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Abstract 

The first stage in hierarchical approaches to Floorplan Design defines topological relations between components that 
intend to optimize a given objective in a circuit board. These relations determine a placement that is subsequently optimized 
in order to minimize a cost measurement (that will probably be one between chip area or perimeter). The board optimization 
gives rise to multiple subproblems that need to be answered in order to obtain a good solution. Among the most relevant 
ones we find the problem of defining the optimal orientation of cells and the definition of the optimal cutting sequence that 
minimize the placement board area. We will present a generalization of an algorithm due to Stockmeyer so that it obtains a 
solution that not only defines the optimal cell orientation but also the slicing cuts sequence that will lead to this optimal 
orientation and overall area minimization. 0 1998 Elsevier Science B.V. 
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1. Introduction 

In most hierarchical approaches to Floorplan De- 
sign the first stage produces a particular kind of 
binary tree as a model for topological relations be- 
tween the given set of components. This model is 
subsequently embedded on a board by associating to 
each tree leaf, representing a single component, 
Cartesian coordinates that maintain the relations pre- 
viously found. This is done by recursively using a 
predefined sequence of slicing cuts (where recursion 
becomes naturally available due to the hierarchical 
nature of the tree). 

In the next stage, commonly known as Com- 
paction, the board area will be minimized, which can 

be done by way of rotating, swapping or taking the 
mirror image of components. 

In general, the problem of finding an orientation 
of the components that optimizes the placement area 
belongs to the class of NP-complete problems [4,6]. 
However, if the components are rectangular shaped 
and the layouts to be obtained are of the so-called 
slicing type, this optimization problem can be solved 
in polynomial time [6]. Under these restrictions, the 
binary tree that stands for the topological model of 
the circuit can also represent a sequence of slicing 
cuts, which is needed to define rectangular regions in 
order to place the individual components. 
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In 1983, Stockmeyer presented a polynomial time 
algorithm which, using this binary tree, solves the 
orientation problem arising in Slicing Floorplan De- 
signs, provided the sequence of slicing cuts is given 
[6]. The predefined sequence of cuts is used to label 
each nonleaf node so that it specifies a horizontal or 
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vertical cut and only then Stockmeyer’s optimization 
takes place. 

In 1990, a work due to Wang and Wong [7] 
presented an extension of the previous one, where 
Stockmeyer’s algorithm is extended to solve a slightly 
more general problem, involving the use of a special 
kind of floorplans, hierarchical~oorplans of order5 
that have nonslicing subfloorplans with five modules 
called wheels. In order to optimize the area occupied 
by wheels, they reduce the corresponding hierarchi- 
cal representation to a binary tree and apply to this 
tree special procedures to handle its compaction (and 
which can be extended for wheels of higher order), 
while using the algorithm of Stockmeyer for normal 
slicing floorplans. 

The slicing cuts determination is, in itself, a very 
complex problem, for which, until now, there was no 
known algorithm that would provide an optimal solu- 
tion. It can be easily inferred that the problem of 
finding the optimal rectangle orientation and the 
problem of finding the optimal cutting directions are 
related, for the optimal rectangle orientation is not 
the same for different sequences of cuts and vice 
versa. In the presence of a polynomial algorithm that 
obtains the optimal solution for one of the problems, 
the next obvious step is to let this optimum define 
the cutting sequence that best serves its purpose. 

The problem can be informally described as: 

From a set of rectangular shaped components, which 
are to be placed in a rectangular board in a specified 
arrangement, what is the best orientation for each 
component - as well as the directions of the corre- 
sponding slicing cuts - so that the placement area is 
minimized? 

In this paper, we present the mathematical support 
for the algorithmic resolution of this problem, that 
generalizes Stockmeyer’s algorithm and so we show 
that not only the minimal solution in terms of com- 
ponent orientation but also the optimal slicing se- 
quence can be determined. 

2. Definitions 

The following definitions are in accordance with 
most of the ones used by Stockmeyer and so a 
jloorplan is an enclosing rectangle subdivided, by 
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Fig. I. Slicing floorplan: (a) without components; (b) with compo- 

nents. 

horizontal and vertical line segments, into nonover- 
lapping rectangles (see Fig. 1). 

A rectangle without internal line segments will be 
called a basic rectangle and will be, from now on, 
identified with the rectangular component to be 
placed in it. 

A pair of real values (h, w) is associated with 
each rectangle standing for its side dimensions (height 
and width). 

A slicing tree is a rooted binary tree that de- 
scribes the topological relations between components 
and whose nodes can be labeled in order to specify 
the sequence of cuts that will produce the placement 
regions (basic rectangles) for each component. Each 
leaf node represents a basic rectangle and each non- 
leaf node, corresponding to a set of components, 
stands for an enclosing rectangle (floorplan), which 
of course implies that the root is identified with all 
of the placement area (see Fig. 2). 

As stated by Stockmeyer, the requirement for 
binary trees causes no loss of generality since a 
nonbinary tree can be easily replaced by a binary 
one, thus simplifying the algorithmic approach to the 
problem. 

The problem to be dealt with can be stated as: 
Let Y(T) be the set of real pairs that can stand 

for feasible dimensions of a floorplan for a given 
slicing tree T. Given a function cp: lR* + R, we 

Fig. 2. Slicing tree. Labels: (v): vertical cut; (h): horizontal cut. 
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intend to minimize cp(h, w) over all possible orienta- 
tions of the components and floorplans associated 
with T, that is, minimize cp(h, w) such that (h,w) E 
9(T). 

For this kind of problem, and throughout the 
related literature, we find that the most commonly 
used objective functions in this type of problem are 
the area, 

P( h,w) = hw, 

or the semi-perimeter, 

‘p( h,w) = h2 + w2. 

A solution for a basic rectangle is identified with 
the associated pair (h, w). It corresponds to one of 
the two possible orientations of the rectangle (if 
h > w, the rectangle is said to be ‘up’, and ‘down’ if 
h < w). In case a floorplan is to be considered, the 
corresponding solution comprehends not only the 
side dimensions but also all the basic rectangles 
orientations enclosed within this floorplan. We will 
use the words general orientation or solution in 
case of floorplans and simply orientation if we are 
referring to basic rectangles. F(T) is therefore the 
set of all possible solutions for T, or orientations if T 
is a leaf node. 

Finally, a function, cp: 58 c R2 + R will be called 
nondecreasing in both arguments (or just nonde- 
creasing > if 

(a<c A b<d) V(a<c A b<d) 

* cp(a,b) I cp(c,d) V(a,b),(c,d) E D. 

3. Stockmeyer’s algorithm for general slicing 
floorplan orientation 

A brief description of the algorithm found in [6] 
will now be presented so as to proceed with the 
presentation of our algorithm. 

Given a slicing tree T, where each nonleaf node is 
labelled by way of specifying a vertical or an hori- 
zontal cut, and a nondecreasing function cp(h, w> on 
3(T), the algorithm begins by associating to each 
leaf node in T a list that represents no more than the 
two possible orientations of the cell to be placed in 
the corresponding basic rectangle. Not to forget that 
the two pairs in the list must be ordered according to 

the second item in the table of properties presented 
next (if the corresponding component has square 
shape, then there will be only one possible orienta- 
tion and therefore, only one possible pair). It then 
proceeds by associating with each nonleaf node u a 
list of s pairs, 

satisfying the following properties, where L(u) stands 
for the set of leaves of the subtree rooted at u: 
1. s<lL(u>l+ 1. 
2. hi > hi+, and wi < wi+ ,, 1 I i < s. 
3. For each of these pairs there is a possible orienta- 

tion, p, of L(o) in terms of the defined slicing 
cuts. 

4. For each orientation p of L(u) (in terms of the 
given slicing sequence) there is a pair (hi, w,) in 
the list with hi _< h( p) and wi I w( p). 
Let 

{(h,,w,),...,(h,,w,)} and ((h’,,w;),...,(h;,w;)} 
be the sorted (according to item21 lists associated 
with the two children of u. The list associated with u 
is then constructed by using the following version of 
Stockmeyer’s procedure, which is described in terms 
of a vertical cut and that can be easily changed for a 
horizontal cut. 

Stockmeyer’s Procedure. 
- Initialize i+ 1, j+ 1. 
- while i<m and j<k: 

- Add (max(h,, h’,}, w, + wj> to the list of u with 
pointers to (hi, wi) and (h’,, wj>. 

- If h,>h’,, then i+-i+ 1; 
- Elseif h,<h;, then j+j+ I; 
- Otherwise i+i+ 1 and j+-j+ 1. 

With this procedure, and under the previously 
stated restrictions, each list comprehends only pairs 
(corresponding to possible solutions) such that there 
is no other one that is strictly better in both dimen- 
sions and also no other one strictly better in one 
dimension and no worse with respect to the other, 
since this type of pair would correspond to subopti- 
ma1 orientations and can therefore be eliminated. 

By using a bottom-up approach, the previous 
algorithm constructs the lists of pairs (possible solu- 
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tions) for all the nonleaf nodes in T until the root of 
the tree is reached. Since the objective function is 
nondecreasing, the minimization of cp over all possi- 
ble orientations p for a given slicing sequence can 
then be obtained by minimizing cp over all pairs 
(hi, wi) present in the list constructed for the root of 
T. This list is thus subsequently searched for the pair 
that minimizes the given cost function cp. 

The running time and storage requirements are 
both B(dn), where n is the number of leaves and d 
the depth of the tree. 

4. Optimal cutting direction and orientation algo- 
rithm 

This section begins by pointing out that each of 
the pairs in a list constructed for a node u by 
Stockmeyer’s algorithm is no more than a nondomi- 
nated solution for the minimization of cp(h( p), W( p)) 
over all orientations p for the floorplan represented 
by o. 

In fact, define a dominated solution for this prob- 
lem as one in the set 

g(7) = {(a,b) E9-(7-)13(c,d) ~9-(7-) 

(c<a A d<b) V (c<a A dsb)), 

written as (c, d)D(a, b) and read as (a, b) is domi- 
nated by (c, d). 

A nondominated solution will then be one in the 
set H(S), where 

J’“(7) =9-(T) -g(7). 

Minimizing cp over all possible orientations p is 
equivalent to minimizing cp over all nondominated 
solutions and it is not difficult to prove that the 
optimal solution lies in the set ./tr(S>. 

Naturally, the optimal solution thus obtained is 
only optimal in terms of a given slicing sequence 
and thus only locally optimal. As previously stated, 
the problem of finding this optimal sequence is in 
itself a very complex problem. Usually, the sequence 
of cuts is defined beginning with virtual dimensions 
for the enclosing rectangle associated with the root 
of the tree (which, of course, must be big enough to 
accommodate all the components) and recursively 
define the sequence whether by specifying that the 
cut should occur in the direction of the greatest 

dimension, or alternating the cutting direction in 
each level of the tree, or even generating a random 
sequence of cuts. 

Since both problems are interrelated and Stock- 
meyer’s algorithm is, in practice, very fast, what 
would happen if the cutting direction is not speci- 
fied? 

In the following pages it will be shown that the 
optimal overall solution for the minimization of 
placement area is still a nondominated one. Begin- 
ning with a necessary lemma that will be used to 
show the correctness of the previous statement, we 
will then prove that, again, we only need nondomi- 
nated solutions in each tree level to achieve the 
entire X(S) set at upper levels. 

Lemma 1. Any dominated solution is dominated by 
at least one nondominated solution, i.e., 

(ab) ES(~) 

* 3(J,b’) EJZ/‘(7):(d,b’)D(a,b). 

Proof. In fact, let us assume that (a, b) EL&~) is 
dominated by (a,, b,) EB(F). Since (a,, b,) is 
also a dominated solution, there exists some solution 
(a,, b2) that dominates it. If (a,, b2) EL&~), with 
analogous reasoning application we will end up with 
a sequence 

(a,,b,)D ... D(a,,b,)D(n,,b,)D(a,b). 

As .7(T) is a finite set, n must be finite and 
thereafter there cannot be any other solution that 
dominates (a,, b,), that is (a,, b,) e&.7). Since 
D is a transitive relation (which easily follows by the 
definition of a dominated solution) we have 
(a,, b,,)D(a, b), which proves that there is at least 
one element of H”(S) that dominates (a, b). •I 

The next result proves that, in fact, the optimal 
solution for our problem is nothing more than a 
nondominated pair (h, W> in F(T). 

Theorem 1. &en a slicing tree T, the optimal 
solution to the problem of minimizing (p(hF,p, w~,~) 
over all possible orientations of components, p = 
p(T), and floorplans, 7 =7(T), lies in the set 
MXS). 
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Proof. Let (a ?? , b * ) E F(T) be the optimal solution 
for the minimization of cp. Then 

‘p(a*,b*) I q+i,b) V(G,b) ES(T). (1) 
Letusassumethat(a*,b*)8(7).If(a*,b*)is 

a dominated solution and using Lemma 1, there must 
be at least one element of J”(S) that dominates this 
pair, that is, 

3(a,b) E.A’“(P-):(~<a* A b<b’) 

(i) If d < a, then max{u,d} = a. 
(i.1) If inequality (4) holds, using (3) we have 

clu’. But then cl d <a which means that also 
max(u,c) = a. The following relation will then hold: 

max{ u,c) = max{ u,u’) A b + d < b + b’, 

and therefore 

(max{u,c),b+d)D(max(u,u’),b+b’), 

which proves that the new solution is dominated. 

v (~<a’ v bsb”). 

But as ~0 is nondecreasing in both arguments, this 
implies that 

cp(a,b) 5 p(a* ,b*). (2) 
Eqs. (1) and (2) imply p(u*,b*)= cp(u,b), which 
also means that 

62) If (5) holds, then together with (3) it yields 
c < d. Therefore c < d I a, meaning that in both 
pairs the maximum is again the same and this im- 
plies that 

(max{u,c),b+d) =(max{u,d),b+b’), 

which means that we can obtain the same pair only 
using nondominated solutions. 

cp(u,b) I rp(Si,b) V(ii,b) EST(T). 

Therefore, there is at least one nondominated solu- 
tion that is optimal for the minimization of cp. 

(ii) If a < d, then max{u,d} = a’. 
(ii. 1) If inequality (4) holds, then either c < a < d 

or a < c < d hold. In both cases we have 

As 7(T) =.@7) U J(.S>, all has been proven. max{ a,c) I max{ a,d) A b + d < b + b’, 
Cl and therefore 

We now need a result that can lead to the expedite 
construction of the desired nondominated set. The 
following theorem proves that, regardless of the level 
of the tree, we only need nondominated solutions to 
obtain, at the root of the tree, the set M(7). 

(max(u,c),b+d)D(max{u,u’),b+b’). 

Theorem 2. Zf (a, b) E Jr(S > und (u’, b’) E.9c.7 1, 
then the solution that encloses both the previous 
ones in ufloorplun is either a dominated one or can 
be obtained by using only nondominated solutions, 
regardless of the cutting direction involved. 

(ii.2) If (5) holds, we have that either a I c < d 
or c I a < a’ is true and this will always mean that 

max{ u,c) < max{ u,u’) A b + d = b + b’, 

and again we prove that the new solution is a 
dominated one with which we conclude the proof for 
a vertical cut. 

Similarly it can be shown that the same result 
holds if an horizontal cut is used. Cl 

Proof. Let (a, b) EN(F) and (d, b’) ES(F) be 
the solutions which we want to enclose in a new 
rectangle. Since (d, b’) is dominated there is (c, d) 
E _N(S> such that 

According to the previous theorems, to obtain the 
optimal solution we need to construct the entire set 
J’“(7) and, for that, we need only the set of non- 
dominated solutions at each node of the tree. This 
leads to the following strategy: for a given node u of 
7. 

(c<d A d<b’) v (c<d A dsb’). (3) 
Using a vertical cut the resulting solution would 

be (max{u,d),b + b’). 
First of all notice that (3) implies that one of the 

following inequalities holds: 

b+b’>b+d, (4) 
b+b’=b+d. (5) 

Construct the list of nondominated solutions for 
u, assuming that a vertical cut should take place 
(we can of course use Stockmeyer’s module for 
vertical cuts). 
Next, the list corresponding to the possible exis- 
tence of an horizontal cut is constructed (and, 
again, Stockmeyer’s module for horizontal cuts 
can be used). 
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??Finally, the two lists are merged in order, deler- tion of the occupied area of placement. This solution 
ing every dominated solution that might have can then be embedded in the geometry of the board 
occurred with the merge. using a top-down procedure. 
A procedure that constructs the list of all nondom- 

inated solutions with no predefined sequence of cut- 
ting directions could then be: 

New Procedure. 
* Initialize i + 1, j + 1. 
- while i<m and j<k: 

. Add (max(hi,hJ),wi + wJ> to the list of u with 
pointers to (h,, wi) and (h’,, w;>. 

- If h,>h’,, then i+i+ 1; 
* Elseif h;<h’,, then j+j+ 1; 
. Otherwise icif 1 and j+--j+l. 

- Initialize i + m, j +- k. 
- whileikland j21: 

As stated above, due to the fact that there is no 
predefined sequence of slicing cuts, all the nondomi- 
nated solution set for both cutting directions must be 
obtained to attain aimed optimization. This will, 
evidently, cause an increase in the number of possi- 
ble solutions, when compared with Stockmeyer’s 
algorithm, and this growth is studied next. 

Theorem 3. In the worst case, for the root of a 
balanced tree with n leaues, there can be an @(n*) 
number of nondominated solutions, and for degener- 
ated trees 6’(2”). 

- Actualize (h, + h’.,max{wi,w~]> to the list of u 
with pointers to (hi, wi) and (A’,, WY>. 

- If w,>w;, then i+i- 1; 
- Elseif w,<wi, then j+j- 1; 
- Otherwise i+-- 1 and j+j- 1. 

Proof. In fact, the number, C(n), of possible pairs in 
the list of the root of a balanced tree with n leaves 
(and therefore with depth log,n) will be at most 

C(n) I2(2C(+n) - 1) = 2’C(+n) - 2. (6) 

Note that in the second loop, the operation Actu- 
alize produces a slight but most important alteration 
to the corresponding Stockmeyer module for hori- 
zontal cuts: it first tests any recently constructed 
solution to find out if it constitutes, in fact, a non- 
dominated solution with respect to the solutions al- 
ready in the list. Not until it is known that it still is 
nondominated does it join the list (in accordance 
with the order proposed by Stockmeyer), thus avoid- 
ing merging both lists and preventing the insertion of 
dominated solutions. As this test for nondominance 
is really a test about ordering, it works both ways, 
which also means that if, during the previously 
described test, it becomes apparent that this new 
solution dominates any of the solutions already in 
the list, the dominated solutions are deleted and only 
the new one (or nondominated one) is included in 
the list. 

For any kind of binary tree, the number of possi- 
ble pairs (solutions) associated with a nonleaf node u 
with two leaf-node children, C(2), is at most 

C(2) 12(1L(o)l+ 1) =22+2=6, 

since it will correspond to executing Stockmeyer’s 
algorithm twice (see Fig. 3). 

If formula (3) is applied recursively, we will get 

2(1-22”) 

3 
The final level of recursion 

n/2k = 2, that is, k = log,n - 1. 
the previous formula we get 

C(n) I :(4n* + 2), 

will occur when 
Substituting k in 

which means that the number of nondominated solu- 
tions at the root of the tree will be @(n*). 

Having obtained the set of all nondominated solu- 
tions, for all possible cutting sequences, now present 
in the list associated with the root of the tree, the 
following step will naturally be the search for the 
minimal solution for the general floorplan. This opti- 
mal solution not only defines the best orientation of 
the basic rectangles but also implicitly defines the 
needed sequence of cuts that leads to the minimiza- Fig. 3. 
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For degenerated trees with n leaves (depth n) we 
have 

C,12(2+C(n-2)-1)=2C(n-2)+2. (7) 

Again, by recursive application of formula (2) we 

get 

C(n)12”C(n-2q+ i2’ 
i= 1 

= 2kC( n - 2k) + 2k+’ - 2, 

until we reach n - 2 k = 2, that is, k = in - 1 which, 
when k is substituted, gives 

C( fz) 5 2”‘Z+2 - 2 

i.e. the number of pairs in the list of the root is 
H(2”). 0 

As for running time, by an analogous proof, the 
worst case is also @(n2> for balanced trees and 
8(2”) for degenerated trees. This only stresses the 
fact that one should choose balanced trees to be used 
in this kind of problem, which was already referred 
to by Stockmeyer, amongst other authors. 

It should also be pointed out that, with this proce- 
dure, we will tend to include, in the list of solutions 
associated with a given node, pairs that are no more 
than the rotation of another already in the list (rota- 
tion in terms of the corresponding rectangles). 

Theorem 4. If (a, h) E NC.7 ), then (b, a) E 
J”(S). 

Proof. In fact, given a nondominated pair (a, 61, 
suppose that (b, a> is dominated, that is, (b, a) P 
./tr(.7). This will mean that there is a pair (c, d) 
such that 

(c<b A d<u) v (c<b A dru). 

But then, there is a pair (d, c) that dominates (a, 6) 
and therefore (a, b) EJy’(.7), which is absurd. 0 

One way to prevent such an increase in the num- 
ber of items in the lists would be to include only one 
of these pairs and therefore each pair in the final list 
would represent not one but two possible solutions, 
one of which would be obtained by exchanging the 

corresponding dimensions (thus reducing the number 
of pairs in the lists by approximately half of the 
expected). This fact must be accounted for when 
building the various lists of solutions (so that no 
nondominated solution is lost, which will naturally 
imply a small growth in running time). In order to 
accomplish this, the list associated with a node u in 
the tree will be built after four different traversals of 
the lists of its children nodes u, and u,: 

one done just like the one corresponding to a 
vertical cut in Stockmeyer’s algorithm; 
another one as in the referred vertical cut but 
rotating the pairs in the lists associated with U, 
and u2; 
a new traversal rotating only the pairs in the list 
of u,; and finally 
one rotating only the pairs in the list ~1~. 

Note that each new pair is only included in the list of 
u if and only if it represents a nondominated solution 
with respect to the pairs already included in the list 
and again this can be done by using the subproce- 
dure Actualize already referred to. 

5. Computational experiments: instance applica- 
tion 

We applied both Stockmeyer’s algorithm and the 
new optimal algorithm in one of the resolution stages 
of a broader problem where a rectangular area must 
be compacted so as to minimize a cost measure in 
order to accomplish a given objective. 

This problem arises within VLSI Circuit Design 
where many of the problems defined are very com- 
plex, being classified as NP-complete or NP-hard. 
Therefore the design is divided into various phases 
where it is possible to define simpler problems. The 
general phases of design that are of interest within 
this paper are the first one, called Placement, and 
the one where the area occupied by the placement of 
the components of the circuit is minimized, Com- 
paction. Given a structural model of a circuit, speci- 
fying the number and shapes of the components and 
all their interconnections, we must place the compo- 
nents optimizing not only the total wire length but 
also the occupied area of placement as a means to 
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provide a highly routable circuit for one of the next 
phases of the design (Routing). 

The cost function used here is a linearization of a 
multiobjective function on total wire length and final 
placement area, which are believed to be the most 
important is:ult-s to provide a good routable solution 
El: 

minF=A+AW, (8) 

where W stands for the total wire length and A for 
final placement area. 

The parameter A is used to increase or decrease 
the relative importance given to the function W and 
it will be assumed for the purpose of this paper that 
A= 1. 

The general philosophy of a Placement System 
can be summarized in the following manner: 

The structural model for the circuit is a graph, 
where each node represents a component and each 
edge, with an associated weight and connecting two 
different nodes in the graph, represents some mea- 
surement of the connections that involve the corre- 
sponding components. Using Graph Partition we ob- 
tain a topological model of the circuit, a slicing tree, 
that defines ‘neighborhood’ relations between com- 
ponents and that optimizes the total wire length. This 
topological model will then be embedded in the 
geometry of the placement board. 

The cost function normally used to optimize the 
wire length is 

W= C Cc,jdist((x,,yl)~(X,~y,)), 
i j 

(9) 

where i and j are components or, which is the same, 
the nodes that represent them in the graph, ci, is the 
weight associated with edge {i, j} connecting nodes i 
and j, and the remaining function, dist, is the dis- 
tance between the geometrical centers of the loca- 
tions where the components will be placed. 

As for area, the cost measures most used are the 
area, A(h,w) = hw, or the semi-perimeter, A(h,w) 
= h2 + w2, where h stands for the total height and w 
for the total width of the occupied placement area. 

In 111 it is proved that the minimization of (9) is 
an NP-complete problem and so heuristics must be 
used to approximate the optimal solution, An heuris- 
tic, first presented by Kemighan and Lin in [3], that 
uses a top-down iterative procedure based on graph 

bipartition to built the slicing tree was implemented. 
Due to the fact that it must start with a first feasible 
solution we have implemented the 3-OPT version of 
this heuristic with two different initial solutions: 
??KL, where a randomly generated first feasible 

solution is used; 
0 Mis, using a bottom-up clustering constructive 

algorithm that can be found in [2] to obtain the 
first solution. 
These two approaches have been used in order to 

compare the compaction algorithms not only for one 
but also for two different approximations for the 
final solution of the placement of a given circuit. In 
fact, the slicing trees obtained with each of these 
versions are different from one another which means 
that the placement of a given circuit solved using KL 
will be different from the one obtained using the Mis 
version. 

Due to restrictions in available memory space, the 
new algorithm was implemented in a slightly differ- 
ent way, which will only affect the execution time 
(in the sense that it will he worse than expected). It 
was implemented in C code, using the last version 
presented (with the four traversals of the lists associ- 
ated with the nodes of the tree). We will not keep all 
the lists in memory simultaneously, which means 
that we must reconstruct the lists when needed. 
These modifications cause a growth in the executed 
time whilst saving memory space allocations during 
execution. 

When implementing Stockmeyer’s algorithm we 
had to decide how the needed sequence of slicing 
cuts should be given. After various tests using the 
three possible approaches: 
0 at each node of the tree the direction of the slice 

is randomly generated; 
0 starting with virtual dimensions big enough to 

accommodate all the placement, always cut in the 
direction of the higher dimension; and 

0 starting with the same conditions as in the previ- 
ous approach, the first cut (associated with the 
root of the tree) is in the direction of the biggest 
dimension and the directions of the subsequent 
cuts are alternated; 

we observed that the third approach always turned 
out to be the best of all in the sense that it is the one 
that obtained best results for the cost measures used 
(Area or Semi-Perimeter) and it was therefore the 
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Fig. 4. Semi-Perimeter: cp(h,w) = h2 + w2 

one that we chose to use for comparison with our 
new algorithm. 

6. Computational results 

All the necessary implementations were done us- 
ing C code in a DECSYSTEM 3100 with 16Mb of 
RAM and a computational speed of 14MIPS. Each 
of the presented results is the average of 10 different 
problems (circuits) with the same number of compo- 
nents but with different specifications randomly gen- 
erated. 

Looking at the first diagram we can compare the 
performance, in terms of minimization of the area 
occupied with the placement, for both versions, KL 
and Mis, as well as for both algorithms, Stockmeyer’s 
and New. 

‘1 

The compaction algorithms were used with 
Semi-Perimeter, p(h,w) = h2 + w’ (where h is the 
height and w the width of the floorplan enclosing all 
the placement), as the objective function to be mini- 
mized. 

Fig. 4 shows that, regardless of the number of 
components involved and the versions used to built 
the tree, the new algorithm does in fact minimize the 
semi-perimeter. Moreover it can now be shown that 
Stockmeyer’s approach to the problem did provide a 
good approximation for the minimization of the oc- 
cupied area in terms of this evaluation function. 

In Fig. 5, occupation ratios (all of the occupation 
area vs. space physically used) are shown, again for 
both versions as well as for both algorithms. The 
theoretical optimum should be a ratio occupation 
equal to 1. This would mean that all the available 
area was in fact occupied with components. This is 

Fig. 5. Area occupation ratios. 
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Fig. 6. Area: cp(h,w) = hw 

however unpractical since in general components are 
not all of the same size and shape. Again it can be 
seen that, while with Stockmeyer’s algorithm roughly 
half of the area that can be occupied is wasted, the 
new algorithm reduces this wastage by more than 
one half. 

Fig. 6 is perfectly analogous to Fig. 4 save that 
this diagram shows results in terms of the cost 
measure Area and was only presented for the sake of 
possible readers interested in seeing results using this 
cost measurement. 

In terms of the objective function (8), that is, the 
evaluation of the final placement, where both the 
occupied area and the total wire length are expected 
to be optimized so that a good routing can be 

performed on the placed circuit, results are presented 
in the next diagram (Fig. 7). 

Again it can be seen that our algorithm performs 
best, not only because it reduces the occupied area 
but also because, in doing this, it reduces the value 
of the function W (since, if the components are 
closer to each other, then the length of wire used to 
connect them will also decrease). 

Within this context the execution times cannot be 
fairly compared since the implementation of the new 
algorithm was considerably altered from the original 
procedure. In fact, while even for the largest circuits, 
with 1000 components, Stockmeyer’s algorithm did 
take less than one second on average to compute the 
minimum (which means that it took ‘all’ this time to 

Fig. 7. Total evaluation of placement: F = A + W. 
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(A) w 

Fig. 8. (A) Execution times; (B) number of solutions present at the root of the trees 

construct the lists associated with the nodes of the 
tree and then search for the best solution, in terms of 
the cost measure involved, in the root list), under the 

restrictions already mentioned, our algorithm took 
approximately half an hour to do the same. However, 
when the procedure presented in Section 4 is literally 
implemented it runs quite fast, presenting average 

Fig. 9. Best placement obtained with Stockmeyer’s heuristic. Fig. 10. Placement obtained with our optimal algorithm. 
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execution times close to linear in the number of leaf 
nodes. 

When we compare the graphics in item (B) of 
Fig. 8, it is easily seen that Stockmeyer’s procedure 
produces much less feasible solutions. In fact, being 
no more than an heuristic for the problem we intend 
to solve, it easily gets stuck in local optima. Depend- 
ing on the tree at hand and how soon it gets stuck, 
the lengths of the lists at the roots vary immensely 
and have no relation with the number of components 
included in the problem. As for the new algorithm, 
the number of possible solutions (that certainly in- 
clude the global optima) are not comparable with the 
previous ones and are strongly dependent on the 
components involved in the problem (that is, they 
depend not only on the number of components but 
also in their shapes and sizes and how they cluster to 
produce new solutions). The New algorithm is there- 
fore much slower than Stockmeyer’s heuristic. It is 
however well known that time is not pressing within 
these areas of research for if we are able to design a 
good circuit, it does not matter if we take a week or 
a month to do it as long as it is manufacturable 
(which will be done hopefully for many a month). 

We end this section with an example where we 
show placements obtained with both Stockmeyer’s 
approach (Fig. 9) and our new algorithm (Fig. 10) 
for one of the circuits with 250 components used for 
performance evaluation using the Mis heuristic for 
construction of the tree. The differences in terms of 
occupation of the available area are visible and 
corroborate the conclusions drawn from Fig. 5 (area 
occupation ratios). 

7. Concluding remarks 

Although the general compaction problem is clas- 
sified as NP-complete, the strategy of dividing it into 
smaller problems has once again brought out a par- 
ticular subproblem, optimal orientations and cutting 
directions for slicing floorplans, that has here been 
proved to be solvable in polynomial time. 

This work also stresses the need to use binary 
trees within this framework since the orders of com- 
plexity that arise when using other higher order trees 
tend to be exponential, which is also referred to in 
[7] amongst others. 

The use of this compaction algorithm in bottom-up 
constructive approaches to obtain the slicing tree 
seems most appropriate and it constitutes a good 
field for future research. 
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