
EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

ELSEVIER European Journal of Operational Research 109 (1998) 660-671

Theory and Methodology

Optimal cutting directions and rectangle orientation algorithm ’

A.M.C. Almeida * , Ernest0 Q.V. Martins, Ros6lia D. Rodrigues
Dep. de Matematica, F.C.T. Universidade de Coimbra, 3ooO Coimbra, Portugal

Received 3 October 1995; accepted 18 February 1997

Abstract

The first stage in hierarchical approaches to Floorplan Design defines topological relations between components that
intend to optimize a given objective in a circuit board. These relations determine a placement that is subsequently optimized
in order to minimize a cost measurement (that will probably be one between chip area or perimeter). The board optimization
gives rise to multiple subproblems that need to be answered in order to obtain a good solution. Among the most relevant
ones we find the problem of defining the optimal orientation of cells and the definition of the optimal cutting sequence that
minimize the placement board area. We will present a generalization of an algorithm due to Stockmeyer so that it obtains a
solution that not only defines the optimal cell orientation but also the slicing cuts sequence that will lead to this optimal
orientation and overall area minimization. 0 1998 Elsevier Science B.V.

Keywords: Packing; Optimization; Compaction; Cutting direction; Rectangle orientation; Nondominated solution

1. Introduction

In most hierarchical approaches to Floorplan De-
sign the first stage produces a particular kind of
binary tree as a model for topological relations be-
tween the given set of components. This model is
subsequently embedded on a board by associating to
each tree leaf, representing a single component,
Cartesian coordinates that maintain the relations pre-
viously found. This is done by recursively using a
predefined sequence of slicing cuts (where recursion
becomes naturally available due to the hierarchical
nature of the tree).

In the next stage, commonly known as Com-
paction, the board area will be minimized, which can

be done by way of rotating, swapping or taking the
mirror image of components.

In general, the problem of finding an orientation
of the components that optimizes the placement area
belongs to the class of NP-complete problems [4,6].
However, if the components are rectangular shaped
and the layouts to be obtained are of the so-called
slicing type, this optimization problem can be solved
in polynomial time [6]. Under these restrictions, the
binary tree that stands for the topological model of
the circuit can also represent a sequence of slicing
cuts, which is needed to define rectangular regions in
order to place the individual components.

?? Corresponding author. E-mail: amca@pantera.mat.uc.pt
’ This work was partially supported by the Centro de Informat-

ica e Sistemas da Universidade de Coimbra.

In 1983, Stockmeyer presented a polynomial time
algorithm which, using this binary tree, solves the
orientation problem arising in Slicing Floorplan De-
signs, provided the sequence of slicing cuts is given
[6]. The predefined sequence of cuts is used to label
each nonleaf node so that it specifies a horizontal or

0377-2217/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved.
PII SO377-2217(97)00085-4

A.M.C. Almeida et (11. /European Journul of Operational Research 109 (1998) 660-671 661

vertical cut and only then Stockmeyer’s optimization
takes place.

In 1990, a work due to Wang and Wong [7]
presented an extension of the previous one, where
Stockmeyer’s algorithm is extended to solve a slightly
more general problem, involving the use of a special
kind of floorplans, hierarchical~oorplans of order5
that have nonslicing subfloorplans with five modules
called wheels. In order to optimize the area occupied
by wheels, they reduce the corresponding hierarchi-
cal representation to a binary tree and apply to this
tree special procedures to handle its compaction (and
which can be extended for wheels of higher order),
while using the algorithm of Stockmeyer for normal
slicing floorplans.

The slicing cuts determination is, in itself, a very
complex problem, for which, until now, there was no
known algorithm that would provide an optimal solu-
tion. It can be easily inferred that the problem of
finding the optimal rectangle orientation and the
problem of finding the optimal cutting directions are
related, for the optimal rectangle orientation is not
the same for different sequences of cuts and vice
versa. In the presence of a polynomial algorithm that
obtains the optimal solution for one of the problems,
the next obvious step is to let this optimum define
the cutting sequence that best serves its purpose.

The problem can be informally described as:

From a set of rectangular shaped components, which
are to be placed in a rectangular board in a specified
arrangement, what is the best orientation for each
component - as well as the directions of the corre-
sponding slicing cuts - so that the placement area is
minimized?

In this paper, we present the mathematical support
for the algorithmic resolution of this problem, that
generalizes Stockmeyer’s algorithm and so we show
that not only the minimal solution in terms of com-
ponent orientation but also the optimal slicing se-
quence can be determined.

2. Definitions

The following definitions are in accordance with
most of the ones used by Stockmeyer and so a
jloorplan is an enclosing rectangle subdivided, by

B A m E

F D c
Ci.1 b)

Fig. I. Slicing floorplan: (a) without components; (b) with compo-

nents.

horizontal and vertical line segments, into nonover-
lapping rectangles (see Fig. 1).

A rectangle without internal line segments will be
called a basic rectangle and will be, from now on,
identified with the rectangular component to be
placed in it.

A pair of real values (h, w) is associated with
each rectangle standing for its side dimensions (height
and width).

A slicing tree is a rooted binary tree that de-
scribes the topological relations between components
and whose nodes can be labeled in order to specify
the sequence of cuts that will produce the placement
regions (basic rectangles) for each component. Each
leaf node represents a basic rectangle and each non-
leaf node, corresponding to a set of components,
stands for an enclosing rectangle (floorplan), which
of course implies that the root is identified with all
of the placement area (see Fig. 2).

As stated by Stockmeyer, the requirement for
binary trees causes no loss of generality since a
nonbinary tree can be easily replaced by a binary
one, thus simplifying the algorithmic approach to the
problem.

The problem to be dealt with can be stated as:
Let Y(T) be the set of real pairs that can stand

for feasible dimensions of a floorplan for a given
slicing tree T. Given a function cp: lR* + R, we

Fig. 2. Slicing tree. Labels: (v): vertical cut; (h): horizontal cut.

662 A.M.C. Almeida et al. /European Journal of Operational Research 109 (1998) 660-671

intend to minimize cp(h, w) over all possible orienta-
tions of the components and floorplans associated
with T, that is, minimize cp(h, w) such that (h,w) E
9(T).

For this kind of problem, and throughout the
related literature, we find that the most commonly
used objective functions in this type of problem are
the area,

P(h,w) = hw,

or the semi-perimeter,

‘p(h,w) = h2 + w2.

A solution for a basic rectangle is identified with
the associated pair (h, w). It corresponds to one of
the two possible orientations of the rectangle (if
h > w, the rectangle is said to be ‘up’, and ‘down’ if
h < w). In case a floorplan is to be considered, the
corresponding solution comprehends not only the
side dimensions but also all the basic rectangles
orientations enclosed within this floorplan. We will
use the words general orientation or solution in
case of floorplans and simply orientation if we are
referring to basic rectangles. F(T) is therefore the
set of all possible solutions for T, or orientations if T
is a leaf node.

Finally, a function, cp: 58 c R2 + R will be called
nondecreasing in both arguments (or just nonde-
creasing > if

(a<c A b<d) V(a<c A b<d)

* cp(a,b) I cp(c,d) V(a,b),(c,d) E D.

3. Stockmeyer’s algorithm for general slicing
floorplan orientation

A brief description of the algorithm found in [6]
will now be presented so as to proceed with the
presentation of our algorithm.

Given a slicing tree T, where each nonleaf node is
labelled by way of specifying a vertical or an hori-
zontal cut, and a nondecreasing function cp(h, w> on
3(T), the algorithm begins by associating to each
leaf node in T a list that represents no more than the
two possible orientations of the cell to be placed in
the corresponding basic rectangle. Not to forget that
the two pairs in the list must be ordered according to

the second item in the table of properties presented
next (if the corresponding component has square
shape, then there will be only one possible orienta-
tion and therefore, only one possible pair). It then
proceeds by associating with each nonleaf node u a
list of s pairs,

satisfying the following properties, where L(u) stands
for the set of leaves of the subtree rooted at u:
1. s<lL(u>l+ 1.
2. hi > hi+, and wi < wi+ ,, 1 I i < s.
3. For each of these pairs there is a possible orienta-

tion, p, of L(o) in terms of the defined slicing
cuts.

4. For each orientation p of L(u) (in terms of the
given slicing sequence) there is a pair (hi, w,) in
the list with hi _< h(p) and wi I w(p).
Let

{(h,,w,),...,(h,,w,)} and ((h’,,w;),...,(h;,w;)}
be the sorted (according to item21 lists associated
with the two children of u. The list associated with u
is then constructed by using the following version of
Stockmeyer’s procedure, which is described in terms
of a vertical cut and that can be easily changed for a
horizontal cut.

Stockmeyer’s Procedure.
- Initialize i+ 1, j+ 1.
- while i<m and j<k:

- Add (max(h,, h’,}, w, + wj> to the list of u with
pointers to (hi, wi) and (h’,, wj>.

- If h,>h’,, then i+-i+ 1;
- Elseif h,<h;, then j+j+ I;
- Otherwise i+i+ 1 and j+-j+ 1.

With this procedure, and under the previously
stated restrictions, each list comprehends only pairs
(corresponding to possible solutions) such that there
is no other one that is strictly better in both dimen-
sions and also no other one strictly better in one
dimension and no worse with respect to the other,
since this type of pair would correspond to subopti-
ma1 orientations and can therefore be eliminated.

By using a bottom-up approach, the previous
algorithm constructs the lists of pairs (possible solu-

A.M.C. Almeida et al. / Europeun Journal ofOperutiona1 Research 109 (I 998) 660-671 663

tions) for all the nonleaf nodes in T until the root of
the tree is reached. Since the objective function is
nondecreasing, the minimization of cp over all possi-
ble orientations p for a given slicing sequence can
then be obtained by minimizing cp over all pairs
(hi, wi) present in the list constructed for the root of
T. This list is thus subsequently searched for the pair
that minimizes the given cost function cp.

The running time and storage requirements are
both B(dn), where n is the number of leaves and d
the depth of the tree.

4. Optimal cutting direction and orientation algo-
rithm

This section begins by pointing out that each of
the pairs in a list constructed for a node u by
Stockmeyer’s algorithm is no more than a nondomi-
nated solution for the minimization of cp(h(p), W(p))
over all orientations p for the floorplan represented
by o.

In fact, define a dominated solution for this prob-
lem as one in the set

g(7) = {(a,b) E9-(7-)13(c,d) ~9-(7-)

(c<a A d<b) V (c<a A dsb)),

written as (c, d)D(a, b) and read as (a, b) is domi-
nated by (c, d).

A nondominated solution will then be one in the
set H(S), where

J’“(7) =9-(T) -g(7).

Minimizing cp over all possible orientations p is
equivalent to minimizing cp over all nondominated
solutions and it is not difficult to prove that the
optimal solution lies in the set ./tr(S>.

Naturally, the optimal solution thus obtained is
only optimal in terms of a given slicing sequence
and thus only locally optimal. As previously stated,
the problem of finding this optimal sequence is in
itself a very complex problem. Usually, the sequence
of cuts is defined beginning with virtual dimensions
for the enclosing rectangle associated with the root
of the tree (which, of course, must be big enough to
accommodate all the components) and recursively
define the sequence whether by specifying that the
cut should occur in the direction of the greatest

dimension, or alternating the cutting direction in
each level of the tree, or even generating a random
sequence of cuts.

Since both problems are interrelated and Stock-
meyer’s algorithm is, in practice, very fast, what
would happen if the cutting direction is not speci-
fied?

In the following pages it will be shown that the
optimal overall solution for the minimization of
placement area is still a nondominated one. Begin-
ning with a necessary lemma that will be used to
show the correctness of the previous statement, we
will then prove that, again, we only need nondomi-
nated solutions in each tree level to achieve the
entire X(S) set at upper levels.

Lemma 1. Any dominated solution is dominated by
at least one nondominated solution, i.e.,

(ab) ES(~)

* 3(J,b’) EJZ/‘(7):(d,b’)D(a,b).

Proof. In fact, let us assume that (a, b) EL&~) is
dominated by (a,, b,) EB(F). Since (a,, b,) is
also a dominated solution, there exists some solution
(a,, b2) that dominates it. If (a,, b2) EL&~), with
analogous reasoning application we will end up with
a sequence

(a,,b,)D ... D(a,,b,)D(n,,b,)D(a,b).

As .7(T) is a finite set, n must be finite and
thereafter there cannot be any other solution that
dominates (a,, b,), that is (a,, b,) e&.7). Since
D is a transitive relation (which easily follows by the
definition of a dominated solution) we have
(a,, b,,)D(a, b), which proves that there is at least
one element of H”(S) that dominates (a, b). •I

The next result proves that, in fact, the optimal
solution for our problem is nothing more than a
nondominated pair (h, W> in F(T).

Theorem 1. &en a slicing tree T, the optimal
solution to the problem of minimizing (p(hF,p, w~,~)
over all possible orientations of components, p =
p(T), and floorplans, 7 =7(T), lies in the set
MXS).

664 A.M.C. Almeida et ul./European Journal of Operational Research 109 (1998) 660471

Proof. Let (a ?? , b *) E F(T) be the optimal solution
for the minimization of cp. Then

‘p(a*,b*) I q+i,b) V(G,b) ES(T). (1)
Letusassumethat(a*,b*)8(7).If(a*,b*)is

a dominated solution and using Lemma 1, there must
be at least one element of J”(S) that dominates this
pair, that is,

3(a,b) E.A’“(P-):(~<a* A b<b’)

(i) If d < a, then max{u,d} = a.
(i.1) If inequality (4) holds, using (3) we have

clu’. But then cl d <a which means that also
max(u,c) = a. The following relation will then hold:

max{ u,c) = max{ u,u’) A b + d < b + b’,

and therefore

(max{u,c),b+d)D(max(u,u’),b+b’),

which proves that the new solution is dominated.

v (~<a’ v bsb”).

But as ~0 is nondecreasing in both arguments, this
implies that

cp(a,b) 5 p(a* ,b*). (2)
Eqs. (1) and (2) imply p(u*,b*)= cp(u,b), which
also means that

62) If (5) holds, then together with (3) it yields
c < d. Therefore c < d I a, meaning that in both
pairs the maximum is again the same and this im-
plies that

(max{u,c),b+d) =(max{u,d),b+b’),

which means that we can obtain the same pair only
using nondominated solutions.

cp(u,b) I rp(Si,b) V(ii,b) EST(T).

Therefore, there is at least one nondominated solu-
tion that is optimal for the minimization of cp.

(ii) If a < d, then max{u,d} = a’.
(ii. 1) If inequality (4) holds, then either c < a < d

or a < c < d hold. In both cases we have

As 7(T) =.@7) U J(.S>, all has been proven. max{ a,c) I max{ a,d) A b + d < b + b’,
Cl and therefore

We now need a result that can lead to the expedite
construction of the desired nondominated set. The
following theorem proves that, regardless of the level
of the tree, we only need nondominated solutions to
obtain, at the root of the tree, the set M(7).

(max(u,c),b+d)D(max{u,u’),b+b’).

Theorem 2. Zf (a, b) E Jr(S > und (u’, b’) E.9c.7 1,
then the solution that encloses both the previous
ones in ufloorplun is either a dominated one or can
be obtained by using only nondominated solutions,
regardless of the cutting direction involved.

(ii.2) If (5) holds, we have that either a I c < d
or c I a < a’ is true and this will always mean that

max{ u,c) < max{ u,u’) A b + d = b + b’,

and again we prove that the new solution is a
dominated one with which we conclude the proof for
a vertical cut.

Similarly it can be shown that the same result
holds if an horizontal cut is used. Cl

Proof. Let (a, b) EN(F) and (d, b’) ES(F) be
the solutions which we want to enclose in a new
rectangle. Since (d, b’) is dominated there is (c, d)
E _N(S> such that

According to the previous theorems, to obtain the
optimal solution we need to construct the entire set
J’“(7) and, for that, we need only the set of non-
dominated solutions at each node of the tree. This
leads to the following strategy: for a given node u of
7.

(c<d A d<b’) v (c<d A dsb’). (3)
Using a vertical cut the resulting solution would

be (max{u,d),b + b’).
First of all notice that (3) implies that one of the

following inequalities holds:

b+b’>b+d, (4)
b+b’=b+d. (5)

Construct the list of nondominated solutions for
u, assuming that a vertical cut should take place
(we can of course use Stockmeyer’s module for
vertical cuts).
Next, the list corresponding to the possible exis-
tence of an horizontal cut is constructed (and,
again, Stockmeyer’s module for horizontal cuts
can be used).

A.M.C. Almeida et al./ European Journal of Operational Research 109 (1998) 660-671 665

??Finally, the two lists are merged in order, deler- tion of the occupied area of placement. This solution
ing every dominated solution that might have can then be embedded in the geometry of the board
occurred with the merge. using a top-down procedure.
A procedure that constructs the list of all nondom-

inated solutions with no predefined sequence of cut-
ting directions could then be:

New Procedure.
* Initialize i + 1, j + 1.
- while i<m and j<k:

. Add (max(hi,hJ),wi + wJ> to the list of u with
pointers to (h,, wi) and (h’,, w;>.

- If h,>h’,, then i+i+ 1;
* Elseif h;<h’,, then j+j+ 1;
. Otherwise icif 1 and j+--j+l.

- Initialize i + m, j +- k.
- whileikland j21:

As stated above, due to the fact that there is no
predefined sequence of slicing cuts, all the nondomi-
nated solution set for both cutting directions must be
obtained to attain aimed optimization. This will,
evidently, cause an increase in the number of possi-
ble solutions, when compared with Stockmeyer’s
algorithm, and this growth is studied next.

Theorem 3. In the worst case, for the root of a
balanced tree with n leaues, there can be an @(n*)
number of nondominated solutions, and for degener-
ated trees 6’(2”).

- Actualize (h, + h’.,max{wi,w~]> to the list of u
with pointers to (hi, wi) and (A’,, WY>.

- If w,>w;, then i+i- 1;
- Elseif w,<wi, then j+j- 1;
- Otherwise i+-- 1 and j+j- 1.

Proof. In fact, the number, C(n), of possible pairs in
the list of the root of a balanced tree with n leaves
(and therefore with depth log,n) will be at most

C(n) I2(2C(+n) - 1) = 2’C(+n) - 2. (6)

Note that in the second loop, the operation Actu-
alize produces a slight but most important alteration
to the corresponding Stockmeyer module for hori-
zontal cuts: it first tests any recently constructed
solution to find out if it constitutes, in fact, a non-
dominated solution with respect to the solutions al-
ready in the list. Not until it is known that it still is
nondominated does it join the list (in accordance
with the order proposed by Stockmeyer), thus avoid-
ing merging both lists and preventing the insertion of
dominated solutions. As this test for nondominance
is really a test about ordering, it works both ways,
which also means that if, during the previously
described test, it becomes apparent that this new
solution dominates any of the solutions already in
the list, the dominated solutions are deleted and only
the new one (or nondominated one) is included in
the list.

For any kind of binary tree, the number of possi-
ble pairs (solutions) associated with a nonleaf node u
with two leaf-node children, C(2), is at most

C(2) 12(1L(o)l+ 1) =22+2=6,

since it will correspond to executing Stockmeyer’s
algorithm twice (see Fig. 3).

If formula (3) is applied recursively, we will get

2(1-22”)

3
The final level of recursion

n/2k = 2, that is, k = log,n - 1.
the previous formula we get

C(n) I :(4n* + 2),

will occur when
Substituting k in

which means that the number of nondominated solu-
tions at the root of the tree will be @(n*).

Having obtained the set of all nondominated solu-
tions, for all possible cutting sequences, now present
in the list associated with the root of the tree, the
following step will naturally be the search for the
minimal solution for the general floorplan. This opti-
mal solution not only defines the best orientation of
the basic rectangles but also implicitly defines the
needed sequence of cuts that leads to the minimiza- Fig. 3.

666 A.M.C. Almeidu et al./Europeun Journal of Operational Reseurch 109 (1998) 660-671

For degenerated trees with n leaves (depth n) we
have

C,12(2+C(n-2)-1)=2C(n-2)+2. (7)

Again, by recursive application of formula (2) we

get

C(n)12”C(n-2q+ i2’
i= 1

= 2kC(n - 2k) + 2k+’ - 2,

until we reach n - 2 k = 2, that is, k = in - 1 which,
when k is substituted, gives

C(fz) 5 2”‘Z+2 - 2

i.e. the number of pairs in the list of the root is
H(2”). 0

As for running time, by an analogous proof, the
worst case is also @(n2> for balanced trees and
8(2”) for degenerated trees. This only stresses the
fact that one should choose balanced trees to be used
in this kind of problem, which was already referred
to by Stockmeyer, amongst other authors.

It should also be pointed out that, with this proce-
dure, we will tend to include, in the list of solutions
associated with a given node, pairs that are no more
than the rotation of another already in the list (rota-
tion in terms of the corresponding rectangles).

Theorem 4. If (a, h) E NC.7), then (b, a) E
J”(S).

Proof. In fact, given a nondominated pair (a, 61,
suppose that (b, a> is dominated, that is, (b, a) P
./tr(.7). This will mean that there is a pair (c, d)
such that

(c<b A d<u) v (c<b A dru).

But then, there is a pair (d, c) that dominates (a, 6)
and therefore (a, b) EJy’(.7), which is absurd. 0

One way to prevent such an increase in the num-
ber of items in the lists would be to include only one
of these pairs and therefore each pair in the final list
would represent not one but two possible solutions,
one of which would be obtained by exchanging the

corresponding dimensions (thus reducing the number
of pairs in the lists by approximately half of the
expected). This fact must be accounted for when
building the various lists of solutions (so that no
nondominated solution is lost, which will naturally
imply a small growth in running time). In order to
accomplish this, the list associated with a node u in
the tree will be built after four different traversals of
the lists of its children nodes u, and u,:

one done just like the one corresponding to a
vertical cut in Stockmeyer’s algorithm;
another one as in the referred vertical cut but
rotating the pairs in the lists associated with U,
and u2;
a new traversal rotating only the pairs in the list
of u,; and finally
one rotating only the pairs in the list ~1~.

Note that each new pair is only included in the list of
u if and only if it represents a nondominated solution
with respect to the pairs already included in the list
and again this can be done by using the subproce-
dure Actualize already referred to.

5. Computational experiments: instance applica-
tion

We applied both Stockmeyer’s algorithm and the
new optimal algorithm in one of the resolution stages
of a broader problem where a rectangular area must
be compacted so as to minimize a cost measure in
order to accomplish a given objective.

This problem arises within VLSI Circuit Design
where many of the problems defined are very com-
plex, being classified as NP-complete or NP-hard.
Therefore the design is divided into various phases
where it is possible to define simpler problems. The
general phases of design that are of interest within
this paper are the first one, called Placement, and
the one where the area occupied by the placement of
the components of the circuit is minimized, Com-
paction. Given a structural model of a circuit, speci-
fying the number and shapes of the components and
all their interconnections, we must place the compo-
nents optimizing not only the total wire length but
also the occupied area of placement as a means to

A.M.C. Almeida et al./ European Journal of Operational Research 109 (1998) 660-671 667

provide a highly routable circuit for one of the next
phases of the design (Routing).

The cost function used here is a linearization of a
multiobjective function on total wire length and final
placement area, which are believed to be the most
important is:ult-s to provide a good routable solution
El:

minF=A+AW, (8)

where W stands for the total wire length and A for
final placement area.

The parameter A is used to increase or decrease
the relative importance given to the function W and
it will be assumed for the purpose of this paper that
A= 1.

The general philosophy of a Placement System
can be summarized in the following manner:

The structural model for the circuit is a graph,
where each node represents a component and each
edge, with an associated weight and connecting two
different nodes in the graph, represents some mea-
surement of the connections that involve the corre-
sponding components. Using Graph Partition we ob-
tain a topological model of the circuit, a slicing tree,
that defines ‘neighborhood’ relations between com-
ponents and that optimizes the total wire length. This
topological model will then be embedded in the
geometry of the placement board.

The cost function normally used to optimize the
wire length is

W= C Cc,jdist((x,,yl)~(X,~y,)),
i j

(9)

where i and j are components or, which is the same,
the nodes that represent them in the graph, ci, is the
weight associated with edge {i, j} connecting nodes i
and j, and the remaining function, dist, is the dis-
tance between the geometrical centers of the loca-
tions where the components will be placed.

As for area, the cost measures most used are the
area, A(h,w) = hw, or the semi-perimeter, A(h,w)
= h2 + w2, where h stands for the total height and w
for the total width of the occupied placement area.

In 111 it is proved that the minimization of (9) is
an NP-complete problem and so heuristics must be
used to approximate the optimal solution, An heuris-
tic, first presented by Kemighan and Lin in [3], that
uses a top-down iterative procedure based on graph

bipartition to built the slicing tree was implemented.
Due to the fact that it must start with a first feasible
solution we have implemented the 3-OPT version of
this heuristic with two different initial solutions:
??KL, where a randomly generated first feasible

solution is used;
0 Mis, using a bottom-up clustering constructive

algorithm that can be found in [2] to obtain the
first solution.
These two approaches have been used in order to

compare the compaction algorithms not only for one
but also for two different approximations for the
final solution of the placement of a given circuit. In
fact, the slicing trees obtained with each of these
versions are different from one another which means
that the placement of a given circuit solved using KL
will be different from the one obtained using the Mis
version.

Due to restrictions in available memory space, the
new algorithm was implemented in a slightly differ-
ent way, which will only affect the execution time
(in the sense that it will he worse than expected). It
was implemented in C code, using the last version
presented (with the four traversals of the lists associ-
ated with the nodes of the tree). We will not keep all
the lists in memory simultaneously, which means
that we must reconstruct the lists when needed.
These modifications cause a growth in the executed
time whilst saving memory space allocations during
execution.

When implementing Stockmeyer’s algorithm we
had to decide how the needed sequence of slicing
cuts should be given. After various tests using the
three possible approaches:
0 at each node of the tree the direction of the slice

is randomly generated;
0 starting with virtual dimensions big enough to

accommodate all the placement, always cut in the
direction of the higher dimension; and

0 starting with the same conditions as in the previ-
ous approach, the first cut (associated with the
root of the tree) is in the direction of the biggest
dimension and the directions of the subsequent
cuts are alternated;

we observed that the third approach always turned
out to be the best of all in the sense that it is the one
that obtained best results for the cost measures used
(Area or Semi-Perimeter) and it was therefore the

668 A.M.C. Almeida et al. /European Journal of Operational Research 109 11998) MO-671

Fig. 4. Semi-Perimeter: cp(h,w) = h2 + w2

one that we chose to use for comparison with our
new algorithm.

6. Computational results

All the necessary implementations were done us-
ing C code in a DECSYSTEM 3100 with 16Mb of
RAM and a computational speed of 14MIPS. Each
of the presented results is the average of 10 different
problems (circuits) with the same number of compo-
nents but with different specifications randomly gen-
erated.

Looking at the first diagram we can compare the
performance, in terms of minimization of the area
occupied with the placement, for both versions, KL
and Mis, as well as for both algorithms, Stockmeyer’s
and New.

‘1

The compaction algorithms were used with
Semi-Perimeter, p(h,w) = h2 + w’ (where h is the
height and w the width of the floorplan enclosing all
the placement), as the objective function to be mini-
mized.

Fig. 4 shows that, regardless of the number of
components involved and the versions used to built
the tree, the new algorithm does in fact minimize the
semi-perimeter. Moreover it can now be shown that
Stockmeyer’s approach to the problem did provide a
good approximation for the minimization of the oc-
cupied area in terms of this evaluation function.

In Fig. 5, occupation ratios (all of the occupation
area vs. space physically used) are shown, again for
both versions as well as for both algorithms. The
theoretical optimum should be a ratio occupation
equal to 1. This would mean that all the available
area was in fact occupied with components. This is

Fig. 5. Area occupation ratios.

A.M. C. Almeida et al. / European Journal of Operational Research 109 (1998) 660-671 669

Fig. 6. Area: cp(h,w) = hw

however unpractical since in general components are
not all of the same size and shape. Again it can be
seen that, while with Stockmeyer’s algorithm roughly
half of the area that can be occupied is wasted, the
new algorithm reduces this wastage by more than
one half.

Fig. 6 is perfectly analogous to Fig. 4 save that
this diagram shows results in terms of the cost
measure Area and was only presented for the sake of
possible readers interested in seeing results using this
cost measurement.

In terms of the objective function (8), that is, the
evaluation of the final placement, where both the
occupied area and the total wire length are expected
to be optimized so that a good routing can be

performed on the placed circuit, results are presented
in the next diagram (Fig. 7).

Again it can be seen that our algorithm performs
best, not only because it reduces the occupied area
but also because, in doing this, it reduces the value
of the function W (since, if the components are
closer to each other, then the length of wire used to
connect them will also decrease).

Within this context the execution times cannot be
fairly compared since the implementation of the new
algorithm was considerably altered from the original
procedure. In fact, while even for the largest circuits,
with 1000 components, Stockmeyer’s algorithm did
take less than one second on average to compute the
minimum (which means that it took ‘all’ this time to

Fig. 7. Total evaluation of placement: F = A + W.

670 A.M.C. Almeida et al./European Journal qf Operational Research 109 (1998) 660-671

(A) w

Fig. 8. (A) Execution times; (B) number of solutions present at the root of the trees

construct the lists associated with the nodes of the
tree and then search for the best solution, in terms of
the cost measure involved, in the root list), under the

restrictions already mentioned, our algorithm took
approximately half an hour to do the same. However,
when the procedure presented in Section 4 is literally
implemented it runs quite fast, presenting average

Fig. 9. Best placement obtained with Stockmeyer’s heuristic. Fig. 10. Placement obtained with our optimal algorithm.

A.M.C. Almeida et al. /European Journal of Operational Reseurch 109 (1998) 660-671 671

execution times close to linear in the number of leaf
nodes.

When we compare the graphics in item (B) of
Fig. 8, it is easily seen that Stockmeyer’s procedure
produces much less feasible solutions. In fact, being
no more than an heuristic for the problem we intend
to solve, it easily gets stuck in local optima. Depend-
ing on the tree at hand and how soon it gets stuck,
the lengths of the lists at the roots vary immensely
and have no relation with the number of components
included in the problem. As for the new algorithm,
the number of possible solutions (that certainly in-
clude the global optima) are not comparable with the
previous ones and are strongly dependent on the
components involved in the problem (that is, they
depend not only on the number of components but
also in their shapes and sizes and how they cluster to
produce new solutions). The New algorithm is there-
fore much slower than Stockmeyer’s heuristic. It is
however well known that time is not pressing within
these areas of research for if we are able to design a
good circuit, it does not matter if we take a week or
a month to do it as long as it is manufacturable
(which will be done hopefully for many a month).

We end this section with an example where we
show placements obtained with both Stockmeyer’s
approach (Fig. 9) and our new algorithm (Fig. 10)
for one of the circuits with 250 components used for
performance evaluation using the Mis heuristic for
construction of the tree. The differences in terms of
occupation of the available area are visible and
corroborate the conclusions drawn from Fig. 5 (area
occupation ratios).

7. Concluding remarks

Although the general compaction problem is clas-
sified as NP-complete, the strategy of dividing it into
smaller problems has once again brought out a par-
ticular subproblem, optimal orientations and cutting
directions for slicing floorplans, that has here been
proved to be solvable in polynomial time.

This work also stresses the need to use binary
trees within this framework since the orders of com-
plexity that arise when using other higher order trees
tend to be exponential, which is also referred to in
[7] amongst others.

The use of this compaction algorithm in bottom-up
constructive approaches to obtain the slicing tree
seems most appropriate and it constitutes a good
field for future research.

Acknowledgements

We do not wish to end this paper without a
special acknowledgement to one of the referees for
his helpful comments and hints.

References

[l] A.M.C. Almeida, Uma abordagem particular ao estudo de

alguns problemas NP-completes, PAPCC Dissertation in

Mathematics/Computer Science, Dep. de Matematica FC-

TUC, Universidade de Coimbra, March 1994.

[2] 4 M.C. Almeida, M.R.D. Rodrigues, A new clustering ap-

proach to hierarchical layout, presented at EURO X1 - 1 I th

European Congress on Operational Research, Aachen, Ger-
many, July 1991.

[3] B.W. Kemighan, S. Lin, An efficient heuristic procedure for

partitioning graphs, Bell System Technical Journal 49 (1970)
291-307.

[4] M.R., Carey, D.S. Johnson, L. Stockmeyer, Some simplified

NP-complete problems, in: Proceedings of the 6th Annual

ACM Symposium of the Theory of Computing, Seattle, April
1974, pp. 47-63.

[5] M.R.D. Rodrigues, A tree-based algorithm for component

placement, Ph.D. Thesis, Department of Computer Science,
University of Manchester, 1986.

[6] L. Stockmeyer, Optimal orientations of cells in slicing floor-

plan designs, Information and Control 57 (1983) 91-101.

[7] T. Wang, D.F. Wong, Optimal floorplan area optimization,
IEEE Transactions on Computer-Aided Design II (8) (1992)
992-1002.

[8] M. Zeleny, Linear Multiobjective Programming, Lecture Notes
in Economics and Mathematical Systems, vol. 95, Springer-
Verlag, Berlin, 1974.

