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Abstract. We investigate the QCD phase diagram and the location of the critical end point (CEP) in
the SU(2) Polyakov—Nambu—Jona-Lasinio model with entanglement interaction giving special attention
to the m and o-mesons properties, namely the decay widths ¢ — 7w, for several conditions around the
CEP: we focus on the possible 0 — 77 decay along the isentropic trajectories close to the CEP since the
hydrodynamical expansion of a heavy-ion collision fireball nearly follows trajectories of constant entropy. It
is expected that the type of transition the dense medium goes through as it expands after the thermalization
determines the behavior of this decay. It is shown that no pions are produced from the sigma decay in the
chirally symmetric phase if the isentropic lines approach the first order line from chemical potentials above
it. Near the CEP or above the 0 — nm decay is possible with a high decay width.

1 Introduction

The possible existence of the critical end point (CEP) and
its implications to the investigation of the QCD phase di-
agram is a very timely topic that has drawn the attention
of the physics community.

From the experimental point of view, the location of
the CEP is one major goal of several heavy ion collisions
(HIC) programs. At RHIC, the Beam Energy Scan (BES-
I) program, ongoing since 2010, is looking for the exper-
imental signatures of the first-order phase transition and
the CEP by colliding Au ions at several energies [4]. Also
the STAR Collaboration presented their measurements
on the moments of net-charge multiplicity distributions,
which can provide relevant information on the freeze-out
conditions, in order to clarify the existence of the CEP, but
no definitive conclusions were possible and future mea-
surements with high statistics data will be needed [3].
With the upcoming BES-II program, it is expected that,
if the CEP exists at a baryonic chemical potential below
400 MeV, it can provide data on fluctuation and flow ob-
servables which should yield quantitative evidence for the
presence of the CEP.

Meanwhile, the NA49 program at CERN SPS has also
investigated the CEP’s location in nuclear collisions at
158A GeV [6]: the analysis for 777~ pairs with an invari-
ant mass very close to the two-pion threshold has been
performed in [6]. This sector is important because it may
reveal critical fluctuations of the sigma component in a
hadronic medium, even if the o- meson has no well-defined
vacuum state. In spite of a sizable effect of 77~ pair
fluctuations with critical characteristics found in Si + Si
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collisions at 158A GeV, this effect could not be directly re-
lated to the presence of the CEP. Now, the NA61/SHINE
program is devoted to the search for the CEP and to in-
vestigate the properties of the onset of deconfinement in
light and heavy ion collisions [7]. So far, no definitive re-
sults were found about the existence of the CEP.

In the next years, FAIR facility at GSI and the Nuclotron-

based Ion Collider Facility at JINR (NICA) will extend the
CEP’s search to even higher i p and definitive conclusions
concerning its existence and location are expected (for a
review on the experimental search of the CEP see [§]).

It is known that the location of the CEP is affected by
several conditions like the isospin or strangeness content of
the medium [9], the presence of an external magnetic field
[9T0] or the role of the vector interaction in the medium
[TOJTT]. The determination of the CEP’s location will set
stringiest constraint on effective models.

Probes like diphoton and dipion productions are im-
portant tools for the search of the CEP. In this work we
will focus on the dipion production. However, concerning
the diphoton production, it is important to point out that
the enhancement of photon pair production rate at thresh-
old should also belong to the set of observable effects for
the investigation of chiral symmetry restoration in ultra-
relativisitc HIC experiments. Indeed, in [2] it was shown
that the process qg — <7, which occurs due to the for-
mation of mesonic resonances, leads to an enhancement
of photon pairs with invariant mass equal to the thermal
pion mass. On the other hand, the photon pair production
by pion annihilation (2w — 2v) at the chiral phase tran-
sition was investigated in [I] where the following results
were found: a strong enhancement of the cross section for
the pion annihilation process when compared with the vac-
uum case; the calculation of the photon pair production
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rate as function of the invariant mass showed a strong en-
hancement and narrowing of the sigma meson resonance
at threshold. Both results are directly related to the chiral
symmetry restoration. However, the 70 — ~v decay gives
a strong background contribution making difficult the ob-
servation of these effects at high energy collisions. One
strength of NICA facility, namely the Baryonic Matter
at Nuclotron (BM@N) experiment, concerns the diphoton
production: the electromagnetic calorimeters that will be
used have large acceptance and high resolution allowing
to investigate the invariant mass spectra of vy pairs in the
wide range at different energies and transverse momenta
of pairs [3].

The measurement of the o — 7y decay is also relevant
because of the small final state interactions [12]. Finally,
measuring the o — 27° — 4+ [13] can avoid the possi-
ble background from the p— meson inherent to the 77~
measurement.

In the present work we investigate the = and o-mesons
masses and the decay width of ¢ — 77 for several condi-
tions around the CEP, namely along the isentropic trajec-
tories close to the CEP because it is likely that the system
expands nearly isentropically after the thermalization.

2 Model and formalism

In this work we consider the two-flavor Polyakov—Nambu—
Jona-Lasinio (PNJL) model which Lagrangian is

L = aliy"D" —io)g + Gs [(@a)? + (@rs7a)’]

+ U (D[A], D[A];T) . (1)
Here, ¢ = (u,d)” represents a quark field with 2-flavors,
1o = diag;(m., mq) is the corresponding (current) mass
matrix, with m,, = mg = mg (to keep the isospin symme-
try) and 7 is a Pauli matrix which acts in flavor space.

The quarks are coupled to the gauge sector via the
covariant derivative, D¥* = 0" — i{A*, and the order pa-
rameter of Z3 symmetric/broken phase transition in pure
gauge is the Polyakov loop @ (see details in [T4L[15]).

The pure gauge sector is described by the effective po-
tential U (43, P, T) chosen in order to reproduce the results
obtained in lattice calculations. From the several possibil-
ities, we use [14],

U(®,0;T) a(T)

T4 2
x In[l — 60D + 4(P° + &) — 3(dP)?], (2)

PP + b(T)

where

a(T) = ap+ay <%> +as <%>2 and b(T) = bs <%>3 .
(3)

The parameters for this effective potential are ag = 3.51,
a; = —2.47, as = 15.2, and by = —1.75. Tp, the critical
temperature for the deconfinement phase transition within

pure gauge, can be fixed to Ty = 270 MeV according to
lattice findings. However, this value of Ty leads to a differ-
ence between the chiral and deconfinement transition tem-
peratures (indicating a week entanglement between both
transitions), and also a larger value of the deconfinement
temperature at a zero chemical potential than the value
T. =173 +8 MeV given by full LQCD data [30].

The extended version of the model where an effective
four-quark vertex depending on the Polyakov loop is in-
troduced, the entanglement-PNJL (EPNJL) model [16],
allows the reduction of the difference between the transi-
tions temperatures. We implement an explicit dependence
of Gg on @ and @ assuming the following form:

Gs(@)=GY[1 — a1 ®P — az (9* + &°)],  (4)
which respects chiral, P, C' and the extended Z3 symme-
tries (the values ay = ag = 0.2 were fixed in [16]).

The Polyakov potential ¢ may depend on p (1 = pg =
(ttw, + pa)/2) as a consequence of the backreaction of the
fermion sector to the gluon sector. This dependence of U
in p can be introduced by a Tp(p) which was estimated
from renormalization-group arguments [17]:

To(u, Ny) = Tre™ 700w (5)
with b(u) = (11N, — 2Ny)/(67) — 16N¢u?/(7T2), g =
0.304 and T°- = 1.770 (GeV). The value of T also depends
on Ny and in our case (Ny = 2) this leads to To(p =
0,Nf) = 208 MeV, with an uncertainty not small than
+30 MeV [17].

From the Lagrangian () it is straightforward to ob-
tain the PNJL grand potential density in the mean-field
approximation, the constituent quark mass and the quark
condensate, (qq) (for a detailed description see [T4\[15]).

As a regularization procedure we use a sharp cutoff,
A, in three-momentum space for all integrals. In the nu-
merical calculations our parameters are: mg = 6 MeV,
A =590 MeV, and G%A? = 2.435 which give M7 = 400
MeV, m, = 140.2 MeV, f, = 92.6 MeV [18]. We will use
To(p = 0,Ny = 2) = 179 MeV, that is the lower limit
of the estimation of To(p = 0, Ny = 2), which allows the
transition temperature for the desconfinement to be close
to the LQCD value. Ty (u, Ny = 2) will follow Eq. ().

3 Phase diagram, the location of the CEP
and isentropic trajectories

The phase diagram is plotted in Fig. [l and is determined
by the grand canonical potential dependence on the order
parameters (qq), ¢ and ¢ as a function of temperature
and chemical potential. The deconfinement transition is
defined as 92¢/0T? = 0 (dotted lines ] while the crossover
line is defined as 9% (qq) /OT? = 0 (dashed lines).

At p = 0 the deconfinement transition and the chiral
crossover almost coincide at 7' = 185 MeV. At finite 7" and

! We could also represent 9°®/9T? = 0 but we will restrict
ourselves to 9*®/9T? = 0.
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Fig. 1. QCD phase diagram in the 7" — pg plane. The red

dashed line corresponds to the deconfinement transition. The
full black line is the first order chiral phase transition and the
gray region is the spinodal region.

w1 the deconfinement transition and the chiral crossover
stay almost coincident (see red and black dashed lines,
respectively) until the CEP is reached at (T¢FF = 175
MeV; pGFF =169 MeV). When T = 0, with the chosen
parametrization, the first order phase transition occurs at
pet = 383 MeV. As p™" < MY this allows for the exis-
tence of quark droplets (states in mechanical equilibrium
with the vacuum state, pp = 0, at P = 0) [I8].

The isentropic lines (contours of constant entropy per
baryon s/pp) contain important information on the adia-
batic evolution of the system. This has important conse-
quences in HIC because the expansion of the QGP, which
is accepted to be an hydrodynamic expansion of an ideal
fluid, will nearly follow trajectories of constant entropy.
Indeed, the fast (local) thermalization time and the good
agreement of the data at RHIC with ideal relativistic hy-
drodynamic models (assuming a fluid evolution with zero
viscosity) have been presented as evidences that the mat-
ter formed at RHIC is a strongly interacting QGP [19].
Due to its relevance, we investigate the isentropic lines
crossing the chiral phase transition around the CEP in
both the crossover and first order transitions.

The results for the isentropic lines in the (T'—p,) plane
are shown in Fig. 21 We first analyse the behavior of the
isentropic lines in the limit 7' — 0. As already pointed out,
our model allows for the existence of quark droplets, and,
in addition, simple thermodynamic behavior in the limit
T — 0 are verified. Indeed, in this limit s — 0 accord-
ing to the third law of thermodynamics and the condition
s/pp = const. is satisfied [20]. Near the first order region,
the isentropic lines with s/pp < 4 come from the region
of partial restored chiral symmetry and reach directly the
phase transition region going then along with it as 7" de-
creases until it reaches 7' = 0. The isentropic lines with
4 < s/pp < 10 intersect the first order line and go over it
for a while. Then, they leave the first order region through
the chirally broken phase and they will reach the first or-
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Fig. 2. Isentropic trajectories in the 7' — pq plane.

der region again for higher (lower) values of p (T'). The
trajectory with s/pp = 10 arrives to the first order line
very close the CEP and shows a pronounced kink behav-
ior, a “focusing” effect already found in [2I]. The same
happens to the case of s/pp = 11 (the CEP acts as an
attractor of isentropic trajectories [21]).

In the crossover region the isentropic trajectories have
slight kink behaviors when crossing the transition and
they reach the first order region from lower values of 1i,.
For isentropic lines s/pp = 50 the kink almost disappears
and the trajectories have a qualitatively similar behavior
to the one obtained in lattice calculations [22].

All trajectories directly terminate at the same point
of the horizontal axes at T" = 0: as the temperature de-
creases the first order phase transition occurs, the latent
heat increases and the formation of the mixed phase is
thermodynamically favored.

4 7 and o-mesons properties around the CEP

We can obtain additional information about the phase di-
agram by calculating the masses of the pion and the sigma
mesons, m, and m,, as functions of 7" and pq. These
masses, are obtained by using the standard mesonic po-
larization functions IT, and I1, (see [23] for details).

At T' = py = 0 the pion is a bound state, but, as the
temperature increases it will dissociate in a gg pair (when
M. > 2M,) at the Mott temperature. The polarization
operator acquires an imaginary part and the resonance
m, has an associated decay width. The sigma is always a
resonance and dissociates in a gq for all temperaturesﬁ

The behavior of the masses of the chiral partners (7, o)
at (T' # 0,uq = 0) and at (T = 0,y # 0) are quali-
tatively similar and well known from the literature: they
both converge at a certain value of the temperature (chem-
ical potential). This is known as the effective restoration

2 'We make the zero width approximation and only take the
real part of the polarization operators [25].
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Fig. 3. The chiral phase transition, the line where m, = 2mx
(blue line), and the Mott line for the pion (red dot-dashed line)
in the T'— pq plane.

of chiral symmetry and can also be seen by the merging
of the m and o spectral functions [I5]. For T # 0 and
ttg = 0 the degeneracy of the chiral partners occurs in
a range of temperatures where the mesons are no longer
bound states. Since the pion dissociates in gq pair, in Fig.
we represent the respective “Mott line” (red dot-dashed
line). Above g = 401 MeV the “Mott line” occurs inside
the first order region. Due to its relevance for the o — 7w
process we also plot in Fig. Bl the threshold of this decay
defined by m, (T, u) = 2m,(T, 1) (blue line).

One interesting aspect is that, around the CEP, the
o-meson can have an abnormally small mass. This means
that it is expected that some peculiar experimental signa-
tures can be observed through its spectral changes. In fact,
in hot and dense media the o-meson can decay through
different processes like 0 — 7w, 0 — 7, etc. We will fo-
cus on the ¢ — 7w decay but we will not consider the
Bose-Einstein statistics for the final state pions because,
as pointed out in [24], this effect at high temperatures is
gradually washed out as fi, increases.

Near the chiral transition temperature, m, is signifi-
cantly reduced while m, increases making impossible the
o-meson decay into two pions and, therefore, the width
coming from this process vanishes being the threshold
point of the decay defined by m, (T, 1) = 2m (T, p). In-
deed, in the chiral limit the threshold m, (T, 1) = 2m, (T, p)
must coincide with the restoration of chiral symmetry be-
cause at that point M, = mo and m, (T, p) = m(T, p).
Outside the chiral limit, M, goes asymptotically to mqg
and at the transition temperature M, >> mg: both phe-
nomena do not coincide, but they occur near each other.

Once we assume the o-meson as a quark-antiquark
pair, the decay width for the 0 — 77 process is:

1_4m,2T
m2 "’

where gorr (T, 1t) = 29592 Aorr (T, 11) is the coupling stren-
gth. g, and g, are coupling constants for the ¢ and m-

3 92n
216 m,

FO'—)TF?T -

(6)

mesons respectively, and A, is the amplitude of the tri-
angle vertex for the decay o — 77 (see details in [241[26]
27]). The constraint my (T, pu) < 2m,(T,u) comes from
the factor /1 —4m2/m2 in Eq. [@). When m, (T, u) >
2m, (T, p) the values gorr and Iy rr will go to zero.

In Fig. [ we present the behavior of I'y . r and gorr
as functions of the temperature for 3 cases:
Case I — pg = 0;
Case I — pg = pSP and pg = pGFF + 30 MeV;
Case IIT — s/pp = 9 (the isentropic line reaches the first
order phase transition from the chirally symmetric phase);
s/pp = 10 (the isentropic line passes very close the CEP;
s/pp = 11 (the isentropic line goes through the crossover
and intersects the first order line from below).

In Case I (Fig. @ left panel), at T'= 0, we have m, =
803.8 MeV which gives gorr = 2.73 GeV, slightly above
the experimental value extracted from the J/¢ decays
given by the BES collaboration: gyrr = 2.0Jj8:3 GeV [28].
When the temperature increases g, drops to zero near
the point m, = 2m,. For the ¢ — @w decay, we ob-
tain Iy, ,rr = 260 MeV, within the certainty intervals
of the experimental results from the BES collaboration
Lyoymr = 282717 MeV (with m, = 39075 MeV), or the
E791 Collaboration with Iy, = 324119 +21 MeV (with

my = 478733417 MeV) [29]. As noticed in [24], the choice
of parameters can make shifts of magnitudes in g, and
Iy rnr, mainly due to the value of m,, but does not
change their shapes, especially the behavior around the
threshold temperature or the chiral transition.

In Case II, around the CEP, (Fig. [ middle panel)
the result is very similar to what was found in [24,26]:
as the chemical potential increases close to the CEP, the
threshold temperature the for ¢ decay decreases. In the
first-order transition region (ug; = ,ugJEP + 30 MeV) (qq),
m, and m, are discontinuous: (qq) and m, jump down
and m, jumps up and, consequently, the mass difference
between m, and m, jumps from below 2m.. to above 2m..
The o decay threshold coincides with the first-order tran-
sition line and gyrr and I,y g0 to zero. At the CEP
(g = ugEP ) the limiting threshold for the o decay ap-
proximately coincides with the temperature of the CEP,
TCEP (see red line for gyrr and I, ). In the crossover
region (pqg = quEP —30 MeV), gorr and I'y_1rx €O tO zero
slightly above the temperature where 92 (gq) /OT? = 0.
This is due to the continuous nature of the transition in
this region and the way we define the crossover.

In Case III, we impose that the decay ¢ — w7 occurs
in the isentropic trajectories (Fig. M right panel). The lo-
cation of the CEP is not known yet, but, it can be argued
in favor of its experimental detection that if the evolu-
tion of strongly interacting matter is such that the system
passes in the vicinity of the CEP starting from the initial
conditions we will be able to locate it. Due to the successes
of ideal fluid hydrodynamics at RHIC, it is likely that the
system expands nearly isentropically and the o — 77w de-
cay, if it occurs, will be under such conditions.

— For s/pp = 9 (dashed lines) gynr and I, rr drop to
zero and there is a range, 176 < T < 184 MeV, where the
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Fig. 4. I, (upper panels) and go»~ (lower panels) for the three cases presented: Case I (uqy = 0), left panels; Case II
(g = quEP7 ugEP =+ 30), middle panels; Case III (s/pp = 9,10, 11), right panels.

o — 7 decay occurs inside the first order region and we
do not have decays for temperatures and chemical poten-
tials above the first order line.

— When s/pp = 11 (dotted lines) gorr and Iy pyr will
be different from zero slightly above the isentropic line
reaches the crossover transition as 7" decreases. The o —
w7 decay then occurs until 7'~ 14 MeV and for T' < 14
MeV it will be inside the first order region.

— For s/pp = 10 (solid red line) the trajectory passes very
close to the CEP. gorr = 1.67 GeV and [, = 135
MeV in the point near the CEP. Both quantities go to
zero inside the region of chiral restored phase but near
the transition line.

When the o — 77 decay occurs at the transition lines,
for these values of s/pp, gonr and I'y_, - are smaller when
it occurs near the CEP: the red dot (at the CEP) in Fig.
[ right panel, has a smaller value compared with the ma-
genta dot (crossover) and the blue dot (first order).

The ¢ — 7wm decay depends on the initial conditions
and the way the system evolves after the thermalization.
If the isentropic trajectories reach the first order line for
g > M;St, there will be no pions coming from the o decay
in the chirally symmetric phase. Near the CEP and above
the ¢ — 7w decay is possible and its width is still high
near the CEP.

5 Summary

The location of the CEP is one important issue addressed
by the HIC program. The Nuclotron-based Ion Collider
Facility at JINR will significantly enhance our understand-
ing of the QCD phase diagram namely the nature of the

phase transition and the existence/location of the CEP.
The eventual confirmation of the CEP would be one of the
first discoveries of QCD-like observables in the medium.
The implications of its location are vast, in particular con-
cerning the constraints to set on effective models.

In this work we started to study the isentropic lines
in the vicinity of the CEP. The isentropic trajectories, in
the crossover region very close the CEP, show “focusing”
effects which can be seen as the result of the CEP to act
as an attractant of isentropic trajectories [21]). At high
chemical potentials and low temperatures these lines will
go through the first order line.

By taking into account the 7 and o-mesons proper-
ties around the CEP, we looked for signatures that can
be observed experimentally [6]. We have focused on the
o — wr decay that can be suppressed at the transition
region due to the small mass the o-meson can have in
that region. This decay showed different behaviors con-
cerning the region where the collision takes place and may
be used to distinguish different transition types and to lo-
cate the CEP: if the isentropic trajectories reach the first
order region coming from higher temperatures, only after
the transition the 0 — 77 decay happens and no pions
from o decay occur in the chirally symmetric phase. Oth-
erwise, if the isentropic trajectories reach the crossover,
pions coming from o decay may still occur in the chirally
symmetric phase.
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