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Abstract A method based on space-filling coverage designs to optimize groundwater 4

monitoring networks for plume detection and quantification is proposed. Space-filling 5

objective functions are then compared with more classical functions. The method was 6

applied to a hypothetical case-study with 160 candidate locations, resulting in final 7

optimal design monitoring networks with 40 locations. Results show that the method is 8

superior to those based strictly on the probability of contamination detection for 9

quantifying maximum and mean values. In the light of these results fractal properties of 10

space-filling coverage methods and of simulated annealing are also discussed. 11
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A vast number of technical documentation has been published on the design and 15

operation of groundwater monitoring networks, namely in respect to where monitoring 16

points should be located and which sampling strategies to adopt. Four techniques are used 17

to tackle these questions. The first is based on geostatistical methods (Rouhani 1985), and 18

the second on simulation methods, also from the late 1980s (Massmann and Freeze 19

1987). The third category of techniques to appear involved transfer functions (Andricevic 20

1990). However, the most widely used approaches are optimization methods, which were 21

first introduced in the early eighties (Olea 1999), being latter developed by many other 22

authors, with the later models gradually incorporating objective functions with cost 23

parameters, such as, installation, operation, maintenance and environmental costs (Reed24

et al. 2000), or the minimization of the number of wells (Meyer et al. 1994). A detection 25

monitoring network is optimal if its capacity to detect early contamination is maximal 26

(Meyer et al. 1994) and the concentration levels are very low. A compliance monitoring 27

network is one that is able to give the best representation of the effective concentrations –28

best represents the spatial distribution of the variable (Cunha and Nunes 2011).  Some 29

simplifications to least-cost objective functions have been proposed, in particular by 30

using proxies, like minimizing the error of kriged concentration values, or the variance of 31

the error of the kriged concentration error (Nunes et al. 2004b). We concentrate here on 32

another proxy method, the space-filling methods, for which this is the first application in 33

groundwater monitoring. Space-filling functions have already been used in the design of 34
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air quality monitoring network design by Morris and Mitchell (1995) and by Royle and 35 

Nychka (1998). As the decision variables (location of the monitoring site) are 36 

combinatorial, the models contain discrete variables and so the classic linear, nonlinear 37 

and integer linear programming methods are unsuitable. Lee and Ellis (1996) concluded 38 

that simulated annealing and tabu search perform best for groundwater monitoring 39 

network design.  40 

 41 

One of the hardest tasks in groundwater contamination evaluation is to characterize 42 

contamination plumes, because a large number of sampling sites is generally required to 43 

obtain good estimates (accurate and exact) of the contaminated area and concentration 44 

values. The practical difficulty with these estimates is directly related to the uncertainty 45 

about many of the flow and transport parameters. At the top of the list are the medium’s 46 

hydraulic conductivity and dispersivity. Hydraulic conductivity affects groundwater flow 47 

velocities at all scales, which, as a result, will also condition contaminant dispersion 48 

(calculated as the product of flow velocity and dispersivity). These uncertainties about 49 

parameters (state-variables) should be incorporated into the modeling to best reflect 50 

uncertain decisions about parameter values. The uncertainty is well handled by statistical 51 

approaches, where a state-variable spatial distribution is considered a random function, 52 

the value at a given location is a random variable, and the sampled values are a possible 53 

outcome of the random variable. There are two main approaches to groundwater 54 

modeling using random fields of medium parameters. One is the expansion of the 55 

uncertain parameters in terms of a series. The other is stochastic simulations based on 56 

Monte Carlo methods, of which the most common are Latin hypercube sampling, 57 

sequential Gaussian simulations, turning bands method, and LU decomposition.   58 

 59 

In the present paper a method for optimizing monitoring networks for detecting and 60 

estimating the shape of the plumes is presented. The method combines space-filling 61 

methods and Monte-Carlo sequential simulations. Two objective functions are compared: 62 

i) includes both the space-filling criterion and the relative number of contamination 63 

detections criterion; ii) includes only the relative number of contamination detections 64 

criterion. The latter is similar to the objective functions proposed by other authors as the 65 

“probability of contamination detection” criterion (James and Gorelick 1994). A specific 66 

computed code in FORTRAN was developed by the team to test monitoring optimization 67 

problems. Some very preliminary results were presented in Nunes et al. (2005).  68 

 69 

 70 

Materials and methods 71 
The method requires the simulation of L alterative concentration fields by modeling mass 72 

transport in an equal number of hydraulic conductivity random fields, in which W 73 

locations are placed (Step 1) – candidate set C; in Step 2 a set of w locations is chosen 74 

from C, generating design set D (solution generation); in Step 3 the number of detections 75 

and the space-filling criterion are computed using the design set, and the objective 76 

function (OF) is computed. Convergence of the objective function to the optimal value is 77 

controlled by the simulated annealing algorithm, responsible for controlling the entire 78 

process starting in Step 2: the process of solution generation and OF calculation is 79 



cyclical until the criteria for stopping the algorithm are attained and the optimal solution 80 

presented (see Figure 1).  81 

 82 

 83 

Figure 1 Method  84 

 85 

The candidate sets C are obtained by making mass transport simulations of contaminant 86 

dispersion in groundwater and considering the sampling locations as the values in the 87 

model nodes. Uncertainty is introduced by generating several conditional simulations of 88 

the hydraulic conductivity field using sequential Gaussian simulation. The method is 89 

conveniently offered by the GSLIB geostatistical toolbox (Deutsch and Journel 1992). 90 

Applying the deterministic groundwater flow to these random fields will result in 91 

hydraulic potential fields and velocity fields that are also random functions. Solving flow 92 

and transport equations with the proper initial and boundary conditions simulates the 93 

transport of a chemical species If enough stochastic simulations are computed and 94 

modeled, then it will be possible to compute, at each model cell, the density function of 95 

contaminant concentration, and also the probability that a given threshold is surpassed. 96 

Consider the concentration a chemical species study, C(xi,j), at a location xi,j, and a 97 

reference value (e.g., legal limit, or analytical detection limit), Cref, then, the relative 98 

number of detections is determined by  99 
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The use of r(xi,j) reflects the empirical need to include in the monitoring network those 100 

stations that detected contamination more often, i.e., with higher detection capacity.  A 101 

good space-filling design is one with monitoring locations scattered throughout the 102 

domain with minimal unsampled areas (Fang et al. 2000). Space-filling methods use a 103 

criterion based on a metric that makes it possible to evaluate the goodness of a space 104 

covering design. The most common criteria are based on the average of distances 105 

between candidate locations and the locations already included in the design sub-set 106 

(equation (4)). One possible metric is given by dp(x,D). 107 
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The exponent q is  >0 and is p< 0. dp(x,D)®0 as the location x converges to a member of 108 

D. The coverage design is the subset of w elements in D from the W elements in C, DÌ 109 

C, that minimize the criterion Pp,q(D).  The algorithm implemented in our computer code 110 

is a simulated annealing equivalent of the exchange (or swap) algorithm as proposed by 111 

Johnson et al. (1990) considering no restriction on neighborhood search. The two 112 

objective functions studied here are 113 
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M1 was constructed so as to combine the best characteristics of the “probability of 114 

contamination detection” criterion, and the space-filling criterion. With the first, 115 

maximization of contamination detection is sought; with the second criterion, 116 

maximization of space coverage is intended. Hence, the resulting monitoring networks 117 

should allow good estimates of contaminated areas, and good contamination detection 118 

capacity. M2 has been used by many other authors in other methodological approaches, 119 

and is used here for benchmarking the first model. The problem proposed here was 120 

solved using a simulated annealing (SA) heuristic optimization algorithm, executed in 121 

Fortran 90. The implementation followed the description presented in Nunes et al. 122 

(2004a).  123 

 124 

The proposed objective function models were tested in a hypothetical case-study, 125 

consisting of a continuous source of a conservative chemical species, located in a very 126 

small area, which contaminates a porous unconfined aquifer. This example illustrates, 127 

e.g., the leakage from storage tanks, or from landfills, of a chemical species that does not 128 

adsorb to the soil matrix nor is it affected by degradation, or does so in a very limited 129 

fraction. The problem usually faced in these cases is where to locate the monitoring 130 

piezometers so that they have the greatest probability of detecting the contamination, also 131 

allowing the best estimation of the plume concentration geometry (estimation of the 132 

affected area and volume). The problem that is solved here is one of detection and 133 

evaluation of spread monitoring after the early detection of a rupture in an underground 134 

containment structure, or a spill on the soil surface. The period between leakage and 135 

setting of the monitoring network for early assessment of contamination is 30 days, 136 

corresponding to the amount of time elapsing between first detection, decision to 137 

undertake the monitoring, contracting the service, and setting up the monitoring network. 138 

The modeling domain is, in this simplified example, a rectangle of 400 m x 150 m, 139 

discretized into a 10 m squared mesh, in 2D conditions. Upper and lower limits of the 140 

porous medium are horizontal and the depth of the aquifer is 20 m. Flow boundary 141 

conditions of Dirichlet type with a head value at 27 m on the West boundary and at 24 m 142 

on the East boundary. No pumping and no recharge are considered. Simulation time is 30 143 

days. Given the fact that modeling conditions do not change during the modeling period, 144 

steady-state conditions are used. Hydraulic conductivity is a heterogeneous stochastic 145 

field with mean hydraulic conductivity, K, of 2.12 x 10
-2 

m/s, and variance of hydraulic 146 

conductivity of 2.5 x 10
-1 

m
2
/s

2
, modeled with an isotropic spherical variogram (nugget = 147 

0.01; sill = 0.24; range = 80 m). Effective porosity is considered constant and equal to 0.1 148 

throughout the domain, whatever the value of K. The longitudinal dispersivity coefficient 149 

is 4.5 m, with anisotropy ratio, ay/ax, of 0.25.  The amount of the chemical species 150 

entering at the top the water table is 400 g/m
2
.d, modeled as a contaminated recharge over 151 

an area of 100 m
2
. No retardation or degradation is considered (given the short time 152 

length considered, the latter assumption is valid even for the most readily biodegradable 153 

species). The molecular diffusion coefficient is considered irrelevant, given the 154 

groundwater flow velocity. At the onset of the simulation concentrations of the chemical 155 



species inside the domain are zero. Groundwater potentials (equation (1)) in the domain 156 

are simulated with MODFLOW (McDonald and Harbaugh 1988). Concentrations are 157 

simulated with the MT3D code (Zheng 1990), which solves equation (2) for conservative 158 

chemical species. Calculation of the value of r(xi,j) required carrying out 100 stochastic 159 

sequential Gaussian simulations and an equal number of flow and mass transport 160 

simulations. The reference value, Cref, is 50 mg/l. It is assumed that the candidate set of 161 

locations is known, with dimension W, and that a design sub-set, with dimension w, is 162 

sought. The design problem is to find the optimal set of  w locations, D==(xi :  i=1,2, ..., 163 

w), from a candidate set with W locations, C=(xj :  j=1,2, ..., W). The candidate set has 164 

W=160 locations, of which only w=40 locations are allowed in the optimal design 165 

monitoring network. The dimension of the solution space is given by the well-known 166 

equation Y=W!/[(W-w]! w!] = 8.6 x 10
37

.  167 

 168 

Results and Discussion 169 
The objective function model M1 was studied for four different combinations of the 170 

coefficients p and q: n(p,q)=((-1,3),(-1,4),(-3,2),(-3,4)). The choice of the coefficients is 171 

arbitrary. For instance, Royle and Nychka (1998) used p=-5 and q=-1, as a compromise 172 

between designs that are close to the minimax solution. In our case the combination (-5,-173 

1) was found to be too instable to compute, giving no meaningful results in any of the 10 174 

runs. It will be clear that for some combinations of p and q the convergence is much more 175 

difficult or even impossible in a practical amount of time. The results from the tested 176 

objective functions were compared with OF M2 to evaluate the impact of including the 177 

space-filling component in the objective function. If the problem had had to be solved 178 

exhaustively by testing all the possible combinations of locations it would require, with 179 

the 2GHz Pentium PC used in the calculus, more than 6.9x10
29

 years. The solutions 180 

presented here, which are the best from 10 runs with different initial solutions, took 181 

nearly 7 hours to calculate each. When the algorithm converges, SA has been found to be 182 

an efficient optimization method. The disadvantage is that it is impossible to know if the 183 

good quality solution obtained by the algorithm is the global optimum (the minimum of 184 

the minima), because optimality is only guaranteed in an almost infinite number of 185 

iterations (almost infinite time). The advantages far outweigh the disadvantages, though. 186 

Figure 2 shows the convergence curves for two (p,q) combinations. A large jump from 187 

high objective function values at high temperatures to very low values is evident for (-188 

1,3). Since simulated annealing is a method based on physics annealing processes, when 189 

a material is cooled slowly into its crystallized form it is possible that it may show some 190 

characteristics also common in physics, like supersolid transition: a very fast drop in 191 

some characteristic of the material when cooled to below some critical temperature 192 

(Andreev and Lifshitz 1969). This may also be related to fractal properties of space-193 

filling networks, for which there seems to be a constant factor relating the dimension of 194 

the network (distance between locations or number of branches in a network) to its 195 

coverage area. What may be happening here is that the critical temperature is related in 196 

some way to specific spatial organizations that best approximate the fractal nature 197 

governing natural networks. This may become an important indication as to which 198 

solutions may be the best candidates to constitute a smaller solution space, if one can 199 

devise a method to identify a set of solutions with the correct fractal nature (e.g., similar 200 

fractal dimension). The behavior of simulated annealing depends crucially on the energy 201 



landscape associated with the optimization problem: the landscape must have special 202 

properties if annealing is to be efficient (fractalness) (Sorkin 1991). Figure 2 shows that 203 

for (-2,3) the fractalness may not have been found, indicating that either a different 204 

transition rule could have been used to improve further the solution (e.g., 2 or 3-opt), 205 

and/or a different combination of this with a slower temperature decrease, but at the 206 

expense of longer running times. These results do not explore all possible combinations 207 

of M1 objective functions (nor is that possible), but they do show that it may be advisable 208 

to test some different objective functions before choosing a solution. For comparison 209 

purposes both the random field r(xi,j) obtained with the candidate sets C,  rC(xi,j) and those 210 

obtained with the optimal D sets, rD(xi,j),  were kriged in an area equal to the modeling 211 

domain, in a grid with 15 x 39 = 585 nodes, using the same variogram model as before. 212 

The kriged fields were then compared with the following statistics: i) mean; ii) 213 

maximum; iii) minimum; iv) mean estimation error; v) relative mean error [(rD(xi,j) -214 

rC(xi,j))/585]; vi) mean estimation variance.  When comparing the two solutions that 215 

converged, (p,q)=(-1,3) or (-2,3), with the other two that did not (not shown in the 216 

figure), it is clear that in terms of the quality of the reproduction of the spatial field, the 217 

former outperform the latter. This is indicated by a mean estimated rD(xi,j) value closer to 218 

that of the candidate network, rC(xi,j). It is interesting to see that the statistics (Table 1) for 219 

(p,q) = (-3,4) are all at a very good level, with the exception of the mean estimated value, 220 

which is the worst of the four, and so the solution would have been a good one in a strict 221 

variance-reduction approach.  222 

 223 
Table 1 Comparison of results for objective functions M1 and M2 (best of the ten runs) 224 

 225 

Results showed that if the intuitive approach of including stations in the design is 226 

exclusively based on the highest relative number of detections (M2), the resulting 227 

network will tend to be too concentrated in the center of the plume (Figure 3c). Also in 228 

this case the quality of the estimated spatial field (of r(xi,j) (and therefore of the 229 

concentrations) is very poor, as shown by the indicator statistics in Table 1. This 230 

objective function has the worst results of the five.  231 

 232 

Figure 2 Simulated annealing convergence curves (best of the ten runs) 233 

 234 

If the objective function M1 is used, the network is much more evenly distributed in 235 

space, covering not only the center of the plume, but also areas where contamination 236 

levels are very low (see Figure 3). This is usually a much more realistic objective when 237 

dealing with the detection of contamination events from point or areal sources. Other 238 

methods have been proposed along these lines using geostatistics and exploration costs 239 

by (Cunha and Nunes 2011) with similar results. The advantage of the space-240 

filling/relative number of detections method over the variance-reduction method lies in its 241 

speed, because geostatistical simulations are made before the optimization, no kriging is 242 

needed during optimization, and because it is not constrained by ergodicity assumptions 243 

(not always verified in contaminated areas due to three-dimensional concentration 244 

trends).  245 

 246 

 247 



Figure 3 a) Relative number of detections, rC(xi,j); b) M1; c) M2 248 

 249 

The advantages over other methods is the simplicity and speed of its implementation, as 250 

well as its intuitively more reality-based approach, making it easier to convey to decision 251 

makers. It describes a method for optimizing monitoring networks for the detection and 252 

estimation of the shape of the plumes. The intuitive approach of including stations in the 253 

design exclusively based on the highest relative number of detections resulted in a 254 

monitoring network that is too concentrated in the center of the plume. If the objective 255 

function M1 is used, the network was revealed to be much more evenly distributed in 256 

space, covering not only the center of the plume, but also areas where contamination 257 

levels are very low This is a much more realistic result when dealing with the detection of 258 

contamination events from point or areal sources. 259 

 260 
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Figure 2. Simulated annealing convergence curves (best of the ten runs) 314 
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Figure 3. a) Relative number of detections, rC(xi,j); b) M1; c) M2 317 
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TABLES 322 

 323 

 324 

Table 1. Comparison of results for objective functions M1 and M2 (best of the ten runs) 325 
Indicators rC(xi,j) M2 [rD(xi,j)] M1 [rD(xi,j)] 

   p=-1; q=3 p=-1; q=4 p=-2; q=3 p=-3; q=4 

Mean  0.2970 0.24565 0.26572 0.26578 0.29538 0.26475 
Maximum 0.7143 0.6780 0.7080 0.7080 0.7080 0.7080 

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 

Mean error -0.00074 -0.00205 0.00456 0.00668 0.00508 0.00425 
Relative mean error - 0.00830 0.0172 0.0251 0.0172 0.0161 

Mean Estimation Variance 0.00240 0.0054 0.0053 0.0054 0.0056 0.0053 

Rank - 3 2 - 1 - 

 326 


