion to L is smaller than the corresponding one of the FFG
(LFFG ∼ 29.2MeV) reported in table 4. Clearly the ma-
jor contribution to both Esym and L is due to the poten-
tial energy part. Note that this contribution is practically

Table 8. Spin-isospin (S, T ) channel decomposition of the po-
tential contribution to EPNM , ESNM and Esym and L. The
results correspond to the saturation density of the BHF ap-
proach, ρ0 = 0.187 fm−3 for the AV18+3BF. All results are
given in MeV.

(S, T ) EPNM ESNM Esym L

(0, 0) 0 5.6 −5.6 −21.457
(0, 1) −29.889 −23.064 −6.825 −17.950
(1, 0) 0 −49.836 49.836 90.561
(1, 1) −4.362 −2.224 −2.138 0.450

equal to the total value of Esym and it represents ∼ 78% of
L. Results along these lines have been recently reported by
Xu and Li [70] using a phenomenological model for n(k).

The spin-isospin (S, T ) channel decomposition of the
potential part of EPNM , ESNM , Esym and L is also illus-
trative. This is reported in table 8 at ρ0. As in the case of
ΔEBHF , the largest contribution to both Esym and L is
provided by the (S = 1, T = 0) channel, which is where
the tensor is active. Interestingly, the S = 0 channels have
a small and similar negative contribution to Esym and also
a moderate negative contribution to L showing in total a
strong cancellation with the contribution of the channel
(S = 1, T = 0). However, the origin of these contribu-
tions is qualitatively different. While the channel (S = 0,
T = 0) does not contribute to neutron matter and has a
small repulsive contribution to nuclear matter, the con-
tribution of the channel (S = 0, T = 1) is the result of a
strong cancellation of large attractive contributions of this
channel in both PNM and SNM. Analogous conclusions
can be obtained from table 9, where the partial wave de-
composition of the potential energy is reported. Note that
similar arguments have been already pointed out by other
authors [30,53,70–81].

Next, we analyze the contribution to the potential en-
ergy of the different components of the nuclear force. To
such end, we apply the Hellmann-Feynman theorem to
the separate components of the AV18 potential and the
Urbana IX three-body force. The results are reported in
table 10. The central contribution 〈V1〉 is large, attractive
and similar for neutron and nuclear matter and therefore
gives a small contribution to Esym. The largest contribu-
tion to isovector properties is from the tensor 〈VSij(τiτj)〉,
which acts very efficiently to supply attraction in SNM.

As mentioned above, the Urbana IX 3BF is reduced to
an effective density-dependent two-body force when used
in the BHF approach. This reduced, effective two-body
force contains three components of the type up(rij , ρ)Op

ij

where Op=1,3
ij = 1, (σi · σj)(τi · τj), Sij(τi · τj). This in-

troduces additional central, στ and tensor terms, which
are reported on the last three rows of table 10 (see e.g.,
ref. [46] for details). The contribution of the two-body
density-dependent effective force to Esym can be consid-
ered small, with the tensor component being the most
important. These results clearly confirm that the tensor
force gives the largest contribution to both Esym and L.
The contributions from the other components are either
negligible, or almost cancel out.
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Table 9. Partial wave decomposition of the potential part of
EPNM , ESNM , Esym and L . The results correspond to the
saturation density of the BHF approach, ρ0 = 0.187 fm−3 for
the AV18+3BF. Units are given in MeV.

Partial wave EPNM ESNM Esym L

1S0 −23.070 −19.660 −3.410 −3.459
3S1 0 −45.810 45.810 71.855
1P1 0 4.904 −4.904 −18.601
3P0 −5.312 −4.029 −1.292 −1.898
3P1 16.110 10.720 5.390 21.9149
3P2 −16.000 −9.334 −6.666 −21.168
1D2 −5.956 −3.201 −2.755 −11.033
3D1 0 0.981 −0.981 −3.739
3D2 0 −3.982 3.982 16.601
3D3 0 −0.798 0.798 4.895
1F3 0 0.694 −0.694 −3.348
3F2 −0.695 −0.229 −0.466 −1.799
3F3 2.000 0.821 1.179 4.883
3F4 −0.796 −0.194 −0.602 −3.239
1G4 −0.812 −0.247 −0.565 −3.036
3G3 0 −0.001 0.001 0.441
3G4 0 −0.213 0.213 0.449
3G5 0 −0.057 0.057 0.650
1H5 0 0.029 −0.029 0.107
3H4 0.033 0.040 −0.007 0.232
3H5 0.225 −0.033 0.258 0.968
3H6 0.043 0.034 0.009 0.144

Table 10. Contributions to EPNM , ESNM , Esym and L from
the different components of the AV18 potential (indicated as
〈Vi〉) and the reduced Urbana three-body force (indicated as
〈Ui〉). The results correspond to the saturation density of the
BHF approach, ρ0 = 0.187 fm−3 for the AV18+3BF. Units are
given in MeV.

〈V 〉 EPNM ESNM Esym L

〈V1〉 −31.212 −32.710 1.498 −5.580
〈Vτiτj 〉 −4.957 3.997 −8.954 −20.383
〈Vσiσj 〉 −0.319 −0.382 0.063 2.392
〈V(τiτj)(σiσj)〉 −5.724 −11.388 5.664 2.521
〈VSij 〉 −0.792 1.912 −2.704 −4.998
〈VSij(τiτj)〉 −4.989 −37.592 32.603 47.095
〈VLS 〉 −7.538 −1.754 −5.784 −12.251
〈VLS(τiτj)〉 −2.671 −6.539 3.868 3.969
〈VL2〉 11.850 13.610 −1.760 1.521
〈VL2(τiτj)〉 −2.788 0.270 −3.058 −14.262

〈VL2(σiσj)〉 1.265 1.383 −0.118 1.405

〈VL2(σiσj)(τiτj)〉 0.051 0.008 0.043 −0.341

〈V(LS)2〉 4.194 5.682 −1.488 −0.327
〈V(LS)2(τiτj)〉 5.169 −6.190 11.359 31.368

〈VTij 〉 0.003 0.039 −0.036 −0.022
〈VTij(σiσj)〉 −0.017 −0.106 0.089 0.042
〈VTijSij 〉 0.004 0.079 −0.075 −0.124
〈V(τzi

+τzj
)〉 −0.084 −0.001 −0.083 −0.331

〈U1〉 2.985 3.251 −0.266 −0.630
〈U(τiτj)(σiσj)〉 2.252 3.999 −1.745 −7.228
〈USij(τiτj)〉 −0.935 −7.092 6.157 27.768

5 High-momentum components in the
symmetry energy

In the previous section, we have used the kinetic energy
difference between the correlated system and the under-
lying FFG as a measure of NN correlations. The kinetic
energy is the result of integrating the momentum distribu-
tion weighted with the kinetic energy associated to each
momentum. The presence of correlations modifies the step
function associated to the FFG, Θ(kF −k). There is a pro-
motion of particles to higher momentum states and, as a
consequence, there is also a depletion below kF . Thus, the
single-particle momentum distributions can be taken also
as a probe of the correlations embedded in the nuclear
wave function.

In this section, we would like to discuss the effects of
correlations directly on the momentum distributions. To
this end, we rely on another microscopic many-body ap-
proach, the self-consistent Green’s function method. This
approach provides access to the single-particle properties
in a natural way. In particular, n(k) can be obtained and,
as a consequence, the kinetic energy can be studied. We
will analyze how NN correlations affect differently the mo-
mentum distribution in symmetric and neutron matter
and, therefore, which is the effect of the high-momentum
components on the symmetry energy [50].

In the SCGF method, a diagrammatic expansion is
employed to solve for the in-medium one-body propaga-
tor, rather than for the energy of the system. For infinite
matter, the method is conventionally applied at the lad-
der approximation level. SCGF calculations give direct ac-
cess to microscopic properties related to the single-particle
propagator. These include self-energies, spectral functions
and momentum distributions, from which one can derive
microscopic and bulk properties. The ladder approxima-
tion provides a microscopic description of short-range and
tensor effects via a fully dressed propagation of nucleons
in nuclear matter. This is achieved by: a) computing the
scattering of particles via a T -matrix (or effective inter-
action) in the medium, b) extracting a self-energy out of
the effective interaction and, c) using the Dyson equation
to build two-body propagators which are subsequently in-
serted in the scattering equation. To solve this closed set
of equations, a self-consistency procedure is required. The
formalism is well established for two-body potentials and
its extension to include three-body forces has been only re-
cently considered [82,47]. Here, all the SCGF results have
been obtained with the AV18 NN interaction. Three-body
forces are not included in this part of the work.

The bulk properties of nuclear matter and neutron
matter are obtained within the SCGF approach through
the Galitskii-Migdal-Koltun sum-rule,

E

A
=

ν

ρ

∫
d3k

(2π)3

∫
dω

2π

1
2

(
k2

2m
+ ω

)

A(k, ω)f(ω) , (24)

where ν = 4(2) is the spin-isospin degeneracy of nu-
clear (neutron) matter, ρ is the total density and f(ω) =
[1 + e(ω−μ)/T ]−1 is a Fermi-Dirac distribution. A(k, ω) is
the one-body spectral function which, loosely speaking,



Eur. Phys. J. A (2014) 50: 13 Page 9 of 13

0 0.5 1 1.5 2
Momentum, k/k

F

0

0.2

0.4

0.6

0.8

1
M

om
en

tu
m

 d
is

tr
ib

ut
io

n,
 n

(k
)

AV18
FFG

0 0.5 1 1.5 2
Momentum, k/k

F

0

0.2

0.4

0.6

0.8

1

M
om

en
tu

m
 d

is
tr

ib
ut

io
n,

 n
(k

)

Symmetric Matter Neutron Matter
=0.16 fm

-3 =0.16 fm
-3

T=5 MeV T=5 MeV

Fig. 4. (Color online) Momentum distribution of SNM (left panel) and PNM (right panel) obtained with the SCGF approxi-
mation for AV18 (full lines). The momentum distributions of the FFG (dashed line) obtained in the same conditions are also
shown.

represents the probability of knocking out or adding a
particle with a given single-particle momentum, k, and
energy, ω. The single-particle spectral function provides
the full knowledge of the one-body propagator and gives
access to the calculation of all the one-body properties
of the system. For instance, the momentum distribution,
n(k), is obtained by convoluting the spectral function with
a Fermi-Dirac factor,

n(k) =
∫

dω

2π
A(k, ω)f(ω) . (25)

The total density sum rule,

ρ = ν

∫
d3k

(2π)3
n(k) , (26)

is used to extract the chemical potential μ. This can also
be calculated using its thermodynamical definition, i.e.,
by a density derivative of the free-energy density. The
agreement between these two determinations of the chem-
ical potential is taken as a test of the thermodynamical
consistency of the approach. Notice that, to avoid pairing
instabilities, the SCGF calculations have been performed
at finite temperature (T = 5MeV) [83].

As mentioned earlier, correlations beyond the mean-
field approximation have a particularly clear manifesta-
tion in the momentum distribution [84]. A sizable deple-
tion appears below the Fermi sea, while high-momentum
components are populated. To illustrate this point, we
show in fig. 4 the momentum distribution of SNM (left
panel) and PNM (right panel), at ρ = 0.16 fm−3 and T =
5MeV. The results obtained within the SCGF method for
AV18 (solid lines) are compared to the momentum distri-
butions of the FFG in the same conditions (dashed lines).
The FFG is used here as a reference for the thermal ef-
fects, as deviations from the step function give a measure
of the importance of finite temperature. A common char-
acteristic of the SCGF and the FFG n(k) is the softening
of the distribution around the Fermi surface, k = kF , as-
sociated to the finite temperature. Notice also that the
density ρ = 0.16 fm−3 does not correspond to the satura-
tion point of the AV18 potential. Actually, AV18 within

the SCGF approach at T = 5MeV, gives a saturation
density ρ = 0.19 fm−3, smaller than the one obtained in
BHF with AV18 (see table 3). The inclusion of three-body
forces should improve the saturation properties (as it hap-
pens in the BHF approach) without qualitative changes in
the isovector properties [82].

Correlation effects in the momentum distribution are
substantially different in SNM than in PNM [84]. The ef-
fects of the tensor component in the S-D channel in the
isospin saturated system induce a large amount of cor-
relations. Consequently, the Fermi surface is quite more
depleted for SNM than for PNM (compare the left and
right panels in fig. 4). Characteristic values for these de-
pletions are obtained from the occupation at zero momen-
tum, namely, n(0) ∼ 0.87 for SNM and n(0) ∼ 0.96 for
PNM. As the momentum distribution is normalized to the
total density (see eq. (26)), the high-momentum compo-
nents are also rather different for both systems at the same
density. A useful way to characterize these differences is
to look at the integrated strength over different regions of
momenta

φm(ki, kf ) =
ν

2π2ρ

∫ kf

ki

dkkmn(k) . (27)

The integral with m = 2 represents the fractional contri-
bution of a given momentum region to the total density,
while the integral with m = 4 is related to the total kinetic
energy of the system.

In table 11, we report the integrated strengths with
m = 2 for SNM (columns 2 to 4) and PNM (columns 5
to 7) at ρ = 0.16 fm−3 and T = 5 for the AV18 potential
(rows 3 to 6) and the FFG (rows 7 to 10). As expected,
in SNM there is a substantial depletion of states below
the Fermi surface, i.e., only ∼ 75% of the strength is in
the region between 0 and kF . Part of the depletion has
thermal origin, and the comparison with the FFG in the
same momentum region suggests that between 1/2 and
2/3 of the integrated depletion comes from the softening of
the Fermi surface due to finite temperature. The effect of
correlations is also important in populating states beyond
the Fermi surface: for SNM (PNM) there is still a 3–5%
(1–2%) of strength in the region k > 2kF .
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Table 11. Contributions of different momentum regions to
the integrated strength with m = 2 (columns 2 and 5), kinetic
(3 and 6, in MeV) and total energies (4 and 7, in MeV). SNM
(PNM) results are presented in columns 2, 3 and 4 (5, 6 and 7).
Rows 3 to 6 show SCGF results with the AV18 NN interaction,
whereas rows 7 to 10 correspond to the FFG results. All results
are computed at ρ = 0.16 fm−3 and T = 5 MeV.

SNM PNM

(ki, kf ) φ2 K/A E/A φ2 K/A E/A

(0, kF ) 0.755 15.6 −7.65 0.863 28.7 11.6

(kF , 2kF ) 0.194 11.4 −1.00 0.119 10.3 3.24

(2kF , ∞) 0.051 14.5 −1.29 0.018 7.16 0.32

(0, ∞) 1.00 41.5 −9.94 1.00 46.2 15.2

(0, kF ) 0.861 17.7 17.7 0.912 30.4 30.4

(kF , 2kF ) 0.139 6.00 6.00 0.089 5.75 5.75

(2kF , ∞) 0.00 0.00 0.00 0.00 0.00 0.00

(0, ∞) 1.00 23.7 23.7 1.00 36.2 36.2

The energy per particle is also affected by short-range
and tensor correlations. In particular, the kinetic energy,

〈K〉
A

=
ν

ρ

∫
d3k

(2π)3
h̄2k2

2m
n(k) , (28)

noticeably increases with respect to the FFG due to the
population of high-momentum components. The contri-
butions of the different momentum regions to the kinetic
energy of nuclear an neutron matter are also reported in
columns 3 and 6 of table 11. The first thing to notice is
that the total integrated values (see rows 4 and 8 of ta-
ble 11) of the correlated kinetic energies are larger than
those of the FFG. For SNM, dynamical correlations pro-
duce an increase of 17MeV with respect to the FFG, while
the increment is only 10MeV for neutron matter, in agree-
ment with the BHF estimations. Overall, this reinforces
the idea that correlations play a smaller role in PNM than
in SNM. Paying attention to the different regions, we see
that the momentum components beyond kF amount to
more than 50% of the total in SNM, while in PNM they
account for around 25%. In contrast, for the FFG at this
temperature, the contributions of states above kF is less
than 25% for SNM and less than 15% for PNM. The FFG
strength above the Fermi surface is due to thermal effects,
which for low temperatures are mainly localized within a
small region around kF . As a consequence, there is almost
no contribution beyond 2kF . Therefore, this contribution
in the interacting case can be entirely attributed to NN
correlations. In the case of AV18, which is considered to
be a hard interaction, the contribution beyond 2kF is even
larger than that between the Fermi surface and 2kF . Sim-
ilar analysis have been also performed for other realistic
two-body potentials in ref. [50].

To compute the symmetry energy as the difference of
the PNM and SNM energies, we have to resort to the
quadratic dependence of the total energy on the isospin
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Fig. 5. (Color online) Dependence of the kinetic (upper panel),
total (central panel) and potential (lower panel) energy on the
asymmetry parameter for the AV18 interaction (squares) at
ρ = 0.16 fm−3 and T = 5 MeV. The triangles in the upper panel
give the energy of the FFG in the same conditions. Dotted lines
are linear regressions to guide the eye.

asymmetry. This quadratic behavior has been validated in
fig. 2 for the total energy calculated in BHF. The SCGF
formalism has been generalized to isospin asymmetric sys-
tems and hence we can directly check the quadratic asym-
metry dependence of the energy [52]. Moreover, to explore
the influence of the high-momentum components on the
symmetry energy, we have decomposed the symmetry en-
ergy in its kinetic and potential energy parts. In the BHF
approach, we have used the Hellmann-Feynman theorem
to evaluate the kinetic energy. In the SCGF method, the
kinetic energy is directly accessible from the momentum
distribution and the potential energy can be found from
the Galitskii-Migdal-Koltun sum rule. Consequently, and
as a first step before computing isovector properties, we
validate the quadratic behavior of both pieces of the total
energy with the asymmetry parameter.
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In fig. 5, we show the kinetic, potential and total en-
ergy for the AV18 potential at ρ = 0.16 fm−3 an T =
5MeV as a function of β2. In general, the three compo-
nents seem to have a well-defined parabolic dependence on
the asymmetry parameter. The slope of the linear regres-
sion reduces to the different components (kinetic, poten-
tial and total) of the symmetry energy when the parabolic
approximation holds exactly. In the upper panel of fig. 5
we compare the kinetic energy provided by the AV18 po-
tential and the one of the FFG (triangles). As expected,
the correlated kinetic energy is larger than the FFG at all
asymmetries. However, the isospin dependence is different
than the one of the FFG. While the kinetic energy of AV18
in SNM is K/A ∼ 42MeV and that of PNM is ∼ 46MeV,
the FFG gas provides ∼ 24MeV and ∼ 36MeV, respec-
tively. The difference between the correlated kinetic ener-
gies associated to PNM and SNM is smaller than for the
FFG. This agrees with the estimate provided by the BHF
approach at T = 0. The small value of the kinetic sym-
metry energy (clearly smaller than the FFG estimation)
is a very noticeable aspect of the decomposition of the
symmetry energy in a kinetic and a potential energy com-
ponent. The origin of this behavior can be related to the
tensor and short-range repulsive components of the NN
force, that when acting on SNM, induce large correlations
and produce an important renormalization of the kinetic
energy with respect to the FFG. The absence of this com-
ponents in PNM (some partial waves are suppressed due
to the Pauli principle) reduces the relative enhancement
of the kinetic energy. Consequently, the difference in to-
tal kinetic energies of PNM and SNM is smaller for the
correlated case than for the FFG value.

The asymmetry dependence of the total energy per
particle is driven by a balance between the kinetic and
potential terms. The size of both contributions is den-
sity dependent but, at ρ = 0.16 fm−3, the potential term
dominates the isospin dependence, as seen in fig. 6. In
other words, the potential energy contribution to the sym-
metry energy is 20.2MeV, while the kinetic energy part
is only 4.9MeV. The total value for the symmetry en-
ergy is S2 = 25.1MeV, somewhat below the BHF result
including 3BFs. However, one should take into account
that the BHF calculation is done at T = 0 and computed
at a saturation density of 0.187 fm−3. Regarding thermal
effects, the symmetry energy of the FFG can provide an
indication of their importance. At ρ = 0.16 fm−3, the sym-
metry energy increases from 12.4MeV at zero tempera-
ture to 13MeV at T = 5MeV. Overall, this indicates a
very small effect of temperature on the symmetry energy.
This is a result of the cancellation of the somewhat sim-
ilar temperature dependences of symmetric and neutron
matter [85].

The total symmetry energy predicted by the SCGF
approach is a little below the currently accepted value of
∼ 32MeV [86]. In principle, the inclusion of 3BFs should
bring the SCGF results closer to experiment. A first es-
timation of the effect of 3BF can be obtained from the
BHF calculations including 3BF. Around ρ = 0.16 fm−3,
3BF tend to increase the symmetry energy by 3–4MeV. A
similar increase in the SCGF case would bring the value
closer to experiment.

In general, we see that the symmetry energies pro-
vided by SCGF calculations tend to be smaller than the
BHF ones with the same 2NF force. The origin of this dif-
ference can be argued as follows. Compared to the BHF
approach, the ladder summation in the SCGF approach
includes hole-hole diagrams as well as the full dressing
of the intermediate propagators. It is known that both
things have an overall repulsive effect in the total energy
of the system with respect to the BHF values [87]. This
repulsive effect is mostly associated to correlations and,
since these are more relevant in SNM, we expect more
repulsion in SNM than in PNM. The difference in ener-
gies between PNM and SNM is therefore reduced with
respect to BHF and the SCGF symmetry energy becomes
smaller than the BHF one. Note that, since this repulsive
effect increases with density, the slope of the symmetry
energy as a function of density is also expected to de-
crease.

The density dependence of the kinetic and potential
energy components of the symmetry energy is shown in
fig. 6. The symmetry energy and its components grow
steadily in the density range considered. The potential
part is always larger in absolute value than the kinetic
one, and dominates the contribution to S2. It is interest-
ing to note that the kinetic symmetry energy becomes
negative at densities around 0.04–0.08 fm−3. One might
expect thermal effects to be important in this regime, but
the comparison with the FFG once again demonstrates
that finite temperature has a negligible effect on the sym-
metry energy. As a matter of fact, the comparison be-
tween the symmetry energy of the FFG at T = 0 (dashed
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line) and at T = 5MeV (solid line) shows that the differ-
ences are extremely small (less than 1MeV) in the whole
density regime. As mentioned above, the small influence
of the temperature on the symmetry energy is caused
by the relatively similar thermal corrections of SNM and
PNM [85]. When taking the difference of both energies,
one eliminates practically the temperature dependence.
Consequently, the negative kinetic symmetry energies at
low densities can be considered a NN correlation effect.
This is similar to the BHF case around saturation density
and has also been confirmed in other many-body calcula-
tions.

6 Summary and conclusions

We have studied the density dependence of the symme-
try energy within the microscopic Brueckner-Hartree-Fock
and the self-consistent Green’s function approaches, us-
ing the realistic AV18 NN potential as a starting point.
In the BHF case, we have supplemented our calculations
with the Urbana IX three-body force. The BHF calcu-
lations provide a symmetry energy, Esym = 34.3MeV,
and a value of the slope parameter, L = 66.5MeV, com-
patible with recent experimental constraints. Using the
Hellmann-Feynman theorem, we have evaluated the sepa-
rate contributions of the different components of the NN
interaction to the nuclear symmetry energy and to the
slope parameter. This allows for a decomposition of the
symmetry energy in a kinetic and potential energy parts.
The results show that the potential part gives the main
contribution to both Esym and L and that the kinetic en-
ergy contribution is very small. We have also performed a
partial wave as well as a spin-isospin channel decomposi-
tion of the potential part of Esym and L, showing that the
largest contribution is given by the spin-triplet (S = 1)
and isospin singlet (T = 0) channels. All results point
to the dominant role of the tensor component of the NN
force, which gives the largest contribution to both Esym

and L.
We have completed our analysis by an explicit cal-

culation of the momentum distributions within the self-
consistent Green’s function approach. We have shown
how correlations affect differently the momentum distri-
butions of SNM and PNM. We have performed the anal-
ysis by quantifying the contribution of momenta beyond
the Fermi surface to the kinetic and total energies by us-
ing the Galitskii-Migdal-Koltun sum rule. The change in
the high-momentum components as the isospin asymme-
try is modified confirms the decrease of the kinetic energy
component of the symmetry energy with respect to the
free Fermi gas. Both changes, namely the decrease in the
kinetic energy component of the symmetry energy as well
as the change in n(k) with respect to the uncorrelated step
function, are used as an indicator of the presence of corre-
lations in SNM and PNM. Also, both measures point to-
wards the same conclusion, namely that correlations play
a smaller role in PNM than in SNM. Or, in other words,
pure neutron matter is a less correlated system than sym-
metric nuclear matter.
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