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Abstract

The well-known determinantal conjecture of de Oliveira and Marcus (OMC) confines
the determinant det(X + Y) of the sum of normal #» x » matrices X, ¥ to a certain region
in the complex plane. Even the subconjecture obtained by specializing it to n =4,
X Hermitian ard Y normal is still open. We view the subconjecture as a special case of an
assertion coricerning a certain family of bilinear forms on R'® x C'® and give a method
that may prove useful for establishing it for many of such matrix pairs, independent of
their snectrum; in particnids we appiy it successfully in the case of a prominent unitary
similarity of Drury’s threatening OMC. Urfortunately we find the assertion, extended
naturally to pairs of complex arguments o be false and the ideas vudined wmapplicable
for the general OMC(n=4) case. We also report on some computer experiments, for-
mulate OMC(n=4) as a statement about cones, and find it would be implied by estab-
lishing the emptiness of certain semialgebraic sets defined by systems of quadratic and
linear relations. © 1999 Published by Elsevicr Science Inc. All rights reserved.

1. Introduction

a. We use the notation Q,R,C; M, .(R) etc.; 41,4 ® B, AB, Ax,x"Ay etc.
with their universally adopted meaning in Linear Algebra and assume that sizes
and properties of the objects wvolved make sense. Notation, definitions,
conventions, properties, and observations on many of the other objects that we
will use are listed in telegram style, as follows:
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R*,C"
(n]; I.J,I°, etc.; |{]

S,,;G'; (kh-" .vks>

aij O_I_' A,‘j etc.
AT 4,47, |4], 41,47, 4°

AoB.A%
AllJ1.[ ] (gl
Opx il 130k

P,P;0,0:U

O(n),SU(n)
supp(4)

Ci(4)

coS, affs

4B

columnspaces of real and complex n-vectors.

set {1,2,...,n}; subsets of [x]. I being the comple-
ment of 1, etc.; cardinality of 1.

symmetric group acting on [n}; element of S,,; cycle of
length s in §,.

entry with address (i, /) of complex matrix 4, etc.
matrices derived from 4 € M,,,,, whose (i, j)-entries
are given respectively by a;, a;. @ |ayl, amei-iy,
i pit—js Ams1-ins1-j- Matrices 47, 41, 4¢ are ob-
tained respectively by reversing the order of rows,
columns, and by reflecting entries of 4 at center.
A is called centrosymmetric if 4° = 4. One has
AT =AIT, 4° = 41,

Hadamard Product of 4,B € M,,,(C): (40 B),

= (4;B;); A* =40 A.

the submatrix (), ;< ; of 4. empty matrix and the
1 x 1 matrix with a single entry a € C, respectively.
the £ x 7 matrices containing only entries 0/1; the

k x k identity matrix.

usually intended for permutations; real orthogonal
matrices; unitary matrices respectively.

(P,)ij = Jq(5)- 1N geometric context, O can mean
‘origin’.

real orthogonal group, special unitary group.
support of a matrix 4 = (a;;); that is the set of (i, j)
for which a;; # 0. If J is (0, 1)-matrix and

supp{4) C supp(J), then 4o J = 4.

sum of the entries of matrix 4.

Frobenius inner product of 4,8 € M,(C).

(4,B) = tr(4B*) = s(4 o B) = (UAV, UBV) for uni-
tary U, V. For real 4 and orthogonal Q,, 0-,

A— Q,AQ, is Euclidean isometry; if Q) = 07, a
rotation. See [10], Problems 5.1.4, etc.

for k =0,...,n the k-th compound of #» x n 4.: size
is () x (), Co(4) = [det([])] = [1], Ci(4) = 4,
C.{4) = [det(4)], |Ci(P,)| is a permutation matrix,
Ci{U) is unitary, |C(U)| = |Gk (V)| : for n = 4 the
\Co(U )i"2 are centrosymmetric doubly stochastic.
More in [10], 0.8.1, 0.8.4.

convex and affine hull (span) of a subset § of a real
vector space.

vector from point 4 to point B in affine space.
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Q, the polytope of n x n doubly stochastic matrices.

N logical symbols for ‘for all’, and ‘not’.

R(a,U) The 2" x 2" reai matrix &_,(|Ce(Po)| ~ |C(U)[™).

Xp, YyiX1234, €€ The products [, x:.] 1, 3;; abbreviation for
X{1.234) €te.

Prperm Polytope co{|Ci(F:)|: 0 € S,}; Piperm = 2. We

mostly use #peq.

The choice of notation also complies for the most part with current stan-
dards in matrix theory, combinatorics, geometry, and logic, as given by [10-
12,8]. Given # C M, ,(R), we will write x*#y as a shorthand for {x'Rv: R€
R}; similarly, if Z C R, then 0 < 2 might stand for *for all r € # there holds
0 < #'; further devices of this sort are used frequently to lighten notation. For
‘left/right hand side of ..."” we may use the abbreviations ihs(.)/rhs(.). There is
only little further specific symbology; it will be explained along the text.
Phrases like “for all &£’ etc. should be interpreted as ‘for all & for which ... makes
sense’ or alike, etc. Occasional use of logic expressions will clarify relations
between various statements; references to [8] are meant for those secking rapid
information and standard literature.

b. Contents. Consider the following two predicates whose arguments are »-

tuples x = [x;,...,x,] and y=[p,....» of complex numbers and unitary
matrices U.
OM,(x.p): If X and Y are normal matrices in C**" with eigenvalues x,, . . . ,x, and
Vis---sVn then
R
det(X + Y) = CO{H(.\.’,—' +_V6{;))1 ocC S,,} {1)
i=1

OMa:(x,y,U): There holds

0e co{ 3 (detp 1)) - (et [[x] Dy o € s,,}. (2)
1J3t=1) el yes
Using that normal matrices are unitarily similar to diagonal ones, the
nontrivial arguments in [20] prove these predicates are equivalent in the fol-
lowing sense:

OM;(x,y) <= [\ OM(x,».U).
UeSUin)

The well-known conjecture explicitly put forth by de Oliveira [20] in 1982,
later discovered by Miranda and Bebiano in a 1973 paper by Marcus [16],
states that OM,(x, y) holds for all x,y € C". This extends a theorem of Fiedler
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[9] according to which this is true for real x, y; that is (1) holds for Hermitian
X,Y.

Of course, if the n! expressions occurring in rhs(2) can be convexly combined
so as to make the coefficients of all x,3; equal to zero, then (2) will hold. In
terms of matrices R(c,U) = &_,(|Ck(P;)]| = |Ce(U)|"?), this establishes the
implication

Ouzr € CO{R(0,U): 6 €S,} =\ OMy(x,y,U). (3)
xyeC

If n=3, then |U| =]C(V)] =|C:(U)I° and Ihs(3) can be inferred from
Birkhoff’s representation theorem (Theorem B, Section 2) for doubly sto-
chastic matrices. This argument yields the main result of [1]. But for n > 3 the
n! k-ply permutations of S, form in general a very small proper subset of all the
(")! permutation matrices of size (7). Thus it is not clear whether &_|Ci(U)}"
lies for every unitary U in the polytope co{®}_,|Ci(P;)}: ¢ € S,}. We shall call
unitary U for which this holds internal; otherwise external. There where good
reasons, established by work of Bebiano, Merikoski, Virtanen. da Frovidencia
[18,1,19] to believe that all unitary matrices are internal; the OM-conjecture
would follow. It came as an unpleasant surprise when Dryv y [5] gave an ex-
ample of a matrix U = Up, in SU(4) which is external; i.e. for which there
holds —lhs(3); see Section 2.

In Drury’s example and other known external U, the distance of 0416 from
co{R(o,U): 6 € S,} is minute — see Section 5. Writing (2), in terms of x; and
¥, this suggested to us that a generalization of OM; to a statement about a
certain family of bilinear forms might hold; after all it is clear that (4) below
holds for all x.y € C¥ x C?¥" if U is internal and much information is lost upon
mapping the R(¢, U) via x, v as below to the complex plane.

Main Theorem. () For n = 4, all (x,y) € R' x C'*. and U = t/pr, there holds
0 € co{x’R(a,U)y: 6 €8§,}. @)

(b) However, for any external U there exist (x,y) € C'® x C'° such that (4)
does not hold.

Morz important than part (a) itself seems to be the method establishing it.
Externsl unitary matrices seem to be scarce. For reasons we give later we put
forth the following somewhat vague conjecture.

Conjecture. The heuristics outlined in Section 3 for establishing part (a) of the
theoreri will succeed for any external U € SU(4) instead of U = Upy,.

As follows from the discussions above, could part (a) of the Main Theorem
be established without any restriction concerning the U € SU(4), this would
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imply (1) whenever X is Hermitian and Y is a normal 4 x 4 matrix. This would
extend Fiedler’s result for n = 4. We are unwilling to conjecture anything for
the case n = §. If we are to admit complex x, y unrestrictedly however, then
part (b) shatters the hopes for the bilinear generalization completely.

The Main Theorem is established by means of some facts on the represen-
tation theory of the symmetric group S;. These facts allow a reduction of the
dimensionality of the problem from 16 x 16 matrices to one involving 2 x 2
matrices. They are collected in Section 2 which terminates with a proof of part
(a) of the Main Theorem. As a byproduct we extend Fiedler’s result to the case
of pairs X, Y of matrices where X is Hermitian and Y normal with one nonreal
eigenvalue. The heuristic considerations underlying the judicious choice of
certain parameters that worked for the historically important example Upy,
and as conjectured may work for the other external U € SU(4) too, are ex-
plained in Section 3. Many of the calculations of this paper were done with
MATLAB [17]. In Section 4 we prove part (b). We also give for the case U =
Upn explicit x,y showing (4) to fail. In Section 5 we report on numerical ex-
periments with a polytope that contains the same geometric information as the
convex hull of the R(s, Up,), 0 € S;. We formulate OMC as a conjecture about
cones and find that OMC(n=4) is a bit ‘less true’ than Fiedler’s result for
Hermitian matrices. We use this new formulation to show that OMC could be
inferred from the inconsistency of certain families of homogeneous polynomial
equations of degrees 1 and 2 in many real variables, a number of which are
required to be nonnegative. Since many of these equations might be super-
fluous, the proof of the inconsistency might lie within reach of current com-
puting facilities. For another attack to the case n = 4 see the beautiful recent

paper [7] by Drury.

2. Proof of part (a) of main theorem

The relevance of the representation theory of the symmetric group and in
particular of the work of Saxl [22] for the OM-cenjecture was discovered by
Drury [5]. We elaborate first on his observations. The reader might consult [8],
Articles 362 H, 368 G, for a first information on idempotents; we learned the
details originally from [14]. Other approaches via Specht Modules are in [13] or
[21].

The general theory associates Young tableaus to irreducible representations.
The group of interest for us is S;. The following three tableaus called alike here
as later their corresponding representations will be of importance for us:

11213 12
arzrsmar sl 2

%o, 1, 72,
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In the group algebra Q[S;] one calculates the primitive idempotents e;, i =
0, 1,2 defined by

€= sgn ¢)o: ¢ stabilizes columns of =;
Y {(sen o)
X Z{a: o stabilizes rows cf =;},

where = means ‘equal up to some nonzero multiple’; see [14].
Thus in our case,

e(,é E o,

GESs
ey =(id - (1,4))(id + (1,2) + (1, 3) +(2,3) +(1,2,3) +(1,3,2)),
ex=(id — (1,3) — (2,4) + (1, 3)(2,4))(id + (1,2} + (3,4)+ (1, 2) + (3,4)).
By the theory of se.nisimple rings, Q[S;] has among its direct summands the
minimal left ideals Q[S;]es, Q[Ssle;, and Q[S,]e..
Extending (tl)le mvne}’l 0-ply, the 1-ply, d,nd the 2-ply matrix representations of
Ss, namely o [1], 67— [C1(P,)], and 6= |C5(P,)| to Q[S4], we obtain as images
matrix subalgebras of M| (R), M;(R), and My (R) respectively. By [22], Lemma

2.2, these representations break up as follows into irreducible representations
m; with representation spaces given by image(Q[Syle;):

1 =m, V=memn, 1¥=mnénon.

From this we read off the dimensions dimny =1, dimn; =4 — dimz® =
3, dimm =6 — dimz'! = 2. Thgs Sax!’s theorem predicts the existence of 4 x
4 and 6 x 6 regular matrices Q, O, respectively, such that

B!
010 (P)|Q = * 02‘0) * and
i sk * *
3 ]
0GP0 = x O(c) » . (5)
i 0'(0)

The orthogonality of the permutations {C|(F;)| and |C2(P;)| implies the or-
thogonality of the 3 x 3 and 2 x 2 matrices O(cg) and O'(a), for these describe
the action of the permutations with respect to their invariant subspaces. Basis
vectors in R* and RS for the I-, 3-, and (for the 6 x 6 case) also 2- dimensional
subspaces left invariant by the images mentioned, will serve as columns for Q
and Q.
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Ewvaluating the e;, we find in M,(R) that 4ey = Jy.4, the matrix with only unit
entries, and e; = 04,4, as predicted by Saxl’s theorem; similarly in M(R),
6ey = Jsx6. More interesting idempotents are

"1 01 -1 1 -1 —17
111 =37 I 1 -1 1 -1 -1
6 0 0 0 1fo 0 o0 0 0 0
Mo o o ol 4o o o o o0 o
200 -1 21 3 -1 -1 1 -1 1 1
1 -1 1 -1 t 1]

e € M4(R), e € Mﬁ(R),

e2 € Ms(R).

Calculating and ordering adequately orthogonal bases for the spaces generated
by the sets {|Ci(P,)lex: 6 € 8} and {|Ca(P;)|ex: 0 € S;} — almost any x is
suitable here — one finds the desired transformation matrices as follows:
—1/2 ~1/V2 0 1/2

~1/2 0 1/v2 -1/2

C=1_1p o -1p3 12|
172 1/V2 0 1/2
1/V6 12 -1/2 0 12 1/VI2]
1/ve 172 172 0 0 -1/V3
o= 1/v6 0 0 -1/V2 -1/2 V12

1/v6 0 0 1/V2 -112 1/V12
1/v6 —1/2 -1/2 0 0 -1/V3
1/v6 ~1/2 172 0 /2 1/V12]

Notably Q and @ are also orthogonal, so T = @~!,Q" = @~'. This can be
explained from going through the proof of Maschke’s Theorem in [21], 1.5.3.
One finds that the representation of any finite, with respect to the ordinary
scalar product orthogonal group, will be orthogonally equivalent to the direct
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sum of its irreducible representations: for in thix case one can take in [21] for
(,) the ordinary scalar product and spare the averaging process. Furthermore,
since in our case {e) is an invariant space of dimension 1, Q, Q, have one
column=e and thus their other columns have column sums 0. The following
was an important step in work on OMC.

Theorem MV. For any unitary U, the direct sum &]_o|C (U )|*2 lies in the affine
hull of the &F_o|Cr(P;)|. Equivalently

Oy € aff{R(a,U): 5 € S,}. (6)

Proof. This is a restatement of a theorem of Merikoski and Virtanen 18],
Theorem 4. [

It is worth noting that it was later established in [5,19], that any sequence
{ts)yes, Yielding |Clupy (U )2 = D oes, talClayzy (P,)|%, serves also as coefficient
sequence for an analogous linear combination for the direct sums. Thus the
search for suitable sequences — they exist by Theorem MV - can be ‘localized’
to the natural & nearest to n/Z.

Lemma 1. With the matrices Q, Q above, there holds for any unitary 4 x 4 matrix
U, that:
() O7|C(U)°*Q is equal to the left upper 4 x 4 submatrix of OF|C2(U)|*Q.
(b) The latter matrix is of the direct sum form [1] ®(3 x 3) ¢ (2 x 2).

Proof. By Theorem MV thgre are reals s, summing to 1 such that |C, (V)| =
3, 56|CL(P)1, and |G(U)] = 3, 5,|/C2(P5)|. Now since by (5) statements (a),
(b) hold whenever U is a permutation, the lemma follows. []

In the present context, the main message of [5] is thai the s, cannot, in
general, be chosen aii nonnegative.

Define next the polytope %, = {t = (t;),c5.0 4 = 0,3t = 1} of affine di-
mension n! — 1 along with the (n*> — 2n + 1)-dimensional polytope @, of n x n
doubly stochastic matrices. Birkhoff's representation theorem {10}, p. 527, can
be stated as follows:

Thesrem B. There is a surjective map given by
B
(to) Land Ztaicl (Pﬁ)‘a
By — Q,.

We would possibly profit from partial answers to the problems posed by
Brualdi [3] concerning (%, §, 2,); conversely, perhaps representation theory of
S, can help to advance Brualdi’s. We returr: to the case n = 4.
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Corollary 2. (2) There exists a real orthogonal 16 x 16 matrix Q such that for all
unitary 4 x 4 matrices U and ¢ € S, there exist matrices 3(¢,U) and 2(a,U) of
sizes 3 x 3 and 2 x 2 respectively, such that

3
Q'R(s,U)Q = 05,5 ® (@3(0, U)) @ 2(c. U). (7
=l

M) If (¢,) € ﬁ"(IC;(U)|2) then for some 2 x 2 matrix T = T({t;),U) there
holds

Q" 1eR(6,U)Q = Oipxis ® T (8)

Proof. (a) We write 0y, 0y, 02, 0s, O, respectively, for the matrices, [1],0, 0,
0%, [1]. Just as the blocks in the definition of R(s, U), these matrices have the
respective sizes 1,4,6,4,1. Define Q =& e We then obtain

- " 4 by
Q'R(s, U)Q = D O (ICi(P)| - |G,

i=0
4
= @(eriaeie - ofIC(V)* Q).

Fori=0and i =4, the 1 x I matrices |C;{U )§°3 are for any unitary matrix U,
in particular for the permutations equal to [1]. Therefore the direct summands
with these indices are [0]. As a consequence of Lemma I(b) the summand of
index 2 is of the form [0] @ 3(e, U) ® 2(s, U) where the matrices entering have
the sizes claimed. By Lemma I[(a) the summand of index i=1 is then
[0] & 3(e, U). This latter summand is also that of index i = 3: this is a conse-
quence of the fact |C3(U)I° = |Ci{U)], and the computational rules for <, ]
given in Section 1a. It follows from a count that there is a permutation P such
that the matrix Q = QP is as desired. (b) By hypothesis we have the left and
therefore the right hand side of the implication

IC(U)? =) LlCi(R)]
= [0]© 055 = Y _ 0] (ICI(R)| - [C(L)[P)Q
=Y " 1,[0]© 3(s, U).

Canceling here the [0} on the extremes, a look at (7) shows with 7T =
3 t:2(6, U) validity of (8). [

Lemma 3. (a) Assume s/ C R? to be finite. If there holds 0 € co{s/"y} for all
y € RY, then this holds also for all y € CY.

(b) Assume R C M,,(R) to be finite. If for an x € R? and all y € R? there
holds 0 € co{xT Ry}, then this holds also for ail y € C*.
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Proof. (a) Let &/ = {a),...,a,}. Consider the set of 1xg¢g row vectors
{af,...,a"}. The hypothesis of the lemma implies ihat this set must contain
0:,, in its convex hull - otherwise there existed by the hyperplane separation
theorem, see [8], Article 89 or {10}, p. 534, a real y such that all ]y are > 0.
Thus there exist +; > 0 summing to 1 such that }_, tia] = 0y,,. But then for any
y € C%, Y taly = 01,y = 0. (b) It is a direct consequence of (a) obtained from
putting &7 =xT2. [

As one consequence which we shall not use later we mention the following
slight extension of Fiedler’s result [9].

Corollary 4. The Oliveira Marcus conjecture is true for all pairs of normal
matrices X,Y € M, ,(C) for which at most one matrix has at most one nonreal
eigenvalue.

Proof, This claim is equivalent to that OM,(x,y, U) is valid whenever the n-
tuple x is real while y (say) has at most one nonreal entry. Sinzle out this one
entry as a variable — call it y. Fix all the other real quantities in the expressions
in the rhs(2). With suitable real a,, b,, 6 € S,,, these expressions can be seen as
affine forms of the type

1
a; + bof’ = [amba] [ ...] .
y
By Fiedler’s result these forms contain for all real y the real 0 in their convex

hull. Passing to homogenesus lincar forms, we can infer the claim from Lemma
3@. O

Lemma 5., Let A,B,C be real invertible 2 x 2 matrices such that A™'B,
B™'C, C~'4 have no real eigenvalues. Then there holds either for all x € R?\
{025} or for no such x that 0,,, € co{dx, Bx,Cx}.

Proof. By hypothesis for any x € R\ {0,;} and all r€R, 47'Bx # rx.
Equivalently, for all x # 0, 02, 4x, Bx are three distinct noncollinear points.
Thus the straight line g4 s through Ax,Bx does not contain 0. By similar
reasoning the straight lines gz, ¢ and g, never hit the origin of the Euclidean
plane. Consequently either the crigin is contained for all x # 0 in the interior of
the triangle with vertices Ax, Bx, Cx, or for no such x. [J

Proof of Part (a) of the Main Theorem. Define the numbers a = 0.16823...,
b =0.56912.... With these¢ numbers the matrix Up,, is given by
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a b b b

-b a b -b
Ubr = -b —-b a b
-b b -b a

Let us enumerate the permutations of §; lexicographically. Thus, assuming the
permutations given in word representation, set up the correspondence
1 - 1234,2 « 1243, .. ; see Section 3 for a dictirnary. Write accordingly ¢ for
tia3s etc. With q; =0.0233....4, =0.2956...,a; = 0.3239..., one can show
the following t = (¢,) to lie in 7' (|C1 (Upr)|™):

t,_(z 7 18 23 8) t,,_(3 114 22 24)

a a da3 ay a; a ay ay a @
g (6 101519 1?)

kal a dap ay a

The first table should bereade.g. asth = a;,.ty = a1, tig = a3,...,etc,and ¢, = 0
for all i ¢ {2,7,18,23,8}; similar for the other tables. The matrices 7’ =
T(t, Uprn) etc., see Corollary 2(b), that arise from these choices are given ap-
proximately by
. (0.3323 0.8249 )
~\0.3952 -0.3721 )’
( —0.7243 0.2149)

~0.2149 0.6845

One checks that the eigenvalues of 7/-!'7”, 7"-'T" and T"~'T" are nonreal —

curiously there occurs the same pzir in the three cases, namely
~0.6553 £ 0.7553i.

Since (R')TQ" = (R'®)T, and R'® = QR', as columnspaces, we; find the
equivalence
/\ 0 € co{x"R(6,U)y: 7 € S3}

s yeR!®

U

(0.3323 -—0.3952)
-0.8249 -0.3721 )’

" o__

<= /\ 0€cofx"Q"R(s,U)Qy: 5 € S} (9)

ryeRi®
and from Corollary 2(b).
T = Ol4x 14 D {T’, T", Tm} C_: CO{QTR(G, UDru)Q: CE S4} (10)
For any y € R', (014414 ® T")y has T’ (":2) as nontrivial part; similarly for

T”,T". Now, since the first columns of the latter matrices, obtained by mul-
tiplication with (}), contain 0, in their convex hull, we see by Lemma 5 that



254 A. Kovatec | Linear Algebra and its Applications 289 (1999) 243-259

forallx,y € R, 0 € co{x"7y}. Thus from relation (10), we find the validity of
rhs(9) and thus of ths(9). The latter fact implies part (a) of the Main Theorem
by means of Lemma 3. [J

3. On finding adeguate elements in §7'(|C,(U)})

The proof in Section 2 uses the possibility of writing matrices in Q, in
various ways as convex combinations of permutations. We give the ideas that
guided our choices of t,t",t” € f(|C,(Uprn)|”*). Probably part (a) of the
Main Theorem can be established for other explicitly given external U by
similar considerations.

Real multiples of 2 x 2 rotations # I, have ro real eigenvalues. Inverses of
reflections/rotations are reflections/rotations. Products of two reflections or
two rotations are rotations. So if we could choose ¢,t",¢" such that (i)
T, 7", T" are all smali perturbations either of multiples of rotations or of re-
flections, and (it) the:r first columns would include the origin of the Euclidean
plane, then Lemma 5 guarantees 0 € co{T"x, T"'x, T"x} for all x.

To achieve this, we note from (5) and Corollary 2(b), that since Y _ ¢, = 1,

T((t,), U) = lhs(8)[15, 16]15, 16]
=" 1,(0"IC2(P)|0)(5, 615, 6] — (QFIC:(U)*)D)[5, 615, 6]

::RU)

= (Z :gd(a)) - T(U).

It turns out that there occur only certain six orthogonal matrices O'(s). Putting
¢ = V3 =2cos{n/6) = 1.7321 ..., the following table gives in the uppermost
part these matrices, called in the line below O, ..., O, followed by their type.
The column of O contains in its lowermost part the indications of the asso-
ciated o in word representation. The permutations are precedea by their lexi-
cographic ordinal numbers in the sense mentioned in Section 2.

) 2 0 1 ¢ | -1 =-c -1 ¢ -2 0
i{[{) 2]’ [c ——l]’ [—-c —1}’ [c —l]’ [——c --l]’ [O 2}}
o o o 0, o o,
rotation reflection reflection  rotation rotation reflection
11234 21243 31324 41324 5 1423 6 1432
82143 72134 112423 12 2431 9 2314 10 2341
17 3412 18 3421 14 3142 133124 16 3241 15 3214

24 4321 234312 22 4231 21 4213 20 4132 19 4123

The standard method to find elements in [f”([)), D € Q,, is the Birkhoff al-
gorithm:
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Input: D € Q,
Qutput: A set of ¢, > 0 such that }__t,P, = D.
D:=D
while D # 0.
choose a ¢ € S, such that ¢, := min l‘),,,-‘,- > 0.
D:=D- t:P;

end )
The most elegant exposition of the properties of this algorithm is.probably by
Brualdi [3]. He bases his analysis on geometry rather than on the combinatorics
used earlier.

Noting that the first columns of the reflections 0}, 0}, O; contain the origin
of the plane, to find a t’ hopefully appropriate for a given externa! U we simpiy
would try to use in the Birkhoff-algorithm, applied to D = |C,(U)|*?, as often
as possible multiples of P; with ¢’s pertaining to the O)-column. This migat
result in that the ‘reflectory part’ stemming from O would outweigh the term
T(U) plus eventual further perturbations stemming from subtracting multiples
of P, with ¢’s different from the 0, group and yet necessary to complete the
while-loop. To find t",t” we would proceed similarly with O} and O}, respec-
tively, taking the roles of 0). This strategy worked well for U = Upy,. In each
of ¢',t",t", we had only to use one permutation not belonging to the group
desired. Its coefficient, always a; = 0.2956.. ., is small enough so as not to
harm our intentions.

If the enumeration of the facets of Papem = co{|Co(P:)|: o € S3} in [5], pp..
255-256 is complete, the discussion there shows that xmplememabxhty of the
above heuristics for all matrices U € SU(4), for which D = |Co(U)|[* satisfies
Dy — Dys + Dgy + Dgy + Ds; > | would imply part (a). of the Main Theorem
without the restriction U = Upy,.

4. Proof of part (b) of the Main Theorem

Let U be an external unitary 4 x 4 matrix; that is assume it satisfies —lhs(3).
Using (7) we see by the hyperplane separation theorem that this is equivalent to
finding a real 3 x 3 matrix 3 and a 2 x 2 matrix 2 such that for all ¢
s(3(e,U) & 2(0,U) 0 (38 2)) > 0. We can write 3 = 3, + 3, + 3; where the 3;
have rank 1. Define matrices

3
K=05s0P382 J=0559 @szs ® J2x2-
f=1 J=1

K is a direct sum of matrices of rank < 2. Thus by [lO]' 0.4.6 and p. 457, we can
write K = ®%,(a,b] +ab]) with columns a,b;,a;,b; of lengths 5,3,3,3,2,
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respectively, for i = 0,1,2,3,4. Let a = [a],...,a]]. Define similarly 16-rows
b,d,b. Then K = J o (a'h + a'b); i.0..v. K can be embedd:d in a rank 2 matrix.
Define complex 16-columns x = a¥ + v/=1a", y = T + v~ 15" and note that
supp(Q'R(a, U)Q) C Supp (7). Thus for every g,

0 <s(3(0,U) ©2(6,U) 0 (30 2)) =s(Q"R(6,U)Q oK)
= s((Q"R(c, U)Q 0 J) o (a"b + &"h))
=Y (Q"R(s,U)Q),(a"b + d"h),)

= R(x"'Q'R(a, U)Qy).

This obviously implies part (b) of the Main Theorem. [J

For an explicit example, the reader can check that x* = [0;,52.30002.300
02.3-0.3-3.4i -3.4+0.2i}, y = [0,,s002.302.300023 1], yield positive
real part of x’Q"R(s, Up,,)Qv for all ¢ € S;. The construction of these vectors
was made using numerical results as given in the next section and applying the
ideas above.

5. Notes on numerical cxperiments and decidability of OMC for n =4

We report on numerical experiments documented in [15] (we suspect from
his papers, that Drury [6] has similar results) and give a suggestion of how
OMC for n = 4 can possibly be resolved with current computing facilities.

Recail that by (7) R(a. U} is subjected to a rotation. Similarly the polytopes
Prcims Fopm = CO{E(G) D O(6): 6 € 83}, Py =co{3(a,U) D20, U): a€
S3} are congruent (i8], Articie 139 C). The latier two polytopes live in the 13-
dimensional space of matrices of (3 x 3) ® (2 x 2) format; in it we consider
also the cones %y = cone(#y) and its dual %, = {X: Forall C € %y,
(X,C) < 0}. The interior of %;, comprises (up to sign) exactly the matrices
(normal to hyperplanes) separating O from 2, — see [8], Article 89F, for more.

a. A question of natural iterest is how far lhs(3) can fail to be true? By
Corollary 2 this question is closcly related to how far the origin (zero matrix) in
Ms(R) can be from the polytope 2. In investigations made for U = Up,y, we
found O by several accounts very near to #y,, ; it is this nearness in com-
parison with the distance that the eigenvalues of T"-'T” etc. (see Section 2)
have from the real axis that led us to formulate the conjecture of Section 1.
Indeed, the orthogonal projection of O onto #y,,,, thus the point of #
nearest to O is given by the matrix

Uspu
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0.0366 'E

0= 0.0366 @ [

0.02i l]

The Euclidean norm of this matrix is 0.0701, while the distance between any
two vertices of 2y, is always one of the numbers V8 ~ 2.83 or V12 = 3.46,
for these are the distances possible between any two |C>(P;)|. An observer at
the origin will see 13 of the 24 vertices of 2y, . These correspond to permu-
tations of ordinal numbers givenin [4 8 10 11 12 13 14 17 18 19 21 23 24]. If
V is any visibie vertex, then one will find that Z(OV 00’) 88°. The cone
€y, therefore is simplicial; in fact representatives of its extremerays are pre-
cisely the linearly independent vectors OV V visible. Not surprisingly from
these data, a pure random search of a hyperplane separating O from %, —or
equivalenily a random search of an element (matrix) X € Clon did not succeed.

b. By the properties of the Frobenius inner product and Corollary 2 we have
x"R(e, U)y = (R(a,U),x5")

= (Osxs ® (4393(0, U)® 2(e,U),Q'x" Q). (1)
Jj=1

Given that OMC fails to extend to an assertion for bilinear forms we work in
the sequel only with variables x; and x,.4 =former y; for i=1,2,3,4. The
discussion in Section 1 shows that the vectors relevant for proving OMC can
be taken to be [x1234, X234, - - .x]" and [xg, xs, .. ,xsmj If one evaluates rhs{11)
one finds that there is a matrix R(x) of format (3 x 3) @ (2 x 2) whose entries
are homogeneous polynomials of degree 4 in x = (x,...,x3) i terms of
which OMC(r = 4) is equivalent to proving for all x € C® and all external
U € SU(4) that R(x) ¢ interior{%};). As a measure of how far R(x) fails to li¢ in
the interior of this cone, we tried to minimize the angle between it and OR x) by
means of the MATLAB routine fmins. Admitting complex x € €°, wherever
we started we ended up somewhere between 10° and 11°, for real x the corre-
sponding value was about 16.7°.

¢. By results of Brualdi [2], Theorem 2.8, and Cruse [4] the 48-vertex, 13-
dimensional poiytope of aii 6 x 6 centrosymmetric doubly stochastic matrices
must contain co{|C:(U)[: U € SU(4)}, a set with probably infinitely many
extreme points. If OMC(n=4) is true then some truncation of that polytope
will still contain that set, yet be small enough to guarantee for all its finitely
many vertices ¥ that (*) R(x) € interior($(¥)"). Here €(V} is obtamed by
substituting in the construction leading to €, the matrix |CZ(U)} by ¥. Since
for every U there will be a ¥ such that €(¥) T %, and since dualizing is in-
clusion reversing, establishing (x) for all x and J” implies OMC(n =4). We noie
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that the quantities x; satisfy many algebraic relations; xs4s6x1256 — X2456X1356 = 0
is one example of dozens. Separating the real and the imaginary part of the
x..., such a quadratic relation for complex numbers gives rise to two similar
quadratic relations over the reals. In this way we can write down a large
number of quadratic relations that real numbers have to satisfy in order to
originate candidates for the entries of R(x). Such a mairix is not in (the interior
of) €(V)’, iff there are no 4, = 0 such that R(x) — 3_, Aiext; = 0s,s; here the ext;
designate representatives of extremal rays of € (V). Thus OMC(n=4) would
follow by showing the inconsistency of each of a finite number of systems of
linear and quadratic relations in Rx,, Jx; and 4; under nonnegativity constraints
for the 4s.
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