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Let F be an arbitrary field. Let p be the characteristic of F in case of finite charac-
teristic and � if F has characteristic 0. Let A be a finite subset of F. By �2 A we
denote the set [a+b | a, b # A and a{b]. For c # �2 A, let & (R)

c be one-half of the
cardinality of the set of pairs (a, b) satisfying a{b and a+b=c. Denote by + (R)

i the
cardinality of the set [c # �2 A | & (R)

c �i]. We prove that, for t=1, ..., w |A|�2x ,
�t

i=1 + (R)
i �t min[ p, 2( |A|&t)&1]. For F=Zp and t=1 we get the Erdo� s�

Heilbronn conjecture, first proved by J. A. Dias da Silva and Y. O. Hamidoune
(Bull. London Math. Soc. 26, 1994, 140�146). � 1998 Academic Press

1. INTRODUCTION

Let F be an arbitrary field. Let p be the characteristic of F in case of finite
characteristic and � if F has characteristic 0. Given b # R we write WbX
(wbx) for the smallest integer greater than or equal to b (the greatest
integer less than or equal to b). For a # N let [1, a] denote the set
[x # N: 1�x�a]. Let A and B be nonempty finite subsets of F. By A+B
we denote the set of elements a+b with a # A and b # B. For each element
c # F, let &c(A, B) be the cardinality of the set of pairs (a, b) such that
a+b=c. Let i be a positive integer. We denote by + i (A, B), or briefly
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by +i , the cardinality of the set of the elements c # A+B for which &c(A, B)
is greater than or equal to i.

Let X be a set. We denote by |X| the cardinality of X. If |X|=k we say
that X is a k-set. In [1] we prove the following theorem:

1.1. Theorem. Let A and B be finite nonempty subsets of F. Then for
t=1, 2, ..., min[ |A|, |B|] we have

:
t

i=1

+i�t min[ p, |A|+|B|&t].

This result is an extension to an arbitrary field of a theorem proved by
Pollard [4, 5], for Zp=Z�pZ, where p is a prime number. Notice that the
case where t=1 is the well known Cauchy�Davenport Theorem.

In this paper we prove, for restricted sums, an analogue of Theorem 1.1.
Let A be a finite subset of F. We denote by �2 A the set

[a+b | a, b # A and a{b].

For c # �2 A, let & (R)
c be one-half of the cardinality of the set of pairs (a, b)

satisfying a{b and a+b=c. Denote by + (R)
i the cardinality of the set

[c # �2 A | & (R)
c �i].

We prove that, for t=1, ..., w |A|�2x,

:
t

i=1

+ (R)
i �t min[ p, 2( |A|&t)&1]. (1)

This lower bound is tight and the equality in (1) is attained when A is an
arithmetic progression.

For F=Zp and t=1 we get the Erdo� s�Heilbronn conjecture [3], first
proved in [2].

2. COMBINATORIAL BACKGROUND

A sequence of integers *=(*1 , ..., *t) will be called a partition if 0�*1

� } } } �*t . We say that * is a partition of k if

:
t

i=1

*i=k.
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The length of the partition * is the number of its nonzero terms. Let s be
a positive integer. The set of the partitions of k of length at most s is
denoted by Pk, s . Let + be a partition of k and let * be a partition of k+1.
We write + � * if there exists j such that *i=+i+$ij for all i, where $ ij is
the Kronecker symbol.

To each partition *=(*1 , ..., *t) of k there corresponds a Young Diagram,
[*], which consists of k boxes in t rows starting in the same column, where
the i th row consists of *t&i+1 boxes, 1�i�t.

Example. Let k=7 and *=(1, 2, 4). Then

[*]=

The box that lies in i th row and j th column of [*] is called the (i, j)-box
of [*]. The (i, j)-hook of [*], H *

i, j , is the collection of boxes consisting of
the (i, j)-box along with the boxes of the same row to the right and the
boxes of the same column under it. The number of boxes of H *

i, j is denoted
by h*

i, j . For a partition of k of length t, *=(*1 , ..., *t), let

P(*)= `
t

i=1

`
*t&i+1

j=1

h*
i, j .

In [2] the following result is established:

2.2. Proposition. Let * # Pk+1, s . Then

:

+ � *
+ # Pk, s

1
P(+)

=
k+1
P(*)

.

Using this proposition it is easy to see that, if * is a partition of k, then
k!�P(*) is an integer. The next result is easy to prove, so its proof will be
left to the reader.

2.3. Proposition. For +=(+1 , +2) we have

P(+)=
(+2+1)! +1 !
+2&+1+1

.
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3. AUXILIARY RESULTS

Let F be an arbitrary field and denote by F� the algebraic closure of F. Let
V{[0] be an m-dimensional vector space over the field F and let f be a
linear operator on V. We use Pf to denote the minimal polynomial of f and
:f, 1 | } } } | :f, m=Pf to denote the invariant factors of f (so that each :f, i

divides all subsequent polynomials :f, i+1 , ..., :f, m). For every v # V, Cf (v) is
the f-cyclic space of v, i.e.,

Cf (v)=( f i (v): i # Z+) ,

where (X) denotes the linear span of X and Z+ denotes the set of non-
negative integers. We use _( f ) to denote the spectrum of f, i.e., _( f ) is the
family of the m roots of the characteristic polynomial of f in F� . Let i be a
positive integer. We denote by mi ( f ) the number of distinct roots of the
characteristic polynomial of f with algebraic multiplicity greater than or
equal to i. Notice that m1( f ) is the number of distinct eigenvalues of f and
for a diagonal linear operator f,

mi ( f )=deg(:f, m&i+1), i=1, ..., m.

3.4. Definition. Let a=(a1 , ..., an) and b=(b1 , ..., bn) be two sequences
of nonnegative integers. Denote by (a� 1 , ..., a� n) and (b� 1 , ..., b� n) the reordering,
in a nonincreasing way, of a and b, respectively. We say that a weakly
dominates b and we write

a c= b

if

:
k

i=1

a� i� :
k

i=1

b� i , k=1, ..., n.

If �n
i=1 ai=�n

i=1 b i we say that a dominates b and we write apb.

In [1] the following result was proved:

3.5. Lemma. Let V be a finite dimensional vector space over the field F
of dimension m. Let f be a linear operator on V. Let s1 , ..., st be positive
integers. If there exist v1 , ..., vt # V such that

.
t

i=1

[vi , f (vi), f 2(vi), ..., f si&1(vi)]
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is a linearly independent (s1+ } } } +st)-set then

(s1 , ..., st) C= (deg(:f, m), ..., deg(:f, m&t+1)).

For the benefit of the reader we reproduce here the proof of this lemma.
For this we need some definitions and results.

3.6. Definition. Let v1 , ..., vt # V and let f be a linear operator on V.
The subspace

Cf (v1 , ..., vt)=( f j (v i): j # Z+, i=1, ..., t)

will be called the generalized f-cyclic subspace associated to v1 , ..., vt . We
say that the pair ((v1 , ..., vt), f ), or the generalized f-cyclic subspace
Cf (v1 , ..., vt), is completely controllable if

Cf (v1 , ..., vt)=V.

3.7. Definition. Let f be a linear operator on V and let v1 , ..., vt # V.
A basis, B, of Cf (v1 , ..., vt) selected from

[ f j (vi): j # Z+, i=1, ..., t]

is nice if, for 0�i�k&1, f i (vj) # B provided that f k(vj) # B.
Let

B= .
t

i=1

[vi , f (vi), f 2(vi), ..., f ri&1(v i)]

be a nice basis of Cf (v1 , ..., vt). We say that the nonnegative integers
r1 , ..., rt are indices of B.

Let v1 , ..., vt # V. If

I= .
t

i=1

[vi , f (vi), f 2(vi), ..., f si&1(v i)]

is a linearly independent (s1+ } } } +st)-set, we say that I is a ((v1 , ..., vt), f )-
nice independent set and we call the nonnegative integers s1 , ..., st indices of I.

Notice that it is possible to associate more than one list of indices to a
((v1 , ..., vt), f )-nice independent set. For instance if v1 , v2 , v3 are linearly
independent vectors of V and f (v1)=v2 ,

I=[v1 , v2 , v3]=[v1 , f (v1), v3]
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is a ((v1 , v2 , v3), f )-nice independent set and both (1, 1, 1) and (2, 0, 1) are
lists of indices of I.

In [6], the following result is proved.

3.8. Proposition. Let A be an l_l matrix and let :1 | :2 | } } } | :l be its
invariants factors. Let m be a positive integer satisfying m>l. Let #1 , ..., #m

be monic polynomials over F such that deg(#1 } } } #m)=m and #1 | } } } | #m .
Then there exist C # F(m&l)_l and D # F(m&l)_(m&l) such that the m_m
matrix

_A
C

0
D&

has invariant factors #1 , ..., #m , if and only if

#i | :i | #i+m&l , i=1, ..., l.

The next theorem is proved in [8, Corollary 2.2].

3.9. Theorem. Let V be an m-dimensional vector space over the field F.
Let f be a linear operator on V and let r1 , ..., rt be positive integers. Then
there exist linearly independent vectors v1 , ..., vt , such that Cf (v1 , ..., vt) is
completely controllable, and a nice basis of Cf (v1 , ..., vt) with indices r1 , ..., rt

if and only if the following conditions hold:

:f, i=1, i=1, ..., m&t,

and

(r1 , ..., rt)P (deg(:f, m), ..., deg(:f, m&t+1)).

The next theorem is proved in [1] and states a necessary condition for
the existence of nice bases with prescribed indices when the constraint of
complete controllability is skipped.

3.10. Theorem. Let V be an m-dimensional vector space over the field F
and let f be a linear operator on V. Let r1 , ..., rt be positive integers. If there
exist linearly independent vectors v1 , ..., vt and a nice basis of Cf (v1 , ..., vt)
with indices r1 , ..., rt , then

(r1 , ..., rt) C= (deg(:f, m), ..., deg(:f, m&t+1)).
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Proof. Let U=Cf (v1 , ..., vt) and let l=dim(U). As usual, let f |U denote
the restriction of f to U. Clearly, Cf | U (v1 , ..., vt) is completely controllable
and from Theorem 3.9 we have

(r1 , ..., rt)P (deg(:f|U , l), ..., deg(:f|U , l&t+1)). (2)

By the transposed version of Proposition 3.8 we know that

:f, i | :f|U, i | :f, i+m&l , i=1, ..., l.

Therefore

:f|U , l:f|U, l&1 } } } :f |U , l& j | :f, m :f, m&1 } } } :f, m& j , j=0, ..., l&1. (3)

Taking degrees in (3) we have

:
j

i=0

deg(:f|U , l&i)� :
j

i=0

deg(:f, m&i), j=0, ..., l&1. (4)

Since v1 , ..., vt # U are linearly independent vectors we have t�dim(U)=l.
Therefore, from (4) and (2) we get

(r1 , ..., rt)C=(deg(:f, m), ..., deg(:f, m&t+1)). K

Proof of Lemma 3.5. Let s1 , ..., st be positive integers and suppose that

.
t

i=1

[vi , f (vi), f 2(vi), ..., f si&1(vi)]

is a linearly independent (s1+ } } } +st)-set. In order to use Theorem 3.10,
we complete this set to a nice basis of Cf (v1 , ..., vt). For each q # [1, ..., t],
let rq be the positive integer such that

\ .
q

j=1

[vj , f (vj), ..., f rj&1(vj)]+_ \ .
t

i=q+1

[vi , f (v i), f 2(vi), ..., f si&1(vi)]+
is a linearly independent (r1+ } } } +rq+sq+1+ } } } +st)-set and

f rq (vq) # �\ .
q

j=1

[vj , f (vj), ..., f rj&1(v j)]+
_ \ .

t

i=q+1

[vi , f (vi), f 2(vi), ..., f si&1(vi)]+�.
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It is obvious, from the definitions, that

f \�.
t

i=1

[vi , ..., f ri&1(vi)]�+��.
t

i=1

[v i , ..., f ri&1(vi)]�. (5)

We now show that

.
t

i=1

[vi , ..., f ri&1(vi)]

is a maximal linearly independent set contained in Cf (v1 , ..., vt). Assume,
for a contradiction, that for some i # [1, ..., t] and some r # N,

f r(v i) � �.
t

i=1

[vi , ..., f ri&1(vi)]�. (6)

Without loss of generality we can suppose that r is the smallest integer with
this property. Then

f r&1(vi) # �.
t

i=1

[vi , ..., f ri&1(vi)]�
and

f r(vi) # f \�.
t

i=1

[vi , ..., f ri&1(vi)]�+ .

Using (5) we get

f r(v i) # �.
t

i=1

[vi , ..., f ri&1(vi)]�,

which contradicts (6).
By Theorem 3.10 we conclude that

(r1 , ..., rt) C= (deg(:f, m), ..., deg(:f, m&t+1)).

But, since by construction, we have si�ri , i=1, ..., t, we get from the
former inequalities

(s1 , ..., st) C= (deg(:f, m), ..., deg(:f, m&t+1)). K

Let �2 V be the second exterior power of V. Let f be a linear operator
on V. We denote by D( f ) the induced operator on �2 V, defined by

D( f )(v1 7 v2)= f (v1) 7 v2+v1 7 f (v2), v1 , v2 # V.
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3.11. Proposition. Given a finite subset A�F, let V be a vector space
over F of dimension |A|. Let f be a linear operator on V with spectrum
_( f )=A. Then

mi (D( f ))=+ (R)
i , i # N.

Proof. Suppose A=[a1 , ..., an]. It is easily derived from the definitions
that the spectrum of D( f ) is the family

(aj+ak)1� j<k�n .

Then for i # N we have

mi (D( f ))=|[x # �2 A: |[( j, k): 1� j<k�n and aj+ak=x]|�i]|

=+ (R)
i . K

Let f be a linear operator on V and let v # V be such that n=dim Cf (v)�2.

3.12. Definition. Let x # �2 Cf (v). We define the weight of x as the
maximal element of the set

[i+ j: x has a nonzero coefficient of f i (v) 7 f j (v)].

The following results will allow us to evaluate the weight of D( f )k ( f j&1(v)
7 f j (v)).

3.13. Lemma. For every k # Z+ and j # N

D( f )k ( f j&1(v) 7 f j (v))= :
* # Pk, 2

k !
P(*)

f *1+ j&1(v) 7 f *2+ j (v).

Proof. We use induction on k. For k=0 the result is trivial.
Observe now that, for * # Pk, 2 ,

D( f )( f *1+ j&1(v) 7 f *2+ j (v))= :

* � ;
; # Pk+1, 2

f ;1+ j&1(v) 7 f ;2+ j (v). (7)
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We have now, using the induction hypothesis,

D( f )k+1 ( f j&1(v) 7 f j (v))

= :
* # Pk, 2

k !
P(*)

:

* � ;
; # Pk+1, 2

f ;1+ j&1(v) 7 f ;2+ j (v)

= :
; # Pk+1, 2

\ :

* � ;
* # Pk, 2

k !
P(*)+ f ;1+ j&1(v) 7 f ;2+ j (v)

= :
; # Pk+1, 2

(k+1)!
P(;)

f ;1+ j&1(v) 7 f ;2+ j (v).

The last equality follows from Proposition 2.2. K

3.14. Lemma. For k # Z+ and j # N there exists a family of elements
of F, (b&)

&1+&2�k+2 j&3
0�&1�&2�n&2 , such that

D( f )k ( f j&1(v) 7 f j (v))= :

*2�n& j&1
* # Pk, 2

k !
P(*)

f *1+ j&1(v) 7 f *2+ j (v)

+ :

&1+&2�k+2 j&3
0�&1�&2�n&2

b& f &1(v) 7 f &2+1(v).

Proof. We use Lemma 3.13 and isolate the terms f *1+ j&1(v) 7 f *2+ j (v)
with *2+ j�n. Clearly, each of these terms can be written as a linear
combination of f &1(v) 7 f &2(v), where 0�&1<&2�n&1 and &1+&2�
(*1+ j&1)+(*2+ j)&1=k+2 j&2. The result follows. K

3.15. Theorem. For j # N and 0�k�min[ p&1, 2n&2 j&2], the
weight of

D( f )k ( f j&1(v) 7 f j (v))

is k+2 j&1.

Proof. Clearly the weight does not exceed k+2 j&1. On the other hand,
let *=(wk�2x, Wk�2X) # Pk, 2 . Since k�2n&2 j&2 we have *2�n& j&1. We
now use Lemma 3.14 and notice, that the coefficient k !�P(*) is not 0 in F
as k<p. K
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3.16. Lemma. Let F and p be as usual. Let a, b, k # Z+ satisfy b+2k�
a<p. Then the (k+1)_(k+1) matrix over F, C(a, b, k)=[cij] where

cij={
(a&i+1)! (b+i&1)!

(a&i& j+2)! (b+i& j)!
0

if b+i& j�0

if b+i& j<0,

is invertible.

Proof. We proceed by induction on k. If k=0 we have

C(a, b, 0)=[1].

Assume now that k�1. Let J be the (k+1)_(k+1) matrix, with the
(i+1, i) entries, i=1, ..., k, equal to 1, and the remaining entries equal to
0. We have

1 c12 } } } c1, k+1

(Ik+1&J) C(a, b, k)=_ 0 & ,
b B
0

where B=(bij) is the k_k matrix whose (i, j)-entry is bij=&ci, j+1+ci+1, j+1 ,
i, j=1, ..., k.

If b+i& j<0 both ci, j+1 and ci+1, j+1 are zero. Then b ij=0.
If b+i& j=0 then ci, j+1=0 and

bij =ci+1, j+1

=
(a&i)! (b+i)!

(a&i& j)! (b+i& j)!

=
(a&i)! (b+i&1)! j(a&i& j+1)

(a&i& j+1)! (b+i& j)!

=
(a&i)! (b+i&1)! j(a&b&2i+1)

(a&i& j+1)! (b+i& j)!
.
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For the third equality we have used the fact that (b+i)!= j(b+i&1)! and
we have multiplied both the numerator and the denominator by
a&i& j+1=a&b&2i+1>0. If b+i& j>0 we have

bij=
(a&i)! (b+i&1)!

(a&i& j+1)! (b+i& j)!

_[&(a&i+1)(b+i& j)+(b+i)(a&i& j+1)]

=
(a&i)! (b+i&1)! j(a&b&2i+1)

(a&i& j+1)! (b+i& j)!
.

Then there exist two invertible matrices P and Q such that PBQ=
C(a&1, b, k&1). Therefore using the induction hypothesis, we conclude
that C(a, b, k) is invertible. K

4. MAIN RESULTS

4.17. Notation. Let A be a finite subset of the field F. Recall that if i is
a positive integer, + (R)

i is the cardinality of the set

[x # �2 A: & (R)
x �i].

It is easy to see that + (R)
i =0 for i>|A|�2.

4.18. Theorem. Let V be a nonzero m-dimensional vector space over the
field F. Let f be a linear operator on V with minimal polynomial Pf and
assume that deg(Pf)�2 and 1�t�wdeg(Pf)�2x. Then we have

:
t

i=1

deg(:D( f ), ( 2
m)&i+1)�t min[ p, 2(deg(Pf)&t)&1].

4.19. Corollary. Let A be a finite subset of the field F and 1�t�
w |A|�2x . Assume that |A|�2. Then we have

:
t

i=1

+ (R)
i �t min[ p, 2( |A|&t)&1].
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Proof of Corollary 4.19. Let n=|A| and let f be a diagonal linear
operator on Fn whose spectrum is A. Then D( f ) is diagonal with spectrum
�2 A. Using Proposition 3.11 we obtain

:
t

i=1

+ (R)
i = :

t

i=1

deg(:D( f ), (n
2)&i+1), t=1, 2, ..., \n

2+ .

Then using Theorem 4.18 we conclude that, for 1�t�wn�2x ,

:
t

i=1

+ (R)
i �t min[ p, 2(n&t)&1]. K

Remark. If x is an integer, denote by x� the canonical image of x in F.
Suppose that A�F is an arithmetic progression with |A|�3. Then
p�|A|�3.

Let A$=[0� , 1� , ..., |A|&1]. For x� # �2 A$, let &̂ (R)
x� be one-half of the

cardinality of the set of pairs (a� , b� ) # A$_A$ satisfying a� {b� and : a� +b� =x� .
Denote by +̂ (R)

i the cardinality of the set

[x� # �2 A$ | &̂ (R)
x� �i].

It is easy to see that

+ (R)
i =+̂ (R)

i , i # N.

For x� # �2 A$=[1� , ..., min[ p, 2 |A|&3]] we have:

If p�2 |A|&4 then

|A|&
p+1

2
if x� # [1� , ..., 2 |A|& p&3]

&̂ (R)
x� ={�x

2| if x� # [2 |A|& p&2, ..., |A|&1]

|A|&\x
2�&1 if x� # [ |A|, ..., p� ].

If p�2 |A|&3 then

&̂ (R)
x� ={�x

2|
|A|&\x

2�&1

if x� # [1� , ..., |A|&1]

if x� # [ |A|, ..., 2 |A|&3]
.
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Then, for i=1, ..., w |A|�2x, we have

+ (R)
i =+̂ (R)

i

=|[x� # �2 A$: &̂ (R)
x� �i]|

={
p

2 |A|&4i+1

if 1�i�|A|&
p+1

2

if max {1, |A|&
p&1

2 =�i�\|A|
2 � .

It follows that, for t=1, 2, ..., w |A|�2x,

:
t

i=1

+ (R)
i ={

tp

t(2 |A|&2t&1)

if t�|A|&
p+1

2

if t�max {1, |A|&
p&1

2 =
and thus equality holds in Corollary 4.19.

5. PROOF OF THEOREM 4.18

Let v # V be such that dim Cf (v)=deg(Pf)=n�2. Let B be the basis of
�2 Cf (v) defined by

B=[ f *1(v) 7 f *2+1(v): 0�*1�*2�n&2]

={f *1(v) 7 f *2+1(v): *=(*1 , *2) # .
s # Z+

Ps, 2 and *2�n&2= .

Let 1�t�wn�2x. For k # Z+ and 1� j�t define

zk, j=Dk( f )( f j&1(v) 7 f j (v)).

Let u=t min[ p, 2n&2t&1]. We shall prove that

C=[zk, j : 1� j�t, 0�k�min[ p&1, 2n&2t&2]]

is a linear independent u-set and use Lemma 3.5 to conclude that

(deg(:D( f ), ( 2
m)), deg(:D( f ), ( 2

m)&1), ..., deg(:D( f ), ( 2
m)&t+1))
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weakly dominates the t-tuple

(min[ p, 2n&2t&1], ..., min[ p, 2n&2t&1]),

thereby obtaining the result.
In order to prove that C is a linearly independent set we split it into

several linearly independent and pairwise disjoint subsets and prove that
the linear span of C is the direct sum of the linear spans of those subsets.
These subsets will be obtained by grouping together the elements of C with
the same weight.

From Theorem 3.15 it is easy to see that the maximum weight of the
vectors of C is

Mt=min[ p+2t&2, 2n&3].

For r=1, ..., Mt let Sr be the index set of the subset of the elements of C

of weight r. That is,

Sr=[(k, j) # Z+_N: 1� j�t, 0�k�min[ p&1, 2n&2t&2]

and k+2 j&1=r]

=[(r&2 j+1, j) # Z+_N: ar� j�br],

where

ar=max {1, �r& p
2 |+1, �r+1

2 |&n+t+1=
and

br=min {t, \r+1
2 �=

We have

C= .*
Mt

r=1

[zk, j : (k, j) # Sr]. (8)

Claim 1. For any fixed r # [1, Mt], the set [zk, j : (k, j) # Sr] is linearly
independent.

167A RESULT FOR RESTRICTED SUMS



Proof. Let qr=|Sr |=br&ar+1. We denote by Br the set of those
elements of B with weight r:

Br={ f i (v) 7 f r&i (v): max[0, r&n+1]�i�\r&1
2 �= .

Let ?r be the projection of �2 Cf (v) onto (Br) , along �2n&3
s=1, s{r (Bs).

Let (k, j) # Sr . From Lemma 3.14 we have

?r(zk, j)= :

*2�n& j&1
* # Pk, 2

k !
P(*)

f *1+ j&1(v) 7 f *2+ j (v). (9)

We order the elements of [?r(zk, j) : (k, j) # Sr] by writing

yj=?r(zr&2 j&2ar+3, j+ar&1), j=1, 2, ..., qr .

To prove Claim 1 it is sufficient to prove

Claim 1$. [ y1 , ..., yqr
] is linearly independent.

Proof. Let

{%j : max[0, r&n+1]� j�\r&1
2 �=

be the dual basis of Br ; i.e., %j are linear functions on �2 Cf (v), satisfying

%j ( f i (v) 7 f r&i (v))=$ij , max[0, r&n+1]�i, j�\r&1
2 � ,

where $ij is the Kronecker symbol.
We prove that the |Br |_qr matrix of the coefficients of y1 , ..., yqr

with
respect to the basis Br , that is,

[%i ( yj)]
j=1, ..., qr

i=1, ..., |Br | ,

has an invertible qr_qr submatrix, to conclude that [ y1 , ..., yqr
] is linearly

independent.

We consider two cases.
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Case 1. ar�r&n+2. For all i # [1, 2, ..., qr] we have

max[0, r&n+1]�ar&1�i+ar&2�br&1�\r&1
2 � ,

so we can consider Xi=%i+ar&2 .
From (9) it follows that

Xi ( yj)=%i+ar&2(?r(zr&2 j&2ar+3, j+ar&1))

= :

*2�n& j&ar

* # Pr&2j&2ar+3, 2

(r&2 j&2ar+3)!
P(*)

_%i+ar&2( f *1+ j+ar&2(v) 7 f *2+ j+ar&1(v))

= :

*2�n& j&ar

* # Pr&2j&2ar+3, 2

(r&2 j&2ar+3)!
P(*)

$*1, i& j , (10)

for 1�i, j�qr .
If i< j, then all $*1 , i& j at the right vanish and X i ( yj)=0.
Suppose i� j. Then

2ar+2i�2ar+2qr .

Bearing in mind that qr=br&ar+1 we have

2ar+2i�2br+2.

Since br=min[t, w(r+1)�2x], we get from the former equality

2ar+2i�2 \r+1
2 �+2�r+3.

Then 2i�r&2ar+3 and

i& j=2i&(i+ j)�r&i& j&2ar+3�n&ar& j.

Thus, if i� j then for *1=i& j, *2=r&i& j&2ar+3 we have (*1 , *2) #
Pr&2 j&2ar+3, 2 . Next, from the assumption ar�r&n+2 we get *2=
r&i& j&2ar+3�n&ar& j, and hence by (10) we have

Xi ( yj)=
(r&2 j&2ar+3)!

P((*1 , *2))
.

169A RESULT FOR RESTRICTED SUMS



It follows that [Xi ( yj)]i, j=1, 2, ..., qr
is a triangular matrix with the elements

on the principal diagonal equal to 1, and so [ y1 , ..., yqr
] is linearly

independent.

Case 2. ar�r&n+1. In this case r&n+1�ar�1 and then

Br={f i (v) 7 f r&i (v): r&n+1�i�\r&1
2 �= .

Observe that since, by definition we have qr=br&ar+1, we get

qr�t&\�r+1
2 |&n+t+1++1.

Therefore

qr+r&n�\r&1
2 � ,

and so we can define Xi=%i+r&n , i=1, 2, ..., qr .
For i, j=1, 2, ..., qr ,

Xi ( yj)=%i+r&n(?r(zr&2 j&2ar+3, j+ar&1))

= :

*2�n& j&ar

* # Pr&2j&2ar+3, 2

(r&2 j&2ar+3)!
P(*)

_%i+r&n( f *1+ j+ar&2(v) 7 f *2+ j+ar&1(v))

= :

*2�n& j&ar

* # Pr&2j&2ar+3, 2

(r&2 j&2ar+3)!
P(*)

$*1, i& j&ar+r&n+2 . (11)

If i& j&ar+r&n+2<0, then all $*1 , i& j&ar+r&n+2 vanish and Xi ( yj)=0.
Suppose i& j&ar+r&n+2�0. Since i�1, we have n&i& j&ar+1�

n& j&ar . Also, from i�qr we get

2i�2br&2ar+2

�2t&2 \�r+1
2 |&n+t+1++2

�&2 �r+1
2 |+2n

�&r&1+2n,
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and thus

i& j&ar+r&n+2�n&i& j&ar+1.

Then, for *1=i& j&ar+r&n+2, *2=n&i& j&ar+1 we have
(*1 , *2) # Pr&2 j&2ar+3, 2 . Clearly *2�n&ar& j and by (11) we have

Xi ( yj)=
(r&2 j&2ar+3)!

P((*1 , *2))
.

Using Proposition 2.3 we conclude that

Xi( yj)={
0 if i&j&ar+r&n+2<0

(r&2 j&2ar+3)! (2n&2i&r)
(n&i& j&ar+2)! (i& j&ar+r&n+2)!

if i& j&ar+r&n+2�0.

Then there exist two invertible matrices P and Q such that P[Xi ( yj)] i, j=1, ..., qr

Q=C(n&ar , r&n&ar+2, qr&1).
Next we verify that the conditions for application of Lemma 3.16 to the

matrix C(n&ar , r&n&ar+2, qr&1) are fulfilled.
From r�Mt�2n&3 and t�n�2 we have

�r& p
2 |+1�

r& p
2

+1�n&
p&1

2
<n

and

�r+1
2 |&n+t+1�t<n.

Then, by the definition of ar we get ar<n, that is, n&ar�1.
From the assumption ar�r&n+1 we get r&n&ar+2�1.
From the definitions of ar , br , and qr we have

2qr&2�2t&2 \�r+1
2 |&n+t+1+�2n&r&2,

and thus (r&n&ar+2)+2(qr&1)�n&ar . Also, from the definition of ar

we have p�r&2ar+2. Since r�ar+n&1 it follows that p�n&ar+1.
Thus we can apply Lemma 3.16 and conclude that C(n&ar , r&n&ar+2,

qr&1) is an invertible matrix. Then also [X i ( yj)] i, j=1, ..., qr
is invertible and

[ y1 , ..., yqr
] is linearly independent.
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From (8) we have

(C) = :
Mt

r=1

(zkj : (k, j) # Sr). (12)

This proves Claims 1$ and 1.
Next we prove that the sum in (12) is direct. Suppose

:
Mt

r=1

:
(k, j) # Sr

uk, j zk, j=0.

Then

:
Mt

r=1

:
(k, j) # Sr

uk, j ?Mt
(zk, j)=0. (13)

For (k, j) � SMt
the vector zk, j has weight k+2 j&1<Mt and thus

?Mt
(zk, j)=0. Then, by (13) we have

:
(k, j) # SMt

uk, j ?Mt
(zk, j)=0.

From Claim 1$ it follows that uk, j=0, for all (k, j) # SMt
.

If we repeat this procedure with ?s , s=Mt&1, Mt&2, ..., 1, we conclude
that

uk, j=0, (k, j) # Sr , r=1, ..., Mt .

Then the sum in (12) is direct and C is linearly independent, which proves
Theorem 4.18. K
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