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Abstract. The behaviour and properties of neutrinos in non-uniform nuclear matter, surrounded by elec-
trons and other neutrinos are studied in the protoneutron star early stage characterized by trapped neu-
trinos. The nuclear matter itself is modelled by a relativistic mean-field approach, and models with both
constant couplings and density-dependent couplings are considered. The so-called nuclear pasta phases at
sub-saturation densities, described using the Thomas-Fermi approximation and solved in a Wigner-Seitz
cell, are included in the calculation. We obtain the neutrino total cross section and mean free path, taking
into account scattering and absorption processes and we compare the final results obtained with different
parametrizations. The solution for this problem is important for the understanding of neutrino diffusion in
a newly born neutron star after a supernovae explosion. It is shown that the pasta phase will increase the
neutrino mean free path by as much as an order of magnitude, therefore contributing for shorter emission
time-scales.

1 Introduction

Neutrinos are elementary particles that interact with other
particles only through the weak force and gravity, and,
therefore, neutrino scattering by matter is very unlikely.
On the other hand, this pure weak-force scattering can
reveal some aspects of the structure of matter that other
stronger interactions cannot. Also, this feature represents
an advantage in the sense that neutrinos carry informa-
tion from the target along great distances, as is the case
of neutrinos produced in the interior of stars that reach
earth detectors. For these reasons, the study of neutrino
interaction with matter is at the same time very fruit-
ful but very challenging. In what refers to the scattering
of neutrinos by hadronic matter, despite the experimen-
tal and theoretical problems, some important progress has
been made, examples are the Karmen collaboration [1] and
Los Alamos results [2]. More recently, long-baseline exper-
iments are under way, like MiniBoone, NOvA and other
similar accelerator experiments [3,4]. Although the main
purpose is to obtain further information on the Standard
Model and on neutrino oscillations, a precise knowledge
of the neutrino-hadron interaction as well as the hadronic
structure of the targets [5] is necessary.
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Another important source of information comes from
the physics of core-collapse supernovae and neutron star
evolution. The important ingredient in this case is the
propagation of neutrinos in such a medium, which con-
tains not only baryons but also leptons. In particular,
for baryonic densities below the nuclear saturation value,
structures known as pasta phases [6] are expected. These
clusters may have exotic shapes and are embedded in a
neutron and electron background gas. Actually, a delicate
competition between Coulomb and surface energies de-
termines the most favourable final inhomogeneous struc-
ture. The presence of such structures has a non-negligible
role in the neutrino diffusion which is a key ingredient for
the modelling and simulation of core-collapse supernovae
mechanisms [7–9].

The models for core-collapse supernovae have evolved
in the last decades, allowing presently, under certain con-
ditions, for a neutrino-driven explosion. The mechanisms
that drive the evolutionary stages of massive stars [10]
from collapse to explosion and, later, formation of a pro-
toneutron star (PNS) are not yet completely understood.
However, a huge progress in this area has been done due
to the improvements in the treatment of neutrino inter-
actions and transport in a dense medium [11–13] and, si-
multaneously, due to a better knowledge of the nuclear
equation of state (EOS). Of course, these inputs are cru-
cial for the simulations to succeed in producing an ex-
plosion and quantitatively describe the nucleosynthesis.
Under the current view, just after the supernova explo-
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sion, a PNS is formed at its center made out of dense,
hot, quite proton-rich and neutrino-opaque matter, which
by the combined process of deleptonization and energy
loss, becomes a cold, neutrino-transparent and neutron-
rich compact star. In the early stages of a PNS the neutri-
nos are trapped, since their mean free path is considerably
smaller than the neutron star radius. In this stage, the
neutrinos are essentially degenerate. However, in a few
seconds the trapped neutrinos diffuse out to the neutri-
nosphere, heating the star while decreasing the net lepton
and proton fractions.

In this work we are particularly interested in un-
derstanding whether, in this stage of trapped neutrinos,
the non-homogeneous stellar matter existing in a density
range 0.1–0.7 ρ0, where ρ0 is the normal nuclear matter
density (2.5 × 1014 g/cm3), affects the interaction of neu-
trinos with stellar matter, and, consequently, their mean
free path.

The study of the effect of the pasta phase on the PNS
evolution, in particular on the neutrino diffusion, has been
also considered previously [8,9]. In the first case, a quan-
tum molecular dynamics simulation based on a simple
pure phenomenological interaction, which takes into ac-
count only neutral-current neutrino-target collisions, was
used to obtain the cross sections. In the second case [9], a
more realistic interaction was used to calculate the pasta
structure but within a very simplified approach to deter-
mine the cross section. Even so, in this last case, an im-
portant difference, compared to homogeneous matter, was
found in the total neutrino diffusion coefficients when the
pasta phase is considered. Also, recent simulations [14],
have shown that temperatures and densities close to the
edge of the PNS could be compatible with the expected
conditions for the pasta phase formation, a few seconds
after bounce.

In [13], the authors have emphasized the importance of
treating the neutrino-matter interaction consistently with
the EOS. It was also shown that high-energy neutrinos,
compatible with the energy of neutrinos considered in this
work, are produced at an early stage of the PNS evolution.
In ref. [15], the authors have considered the interaction
of trapped neutrinos with beta-equilibrated homogeneous
matter having a fixed electron lepton fraction. Their re-
sults are appropriate for the early stage of the PNS evo-
lution and the neutrinos are taken at the Fermi energy
(Eν = μν) for several temperatures and special atten-
tion is given for supra nuclear densities. In our work, we
also consider matter in beta-equilibrium with a fixed elec-
tron lepton fraction. However, our focus is on the neutrino
interaction with non-homogeneous matter (pasta phase)
just below saturation density which has not been studied
in the literature in the present context. We choose the elec-
tron lepton fraction Yl = 0.2, a value that was also taken
in ref. [9] for the pasta phase investigation and which is
consistent with recent PNS simulations [16].

Recently in [16], it has been shown that the properties
of the EOS will affect the supernovae evolution, and, in
particular, it was shown that the behaviour of the symme-
try energy, which defines the electron fraction, will have

some impact on the early stages of the evolution. There-
fore, in the present work, which refers precisely to the
early stages, we will discuss the effect of the density de-
pendence of the symmetry energy on the neutrino mean
free path. This is a quantity that is constrained by nuclear
experiments [17].

One way to obtain the pasta phase is to solve the
problem considering charge neutral Wigner-Seitz cells of
appropriate geometries containing neutrons, protons and
electrons within a variational approach, using both rela-
tivistic and non-relativistic mean-field calculations. Most
of the recent applications in this case have used the
Thomas-Fermi approximation [6,18,19], but Hartree-Fock
calculations [20] and three-dimensional Thomas-Fermi
calculations [21] are also found in the literature, all within
the Wigner-Seitz approximation. Recently, it was shown
in [21,22] that performing a pasta calculation taking a
large enough cell to include several units of the pasta
structures, distributions of matter different from the usual
ones considered within the Wigner-Seitz (WS) approxi-
mation could be energetically favoured in some density
ranges. Another approach to this problem, that also goes
beyond the WS approximation, is based on the so-called
quantum molecular dynamics [23–28] approach.

Here we follow the Thomas-Fermi results as described
in [29] in order to generate the pasta phase struc-
ture, starting from a field theoretical approach. The self-
consistent calculation is performed considering matter in
β-equilibrium, where only protons, neutrons, electrons
and neutrinos are present. The total neutrino cross sec-
tion for each kind of particle is calculated, as a function of
the density, taking into account the corresponding geome-
try for the considered density, i.e., droplet, rod, slab, tube
or bubble. The neutrino mean free path (NMFP) energy
and temperature dependence are also discussed.

The neutrino cross section calculation includes the ef-
fects of strong interaction, and accounts for in-medium
mass and energy shifts and degeneracy effects, based on
the formalism previously developed for homogeneous nu-
clear matter [15], with the difference that now the strong
and electromagnetic potentials as well as the nucleon
masses and energies are position dependent. Consequently,
the final expression is similar to the free-space transi-
tion amplitude, and the uniform-matter result becomes,
straightforwardly, a particular case of our expressions for
the cross section.

We will not discuss in the present paper the important
sources of suppression and enhancement due to in-medium
correlation [30–34]. The coherent scattering of neutrinos
by the pasta structure has been studied in [23,24]. The au-
thors have analysed both the static structure factor and
the dynamical response of the pasta and concluded that
neutrino opacities are overestimated in the single heavy-
nucleus approximation relative to the complete molecular
dynamics simulations and that the dynamical response
of pasta showed a substantial strength at low energies
due to the contribution of collective modes. These effects
are important in the low-energy neutrino region, when its
wavelength is of the order of the cell size. Our main ob-
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jective here is to understand how inhomogeneous matter
affects the neutrino cross section through the mean-field
effects under the conditions of incoherent neutrino scat-
tering from individual nucleons.

In this paper we have considered only trapped neutri-
nos, and just electron neutrinos were taken into account in
our calculations, since the other flavours are not expected
to be present in the pasta region. However, we recognize
that non-trapped neutrinos of all flavours can influence
the total cross section and will be considered in a further
investigation. As in [15], we have considered elastic scat-
tering and neutrino absorption in our derivation. In other
words, neutral current and charge-changing processes are
included and their relative contribution to the total cross
section is discussed. In what follows, an outline of the
formalism is presented in sect. 2, numerical results and
discussion are provided in sect. 3, and the conclusions are
drawn in the final sect. 4. The details of the pasta phase
calculation can be found in the cited references and some
details of the cross section calculation are shown in the
appendix.

2 Formalism and model parametrization

We start with a model Lagrangian density that includes
electrons, neutrinos, nucleons, the sigma, omega, rho and
delta meson fields and the electromagnetic interaction,
given by [19,35]

L =
∑

i=p,n

Li+Lσ+Lω+Lρ+Lωρ+Lδ+Lγ +Le+Lν , (1)

where the nucleon Lagrangian reads

Li = ψ̄i [γμiDμ − M∗] ψi, (2)

with

iDμ = i∂μ − ΓvV μ − Γρ

2
τ · bμ − e

1 + τ3

2
Aμ , (3)

M∗ = M − Γsφ − Γδτ · δ. (4)

The meson and electromagnetic Lagrangian densities
are

Lσ =
1
2

(
∂μφ∂μφ − m2

sφ
2 − κ

3
φ3 − λ

12
φ4

)
,

Lω =
1
2

(
−1

2
ΩμνΩμν + m2

vVμV μ +
ζ

12
g4

v(VμV μ)2
)

,

Lρ =
1
2

(
−1

2
Bμν · Bμν + m2

ρbμ · bμ

)
,

Lδ =
1
2

(
∂μδ∂μδ − m2

δδ
2
)
,

Lγ = −1
4
FμνFμν ,

Lωρ = Λ
(
g2

ρbμ · bμ
) (

g2
v(VμV μ)

)
,

where Ωμν = ∂μVν −∂νVμ, Bμν = ∂μbν −∂νbμ−Γρ(bμ ×

bν) and Fμν = ∂μAν − ∂νAμ. The electromagnetic cou-
pling constant is given by e =

√
4π/137 and τ is the

isospin operator. Finally, the electron and neutrino La-
grangian densities read

Le = ψ̄e [γμ(i∂μ + eAμ) − me] ψe,

Lν = ψ̄ν [iγμ∂μ] ψν .

The weak-boson contributions to the above La-
grangians affect the solutions of the corresponding Euler-
Lagrange equations in a completely negligible way due to
their huge masses and relatively small energy range and
are only relevant in order to obtain the neutrino cross sec-
tions.

The solutions of the corresponding Euler-Lagrange
equations are obtained in the mean-field self-consistent
Thomas-Fermi (TF) approximation, as explained in
refs. [19,29]. We have considered two types of parametriza-
tions: one with constant couplings Γi (NL) and another
with density-dependent couplings (DD). In the last case,
the terms proportional to κ, λ, ζ and Λ are set equal to
zero. Within TF the system is considered locally uniform
and the main output are the densities, which are position
dependent. Explicitly, we have for the baryonic, scalar,
isoscalar, scalar-isoscalar, electron and neutrino densities

ρ(r) = ρp(r) + ρn(r) =
〈
ψ̂†ψ̂

〉
;

ρs(r) = ρsp
(r) + ρsn

(r) =
〈

ˆ̄ψψ̂
〉

;

ρ3(r) = ρp(r) − ρn(r) =
〈
ψ̂†τ3ψ̂

〉
;

ρs3(r) = ρsp(r) − ρsn(r) =
〈

ˆ̄ψτ3ψ̂
〉

;

ρe(r) =
〈
ψ̂†

eψ̂e

〉
;

ρν(r) =
〈
ψ̂†

νψ̂ν

〉
;

with

ρi(r) =
γ

(2π)3

∫
d3k (ηki(T ) − η̄ki(T )), i = p, n, e, ν;

(5)

ρsi(r) =
γ

(2π)3

∫
d3k

M∗
i

E∗
i

(ηki(T ) + η̄ki(T )), i = p, n;

(6)

where E∗ =
√

k2 + M∗2, k is the momentum and γ is the
spin multiplicity (γ = 2 for protons, neutrons and elec-
trons and γ = 1 for neutrinos). For a given temperature
T , the distributions are

ηki(T ) = {exp [(Ei − μi)/T ] + 1}−1;
η̄ki(T ) = {exp [(Ēi − μ̄i)/T ] + 1}−1; (7)

with Ei (Ēi) and μi (μ̄i) being the particle (antiparticle)
energy and chemical potential, respectively. The particle
(antiparticle) energy depends on the mesonic fields and is
position dependent.
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Once the densities are determined we calculate the to-
tal neutrino cross section (σ). We follow here the proce-
dure discussed in [15]. For a collision 1 + 2 −→ 3 + 4 we
write

σ = 2GF
2

∫
d3r

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
(2π)4

|�v1 − �v2|
·δ4(P1 + P2 − P3 − P4)η2(T )(1 − η3(T ))(1 − η4(T ))

·
{

(V + A)2(1 − v2 cos(θ12))(1 − v4 cos(θ34))

+(V −A)2(1 − v4 cos(θ14))(1 − v2 cos(θ23))

−M∗
2 M∗

4

E∗
2E∗

4

(V2 −A2)(1 − cos(θ13))
}

. (8)

vi = |ki|/E∗
i , GF is the Fermi constant and V, A are

the weak-current vector and axial vector couplings, re-
spectively, and depend on the target particle and on the
exchanged weak boson. For the neutrino-electron (neu-
trino) cross section we replace M∗ by me (zero). The fac-
tors (1 − η3(T )) and (1 − η4(T )) are due to final-state
Pauli blocking effects. We have considered here scattering
through neutral current and charge-changing processes as
well as neutrino absorption by the neutrons. The explicit
expressions and definitions for each case are shown in the
appendix. Through the analysis of those expressions we
may conclude that the integrand in the cross section is
r-dependent, since the potentials and the effective mass
are position dependent. Note that the same expression
can be used for the calculation of the cross section in the
infinite nuclear matter, for which the potentials and effec-
tive mass are not r-dependent. Also, the above expression
for the cross section has no approximations of the type
E ≈ M , which is usually taken for baryonic targets, nor
of the type E ≈ |�k | for electron targets.

The nucleon internal structure was taken into account
in our calculation, just multiplying the couplings V and
A by the vector and axial-vector nucleon form factors as
explained, for instance, in [36,37] and explicitly written in
the appendix.

The neutrino mean free path is then obtained consid-
ering the cross section for a Wigner-Seitz cell divided by
its volume

λ =
( σ

V

)−1

. (9)

3 Results and discussion

In what follows we show our main results for the pasta
phase, using both Lagrangian parametrizations with con-
stant and density-dependent couplings, as explained be-
fore. For the parametrizations with non-linear terms in
the mesonic sector and constant couplings, we choose the
GM3 [38], NL3 [39], NL3ωρ [40] and the FSUGold [41]
sets of parameters. The sets NL3 and NL3ωρ only differ
in the density dependence of the symmetry energy and
will allow the discussion of the effect of this quantity on
the neutrino mean free path. For the density-dependent
case we take the TW [42] and the van Dalen et al. [43]

Table 1. Model properties for infinite symmetric nuclear mat-
ter at zero temperature and saturation density: the saturation
density ρ0, the binding energy EB/A, the incompressibility K,
the nucleon effective mass M∗, the symmetry energy asym and
its slope L.

ρ0 EB/A K M∗/M asym L

(fm−3) (MeV) (MeV) (MeV) (MeV)

FSUGold 0.148 16.299 271.76 0.6 37.4 60.4

GM3 0.153 16.3 240 0.78 32.5 89.66

NL3 0.148 16.3 272 0.6 37.4 118.3

NL3ωρ

(lv = 0.3) 0.148 16.3 272 0.6 31.7 55.2

Dalen 0.178 16.25 337 0.68 32.11 57

TW 0.153 16.247 240 0.555 33.39 55.3
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Fig. 1. Symmetry energy as a function of the total baryonic
density for all the models used in the present work.

sets. The last one was recently taken for neutrino mean-
free-path studies [20]. Table 1 shows the properties of the
models for symmetric nuclear matter at saturation den-
sity ρ0 and zero temperature, and in fig. 1 we have plot-
ted the symmetry energy of the models versus the density,
a quantity that will be necessary to discuss the results in
the following. Models Dalen, GM3 and NL3 have a smaller
symmetry energy in all or part of the density range below
0.1 fm−3. A smaller symmetry energy allows the system to
have a larger isospin asymmetry. As we will see next these
three models are precisely the ones with smaller proton
fractions in the pasta phase matter, and this will induce
a noticeable effect on the neutrino mean free path.

The free energy per particle obtained with the
FSUGold parametrization for β-equilibrium matter with
trapped neutrinos for a fixed fraction of leptons YL = 0.2
is shown in fig. 2, where the different geometries are identi-
fied by different colors. The uniform-matter result is also
shown, and, as expected, has a larger free energy than
the pasta phases. Although the transition densities be-
tween geometries may differ slightly, depending on the
parametrization used [44], the qualitative behaviour does
not change significantly compared to the case shown. The
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Fig. 2. Free energy per barion as a function of the total
baryonic density using the FSUGold parametrization for uni-
form matter (black) and the pasta phase matter within droplet
(red), rod (green), slab (blue), tube (purple) and bubble (light
blue) geometries. The temperature was taken as T = 3 MeV.
M is the free nucleon mass.
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Fig. 3. Proton fraction as a function of the total baryonic den-
sity, (a) using the FSUGold parametrization for uniform mat-
ter (black) and the pasta phase matter within droplet (red),
rod (green), slab (blue), tube (purple) and bubble (light blue)
geometries, (b) for all the models and the pasta phase matter.
The temperature was taken as T = 3MeV.
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Fig. 4. Chemical potential as a function of the total bary-
onic density using the FSUGold parametrization for the pasta
phase (points) compared to homogeneous matter (lines) for the
neutrons (green), protons (red), electrons (blue) and neutrinos
(black). The temperature was taken as T = 3 MeV and Mi is
the rest mass of the corresponding particle.

density profile of the particles inside a single cell, within
our Thomas-Fermi calculation, are shown, for instance, in
ref. [19].

Figures 3(a) and 4 display, respectively, the proton
fraction and the chemical potential for all particles in-
volved using again the FSUGold parametrization to de-
scribe neutrino trapped β-equilibrium matter. All these
results were obtained for a temperature T = 3MeV. One
important effect of the clusterization of matter is the in-
crease of the mean proton fraction.

An effect of the larger proton fraction on neutral mat-
ter with a fixed lepton fraction is the reduction of the neu-
trino fraction and, consequently, the neutrino chemical po-
tential as seen in fig. 4. At low temperatures, when degen-
eracy effects are important, a smaller neutrino chemical
potential will give rise to larger mean free paths, and neu-
trinos will diffuse out of the star more easily. In fig. 3(b)
the pasta phase proton fraction is plotted for all the mod-
els studied. These results reflect the density dependence of
the symmetry energy of the respective models: a smaller
proton fraction occurs for the models with a smaller sym-
metry energy at the baryonic density range of interest. In
particular the three models with a smaller proton fraction
are GM3, Dalen and NL3, the three models that have the
smaller symmetry energy for 0.05 < ρ < 0.1 fm−3.

The individual mean free path contribution for each
particle type is shown in fig. 5 as a function of ρB , for
the FSUGold and T = 3MeV. The curves labelled pro-
ton, neutron and neutrino are the contributions for elastic
neutral-current scattering, while the curve labelled elec-
tron has also an elastic contribution from charged-current
scattering. The dominance of the absorption process on
the total cross section is clear, as was also concluded in
previous calculations [15], except for very low densities,
in the droplet region, where the neutron elastic scattering
competes with the absorption process.
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Fig. 5. Mean free path as a function of the total baryonic den-
sity using the FSUGold parametrization for the pasta phase
matter (dotted lines) compared to homogeneous matter (full
lines). Individual contributions for the electrons (red), neutri-
nos (green), protons (blue) and neutrons (purple). The absorp-
tion contribution is shown in light blue and the total value is
shown in black. The temperature was taken as T = 3 MeV and
Eν = μν .

Considering the scattering of the neutrinos from the
individual nucleons of the pasta, as done in the present cal-
culation, we see that the mean free path increases a lot in
comparison with the homogeneous-matter case, mainly at
low densities, when the clusterized matter presents much
larger proton fractions, and, therefore, the absorption pro-
cess and the scattering by neutrons are less likely to oc-
cur: the neutrino couples more strongly to the neutron
than to the proton. Other causes are related to the nu-
cleon distributions. Nucleons are concentrated in clusters
and the larger Fermi momenta of nucleons in the clus-
ter give rise to stronger Pauli blocking effects. Each WS
cell contains, besides the cluster, a low-density nucleon
background gas which has a smaller contribution to the
total cross section than normal homogeneous matter. At
the upper bound of the inner crust the neutron and pro-
ton densities of the background gas and the clusters get
closer to homogeneous-matter distribution and the same
should happen to the neutrino mean free path. In fig. 5 the
difference between homogeneous matter and pasta phase
NMFP is shown for the different processes: the absorp-
tion component is strongly affected, due to a reduction
of the number of the neutrons. The bigger differences en-
countered for the scattering of protons, as compared to
the neutrons, come from the differences in the chemical
potential (see fig. 4), due to the Coulomb potential and
due to the details of the position dependence of the Fermi
momentum in the non-homogeneous case.

The sensitivity of the total mean free path (λT ) to
the parametrization used is presented in fig. 6 together
with the uniform-matter result obtained with the FSUG-
old parameter set. At low densities the models do not dif-
fer much. This is expected since all models have similar
behaviours, in particular, the proton fraction is almost
the same in all of them, see [44]. The differences occur

10 1
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10 3

 0  0.02  0.04  0.06  0.08  0.1

λ T
 (

m
)

ρB (fm -3)

Fig. 6. Mean free path as a function of the total baryonic den-
sity comparing several parametrizations for the pasta phase
matter. TW (red), Dalen (green), GM3 (blue), NL3 (purple),
NL3ωρ (grey) and FSUGold (orange). The FSUGold for ho-
mogeneous matter (black) is also shown. The temperature was
taken as T = 3 MeV and Eν = μν .
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λ T
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Fig. 7. The neutrino mean free path as a function of the to-
tal baryonic density within FSUGold parametrization for the
pasta phase (points) compared to homogeneous matter (lines)
for T = 3 MeV (black), T = 5MeV (red) and T = 7 MeV
(blue) and Eν = μν .

precisely after the onset of the non-spherical pasta struc-
tures, ρB > 0.02 fm−3, which is a range of densities that
is sensitive to the density dependence of the symmetry
energy. GM3 and Dalen have the lowest mean free paths:
for a fixed lepton fraction, a smaller proton fraction (see
fig. 3) corresponds to a smaller electron fraction, which
increases the neutrino fraction and the neutrino chemical
potential. All these facts favour the absorption process,
and consequently the NMFP is smaller. Comparing NL3
and NL3ωρ we also conclude that the softer density de-
pendence of the symmetry energy gives rise to larger mean
free paths.

The dependence of the results on the temperature is
shown in fig. 7. Temperature has a strong effect on the
pasta structures which start to melt. Although within a
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Fig. 8. Neutrino mean free path as a function of the neutrino
incident energy for the pasta phase comparing the parametriza-
tions TW (red), Dalen (green), GM3 (blue), NL3 (purple),
NL3ωρ (grey), FSUGold (orange) and FSUGold homogeneous
matter (black). The temperature was taken as T = 3MeV
with ρB = 0.02 fm−3 (upper panel) and ρB = 0.05 fm−3 (lower
panel). The triangles indicate the NMFP at the neutrino chem-
ical potential, μν , of the respective model.

TF calculation pasta structures still exist at T > 10MeV,
according to [45], if thermal fluctuations are considered
the Wigner-Seitz cell structure is supposed to melt for
T > 7MeV. Temperature increases drastically the back-
ground gas of dripped particles in the Wigner-Seitz cells
and, therefore, the larger the temperature the closer the
pasta mean free path comes to the homogeneous-matter
one. The reduction of the mean free path with the increase
of the temperature is also expected, because the Fermi-
Dirac distributions are smoothed when the temperature
increases, making Pauli blocking effects weaker and al-
lowing more reactions.

In fig. 8 the NMFP is plotted as a function of
the neutrino incident energy for the pasta phase with
ρB = 0.02 fm−3 and ρB = 0.05 fm−3. We also include
the homogeneous-matter result obtained within FSUG-
old. The values of λ at the neutrino chemical potential
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Fig. 9. Neutrino mean free path as a function of the neutrino
incident energy for the pasta phase with ρB = 0.05 fm−3 and
T =3MeV (black), T =5 MeV (red) and T =7 MeV (blue). The
points represent pasta and the full lines homogeneous matter.

are indicated with triangles. We expect that the neutrinos
with energy around the chemical potential will provide
the main contribution to the dispersion of energy in the
system, because at low temperatures the system is prac-
tically degenerate and Pauli blocking factors will weaken
other contributions. The highly degenerate regime is ex-
pected for μi/T � 1, and this condition is essentially true
for temperatures below the pasta melting temperature.
For ρB = 0.05 fm−3, the gas of dripped neutrons is denser
and the proton fraction closer to the homogeneous one
(see the blue region in fig. 3(a) in comparison with the
red region). Consequently, the NMFP comes closer to the
homogeneous-matter result.

In fig. 9 we consider again ρB = 0.05 fm−3, correspond-
ing to the slab geometry, at three different temperatures.
As expected, with the increase of the neutrino incident
energy, temperature effects disappear. As we can see from
both figs. 8 and 9, the NMFP for neutrinos with lower
energy are smaller in the pasta and neutrinos with larger
energy have a greater NMFP in the pasta. This is because
at low energies Pauli blocking suppresses the interaction of
neutrinos with nucleons inside the cluster or in the homo-
geneous matter, but the collisions with the surface nucle-
ons of the clusters are still possible. As the energy of the
neutrino increases, the Pauli blocking effects are weaker
and the NMFP in the homogeneous matter is smaller as
discussed above.

Finally, in figs. 10, 11 and 12, we present our results for
the neutrino diffusion coefficients, as defined for instance
in [15]. We also show the homogeneous-matter diffusion
coefficients and they agree with the coefficients calculated
in [15], for the density region considered here. For the
pasta we obtain bigger diffusion coefficients and these re-
sults reflect the bigger NMFP in the pasta matter. Com-
pared to the corresponding results in ref. [9], we see a sys-
tematic qualitative inversion in the sense that our pasta
coefficients remain always bigger than the homogeneous-
matter counterpart. In fact, compared to the calculations
shown in [9] our method provides a spatial distribution of
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Fig. 10. Neutrino diffusion coefficient D2 as a function of the
baryonic density for the pasta phase (dashed line) and for ho-
mogeneous matter (full line) and T = 3MeV.
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Fig. 11. Neutrino diffusion coefficient D3 as a function of the
baryonic density for the pasta phase (dashed line) and for ho-
mogeneous matter (full line) and T = 3MeV.
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Fig. 12. Neutrino diffusion coefficient D4 as a function of the
baryonic density for the pasta phase (dashed line) and for ho-
mogeneous matter (full line) and T = 3MeV.

the matter inside the cell which is automatically taken
into account in the cross section calculation, and the
approximations used in [9] have not been implemented in
the present study. The homogeneous diffusion coefficients
in [9] are one order of magnitude larger than the ones
in [15] and the ones we have obtained for densities of the
order of ∼ 0.05 fm−3.

4 Conclusions

We have studied the effect of the pasta phase, occurring
in the inner crust of a neutron star, on the neutrino mean
free path (NMFP). The pasta phases have been obtained
within a self-consistent Thomas-Fermi approximation, as
explained in refs. [19,29]. Several relativistic nuclear mod-
els have been used to describe the pasta phase, both with
non-linear meson terms and constant couplings, and with
density-dependent couplings. In particular, we were inter-
ested in discussing whether the properties of the models,
such as the density dependence of the symmetry energy,
would have some influence on the NMFP. We have also
studied the effect of the temperature. It should be stressed,
however, that the present work is restricted to density and
temperature ranges for which the pasta phases exist, e.g.
T � 10MeV and ∼ 0.0002 fm−3 < ρ < ρt where the
density at the crust-core transition ρt ∼ ρ0/2. We have
considered both charged- and neutral-current reactions.
It has been shown that the absorption process dominates
the NMFP, but other processes cannot be discarded.

At low density, ρB < 0.02 fm−3, where the pasta
phases obtained within the different parametrizations
have similar properties [44], the NMFP has a small
dependence on the parametrization. As the density in-
creases, namely at the layers close to the upper border
of the inner crust, the dependence on the parametrization
becomes more important. With a larger proton fraction,
the absorption process is less likely to occur. Consequently,
models with larger proton fractions result in larger NMFP.
The proton fraction is closely related to the density depen-
dence of the symmetry energy, and, therefore, the effect
of this property on the NMFP is not negligible.

Besides the effect of the larger proton fraction of the
non-homogeneous phases, also Pauli blocking effects in-
crease the NMFP with respect to homogeneous matter. In
fact, the scattering processes are strongly suppressed by
Pauli blocking effects inside the cluster, where the Fermi
energy is larger than in homogeneous matter. On the other
hand the background gas of each WS cell contains a too
small number of nucleons to have a significant contribu-
tion to the total cross section. At the temperatures we
have considered, the neutrinos are degenerate, and the
Pauli blocking factors ensure that only neutrinos close to
the Fermi energy are involved in the scattering processes.
Also the fact that degenerate neutrinos in the presence
of pasta phases have smaller energies than in homoge-
neous matter results in larger NMFP. When the density
or the temperature increases, originating the melting of
the pasta phases, both the pasta and the homogeneous-
matter NMFP get closer.
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We have shown that the NMFP is larger, by as much
as an order of magnitude, in the presence of pasta phases
than when considering homogeneous β-equilibrium mat-
ter at the same density. This effect will give rise to shorter
neutrino emission time-scales. Also, this means that if the
clusterized matter is accounted for adequately in a su-
pernovae simulation code at the neutrino trapped stage,
the energy transferred to low-density layer that settles
onto the PNS surface is more efficient. Our results im-
ply that the effects of the pasta phase cannot be ne-
glected when calculating the NMFP at baryonic densi-
ties below 0.1 fm−3 and temperatures below 10MeV. The
parametrization used to describe the pasta phase has also
influence on the results, in particular, due to the density
dependence of the symmetry energy.

We have not considered coherent scattering of the neu-
trinos from the pasta clusters as done in [7,8]. These pro-
cesses are important when all neutrons respond coher-
ently and can cause an important reduction of the NMFP
for neutrino energies Eν � 80MeV, compared to free
neutrino-neutron scattering [23,24]. Coherent effects have
to be considered if the neutrino wavelength is comparable
to the radius of the cluster. Pasta phase calculations of
the inner crust give 10 < RWS < 30 fm, where RWS is the
Wigner-Seitz cell radius and for densities above 0.01 fm−3,
see [19]. In [8], coherent effects have been calculated within
a liquid-drop model approach and a quantum molecu-
lar dynamics calculation. The structure function shows
a peak at 30–40MeV, for T = 1MeV and a proton frac-
tion equal to 0.3, and decreases smoothly for larger neu-
trino energies approaching the incoherent neutrino scat-
tering from individual-nucleons result. It was also shown
that temperature broadens and reduces the peak due to
thermal fluctuations. The scattering processes discussed
in the present work are important when the neutrinos are
scattered by the individual nucleons that form the pasta
cluster and, therefore, for neutrinos with a larger energy.
Also, as we are concerned with the neutrino trapped phase
corresponding to the initial deleptonization of a protoneu-
tron star, neutron superfluidity plays no role since the
temperatures involved are above the pairing critical tem-
perature [46,47].
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OE/FIS/UI0405/2014 developed under the initiative QREN fi-
nanced by the UE/FEDER through the program COMPETE-
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Appendix A.

According to eq. (8), with k1 = k1ẑ and after the k4

integration in the scattering case

σscat = 2
GF

2

(2π)5

∫
d3r

∫
d3k2

∫ π

0

sin(θ3)dθ3

∫ 2π

0

dφ3 k2
3

·η2(T )(1 − η3(T ))(1 − η4(T ))
|v1 − v2|

· k1 + E∗
2 − k3

k1(1 − cos(θ3)) + E∗
2 − k2 cos(θ23)

·
{

(cV + cA)2(1 − v2 cos(θ2))(1 − f123)

+(cV − cA)2(1 − v2 cos(θ23))(1 − g123)

−M∗
2 M∗

4

E∗
2E∗

4

(c2
V − c2

A)(1 − cos(θ3))
}

, (A.1)

with

f123 =
k1 cos(θ3) + k2 cos(θ23) − k3

E∗
4

;

g123 =
k1 + k2 cos(θ2) − k3 cos(θ3)

E∗
4

;

k3 =
k1(E∗

2 − k2 cos(θ2))
k1 + E∗

2 − k1 cos(θ3) − k2 cos(θ23)
.

For the absorption, we find

σabs = 2
GF

2

(2π)5

∫
d3r

∫
d3k2

∫ π

0

sin(θ3)dθ3

∫ 2π

0

dφ3k
2
3

·η2(T )(1 − η3(T ))(1 − η4(T ))
|v1 − v2|

·
√

m2
e + k2

3(C −
√

m2
e + k2

3)
Ck3 − F

√
m2

e + k2
3

·
{

(gV + gA)2(1 − v2 cos(θ2))(1 − f123)

+(gV − gA)2(1 − g123)(1 − v2 cos(θ23))

−M∗
2 M∗

4

E∗
2E∗

4

(g2
V − g2

A)(1 − cos(θ3))
}

, (A.2)

where now

k3 = − 2F (C2 + m2
e − D)

4(k1 cos(θ3) + k2 cos(θ23))2 − 4C2

−
√

16m2
eC

2F 2 + 4C2(C2 + m2
e − D)2 − 16m2

eC
4

4F 2 − 4C2
;

D = (k1 + k2)2 + M∗
4 ;

C = k1 + E∗
2 − gρb0;

F = k1 cos(θ3) + k2 cos(θ23). (A.3)

The constants are:

neutrino-proton: cV = 1/2 − 2 sin2(θw); cA = 1.23/2,
neutrino-neutron: cV = −1/2; cA = −1, 23/2,
neutrino-electron: cV = 1/2 + 2 sin2(θw); cA = 1/2,
neutrino-neutrino: cV =

√
2; cA =

√
2,

absorption: gV = C; gA = −1.23C

with C = 0.973 and sin2(θw) = 0.230. Each neutrino-
electron and neutrino-neutrino collisions can be repre-
sented by two (first-order) Feynman diagrams, in such a
way that the values of cV and cA can be re-defined to ac-
commodate the different cross section contributions in a
single expression, as given above. Also, we define

E∗ =
√

k2 + M∗2 .
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For the particle energy we have for the nucleon

Ei = E∗ + ΓvV0(r) ± 1
2
Γρb0(r) + eA0(r)

in the NL parametrization case and

Ei = E∗ + ΓvV0(r) ± 1
2
Γρb0(r) + eA0(r)

+
∂Γv

∂ρB
ρBV0 +

∂Γρ

∂ρB

ρ3

2
b0 +

∂Γδ

∂ρB
ρs3δ0 −

∂Γs

∂ρB
ρsφ0

in the DD case. The plus sign in the equations above has
to be chosen for the proton and the minus sign for the neu-
tron. Also, V0, φ0, b0 and δ0 are the time-like components
of the meson fields. For the electron

Ee =
√

k2 + m2
e − eA0(r); M∗ → me

and for the neutrino:

Eν = k; M∗ → 0.

Finally, in order to take into account the finite size of
the nucleon, we have multiplied the constants gV (gA),
or cV (cA), by the corresponding form factor. Using the
parametrizations as explained in [36,37], we have taken a
common structure factor given by

(
1 +

4.97q2

4M2

)−2

, (A.4)

where q ≡ |q| = |p1 − p3|.
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